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Abstract

Background: Whole exome capture sequencing allows researchers to cost-effectively sequence the coding regions
of the genome. Although the exome capture sequencing methods have become routine and well established,
there is currently a lack of tools specialized for variant calling in this type of data.

Results: Using statistical models trained on validated whole-exome capture sequencing data, the Atlas2 Suite is an
integrative variant analysis pipeline optimized for variant discovery on all three of the widely used next generation
sequencing platforms (SOLiD, Illumina, and Roche 454). The suite employs logistic regression models in
conjunction with user-adjustable cutoffs to accurately separate true SNPs and INDELs from sequencing and
mapping errors with high sensitivity (96.7%).

Conclusion: We have implemented the Atlas2 Suite and applied it to 92 whole exome samples from the 1000
Genomes Project. The Atlas2 Suite is available for download at http://sourceforge.net/projects/atlas2/. In addition to
a command line version, the suite has been integrated into the Genboree Workbench, allowing biomedical
scientists with minimal informatics expertise to remotely call, view, and further analyze variants through a simple
web interface. The existing genomic databases displayed via the Genboree browser also streamline the process
from variant discovery to functional genomics analysis, resulting in an off-the-shelf toolkit for the broader
community.

Background
Whole Exome Capture Sequencing (WECS) represents a
cost effective approach to identify the mutations of
highest biomedical importance, generating hypotheses
for downstream follow-up [1]. The cost of WECS is cur-
rently only ~1/10 of the cost of whole genome sequen-
cing performed on next-generation sequencing (NGS)
platforms; it is a flexible approach designed to detect
rare variants segregating in affected families, to follow
up on already identified regions of interest in large scale
association studies, and to produce more interpretable
variant results [2-4]. In the past few years, WECS has
rapidly gained popularity in disease studies and has even
helped reveal many highly interesting causal loci [5,6]

While capture sequencing technologies have matured
and stabilized to a level appropriate for routine use,
there are few generally available analysis tools specia-
lized for dealing with exome capture data. WECS data
introduces a set of biases and error patterns distinct
from whole genome sequencing, such as heterogeneous
depth coverage, and reference bias due to capture [7].
The coding regions of the human genome also modify
the expectation of a number of quality metrics that are
routinely used in variant calling such as Transition/
Transversion ratio (Ts/Tv), and percentage of insertion-
deletion polymorphisms introducing frameshifts. Thus
far, a few bioinformatics tools primarily developed for
whole genome analysis have been utilized in WECS with
some success, but extensive manual adjustments–such
as setting stricter cutoffs and/or implementing several
additional ad-hoc filters pertinent to coding regions–
based on the user’s own biomedical and informatic
insights are required [8,9].
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Here we present the Atlas2 Suite, a suite of tools spe-
cialized for calling variants in WECS on multiple
sequencing platforms (i.e. SOLiD, Roche 454, and Illu-
mina) which detects both SNPs and short range (within
tens of base pairs) insertion-deletions (INDELs). (For
the purposes of this study we describe the model specia-
lized for SOLiD data in the main text. Details on the
Illumina and Roche 454 SNP models can be found in
our previous publication [10], and the Illumina INDEL
model is described in the Supplement (Additional file
1)). The Atlas2 Suite makes use of logistic regression
models trained on WECS data to identify SNP and
INDEL sites with high sensitivity and specificity, and to
subsequently produce genotypes.
Wide adoption of WECS in both research and clinical

settings is currently limited by the data analysis bottle-
neck including the shortage of bioinformatics expertise
and inadequate computational resources. Small clinical
laboratories are particularly affected by this limitation.
To address this bottleneck, we made the Atlas2 Suite
web-accessible via the Genboree Discovery System
http://www.genboree.org (Figure 1 and Additional file 1,
Figure S7), allowing researchers with a minimal level of
bioinformatics training and computational resources,
using only a web browser to carry out variant analysis,
understand functional implications, and generate
hypotheses for followup studies. In the context of a
research study, the additional access control, role assign-
ment, data protection, and collaborative features of Gen-
boree aids researchers in meeting many administrative,
physical, and technical provisions of the HIPAA Privacy
Rule.

Implementation
Overview of Atlas2 Pipeline
The primary components of the Atlas2 Suite are Atlas-
SNP2 and Atlas-Indel2 (Figure 1). Each of these applica-
tions accepts single sample alignment data in Binary
Sequence Alignment/Mapping format (BAM) [8] and
produces SNP or INDEL calls in the Variant Call For-
mat (VCF) [11]. The initial single sample VCF files may
be merged and annotated into a population VCF file
using the ‘vcfPrinter’ module within Atlas2.
To separate true variants from sequencing, mapping,

and alignment errors, the Atlas2 Suite collects read
depths for each allele, read quality scores, and other per-
tinent data at each variant locus and applies a trained
logistic regression model to assess the quality of each
potential variant (Figure 1a, Table 1). We exhaustively
examined possible variables (Additional file 1, Tables S1
and S2 and Figures S2 and S5), and found the most sig-
nificant variables were related to read depth ratio, base
quality score, variant position in the read, and the read
strand direction distribution. The logistic regression

models return the probability (p) that the given variant
is a true variant. To deal with the small number of edge
cases which the model may misclassify, and for another
layer of flexibility on the users’ end, variant calls are
subjected to a few basic heuristic filters such as mini-
mum read depth and minimum variant read ratio. Var-
iants with a p greater than a default cutoff and which
pass the heuristic filters are included in the final variant
call set in VCF format. Based on our initial evaluation
results, we optimized the suite’s cutoffs and options to
balance sensitivity and precision. Users are also able to
tune the parameters to make a call set more suitable to
their data and research context.
The Atlas2 Suite is currently specialized for variant

detection within exonic regions on existing NGS plat-
forms, but it also can easily be evolved to work with
new technologies. In order to identify systematic
sequencing and mapping errors on a wide variety of
platforms, the model training procedure tests a series of
variables on a training set of true positive (TP) and false
positive (FP) variants. For example, there are 29 and 16
variables evaluated for SNPs and INDELs for SOLiD,
respectively (Additional file 1, Tables S1 and S2 and Fig-
ures S2 and S5). While variables that are significant for
a specific platform may vary, we have established a
semi-automated pipeline for re-training the regression
models for different platforms. The Atlas2 Suite is writ-
ten in a modularized manner that allows us to rebuild
the regression models for new types of data and inte-
grate it into the application in just a few days. This abil-
ity ensures that the Atlas2 Suite remains as an up-to-
date and effective variant calling tool in the midst of
rapidly evolving sequencing technologies.

Statistical Model in Atlas2
In SOLiD Atlas-SNP2, we found five variables and two
interactions to be most significant in regression model
training: reference/variant reads ratio, mean variant base
quality, mean neighboring base quality (NBQ), mean
variant distance to the 3’ end, strand direction standard,
the interaction between NBQ and mean distance to 3’
end, and the interaction between strand direction stan-
dard and mean distance to 3’ end (Table 1). The refer-
ence/variant reads ratio acts as a simple measure of the
direct evidence for and against the variant. As expected,
sequencing and mapping errors generally have a much
higher reference/variant reads ratio than true SNPs
(Additional file 1, Figure S2a). The mean variant base
quality takes the mean of each variant read’s base qual-
ity at the SNP locus as reported by the sequencer. This
provides a measure of the overall sequencing reliability
of the variant bases. The NBQ is defined as the mean
base quality score of the variant base and its 5 flanking
base pairs (bp) on either side of the read. NBQ is a
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quantitative variation of the neighboring quality stan-
dard which has already been established as an effective
metric in the Roche 454 version of Atlas-SNP2 and
other variant calling pipelines [12]. The hypothesis
behind this variable is that even bases with relatively
high base qualities may be false positives if they are sur-
rounded by bases of very low quality scores [13]; also
reads with multiple sequencing errors are more likely to
be mismapped. The mean variant distance to the 3’ end
is the mean distance from the variant site to the 3’ end
of the read in all variant reads. Sequencing quality gen-
erally diminishes towards the end of each read, so SNPs
near the 3’ end are often of lower quality (Additional

file 1, Figure S2a). The strand direction standard is a
Boolean variable which is set to 1 when there is at least
one variant read in each strand direction. For true var-
iants, the variant read strand direction is expected to
follow a binary distribution with a roughly 50% prob-
ability for each direction; however, false variants are
often found in only a single strand direction even when
there is a large number of variant reads. In our training
data we found that only 14% of the false SNPs had evi-
dence in both strand directions, compared 94% for the
true SNPs (Additional file 1, Figure S2a).
By performing a simple cross-validation procedure

within the training data (see Methods), we were able to

Figure 1 The Atlas2 Suite Pipeline. (a) The Atlas2 Suite is designed to accept as input single sample BAM files which are individually
processed by Atlas-SNP2 and/or Atlas-Indel2 to produce single sample variant calls in VCF format. Both Atlas-SNP2 and Atlas-Indel2 use the
same basic algorithm: for each variant site all the read data is compiled, the compiled data is fed into a logistic regression model for evaluation,
and variants that are of sufficiently high quality and pass the heuristic filters are then genotyped and output as a VCF file. For population
analysis, multiple single-sample VCF files may be combined into a population-level VCF with any missing coverage information filled in. (b) The
Atlas2 Suite is available for use in both a command line version and through the Baylor College of Medicine (BCM) Genboree Server.
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test the model for overfitting and provide an in silico
estimate of its performance (Figure 2). The model was
evaluated at all possible p cutoffs in terms of precision

( TP
TP + FP

) and sensitivity ( TP
TP + FN

). Results estimate the

model is able to achieve a 97% recall rate and a preci-
sion of no less than 90% (limited sensitivity in the train-
ing data set caused some TP SNPs to be classified as
FP, lowering the estimated precision). At the optimal
cutoff of p ≥ 0.5, the average performance of all cross
validation iterations almost exactly matches that of the
actual model evaluated on all training data, indicating
that the model is not overfit.
Atlas-Indel2 uses a similar logistic regression model to

separate true-positive and false-positive INDELs. During
model training we discovered the most significant vari-
ables for INDEL calling to be the normalized variant
square (NVS), the mean NBQ, the mean variation rate
of the reads, and the read-end ratio (Table 1). The NVS
is the number of variant reads squared and divided by
the total read depth. In our initial testing the variant
read depth was found to be extremely significant while
the variant read ratio (variant read depth divided by
total read depth) was not significant enough to be
included in the model. This is partially due to the smal-
ler INDEL training set which limited the number of
variables we could include in the model without overfit-
ting. We were concerned that using the variant read
depth without any type of variant read ratio variable
would introduce too much bias based on total coverage,
which may vary considerably, especially from experi-
ment to experiment. Our solution was to square the
variant reads in the variant read ratio to give the NVS,
which retains the significance of the variant read depth,

but is normalized by the total read depth to remove any
bias. Effectively, the NVS allows the model to consider
both the variant read depth and the variant read ratio
together in a single variable. The mean NBQ variable is
defined the same as for the Atlas-SNP2 model. The var-
iation rate is calculated by counting the number of mis-
matches and gaps in a read and dividing by the read
length. While the reported mapping quality was not
found to be at all significant (also it is too dependent on
individual mapping software), the mean variation rate
provides a simple indication of the mapping quality of
the variant reads that was found to be highly significant.
The read-end ratio variable is the number of reads
where the INDEL is within 5 base-pairs of either read-
end divided by the total number of variant reads. While
visually inspecting FP INDELs, we noticed several were
found primarily at the end of reads. This can be attribu-
ted to both the lower sequencing quality near the 3’ end
and the difficulty in mapping INDELs near read-ends.
The read-end ratio variable was designed to identify
these types of errors.
In silico cross-validation testing indicates that for

INDELs that posses at least 2 variant reads (a default
requirement of the heuristic filtering) the regression
model is capable of calling INDELs with ~95% sensitiv-
ity and ~96% precision (Figure 2b). The regression
model does not perform well in cases where only a sin-
gle variant read is present. Our testing results indicate
that the INDEL model is not overfit, with the average
performance of all cross validation iterations closely
matching the actual model’s performance.
The INDEL logistic regression model was trained on a

validated call set from human sample sequencing data

Table 1 Atlas2 Suite SOLiD model variables

SNPs

Description Type z-value p-value

Reference/variant reads ratio Numeric -34.36 < 2E-16

Strand direction Boolean 17.57 < 2E-16

Mean distance to 3’ end Numeric 16.87 < 2E-16

Mean neighboring base quality (NBQ) Numeric 14.83 < 2E-16

Mean variant base quality Numeric 10.61 < 2E-16

Mean NBQ × Mean distance 3’ (interaction) Numeric -12.39 < 2E-16

Strand direction × Mean distance 3’ (interaction) Numeric -10.52 < 2E-16

INDELs

Description Type z-value p-value

Mean neighbor base quality (NBQ) Numeric 9.097 < 2E-16

Normalized variant square (NVS) Numeric 7.035 2.00E-12

Mean variation rate Numeric -6.669 2.57E-11

Read end ratio Numeric -4.436 9.15E-06

Variables and interactions for both the SNP and INDEL models along with the variable’s Wald z-statistic and p-value as estimated by the R environment’s glm
function. The z-values and p-values indicate the significance of the variables in the model, with the most significant variables having a z-value furthest from zero.
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(see Methods, and the Supplement (Additional file 1) for
details). Although the variables tested during the model
training included the variables used in the Atlas-SNP2
model, only the mean NBQ variable is included in both
the SNP and INDEL models. The difference in which
variables are most significant may be attributed to the
different nature of error patterns around SNPs and
INDELs. For example, while the SNP model uses the
mean distance to the 3’ end, the INDEL model uses the
read end ratio variable. Both variables measure a similar
metric, but while the distance to 3’ variable is primarily
related to detecting sequencing errors, the read end
ratio is also useful in identifying mapping errors, which
are the primary cause of false INDELs. As a result, the
read end ratio is more significant than the distance to 3’
in the INDEL model. An example of a more practical
difference is that while the variant base quality is a
clearly significant variable for SNPs, such a variable can-
not be used for deletions which have no sequenced base
or base quality.
The Atlas2 Suite also includes models for variant call-

ing data from the Illumina platform. The Illumina SNP
model is described in detail in our previous publication,
where we have shown it to have high precision and sensi-
tivity (90%, 95%, respectively) [10]. Our INDEL Illumina
model is described in detail in the Supplement (Addi-
tional file 1), and is estimated to have high precision and
sensitivity (93%, 86%, Additional file 1, Figure S4).

Results
To evaluate the performance of the Atlas2 Suite, we
processed 92 samples from the 1000 Genomes (1000G)
Phase 1 Whole Exome Project http://www.1000ge-
nomes.org, which is an ongoing large scale population
resequencing project aiming to provide the most com-
prehensive human variant call set [14]. These 92 sam-
ples were chosen because they are also included in the
1000G Exon Pilot Project [14,15]. For INDELs, we addi-
tionally analyzed 10 samples from the 1000G Whole
Exome Project for comparison against other INDEL
callers.
In the 92 samples a total of 134,182 SNPs were dis-

covered, with an average of 14,867 SNPs per sample
(Figure 3a). Previous studies have established an
expected transition/transversion (Ts/Tv) ratio of 3-4 for
coding regions [15]. The Atlas-SNP2 call set has a Ts/
Tv ratio of 3.49 and a dbSNP v129b re-discovery rate of
90.1%. We also checked the SNP density by normalizing
the number of SNPs against each sample’s callable
region. The average SNP density of the 92 exomes was
0.63 SNP per 1,000 bp, which is consistent with pre-
vious results in the 1000 G Exon Pilot data (Figure 3b)
We compared the SNP calls of Atlas-SNP2 to the lat-

est official release of 1000 G Exon pilot SNP calls (Aug
2010) on a sample-by-sample basis (Figure 4). Only SNP
calls on the consensus high coverage genomic region of
the two data sets were compared. On average, Atlas-
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Figure 2 Theoretical Performance of the Regression Models. (a) The Atlas-SNP2 model is evaluated on a subset of the training data, which
requires a minimum total depth of 10 base-pairs. (b) The Atlas-Indel2 model is evaluated on a subset of the training data that requires at least 2
variant reads (a default heuristic filter). To estimate the effectiveness of the regression models and test for overfitting, a series of cross-validation
tests were performed by repeatedly sampling half of the training data to be used to train the model, and then evaluating the model on the
remaining data. This process was repeated 100 times, with each result plotted as a gray line. The average of all these lines is plotted as a bold,
color-coded line. The color indicates the p cutoff which returns the given performance at that point. The suite’s default cutoff of 0.5 is marked.
The actual model evaluated on the full set is plotted as a black line, but is mostly covered by the average line.
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SNP2 re-discovered 96.7% of the SNPs called in 1000 G
Exon project on the consensus region. 89.5% of the
SNPs discovered in 1000 G Exome data by Atlas-SNP2
are confirmed by the 1000 G Exon project data. With a
Ts/Tv ratio of 3.21 and a dbSNP re-discovery rate of
71.1%, the remaining 10.5% of SNPs unique to the
exome call set are likely to be true SNPs not discovered
in the Exon project, which resulted from the stringent
calling procedure employed by the Exon Pilot Project
[15] as well as the evolving nature of the capture
sequencing technology.
In the 92 samples we ran through the Atlas2 Suite

pipeline, we called a total of 2,971 INDELs, with an
average of 197 INDELs per sample (autosomal exons
only). Frameshift INDELs in coding DNA nearly always
render the resulting protein non-functional, and are
expected to be significantly less common than in non-
coding DNA. Previous studies have indicated that
approximately 50% of coding INDELs cause frameshifts
[16]. The samples analyzed by Atlas-Indel2 were found
to have an average in-frame rate (ratio of INDELs that
do not cause frameshift events) of 46.7%, indicating the
call set may be of high quality.
For the purpose of comparison against other variant

calling tools, 10 samples (5 European, 5 African) were
processed by Atlas-Indel2, GATK [12], and SAMtools
mPileup [8] (see Methods). Results were compared on
the basis of total exome INDELs called and the percent

of the INDELS that are in-frame (Table 2). The compar-
ison shows that the Atlas-Indel2 call set has a signifi-
cantly higher average in-frame rate of 47.52% compared
to 10.39% for GATK and 25.82% for SAMtools mPileup
(p < 3.9e-13 in a Student’s t-test). In these 10 samples,
Atlas-Indel2 called an average of 194 INDELs per sam-
ple, while GATK called 1,947 INDELs per sample and
SAMtools called 1,560 INDELs per sample. 194 INDELs
per sample is much closer to the number found in pre-
vious exome INDEL studies [14,17]. The low in-frame
rate and large call set size for GATK and SAMtools
indicate a much higher false-positive rate compared to
Atlas-Indel2 (Additional file 1, Figure S9a and Addi-
tional file 2).
Atlas-Indel2 is also specifically tuned for the Illumina

platform in short INDEL calling and genotyping. The
model is described in detail in the Supplement (Addi-
tional file 1, Table S3). As with the SOLiD data, we ana-
lyzed a small number of Illumina samples and
compared the results of Atlas2 to a few other widely
used INDEL callers including Dindel [18] and GATK
[12]. The results show that all callers performed very
similarly, calling between 221-241 average coding
INDELs per sample with an average in-frame rate of 57-
61% (Additional file 1, Table S5). 86% of the INDEL
sites called by Atlas-Indel2 were also called by Dindel
and 89% were also called by GATK (Additional file 1,
Figure S9b).

a. b.

Figure 3 SNP Call Metrics. (a) SNP metrics of 92 1000 Genomes exome samples. The four figures are SNP number, Ts/Tv, dbSNP% and SNP
density distributions respectively. SNPs were called and compared in the callable region with a variant read depth of at least 2. Previous studies
have indicated that coding SNPs should have a Ts/Tv ratio of 3-4 [15]. (b) SNP density in the 1000 Genomes Exome Project vs. the Exon Pilot.
The SNP density was calculated as the number of SNPs discovered in each sample normalized against their callable region. The maximum and
minimum SNP density in the 1000 Genomes exome data are 0.70/Kbp and 0.54/Kbp respectively, which are presented as two slope lines in the
figure.
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Computational Performance
The regular size of WECS BAMs is 10-20 gigabytes per
BAM. Despite the enormous size of high coverage
sequencing data, the Atlas2 Suite is engineered in a man-
ner that allows it to process WECS data on a standard
desktop computer or a small server in a reasonable
amount of time. Sequencing reads are processed one at a
time, with a minimal number stored in memory. The
result is that the run-time increases linearly with the
BAM file size and memory usage remains constant

(Figure 5). Memory usage is dependant on the reference
genome used; for example, using the human reference
genome the maximum memory usage is about 250 MB.
A whole exome 28 GB BAM file will take approximately
2 hours to be processed by Atlas-SNP2 and 5.5 hours by
Atlas-Indel2, using one core of a 2.27 GHz Intel Xeon
Processor. Using 64 CPU cores on a computational clus-
ter we are able to process all 92 samples in ~4 hours for
SNPs and ~11 hours for INDELs, demonstrating that the
Atlas2 Suite is well suited for population scale analysis.
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Figure 4 Comparison of 92 1000 Genomes Exome samples to Exome Pilot Data. We made SNP calls using the Atlas2 Suite on 92 samples
from 1000 Genomes Phase 1 Exome project, and compared the result to the most recent release from the 1000 Genomes Exon Pilot project.
The Atlas2 re-discovery rate was calculated for each sample (red). The average re-discovery rate is 96.7%. An average 89.5% of the SNPs called by
Atlas2 were confirmed in the Exon Pilot project (green). The exome SNPs called by Atlas2 but not called in 1 KG Exon pilot is either due to Exon
pilot’s limited sensitivity or false discovery in Atlas2.
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Using Atlas2 in the Genboree Workbench for Integrative
Genomic Analysis
In order to make the Atlas2 Suite tools accessible to a
wide range of researchers we integrated the tools into
the Genboree Workbench (http://www.genboree.org,
registration required). Primarily aimed at collaborative
genomics research, Genboree provides web-based ser-
vices for groups of researchers to share, visualize, and
analyze genomic annotations and raw data files. Using
the graphical user interface at the Workbench, research-
ers can run Atlas2 Suite tools on their BAM and SAM
files (Additional file 1, Figure S7a). The interface pro-
vides help information, validation of parameters, and
adds the ability to upload the SNP and INDEL calls as

annotation tracks. Upon submission, the configured job
is added to the Genboree job queue and will execute on
a modest compute cluster, after which the user is noti-
fied of job completion via email. The result files are also
made available to the collaborating researchers via the
Workbench, and are organized in a directory structure
using the Study and Job names provided by the
researcher (Additional file 1, Figure S7b).
By running the Atlas2 Suite tools via the Workbench,

researchers benefit from integrative analysis. For exam-
ple, if the SNP calls are uploaded as an annotation
track, they can be viewed visually in the internal genome
browser (Additional file 1, Figure S7b). Researchers can
also configure Genboree to export their SNP tracks to

Table 2 Comparison to other INDEL Callers

Atlas-Indel2 GATK Unified Genotyper SAMtools mpileup

Average INDELs/sample
(Coding and Non-coding)

23525 9648 26139

Average Coding INDELs/sample 194 1947 1560

Average % 3(n) Coding INDELs/sample 47.52 10.39 25.82

# Coding INDELs 816 12027 12305

% 3(n) Coding INDELs 38.11 7.78 23.84

# Non-coding INDELs 19607 3441 28135

% 3(n) Non-coding INDELs 14.06 9.79 17.19

Summary of INDELs called by Atlas-Indel2, GATK Unified Genotyper and SAMtools mPileup on 10 SOLiD samples (5 LWK, 5 CEU). The metrics compared are the
average number of coding and non-coding INDELs per sample, the number of INDEL alleles merged across all 10 samples and the % 3(n) INDELs. The 3(n)
INDELs refer to INDELs with a length of multiples of 3, which do not cause a frameshift mutation in the coding region. Previous studies have reported that
coding regions tend to harbor less frameshift-causing INDELs. Coding refers to the consensus exome target regions of the genome as defined by the 1000
Genomes consortium. Non-coding refers to all the regions outside of the exome target regions. In the merged call sets, INDELs at the same site found in
different samples are merged together in a population VCF file. Individual sample results are shown in Additional file 2.

Figure 5 Computational resources. Both Atlas-SNP2 (a.) and Atlas-Indel2 (b.) were tested on a series of BAM files to evaluate run time and
maximum memory usage. The algorithm for both applications is designed so that runtime increases linearly with the number of reads analyzed,
while memory usage is approximately constant, based on the size of the reference genome.
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the UCSC browser, and can use the tracks as inputs to
other Workbench tools. Additionally, the Workbench
provides us with a framework for adding new Altas2
Suite models and additional external tools. Because the
Workbench is implemented on top of the Genboree
HTTP REST API, researchers can automate this kind of
analysis. For example, BAM file upload and launching
an Atlas2 Suite tool can be done through the API, as
can checking if result files are available and, if so, down-
loading them. Using the APIs, the researchers can also
extend the analysis capabilities using their own software.

Conclusions
As exome capture continues to become an effective
method for high coverage gene sequencing and muta-
tion discovery in personalized diagnosis, there is strong
demand for a complementary set of data analysis tools
specialized for the unique error models and other chal-
lenges inherent to exome capture. The Atlas2 Suite
provides an effective and flexible solution to exome
variant detection and genotyping, using statistical
methods trained on exon capture data. We have
applied our method to 92 whole exome human sam-
ples and demonstrated the suite is capable of produ-
cing sensitive and accurate variant calls in a reasonable
amount of time.
Integration of the Atlas2 Suite into the Genboree

Workbench provides the benefits of a visual interface,
the easy sharing of access-controlled data, a hierarchy
for organizing results of multiple analysis jobs, the
potential for integrative analysis, and automation sup-
port. These additional resources provide a valuable
online tool set to the wider research community.
The results of the Atlas2 Suite model development are

beneficial not only for use in calling variants, but also
for classifying variants and identifying error models for
exon capture data that can be applied in a more general
sense. For example, it was somewhat unexpected to dis-
cover that for SNPs the base quality score of the variant
site is less significant than the base qualities of the sur-
rounding bases in the mean NBQ; the number of variant
reads was not even significant enough to be included in
the final model (Additional file 1, Figure S2). We discov-
ered that the most significant variable in SNP calling
was the reference/variant read ratio. Almost all true
SNPs had a reference/variant ratio less than 5, while
most false SNPs had a ratio greater than 20. The most
surprising discovery in the INDEL model training was
that the mapping quality had almost no significance and
could not be used to improve INDEL calls. We found,
however, that the variation rate of the reads (penalizing
both SNPs and INDEL equally) provided a better surro-
gate to capture the alignment quality in a region that
harbors an INDEL.

While highly accurate SNP calling (sensitivity and pre-
cision > 95%) has become a very achievable goal using
current methods, such consistent results remain a ser-
ious challenge for INDEL calling. In our comparison of
the different SOLiD INDEL callers over 90% of the
INDEL calls were unique to one of the callers (Addi-
tional file 1, Figure S9a). The overlap looks much better
in Illumina comparison, but there are still 20% of the
INDEL calls which were unique to one of the callers
(Additional file 1, Figure S9b). The short read length
and high error rate of NGS technology makes INDEL
calling inherently challenging (especially for insertions).
In order to gain significant improvement we will likely
need to widen our approach to include other methods
such as de novo or guided assembly.
We intend to continue maintenance and improvement

of the Atlas2 Suite through a series of regular releases.
Atlas2 will be updated as training data becomes avail-
able on new sequencing platforms.

Methods
Model training
Training the logistic regression models was performed
in a semi-automated fashion. All training was performed
using the R statistical environment. Each variable was
applied to the training set and split by TP/TN status
(Additional file1, Figures S2 and S5). Variable selection
and model training was automated using the “glm” and
“step” commands, and then fine tuned manually to
remove variable redundancy. Additional variables were
manually dropped with the guidance of the “drop1”
command when variables did not show high significance
(p > 0.05), or when the model appeared to be overfitted.
We checked for model overfitting using two methods.

First, we performed a series of cross-validation tests on
the entire model, in which we sampled 50% of the train-
ing data, retrained the model on this selection, and then
evaluated the model on the remaining 50%. This was
performed a minimum of 100 times and the mean of
the results was compared to the original, theoretical
model by plotting the model performance with a recei-
ver operating characteristic (ROC) and precision/sensi-
tivity curve (Figure 2). When the model is overfit there
is high variance in the cross-validation tests and the
mean performance differs significantly from the theore-
tical performance. The second method for detecting
overfitting was a standard bootstrap procedure per-
formed on the model using the R-command “boot” and
“boot.ci” to determine the 95% confidence interval of
each of the variable coefficients. An unreasonably wide
confidence interval is expected when the model is
overfit.
The training set was also used for tuning of the

default p cutoff and other heuristic filters. An initial
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estimate of proper cutoffs and filters was established.
Next, each individual cutoff or filter was evaluated at
the full range of possible values with ROC and precision
sensitivity curves. Cutoffs and filters were chosen that
maximized the overall sensitivity and precision of the
resulting call set.
SNP training data
The SNP logistic regression models were trained using a
set of 10 overlapping samples from the 1000 Genomes
Exon Pilot project (Exon) and the 1000 Genomes
Exome project (Exome). We determined the overlapping
callable region, which is defined as having high coverage
(at least 10 reads) in both Exon and Exome data for
each sample. The average region size is ~1.2M bp. The
TP was made up of all the SNP candidate sites in
Exome data having at least two variant reads and con-
firmed by Exon SNP calls. The FP comprised all other
sites having at least two variant reads not confirmed by
Exon SNP calls. In total, we have 6,516 TP and 347,154
FP in our training data set. Because the training data set
is based on a continuous callable region, it represents
the real TP/FP ratio in the sequencing data. An addi-
tional advantage of using the 1000 G Exon Pilot call set
is that it provides a training set with high sensitivity
among rare SNPs, [15] allowing us to create a final
model that is not biased by allele frequency.
INDEL training data
The indel logistic regression models were created and
trained on human exome capture SOLiD data that
underwent PCR-Roche 454 validation. The TP in the
training set were made up of the validated indels. The
FP in the training set consisted of potential indels that
were shown to be false-positives in the validation experi-
ment plus a random selection of potential indels that
were not in the initial indel call set. A very large num-
ber of FPs were selected to make the final training set
10% TPs and 90% FPs. This gives the final training set a
more realistic TP/FP ratio to improve model training
and provide more accurate estimations of the model’s
performance in real data. The training data was selected
without regard to allele frequency and is all high-cover-
age exome capture data, which provides a realistic allele
frequency distribution to ensure that the final model
will not be biased against rare INDELs.
Once the INDEL training data was collected it was ana-

lyzed using the Atlas-Indel2 training scripts to calculate all
the variables that can potentially be used in the logistic
regression model (Additional file 1, Figure S5). The data
was output in a tab-delimited format suitable to be
imported into the R statistical package for model training.
The Atlas-Indel2 Illumina training data was created in

the same manner as the SOLiD data, but the data was
obtained from the validated INDEL calls of the Exon
Pilot of the 1000 Genomes project [14,15].

Evaluation and validation
Data Sources
All of the sequence data used for evaluation and valida-
tion of the Atlas2 Suite was obtained from the 1000
Genomes Project [14]. The samples were sequenced on
the Applied Biosystems SOLiD 4 System and aligned
using BFAST. The BAM files were processed using
MarkDuplicates [19] and GATK local realigner [12].
Callable region in SNP discovery
The callable regions for the 92 SOLiD WECS samples were
defined as the base positions with an effective read depth of
at least 6. The effective read depth is the sum of reads har-
boring both a reference base and variant base, after exclud-
ing the reads failing the alignment/mapping quality cutoffs.
For the SOLiD model, we required the effective reads to
have at most three variant events (including SNPs and
insertions and deletions) and the mapping quality score to
be 255 that indicates a uniquely mapped read in BFAST
alignments. All SNP calling, genotyping, and evaluation
were performed within callable regions.
SNP calling and genotyping
SNPs were called using Atlas-SNP2 for SOLiD on the
1000 Genomes Project exome consensus target region
with the default settings, which include: a SNP logistic
regression model probability of p > = 0.5 and a variant
read depth > = 2. The SNP sites were further genotyped
using the adjusted variant ratio t, which is defined as
the ratio of variant read depth to total read depth minus
color corrected bases. SNPs with t > = 0.1 were geno-
typed as heterozygous SNPs and those with t > = 0.8
were genotyped as homozygous SNPs.
SNP evaluation
92 exome samples called by Atlas2 are also called in
1000 G Exon pilot. We performed a sample by sample
specific comparison on the SNP calls of the consensus
high coverage region of both Exome data and Exon
pilot data. High coverage is defined as at least 10 × cov-
erage in Exon pilot data and at least 6 × effective cover-
age and variant read depth ≥ 2 in exome data. Exon
SNP re-discovery rate is defined as the ratio of SNPs
called in the Exon pilot in the consensus high coverage
region also called by Atlas2. Exome SNP confirmation
rate is defined as the ratio of SNPs called by Atlas2 but
not called in the Exon pilot.
INDEL calling
INDELs were called using Atlas-Indel2 in SOLiD data
mode, with the default settings. Default settings include:
a minimum p of 0.5, a minimum p of 0.88 for single
base-pair deletions, a minimum of 2 variant reads, a
minimum total depth of 2, and a minimum variant read
ratio of 0.05. INDEL calls were filtered to only include
INDELs located in the exome regions as defined in the
1000 Genomes consensus target regions. Individual sam-
ple VCF files were merged using the vcfPrinter tool.
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INDEL evaluation
For comparison purposes, INDEL calls from Atlas-
Indel2 were compared against calls made using Genome
Analysis Toolkit (GATK) Unified Genotyper and SAM-
tools mpileup. Atlas-Indel2 was run with default settings
and both GATK Unified Genotyper and SAMtools mpi-
leup were run as described in their respective documen-
tation pages (see Supplement in Additional file 1 for
details). We took five samples from CEU and LWK
populations and processed them with all three callers.
A total of 30 VCF files were created by running the 3

callers on 10 samples. Each VCF file was broken down
into an on-target and off-target VCF file, based on the
1000 Genomes consensus target regions ftp://ftp-trace.
ncbi.nih.gov/1000genomes/ftp/technical/working/
20110228_consensus_exome_targets/20110225.exome.
consensus.bed. A multi-sample VCF file was generated
using vcfPrinter. Table 2 summarizes the results from
the three INDEL callers. Only the autosomes are
included. Supplementary table S4 (Additional file 1)
reports the raw number of INDELs called by the differ-
ent callers on each sample and the number of INDELs
in on-and-off target regions.

Availability and requirements
• Project name: Atlas2
• Project homepage: http://sourceforge.net/projects/
atlas2/
• Operating systems: Unix based
• Programming language: C++, Ruby
• Other Requirements: SAMtools http://samtools.
sourceforge.net/
• License: BSD
• Any restrictions to use by non-academics: none
• Atlas2 version 1.0 is included as Additional file 3

Additional material

Additional file 1: The Supplementary Material for the paper.

Additional file 2: Supplementary table S4, which is too large to
include in the text.

Additional file 3: The Atlas2 Suite version 1.0.
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