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Abstract Computational modelling of biochemical sys-

tems based on top-down and bottom-up approaches has been

well studied over the last decade. In this research, after illus-

trating how to generate atomic components by a set of given

reactants and two user pre-defined component patterns, we

propose an integrative top-down and bottom-up modelling

approach for stepwise qualitative exploration of interactions

among reactants in biochemical systems. Evolution strat-

egy is applied to the top-down modelling approach to com-

pose models, and simulated annealing is employed in the

bottom-up modelling approach to explore potential interac-

tions based on models constructed from the top-down mod-

elling process. Both the top-down and bottom-up approaches

support stepwise modular addition or subtraction for the

model evolution. Experimental results indicate that our mod-

elling approach is feasible to learn the relationships among

biochemical reactants qualitatively. In addition, hidden reac-

tants of the target biochemical system can be obtained by

generating complex reactants in corresponding composed

models. Moreover, qualitatively learned models with inferred
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reactants and alternative topologies can be used for further

web-lab experimental investigations by biologists of interest,

which may result in a better understanding of the system.

Keywords Evolution strategy · Simulated annealing ·
Qualitative model learning · Top-down and bottom-up

modelling · Systems biology

1 Introduction

The goal of understanding species behaviour and essential

functions of a natural biochemical system can be achieved

by obtaining information of individual parts and correspond-

ing interactions within the system. Models can be constructed

to represent the given systems, and these models can exhibit

the same characteristics by simulations. In general, two dif-

ferent but complementary strategies can be applied to model

biochemical systems: top-down and bottom-up approaches.

Biological modelling tasks, including investigation of mech-

anisms and principles in the biological system, revealing

underling cell functions of the system and formalising bio-

logical processes in cells to achieve a better understanding of

the system, can be addressed by the top-down and bottom-up

approaches.

From a modeller’s point of view, a given cellular system

can be reduced systematically in a top-down manner until

essential parts remain in a minimal cellular environment;

while in a bottom-up approach, the whole or part of a target

biological system can be composed from individually mean-

ingful components. Therefore, during the modelling process,

biochemical systems are simplified by the top-down mod-

elling route, and atomic or prototypical biochemical units can

be assembled by the bottom-up modelling route to achieve

the goal of constructing the whole model. More details about
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the top-down and bottom-up approaches in the context of

modelling biochemical systems are described in Bruggeman

and Westerhoff (2007), which also discussed challenges in

modelling biochemical systems and limitations of these two

approaches.

In the top-down modelling approach, while a large bio-

chemical system is decomposed to discover molecular mech-

anisms, correlations among concentrations of molecules can

be discovered from these obtained mechanisms. More bio-

chemical assumptions may be suggested and verified in fur-

ther biochemical analysis and wet-lab experiments. In addi-

tion, studies on cell interactions can benefit from the top-

down approach, in which large datasets are dealt with in a

controllable manner and knowledge of biochemical system

behaviour is obtained and described in a systematic manner.

Furthermore, predictions of biological mechanisms (Tay-

lor et al. 2003; Ihmels and Bergmann 2004) and functional

processes (Tanay et al. 2004; Beyer et al. 2006) can be sup-

ported by the discovery of behavioural patterns in the system.

The availability of large omics data makes it possi-

ble for implementing the top-down modelling approach,

which enables us to analyse the dynamics of the system at

genomic level and address biochemical issues. For instance,

metabolome, fluxome, transcriptome and/or proteome can

all be improved and completed by the use of the top-down

approach (Westerhoff and Palsson 2004). Moreover, struc-

tures of the molecular networks can be identified (Kholo-

denko et al. 2002; Vlad et al. 2004) and parameter values in

gene networks can be determined (Moles et al. 2003; Krem-

ling et al. 2004).

In the bottom-up modelling approach, functional pat-

terns of a biochemical system may be discovered by inte-

grating biochemical units into a whole complex biochem-

ical system from scratch. These units describe interactions

among species and contain relevant biochemical informa-

tion, for instance, kinetic laws of biochemical reactions. In

the bottom-up modelling process, interactions among a small

group of components are composed to formulate a functional

sub-system, such as enzymatic reactions. The synthetic sub-

systems can also be composed to explore functional inter-

actions in the target biochemical systems, which produces

models to approximate and predict behaviour of the target

systems—such behaviour data are obtained from literatures

or experimental data. Therefore, topologies and kinetic rates

associated with reactions of biochemical systems can be con-

structed in a stepwise bottom-up modelling manner.

Over the last decade, many biochemical pathways have

been investigated by applying the bottom-up modelling strat-

egy with the support of experimental validation. For instance,

modelling of the downstream signalling network of the epi-

dermal growth factor receptor (Kholodenko et al. 1999; Sue-

naga et al. 2004; Kiyatkin et al. 2006), the central carbon

metabolism in E. Coli (Kremling et al. 2001; Schmid et al.

2004; Bettenbrock et al. 2006) and glycolysis in bloodstream

from Trypanosoma brucei (Albert et al. 2005).

Computational modelling of biochemical systems aims

to generate models representing target biochemical systems

in terms of behaviour and interactions among biochemical

components controlled by kinetic rates and concentrations

of species. In the presence of abundant quantitative data and

sufficient knowledge about the system, it is straightforward

to employ sophisticated modelling approaches and tractable

computational tools to quantitatively model such systems by

fitting the kinetic parameters according to concentrations of

measured species. However, when only incomplete knowl-

edge and sparse, noisy data are available, it is essential to use

qualitative model learning approaches, which qualitatively

construct and analyse biochemical models (Steggles et al.

2007), from which observations of a given biological sys-

tem can be explained by exploring the interactions among

reactants in these models at a qualitative level.

Therefore, our research focuses on using systems biology

(SB) approaches to modelling real-world biochemical path-

ways when there are only incomplete knowledge and qual-

itative data available. In particular, there exist imprecision,

uncertainty, and approximation issues when modelling path-

ways as such in SB. These issues can be well addressed by

soft computing approaches, as they are key topics in the field

of soft computing. More specifically, it is still intractable

for some conventional mathematical and analytical meth-

ods when they are applied to qualitatively inferring struc-

tures of complex pathways. So, in this research, we aim to

employ well-established soft computing algorithms to tackle

the aforementioned issues in SB and it is expected that sat-

isfactory solutions can be obtained.

With regard to the availability of both top-down and

bottom-up modelling approaches, in this research, we pro-

pose a framework which employs an integrative top-down

and bottom-up approach to the evolutionary exploration of

the biochemical model space. The top-down approach is

applied to sub-models of a given complicated biochemical

system, and it heuristically explores meaningful components

in a stepwise manner. Then, the bottom-up approach is used

to further develop obtained components from the top-down

approach, discovering potential interactions among reactants

in the target system.

In general, our stepwise integrative top-down and bottom-

up qualitative model learning (QML) approach is briefly

described as follows. The modelling of a biochemical path-

way involves construction of a library to preserve the bio-

chemical functional components according to user specifi-

cations. Evolution strategy (ES) (Schwefel 1965; Beyer and

Schwefel 2002) is employed in the top-down route to per-

form efficient selection and composition of functional mod-

ules to evolve models seeds (those models with partial sub-

models of target biochemical systems) toward complicated
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dynamic models. Simulated annealing (SA) (Kirkpatrick et

al. 1983) is used to further develop components composed

from the top-down approach, and it keeps to add and verify

extra newly explored components. A set of qualitative states

is then obtained from the explored models, with which qual-

itative experimental data of the target biochemical systems

are compared. Thus, qualitative states of reactants in target

biochemical systems are used to guide the model construc-

tion during the evolutionary modelling process. These devel-

oped and evolved models are finally used by biologists and

modellers to confirm experimental results, verify hypotheses

made upon the target biochemical system, and predict undis-

covered biochemical processes with hidden components.

The motivation of employing ES and SA in this research

is that they have been proven to be effective in similar prob-

lems in our previous work (Wu et al. 2012, 2014). ES and SA

have been employed to solve problems of quantitatively mod-

elling biochemical systems in terms of topology and kinetic

rate constants. In this research, we focus on qualitative mod-

elling of biochemical systems, which has a similar task to

analyse and obtain the structure of a target biochemical sys-

tem using qualitative states abstracted from numerical quan-

titative data.

Moreover, our previous work tackles the problems of com-

posing models from atomic components by a hybrid ES and

SA method. The performance of different ES–SA variants

has been well studied for understanding the effectiveness

of ES and SA algorithms when performing the heuristic

search and computation modelling. So, we expect that they

can also achieve good performance in the problem to be

addressed in this research. In addition, at the current stage

of the research, we focus on solving real-world biochemical

system modelling issues by soft computing and metaheuris-

tic approaches, and to start with we choose ES and SA. But

we also point out that in the future, more soft computing

approaches may be investigated for their suitability of our

particular problems.

The rest of this paper is organised as follows. In Sect. 2,

we present the integrative modelling approach by illustrat-

ing the top-down model composition and bottom-up model

exploration methodologies, respectively, in which basic com-

ponents and models are defined and described. Moreover,

genetic operators are applied to evolve the models. In Sect. 3,

we describe QML, including how to analyse qualitative states

obtained from qualitative differential equations (QDEs) for

model evaluation. Case studies and simulation results with

analysis are reported in Sect. 4. Finally, Sect. 5 concludes the

paper with discussions on future work.

2 Integrative top-down and bottom-up modelling

In this section, definitions of components and models are

first presented before evolutionary modelling of biochemi-

cal pathways is introduced. Components are basic building

blocks in our stepwise qualitative modelling approach, and

Petri nets (Murata 1989) are used to represent the structure

of a component. Components are composed using a set of

composition rules to form models which represent the tar-

get biochemical pathway. A model should at least consist of

one component, which ensures a minimal model structure for

further evolutionary model construction.

2.1 Components and models

Biochemical components can be defined by Petri nets, as

reported in our previous work (Wu et al. 2010, 2012). There

are two patterns for instantiating components: binding and

unbinding patterns, as shown in Eqs. (1) and (2).

P1 + P2
k1−→ P3 (1)

P3
k2−→ P1 + P2 (2)

In Eq. (1), P1 represents a reactant acting as a substrate; P2

denotes a reactant acting as an enzyme, and P3 (P3 = P1|P2)

is a complex synthesised from P1 and P2 at the reaction

kinetic rate of k1, which represents the speed of the synthetic

process. Therefore, in this study, we use the symbol ‘|’ joining

the labels of the two reactants to represent a complex.

In Eq. (2), k2 is a reaction kinetic rate constant for a dis-

association process; complex P3 is either disassociated to

two reactants P1 and P2 which form the complex itself—an

inverse process of the binding pattern in Eq. (1); or converted

into a new product and an enzyme which is one of the reac-

tants forming the complex P3.

We take the binding pattern for instantiation of a compo-

nent, in which two reactants are combined to form a com-

plex reactant, and the unbinding pattern for instantiation of a

component, in which a complex reactant is divided into two

reactants.

For those complicated components consisting of more

than three reactants, we can represent them by combining

the components instantiated from these two patterns. Note

that our current research focuses on qualitative modelling of

biochemical pathways, therefore only the structures of the

biochemical models are considered, and the kinetic rate con-

stants of the models are not under our investigation. Thus,

the rate constants are not associated on these components.

We briefly introduce the formation of components from

two sets of reactant labels provided by the users: given a set

of reactants as species Sspecies and another set of reactants as

enzymes Senzymes, each element in Sspecies is selected in turn

to be combined with each element in Senzymes to produce

a complex and a new reactant, based on the mass-action

1 (MA1) kinetic law (Breitling et al. 2008). For instance,

species A from Sspecies is combined with enzyme E from

Senzymes to form a complex A|E and a new reactant AP . A
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Fig. 1 A graphical presentation of a Petri net model for an enzymatic

reaction consisting of three components

synthetic enzymatic reaction is shown in Eq. (3). In this equa-

tion, the symbol ‘⇋’ indicates that the reaction is reversible;

the symbol ‘→’ presents a non-reversible reaction; the sym-

bol ‘|’ indicates that a complex reactant is generated from

the two reactants (as described before); and the letter P after

the species label A means a new product generated from A.

A + E ⇋ A|E → AP + E (3)

Therefore, three atomic components can be obtained from an

enzymatic reaction: ‘A + E → A|E’, ‘A|E → A + E’ and

‘A|E → AP + E’.

The components generated from the sets of reactants given

by a user become parts of a model under construction in

this research. A model consists of many components, which

are connected with each other by merging the same ‘nodes’

(Places) in a Petri net (Wu et al. 2012). Figure 1 shows a

Petri net model of an enzymatic reaction which consists of

three components connected with each other by merging the

same reactants. There should be at least one component in

a model during the stepwise evolutionary model learning

process, because the additions of other components cannot

be performed on a model without anything.

2.2 Top-down model composition

In the top-down modelling approach, each individual in

the population maintained for evolutionary construction is

a Petri net model. At each generation during the evolution-

ary process, the topology of each Petri net model is evolved

through the application of genetic addition and subtraction

operators. Individual model seeds at the initial evolutionary

stage are connected sub-models of the target biochemical

system. An evolutionary algorithm (µ+λ)− ES (Beyer and

Schwefel 2002) is employed to iteratively stepwise assemble

components to develop models. To test our stepwise evolu-

tionary modelling approach in a simplest scenario, we choose

to generate offsprings by a simple (1 + 1) − ES. Further

advanced (µ + λ) − ES will be performed and investigated

for the future study of the stepwise evolutionary modelling

framework.

Algorithm 1 ES-based top-down modelling approach for the

composition of biochemical systems

Require: Two sub-models M1 and M2 of a target biochem-

ical system; given qualitative states QST .

Ensure: Developed models of the target system based on

information of M1 and M2.

1: while maximum number of generations not achieved do

2: M ′ ← M , by adding a component C to M1 or M2:

M1 + C or M2 + C ; or by subtracting a component C

from M1 or M2: M1 − C or M2 − C ;

3: Apply qualitative simulation for M ′ and produce QS′
M ;

4: Calculate fitness function F(QST , QS′
M );

5: if F(QST , QS′
M ) = 1 then

6: Call SA-based bottom-up approach (Algorithm 2) to

explore C ;

7: else

8: Reject M ′ and reuse M in the next generation;

9: end if

10: end while

11: Return a set of developed models for the target biochem-

ical system.

Algorithm 1 shows the pseudo-code of using ES to per-

form top-down modelling of biochemical systems. There are

two sub-models M1 and M2 of a target biochemical system.

These sub-models can be obtained from literature or knowl-

edge of wet-lab by experiments. A composed model M ′ can

be generated by applying addition or subtraction operators

(Wu et al. 2012) to M1 and M2. Model M ′ is simulated and

evaluated qualitatively by employing the qualitative simu-

lator JMorven (Bruce and Coghill 2005), which can gen-

erate a set of qualitative states QS′
M for comparison with

QST in a fitness function F (as shown in Steps 3 and 4 of

Algorithm 1). The calculation of the fitness function will be

described later in Sect. 3. If the fitness value is equal to 1

(the range of fitness value is from 0 to 1, and the bigger the

better), an SA-based bottom-up approach in Algorithm 2 will

be used to explore potential components by trails of compo-

nent additions. Otherwise, the mutated M ′ is rejected and the

mutation is performed in the next generation. The reason of

calling Algorithm 2 to explore added component is that the

model with the fitness value being equal to 1 cannot be fur-

ther distinguished by Eqs. (4)–(6) on the trails of component

additions. Model exploration requires to perform estimation

of constructed models in a probabilistic manner. The top-

down modelling is terminated if the ES stop conditions are

satisfied. In this situation, a set of final best models will be

output with explored components for the given biochemical

system.

2.3 Bottom-up model exploration

Simulated annealing is one of the heuristic algorithms for

searching the global optimal solution in a very large solution

space, and it can avoid local optima. As shown in our previous
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work (Wu et al. 2010), topologies of biochemical models

represented by Petri nets can be piecewise constructed and

explored by employing SA. In this research, the bottom-up

approach uses SA to explore important components obtained

from the top-down approach, in which ES is used to perform

model composition.

Algorithm 2 SA-based bottom-up modelling approach for

exploration of biochemical systems

Require: A given model M , an added component C which

makes the fitness of the model under construction within

ES process that is equal to 1, I ter Num, α, T and TMin .

Ensure: Explored M with potential components.

1: while T > TMin do

2: while I ter Num! = 0 do

3: Mutate M by adding components to C ;

4: Evaluate the explored model M ;

5: Accept M based on the Metropolis algorithm;

6: end while

7: Reset I ter Num;

8: Lower T by α;

9: end while

10: Return M with explored potential components.

Algorithm 2 shows the pseudo-code of the bottom-up

exploration of possible components in a given model. There

are a given model M and an added component C which makes

the fitness of the model under construction in the ES process

is equal to 1. Possible components are selected from the com-

ponent library and added to C for model exploration, con-

sidering improvement of the Bayesian score, which will be

described in Sect. 3. The parameter t is the current SA sys-

tem temperature (t = T ), and I ter Num is the number of

iterations at each system temperature. The mutated M with

the explored component C is evaluated at each iteration by

calculating the Bayesian scores of the mutants of M .

The evaluated model M with explored components is

accepted or rejected according to a classical Metropolis

mechanism (1953). Accepted M is preserved as a new start

seed for the next run of model explorations. Model M with

different explored components is mutated heuristically at dif-

ferent SA system temperatures by a cooling rate α. The whole

optimization process will stop when the system temperature

reaches the minimum temperature TMin .

Note that, due to the probabilistic and random nature of

SA (Anily and Federgruen 1987), a mutated model M with a

poor estimated fitness value could be generated and accepted.

2.4 An integrative modelling approach

In this research, we propose to integrate two metaheuris-

tic algorithms (ES and SA) within two different modelling

routes (top-down and bottom-up), respectively, for construct-

ing models. ES is a population-based metaheuristic algorithm

Begin

Initial ES

populations

Add/Subtract

Component

Evaluate Models

Go to SA?

Explore

Components

Stop ES?

Yes

Stop SA?

Evaluate Models

Update

Populations

No

Generate Best

Models

End

Yes

No

Yes

No

Fig. 2 A general illustration of the integrative modelling process based

on ES and SA in the top-down and bottom-up routes, respectively

and it is good at generating alternative solutions probabilis-

tically. We utilise ES to tackle the model composition in

our proposed integrative model construction process. SA is a

single-solution based metaheuristic algorithm, which obtains

optimal solutions by global search. Thus, we employ SA to

explore potential interactions between reactants in a model

under construction. A flowchart in Fig. 2 illustrates the inte-

grative model development and exploration by switching
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model compositions between ES and SA during the mod-

elling process.

These two metaheuristic algorithms are used to solve mod-

elling issues in a collective manner. While potential and

meaningful components are added to models under construc-

tion in the top-down modelling route, more detailed inter-

actions among reactants could be explored using the given

component through the bottom-up modelling route.

3 Qualitative model learning

Qualitative information rather than quantitative information

is employed in qualitative reasoning (QR) (Forbus 1996;

Kuipers 1994) to achieve the aims of modelling real-world

problems. The main task of QR is to automatically infer con-

tinuous aspects of a given complex system in terms of space,

time and quantity. In QR research, complex dynamic sys-

tems are described by qualitative values, for instance, high,

medium, low, zero, positive and negative, instead of using

precise numerical quantities. Qualitative representation and

reasoning methodologies enable the behaviour of given com-

plex systems to be reasoned in silico in the presence of incom-

plete background knowledge and imperfect data.

Qualitative model learning is a sub-branch of QR, which

involves automatic extraction of QDE models of dynamic

systems from available data (Pang and Coghill 2010a). QML

systems have been well studied and several QML systems

have been developed, for instance, MISQ (Richards et al.

1992), GENMODEL (Hau and Coiera 1993), QSI (Say and

Kuru 1996), QOPH (Coghill et al. 2002), ILP-QSI (Coghill

et al. 2008), and the most recent QML-Morven framework

(Pang 2009; Pang and Coghill 2014). As a complementary

approach to quantitative modelling, QML works well in rea-

soning dynamic systems, especially when there are only

noisy and sparse data available. QML can infer and sug-

gest plausible qualitative models of a target dynamic system.

These plausible models could be further investigated and ver-

ified by quantitative modelling approaches.

3.1 Qualitative states

A given dynamic system can be described at a qualitative

level, and its important behavioural properties are captured

by a set of qualitative states and possible transitions between

these states. A qualitative state is a complete assignment of

qualitative values to all variables in the system and consid-

ered as a ‘snapshot’ of the system. The dynamic system

under investigation could demonstrate such possible qual-

itative states and a correct model built for the system should

reproduce these qualitative states (and only these states if all

variables are known).

Table 1 A set of qualitative states

State ID A AP B BP

1 〈zer , pos〉 〈pos , neg〉 〈pos , neg〉 〈pos , neg〉
2 〈pos , pos〉 〈pos , pos〉 〈zer , pos〉 〈pos , neg〉
3 〈pos , zer〉 〈pos , zer〉 〈pos , neg〉 〈pos , neg〉
4 〈pos , pos〉 〈pos , pos〉 〈pos , neg〉 〈pos , neg〉
5 〈pos , neg〉 〈zer , pos〉 〈pos , neg〉 〈pos , neg〉
6 〈zer , pos〉 〈pos , neg〉 〈pos , zer〉 〈pos , neg〉
7 〈pos , zer〉 〈pos , neg〉 〈pos , zer〉 〈pos , neg〉
8 〈pos , neg〉 〈pos , zer〉 〈pos , zer〉 〈pos , neg〉
9 〈pos , zer〉 〈pos , zer〉 〈pos , zer〉 〈pos , neg〉
10 〈pos , neg〉 〈pos , pos〉 〈pos , zer〉 〈pos , neg〉
11 〈zer , zer〉 〈zer , zer〉 〈zer , zer〉 〈zer , zer〉
12 〈pos , pos〉 〈pos , zer〉 〈zer , zer〉 〈zer , zer〉
13 〈pos , pos〉 〈pos , zer〉 〈pos , zer〉 〈pos , zer〉
14 〈pos , pos〉 〈pos , neg〉 〈pos , pos〉 〈pos , zer〉

Table 1 shows a set of qualitative states derived from a

qualitative model. Each row in this table represents an indi-

vidual qualitative state. For each variable, its magnitude and

rate of change of the current state are illustrated by qualita-

tive signs: pos (positive), zer (zero) and neg (negative). For

example, if a qualitative value of a variable A is 〈zer, pos〉,
this means the magnitude of A is zero and the rate of change

is positive, which indicates that the value of A is increasing.

For the legal transitions among the states, transition rules

[for instance, rules in QSIM (Kuipers 1994)] are employed to

calculate them. A sequence of qualitative states form a qual-

itative behaviour, and the terminal states of the qualitative

behaviour are often equilibrium states, in which all variables

remain constant (Pang and Coghill 2011).

3.2 Qualitative differential equations

One of the well-studied formalisms of the qualitative abstrac-

tion in QR is QDEs, which have been used by QSIM

(Kuipers 1986, 1994) and Morven (Coghill 1996; Coghill

and Chantler 1994).

Ordinary differential equations (ODEs) quantitatively

describe the behaviour of a dynamic system. A QDE model

is an abstraction of a set of ODE models sharing the same

model structure but with varying parameter values. Figure 3

shows the relationships between the physical systems, ODE

models and QDE models in terms of quantitative and quali-

tative behaviour.

Definition 1 A QDE is a tuple of four elements, 〈V, Q, C, T 〉,
each of which is defined as follows (Kuipers 1994):

• V is a set of variables, each of which is a ‘reasonable’

function of time.
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Fig. 3 This diagram is obtained from Kuipers (1993). The diagram

shows that all models are abstractions of the world. Qualitative models

are related to ordinary differential equations, but are more expressive

of incomplete knowledge

• Q is a set of quantity spaces, one for each variable in V .

• C is a set of constraints applying to the variables in V .

Each variable in V must appear in some constraints.

• T is a set of transitions, which are rules defining the bound-

ary of the domain of applicability of the QDE.

From the above definition, we see that QDE is composed

of several constraints, the so-called qualitative constraints,

which restrict the generation of possible qualitative states. In

addition, a quantity space is composed of several qualitative

values that could be taken by a variable. In this research, we

use QDEs to represent qualitative models, and for all vari-

ables we used the signs quantity space, which is composed

of three values: positive, zero and negative.

3.3 Synthetic models evaluation

Stepwise constructed qualitative models are simulated by a

qualitative simulation engine, which produces a set of quali-

tative states. The given qualitative states of a target system are

compared with the qualitative behaviour of synthetic models

obtained from the evolutionary model construction process.

The number of matched qualitative states between the target

system and a synthetic model is recorded and taken as part

of the fitness value for the model under evaluation. In this

research, we use JMorven (Bruce and Coghill 2005) as the

qualitative simulation engine.

3.3.1 Fitness function

The first evaluation method for composed models is to com-

pare the qualitative states of the models with given data. A

qualitative state for the evaluation purpose is the assignment

of N variables which appear in both the target system and

composed model.

There could be M qualitative states, and a vector is used to

record each of these M qualitative states. In this vector, each

Fig. 4 Cross symbols in a frame with the solid line indicate the set of

complementary qualitative states, QSC ; star symbols in a frame with

dash line show a set of given target qualitative states, QST ; a composed

model can produce a set of qualitative states, QSG , which are in a frame

with the dash and dot line; f1 is the ratio of the QST states which are

also in QSG to all QST states, and f2 is the ratio of the QSC states

which are also in QSG to all QSC states, as shown in Eqs. 4 and 5

element will be the assignment of one variable. To evaluate

a composed model, the following two sets will be compared

element by element: one is the set of qualitative states gen-

erated by this composed model, and another is the given set

of states demonstrated by the target system. In this way, a fit-

ness value of a composed model is calculated by considering

the overlapping part of the above two sets.

Figure 4 shows that a synthetic model produces a set of

qualitative states QSG . A set of given target qualitative states

QST is compared with QSG to calculate the coverage of

qualitative states in f1. Another comparison is performed by

comparing QSG with the set of all possible states QSC , in

which f2 is the rate of matched qualitative states produced

by the model under estimation. Therefore, the evaluation of

a composed model can be achieved by jointly considering f1

and f2 in a fitness function F. Details of the calculation of

f1, f2 and F are shown in Eqs. (4)–(6).

f1 =
| QSG ∩ QST |

| QST |
(4)

f2 =
| QSG ∩ QSC |

| QSC |
(5)

F = 1 −
1

1 + f1 +
1

1 + f2

(6)

In the above Eqs. (4)–(6), ‘| · |’ denotes the number of states

in the set, | QSG ∩ QSC | indicates the set of overlapping

states in both QSG and QSC . Two qualitative states are the

same if all their assignments of variables are the same.

The value of f1 ranges from 0 (worst) to 1 (best), because

as the more matched qualitative states between QSG and

QST , the higher the value of f1. The value of f2 ranges from

0 (best) to 1 (worse), as the less matched spurious qualita-

tive states between QSG and QSC , the better the quality of

the generated model. A fitness function F is summarised by
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standardising f1 and f2, and the value of F ranges from 0

(worst) to 1 (best).

Note that there could be different synthetic reactants in a

composed model during the evolutionary modelling process

because of the application of genetic addition and subtraction

operators. In this work, we specify the compared reactants

during the model evaluation process. Thus, we discard a com-

posed model of which all reactants are not in the vector of

variables for comparison with the target system.

3.3.2 Quantitative analysis of the structure of the synthetic

models

The second evaluation method is to analyse the interactions

among the reactants in the synthetic models. Here, the inter-

actions are represented by connections in a model network

consisting of arcs among biochemical substrates or their com-

plex. In previous work (Brāzma et al. 1998; Gilbert et al.

2003; Wu et al. 2014), the structure of a synthetic model

was evaluated quantitatively to investigate how many correct

interactions among reactants in the generated models can be

obtained.

In this research, two quantitative measures, Compres-

sion and Coverage, are employed to support the quantitative

analysis of the quality of the composed models from qualita-

tive modelling process. Both measures vary from 0 (worst) to

1 (best). If either the compression value or the coverage value

is low in a particular model, it indicates that the structure of

this generated model is very different from the target system,

even if the qualitative states are covered at a high percentage.

Compression measures the percentage of matched com-

mon arcs between the target and generated models. Here, the

arcs indicate interactions among biochemical reactants in a

composed model. The Compression of a model is calculated

as follows:

Compression =
|Intersection|

Max(|Target|, |Generated|)
(7)

where |Intersection| represents number of matched arcs

between the target system and generated model; the num-

ber of arcs in the target system is described as |Target|;
|Generated| denotes the number of arcs in the generated

model; Max(|Target|, |Generated|) returns the bigger num-

ber of arcs between the target system and generated model.

Coverage calculates the percentage of matched arcs from

the composed model in the target system. Details of the cal-

culation are described as follows:

Coverage =
|Intersection|

|Target|
(8)

where |Intersection| and |Target| are the number of matched

arcs and numbers of arcs in the target system as defined

above.

Considering the complicated issues in traditional mod-

elling and analysis of biochemical systems, qualitative model

evaluation focuses on the analysis of qualitative states of the

system, without involving quantitative analysis in terms of

the model structure. In this research, we include both qualita-

tive and quantitative measurements to evaluate the learning

results in terms of reactants’ qualitative states and interac-

tions. This can offer a better evaluation of the feasibility and

effectiveness of our proposed modelling methodology.

3.3.3 Components exploration based on Bayesian scores

Because of the characteristics of highly multimodal model

space (Pang and Coghill 2010b), there may be many candi-

date models which can produce qualitative states covering the

same given states. These models cannot be further discrimi-

nated, if we only consider fitness functions based on Eqs. (4)–

(6). Therefore, we use Muggleton’s framework (1997) of

learning from positive data to calculate the Bayesian score

for each synthetic model with explored components. The

Bayesian score is used to indicate the probability of the model

being the true model during the QML process. The Bayesian

score calculation is detailed in Pang and Coghill (2013) and

briefly shown below:

Bayes(M) = p ln
1

g(M)
− ln sz(M) (9)

In Eq. (9), sz(M) is the size of the given qualitative model

M, g(M) is the generality of the model, and p is the number

of positive examples. So the Bayesian scoring is the trade-

off between the size and generality of a model. Based on

our previous work (Coghill et al. 2008), sz(M) is estimated

by summing up the sizes of all qualitative constraints in the

model; g(M) is defined as the proportion of qualitative states

obtained from simulation to all possible qualitative states

generated from given variables and their associated quantity

spaces; p is the number of given qualitative states. The bigger

the Bayesian score of a candidate model, the higher the prob-

ability that this model is the correct model. In this research,

explorations of components in synthetic models are guided

by the above described Bayesian score, which has been incor-

porated into the SA fitness estimation process.

4 Simulations and analysis

Three biochemical pathways are used as test cases for the

evaluation of our proposed integrative modelling approach.

The first pathway is the Ras/Raf-1/MEK/ERK signalling

pathway (Yeung et al. 2000); the second one is the detoxifi-

cation pathway (Ferguson et al. 1998) of Methylglyoxal; and

the third one is the combinatorial stress response pathway of

Candida albicans (Kaloriti et al. 2012). Qualitative states of
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these target pathways are abstracted from quantitative values

obtained from simulators. Details of the pathway structures

are retrieved from literatures as well as experiments.

Experiments on each test case is configured by the follow-

ing settings: the total number of generations in the evolution

process is 100; the number of evolved individual models in

the population is 20 or 50; addition of one component is

performed at each generation, subtraction of one component

is carried out at every 10 generations, and crossing over two

models is employed at each generation after the performance

of addition or subtraction; each model seed in the initial pop-

ulation is an atomic component randomly selected from the

component library.

The feasibility of our proposed stepwise QML method

is firstly tested on a small scale of generations and popula-

tions on a computer with Intel Core 2 Duo CPU (2.4 GHz)

and 4 GM memory. Therefore, the parameter settings of ES

and SA are designed based on performance considerations

and empirical selection, which has been tested individually.

All the experiments have been performed for five trials for

the RKIP pathway and ten trials for the MG-D pathways. It

appeared that these parameter settings give the best results

on a small scale.

Our next step is to investigate the effects of the ES and

SA parameter settings on a large scale under the high-

performance computing (HPC) environment. The results of

simulations and analysis would present an overall influence

of different algorithm parameters on the biochemical mod-

elling issues.

4.1 Biochemical pathways to be used for experiments

4.1.1 The RKIP inhibited ERK pathway

Signalling pathways play a pivotal role in many key cellu-

lar processes (Elliot and Elliot 2002). The abnormality of

cell signalling can cause the uncontrollable division of cells,

which may lead to cancer. The Ras/Raf-1/MEK/ERK sig-

nalling pathway (also called the ERK pathway) is one of the

most important and intensively studied signalling pathways,

which transfers the mitogenic signals from the cell membrane

to the nucleus (Yeung et al. 2000). It is de-regulated in vari-

ous diseases, ranging from cancer to immunological, inflam-

matory and degenerative syndromes, and thus represents an

important drug target. Ras is activated by an external stim-

ulus, via one of many growth factor receptors; it then binds

to and activates Raf-1 to become Raf-1*, or activated Raf,

which in turn activates MAPK/ERK Kinase (MEK) which in

turn activates Extracellular signal Regulated Kinase (ERK).

This cascade (Raf-1 → Raf-1* → MEK → ERK) of protein

interaction controls cell differentiation with the effect being

dependent upon the activity of ERK. RKIP inhibits the acti-

vation of Raf-1 by binding to it, disrupting the interaction

Fig. 5 A graphical representation of the ERK signalling pathway reg-

ulated by RKIP

between Raf-1 and MEK, thus playing a part in regulating

the activity of the ERK pathway.

A number of computational models have been developed

to understand the role of RKIP in the pathway and ultimately

develop new therapies (Cho et al. 2003; Calder et al. 2004).

In this research, we use the RKIP inhibited ERK pathway

(called RKIP pathway in this research) as described in Cho et

al. (2003) to test our proposed modelling approach. Figure 5

shows a representation of the ERK signalling pathway regu-

lated by RKIP.

4.1.2 The detoxification pathway of MG

Cell death is related to the excessive production of Methyl-

glyoxal (MG), a naturally occurring toxic electrophile which

is harmful to cells (Cooper 1984). A detoxification pathway

of MG (MG-D) exists in many diverse groups of organisms,

for instance, human, mouse, yeast, and fungi, for the pro-

tection from the toxic effect of MG (Ferguson et al. 1998).

The MG detoxification pathway is of interest to both biol-

ogists and physicists. Currently, research into this pathway

is still ongoing and carried out as a systems biology project,

in which both biological experimentalists and modellers are

involved (Pang and Coghill 2011).

Figure 6 shows the current understanding of the MG-D

pathway. A large quantity of MG is outside the cell and MG

can easily cross the cell membrane and enter the cell, in which

glutathione (GSH) reacts spontaneously with MG to pro-

duce hemithioacetal (HTA). HTA is catalysed by the enzyme

glyoxalase I (GlxI) and converted into S-lactoyl-glutathione

(SLG). Then, the SLG is catalysed by a second enzyme gly-

oxalase II (GlxII) and converted into GSH and non-toxic d-

lactate. There are one non-enzymatic biochemical reactions
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Fig. 6 A graphical presentation of the detoxification pathway of MG,

obtained from Pang and Coghill (2011)

and two enzymatic reactions in the whole pathway. Note that

the non-toxic d-lactate is not included in this pathway, as it

does not contribute to the kinetics of the pathway.

4.1.3 The combinatorial stress pathway of Candida

albicans

Candida albicans (C. albicans) is one of the major fungal

pathogens of humans. There exists a range of environmental

stresses in the hosts of C. albicans and the most common

stresses are osmotic, oxidative, and nitrosative stresses. C.

albicans is exposed to these stresses and adapts itself by

responding to the stress conditions. In the wild, C. albicans

cells are frequently exposed simultaneously to combinations

of these stresses and yet the effects of such combinatorial

stresses have not been explored (Kaloriti et al. 2012).

Therefore, it is crucial to set up a modelling platform in

silico to investigate the combinatorial stress responses in C.

albicans using qualitative biochemical models, considering

the facts that data about stress responses are very sparse

(especially those for nitrosative stress). Our aims are not only

to verify biochemical interactions from the wet-lab, but also

to discover potential reactions which could inhibit or increase

the growth of C. albicans under the condition of combinato-

rial stresses.

Figure 7 shows a graphical presentation of the pro-

teins and pathways involved in the oxidative and nitrosative

stress responses in C. albicans (Brown et al. 2009). In this

research, components involving reactants in C. albicans can

be explored by the integrative modelling approach, so that

predictions of key response pathways to the combinatorial

stresses could be made.

4.2 Fitness evaluation of composed models

According to the fitness evaluation function given in Eq. (6),

fitness value ranges from 0 (worst) to 1 (best). At the end

of evolutionary learning process, there is a set of evolved

candidate models with best fitness values. Figure 8 shows

Fig. 7 A graphical presentation of the pathways involved in oxidative

and nitrosative stress responses in C. albicans, obtained from Brown et

al. (2009)

Fig. 8 Fitness values of the models produced and learned by the step-

wise model learning (colour figure online)

two sets of fitness values of developed models for the RKIP

and MG-D pathways.

In this work, a high fitness value means a good coverage

of qualitative states produced by the corresponding candi-

date model. The blue diamond and red square shaped dots

indicate fitness values of 20 synthetic models of the RKIP

and MG-D pathways, respectively. Most fitness values of the

composed RKIP models are around 0.65, and the ones of the

constructed MG-D models are between 0.6 and 0.65. Since

the model development process starts from a set of simple

components and is driven in a stepwise manner, the gen-

eration of models with high fitness values indicates that our

stepwise QML methodology is feasible to infer desired mod-

els of the target biochemical pathways based on qualitative

data and incomplete knowledge.

4.3 Topology analysis of explored models

4.3.1 Generation of target reactants

A general principle for analysing the topologies of gener-

ated models is to investigate how many essential reactants
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Table 2 Generation of essential reactants in a stepwise composed RKIP

model

No. Reactant Model RKIP

1 Raf1
√ √

2 RKIP
√ √

3 Raf1|RKIP
√

4 Raf1|RKIP|ERKPP
√

5 ERK
√ √

6 RKIPP
√ √

7 MEKPP
√ √

8 MEKPP|ERK
√

9 ERKPP
√ √

10 RP
√ √

11 RKIPP|RP
√

12 MEKPP|RP
√

can be generated. Essential reactants in a target pathway

can be obtained through composition of atomic compo-

nents, thus observable elements in experimental environ-

ment can be mapped to these essential reactants in the

synthetic models. Changes of concentrations of the reac-

tants in wet-lab can be analysed qualitatively and sim-

ulated quantitatively in silico. In our study, structures

of synthetic models vary from target biochemical path-

ways because of the stepwise composition of components.

Regarding the aims of generating interest reactants and

hidden complexes, different interactions between reactants

in the models can be preserved for further biochemical

investigation.

Table 2 shows a comparison of generated reactants

between a synthetic RKIP model with the highest fitness

value (0.6665) and the target RKIP pathway. There are 11

reactants (from No.1 to No.11) in the target RKIP pathway,

of which 7 reactants are obtained in the synthetic RKIP

model. The missing reactants in the synthetic model are

complex reactants in the target RKIP pathway. Thus, we

can conclude that our stepwise qualitative model learning

strategy can drive the model development process towards

the generation of essential reactants in a target biochemical

pathway.

One complex reactant generated in the synthetic model

(No.12, MEKPP|RKIPP) does not exist in the target RKIP

pathway. MEKPP|RKIPP indicates a potential interaction

between MEKPP and RKIPP in the synthetic model. This

plausible interaction is actually supported by tracking the

reachable path in the RKIP pathway:

RKIPP → RKIPP|RP → RKIP → RKIP|Raf1

→ ERKPP|RKIP|Raf1 → ERK

→ ERK|MEKPP → MEKPP.

Table 3 Generation of essential reactants in a stepwise composed MG-

D model

No. Reactant Model MG-D

1 M
√ √

2 G
√ √

3 H
√ √

4 S
√ √

5 G1
√ √

6 G2
√ √

7 G|G2
√

Therefore, one conclusion in this research is that alternative

interactions among reactants can be explored by our proposed

methodology.

There are six reactants (M, G, H, S, G1 and G2) in the

MG-D pathway, and qualitative states containing the values

of M, G, H, and S are used for model evaluations. Table 3

presents reactants of a synthetic model with the highest fit-

ness value (0.6452). All the reactants in the target MG-D

pathway are generated and one more complex (No.7, G|G2)

is produced. Although the topology of the synthetic model is

different from the target one, the aim of learning a biochem-

ical pathway from qualitative states is achieved. In addition,

up till now the MG-D pathway is not fully understood. This

means the composed model may suggest interesting biolog-

ical experiments in the future.

4.3.2 Generation of target interactions

After models are composed, essential reactions existing in

the target biochemical system should be obtained from these

synthetic models. Thus, it is important to evaluate how many

target interactions in the target system are obtained in these

constructed models. Two measures are used, Compression

and Coverage, as introduced in Sect. 3.3.2 and the interaction

information of reactants in the composed RKIP and MG-D

models is analysed by these two measures. Details are given

as follows.

Figure 9 shows the generation of RKIP models. From this

figure, one can see that most of the coverage values gen-

erated from the five trials are between 0.5 and 0.7, which

indicates that up to 8 reactions (11 reactions in total) are

obtained. These high coverage values support the conclusion

in Sect. 4.3.1 that our proposed modelling methodology can

generate most of the target biochemical reactants in the syn-

thetic models.

In addition, most of the compression values for the

RKIP models composed in these five trials are between

0.15 and 0.35,which indicates that there are many non-

target reactions generated in the constructed RKIP models.

These suggested reactions (interactions among biochemical
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Fig. 9 Compression and coverage of the synthetic RKIP models in five trials. a Trial 1, b trial 2, c trial 3, d trial 4, e trial 5, f five trials

reactants) are potential biochemical signalling routes, which

may help biologists to further investigate the RKIP path-

way.

Figure 9f shows the average values of compression and

coverage for each model in all five trials. Most of the aver-

age values are between 0.35 and 0.55. Regarding the high
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compression values of these models, one can see that the

synthetic RKIP models can be different from the given tar-

get RKIP pathway in terms of topology (interactions among

substrates).

In this research, the MG-D pathway is reconstructed by

applying composition rules to explore partial modules of the

given pathway. After ten trials of simulations, the labels of

complex in composed models are formed by joining labels of

reactants from the modelling seeds and added components.

Therefore, the joined and formed complex can be renamed

for comparison between the model and target pathways. For

instance, complex ‘H’ in a reaction ‘M + G → H ’ can be

renamed as ‘G|M’ to represent the complex formed from ‘M’

and ‘G’. Thus, the target MG-D pathway reaction informa-

tion is renamed for compression and coverage analysis as

follows: ‘H’ is renamed as ‘G|M’, ‘S’ is renamed as ‘G1|H’,

and ‘G’ is renamed as ‘G2|S’.

Figure 10 shows the generation of MG-D pathways. From

this figure, one can see that most coverage values for these

models are between 0 and 0.75, and the coverage value of one

model from trial 3 in Fig. 10c is equal to 1, which means all

the given reactions are obtained. Moreover, most compres-

sion values of the MG-D models are between 0 and 0.15,

which indicates that there are lots of non-target reactions

generated in the constructed models. Figure 10k presents the

average values of compression and coverage for each model

in all ten trials. Most of average values are between 0 and

0.55, suggesting that these synthetic MG-D models are very

different from the given target pathway in terms of structure.

4.4 Explored interactions in developed models

We apply the integrative top-down and bottom-up modelling

approach to explore key and potential interactions in the syn-

thetic models of the combinatorial stress response pathway

in C. albicans. Explored interactions represent biochemi-

cal reactions and indicate effects of reactants inhibiting or

increasing productions of other reactions in the models. Thus,

potential biochemical links can be established using our inte-

grative modelling approach, and these links will provide

guidance for future investigation by biologists.

Table 4 shows the top 10 % of the most frequently explored

components in the developed 20 models of C. albicans.

The numbers in the frequency column indicate the frequen-

cies of corresponding components explored from these syn-

thetic models. If a component is selected and integrated

in models more frequently during the modelling process,

we can consider the component as an important interaction

among reactants for the biochemical model under construc-

tion. A component is an actual interaction among reactants

denoted by abbreviated compound names of C. albicans. For

instance, the most selected component ‘Cap1Ox, PBS2 →
Cap1Ox|PBS2’ illustrates that a complex Cap1Ox|PBS2 is

made from Cap1Ox and PBS2 in a biochemical reaction. Pos-

sible interactions among these three reactants can be exam-

ined by biological experiments and further biochemical rela-

tionships may be discovered for the target system.

The models of the C. albicans stress response pathway

are initialized and developed independently by our proposed

modelling approach in a heuristic manner. Although models

are explored by adding different components from the com-

ponent library, models containing these components with

high frequency are heuristically explored and easily accepted

by the bottom-up approach. Thus, these ‘hot’ components

could be the key and potential interactions in the pathway

in the sense that they may play important roles in the stress

response and adaptation. Further investigations of biochem-

ical functions of these hot components can be carried out by

biologists.

5 Conclusions

It is always interesting for life scientists to obtain alterna-

tive solutions (different topologies of biochemical systems)

that may not be discovered in nature, thus the exploration of

the topological landscape of the biochemical systems is very

important. It is also useful for synthetic biologists to construct

novel designs for desired behaviour of biochemical systems

in silico before carrying out experimental work.

In this research, we show how general biochemical sys-

tems can be modelled and evolved in an automatic manner

by reusing, composing, and evolving biochemical modular

components, based on an integrative top-down and bottom-

up QML approach. Two main aims of learning biochemical

systems are achieved in this research: the first is to learn

reactants in a given biochemical pathway by analysing the

observed qualitative states; another aim is to evolutionarily

explore plausible structures of a target pathway at a qual-

itative level. As a result, we propose an integrated qualita-

tive model learning framework in the presence of incomplete

knowledge and qualitative data. Our approach can be used in

both the context of computational systems biology for model

construction and synthetic biology for the modular design of

biochemical systems.

In future research, we will investigate the way of con-

structing ad hoc component library for the pathway of inter-

est, for instance, metabolic or signalling pathways in a par-

ticular species. One way to achieve this is to take the func-

tionally similar or equivalent pathways in model organisms

as input and try to evolve components from these pathways.

In addition, we are interested in investigating the structural

differences of functionally equivalent components of a path-

way across different species, especially how these structural

differences could be analysed in silico through our QML

approach. To achieve this key aim, reliable parts of biochem-
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Fig. 10 Compression and coverage of the synthetic MG-D models in ten trials. a Trial 1, b trial 2, c trial 3, d trial 4, e trial 5, f trial 6, g trial 7, h

trial 8, i trial 9, j trial 10, k ten trials

ical systems should be identified and preserved in the com-

ponent library, and these parts should be further verified by

experiments and available data. Then, more details about bio-

chemical systems can be obtained by inferring possible or

undiscovered reactants and interactions during the composi-

tion process. Finally, to deal with varying data availability,

we will explore the following two strands: first, based on our

previous study (Coghill et al. 2008; Pang and Coghill 2007),
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Table 4 Explored components

with frequency from modelling

C. albicans

Frequency Explored Components Frequency Explored components

109 Cap1Ox, PBS2 → Cap1Ox|PBS2 71 Ssk2 → Glr1, Cap1Ox

93 GPX1 → Pbs2PP, CAP1 70 Tsa1Ox → Ssk2, Cap1Ox

91 Trx1Red, PBS2 → PBS2|Trx1Red 70 SSK2 → Pbs2PP, GLR1

81 GPX1 → Cap1Ox, Trr1Ox 70 Hog1Red, CTA1 → CTA1|Hog1Red

74 H2I2In → Glr1, Pbs2PP 70 GSH, Hog1Red → PBS2

73 Tsa1Ox, PBS2 → PBS2|Tsa1Ox 70 Cap1Ox, GRXOx → Cta1

72 PBS2|Tsa1Ox, GSSG

→ GSSG|PBS2|Tsa1Ox

70 Cap1Ox, CAP1 → CAP1|Cap1Ox

we will consider the situation where there are very few quali-

tative states available for learning; second, if more biological

data could be obtained, we would like to explore the use of

semi-quantitative model learning approaches (Vatcheva et al.

2006) to precisely study the parameters of biochemical sys-

tems and how semi-quantitative approaches can complement

our QML framework.
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