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AN INTEGRO-DIFFERENTIAL EQUATION
ARISING FROM AN ELECTROCHEMISTRY MODEL
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Abstract. In this paper, we prove the existence and uniqueness of steady-state
solutions for a system of equations arising from a model in electrochemistry. The same
result was established by the authors in an earlier paper under the additional assumptions
that the space-dimension N — 2 and the concentrations of the charged ions satisfy an
electro-neutrality condition.

1. Introduction. Let f2*, u>i, u>2 be open, bounded, connected subsets of RA , N > 2
such that aJI,W2 C fi* and uTTflo^ = 0. Let ri,r2,r3 be the C2+7 boundaries of uji,u>2
and fT, respectively, where 0 < 7 < 1 and define f2 = fi* \ (aTfUtJij). The purpose of
this paper is to prove the following theorem:

Theorem 1.1. Let fi be defined as above and let e,Ci be positive and z, be nonzero
constants for i = 1,... ,m. Suppose Q € C7(f2) where 0 < 7 < 1. Then the equation

z.n.e-zi<t>(x)

c^ = - E ^e\md, + Q(x) (L1)
subject to the boundary conditions

4>{x) = 0 for x G Fi, = a for x € T2,

at,, n f c r (L2)—(x) = 0 for x e r3

have a unique solution <f> G C2+7(f2).

The above equations arise from the study of an electrochemistry model [1], [2], [3].
Consider a container holding some electrolyte, which is a mixture of charged particles in
a solution. Two electrodes are inserted into the electrolyte and are subject to prescribed
electric potentials. The densities of the charged particles are denoted by «i,..., um and
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the electric potential is denoted by (f>. Each species has a characteristic mobility constant
f1i such that its velocity under the influence of the electric field is given by —Q,lzlX/<p
where z% is its charge. The charge zt must be integer-valued, and may be positive,
negative, or zero. The species also diffuse with diffusion constant dl > 0. It is frequently
assumed that fij = n di for i = 1,m where [i > 0. This is called the Einstein relation.
Under the above assumptions, the flux of species i is given by —+ [iZiUiV(f>) and,
after non-dimensionalization, Ui and (p satisfy the following system of equations:

dui
-—^ = didiv{Vui+fiZiUiV4>), i = 1,... ,m,dt (1.3)
eAcf) = -e ^2 zkuk + Q{x).

In the above equations, e > 0 is the permittivity of the solvent, e > 0 is the molar charge,
and Q may be thought of as a charge density distributed inside the container.

Equations (1.3) are solved subject to the following boundary conditions:

(Vui + [iZiUiVqi) • n = 0, for x G dfl, t > 0,
4>{x,t) = 0 for x G Ti, <P(x,t) — a for x G T2, t > 0, (1-4)

^(x,t) = 0 for x G r3, t > 0,
- on

and initial conditions

Ui(x, 0) = u®(x) > 0, i=l,...,m. (1.5)

In (1.4), dfl — Ti U T2 U 1^, n is the unit outward normal at d£l, and dtp/On — V</> • n.
Without loss of generality, we assume that a in (1.4) is positive.

The initial condition <p(x, 0) = is not prescribed because it can be obtained from
solving the equation eA<fi° — — + Qix) together with the boundary conditions
0°|r! = 0,0°|r2 = ot, d<fr°/dn\r3 = 0. It is obvious that by absorbing /i into 0 and e into
s, we may assume that /i = e = 1. We also assume that Zi ^ 0 since if zt = 0, then m, is
decoupled from the system (1.3) and may be solved independently.

The evolution problem (1.3), (1.4) has been studied in [3] with Q(x) = 0. Using
the techniques developed in [3], one can show that given T > 0, there exist unique,
smooth solutions Ui(x,t), i = 1,m and <j>(x,t) to equations (1.3), (1.4), and (1.5) for
0 < t < T. Furthermore, Ui > 0 if t > 0. Also, from (1.3), and (1.4a), fn Ui(x,t) dx = Ci
is independent of t and depends only on the initial data

The steady-state solutions u»(x), i = 1,m and (j>(x) satisfy the equations

div(Vui + wV0) = 0, i = 1,..., m,
eA(f> — "22 ZkUk +

ii(x) dx = Ci > 0, i = (1.6)
/Jn

Ui
/n

<j>(x) — 0 for x G Ti, 4>(x) — a f°r x G F2,

l&(x) = 0 for x G r3

where C,, i — 1,...,m are known constants. Let vt = UieZi<t> for i — 1,m. Then Vi
satisfies the equation div{e~Zi't'Vvi) — 0 and the boundary conditions dvi/dn\dQ, = 0.
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Multiplying this equation by Vi and integrating by parts, we see that V{ is a constant.
This constant may be found from condition (1.6c). Doing so, we obtain

(j. e~zi<t>(x)
uAx) — -7—^ T7 t , for i = 1,..., m. (1.7)

/ne"2'^)dy ' ' V '

Substituting this into Eq. (1.6b), we obtain Eq. (1.1). It is clear from above that prov-
ing the existence and uniqueness of solutions to Eqs. (1.6) is equivalent to proving the
existence and uniqueness of solutions to Eq. (1.1) subject to the boundary conditions

(1.2).
In the paper [3], existence and uniqueness of steady-state solutions to Eqs. (1.6) were

established under the assumption Q = 0 and the electro-neutrality condition ^ ZiCi = 0.
In the same paper, global stability of the steady-state solutions was also established
when N — 2. This result is equivalent to saying that ions in any initial distribution will
eventually settle down to their unique steady-states. Due to the lack of time-independent
a priori bounds for ||ui(-,t)IU2(fi)> the global stability result cannot be extended to the
case N = 3.

The purpose of this paper is to prove the existence and uniqueness of steady-state
solutions to Eqs. (1.6) without the assumption Q = 0 or ^ z;Ci = 0. The result is stated
in Theorem 1.1. As a corollary of this theorem and Theorem 8.1 of [3], we have the
following stability result.

Theorem 1.2. Let u? > 0 be smooth initial data defined on $7 c R2 for i = I,... ,m
and let Ci — fg u°(x) dx > 0. For N = 2, there exist unique solutions Ui, i = 1,..., m
and $ to the steady-state equations (1.6). Moreover, the solutions Ui, i = 1,..., m and cfi
of equations (1.3), (1.4), and (1.5) satisfy \\mt~^oa Ui(x,t) = Ui{x) and lim^oo ^{x, t) =
$(a:) uniformly on $1.

The same result holds for tt C R3 provided that we have a time-dependent L2(fl)-
norm bound of the solutions Ui, i = 1,m.

The organization of this paper is as follows. Section 2 contains the proof of a priori
bounds for the steady-state solutions while Sec. 3 contains the proof of Theorem 1.1.

2. A priori estimates. Let = {x G Q \ u > 0} and £)_ = {x £ fl \ u < 0}. We
first establish two lemmas.

Lemma 2.1. Let w,u e C(fi), and w > 0 on Q. Then for any nonnegative integer n

fn w(x)e~ZiUun+1 dx fn w(x)un+1 dx
Zi~r—- Zi~r—7 \ (2-1)Jn+w(x)e z'uun dx Jn+w(x)undx

Proof. Define positive measures Mi and m, on such that their Radon-Nikodym
derivatives satisfy dMi/dx = e~ZiUw(x)un/ fn e~ZiUw(x)un dx and drrii/dx =
w(x)un / fn+ w(x)un dx, respectively. Then, fQ dMi = 1 and fQ drrii = 1.
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Suppose Z{ > 0. From Jensen's inequality

/Zi fn w(x)e ZiUun+1 dx\ ( r
exp I —^——    I = exp I / ZiU dMt

I fn+w(x)e ZiUundx / \Jn

<-fJ n.
fQ w(x)un dx

fn w{x)e~ZiUun dx

^ r

Taking the logarithm on both sides, we have

Zi fn w(x)e~ZiUun+1 dx

fn w(x)e ZiUun dx wo+

<

< - log yj e ZiU dmlJ

/ Ziudrrii (2.2)
Ji 2+
zi Js2+ w(x)un+1 dx

fQ w(x)un dx

The proof of the lemma is complete.

Lemma 2.2. Let n be a nonnegative integer and let ,u € C(ri). Then

fne-z'^°e-z'uu2n+1 dx L e-z^°lul2n+1 dx ,
ZiCi^-r T 7  <  L-L- . (2.3)fn e~z'0°e~ziu dx e Zi^° dx

Proof. Suppose 2, > 0. From Eq. (2.1), we have

e~Zi^°e~ZiUu2n+1 dx
iCi

fae Zi^°e ZiUdx

^ ZiCi
fs, e~zi^°e~z,uu2n+1 dx

fn e~Zi^°e~ZiU dx

fn e^Zi^°e~ZiU dx fQ e~zi^°e~z'uudx e~Zi^°e~ZiUu2n+1 dx

fn e~Zi(^°e~ZiU dx e~Zi<f>0e~ZiU dx e~Zi^°e~ZiUu2n dx

f(2 e~zAoe~ZiU dx f(} e~Zi'*'0udx e~Zi(t>0u2n+1 dx

fn e~Zi^°e~ZiU dx J,} e~Zi^° dx fn^e~Zi^°u2n dx

fn e~Zi^°e~ZiU dx fn e^Zi^°u2n+1 dx
= zi Cj

= ZiCi

'ji ZiCi

^ ZiCr

fQ e~Zi<^°e~ZiU dx fn e Zi^° dx

fn e~Zi^°u2n+1 dx

fn e~Zi^° dx
fn e~Zi'f'0\u\2n+1 dx

< \zi\Ci , , ,
fn e Zi^dx
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The second to last of the above inequalities follows from the fact that

"2i0° dx)[ e-z"t>°e-ziudx) I [ e-Zi't'0dx+ [
yJn+ J \Jn+ Jn

< I f e-*i^e-ZiU dx+ [ e-z^°e-z'udx) I [
Wfij. Ju- \Jn

e Zi(p0 dx J .
/ \Jn+ J

Hence, inequality (2.3) is valid for Zi > 0.
If Zi < 0, let v = ZiU. From (2.3), with z; = 1 and <po there replaced by Zi<f>o,

In e~Zi^° e~ ZiUu2n+1 dx
Zi C,

In e~Zi^°e~ZiU dx

Ci fne-z^0e-vv2n+1 dx
z2n fQ e~Zi^°e^v dx

< Ci Jn e"Zi(/'0\v\2n+l dx
z2n fn e~Zi&° dx

= \zi\C, L
/ne-^°M2n+1cfa:

fn e~Zi^° dx
The proof of the lemma is complete.

We now define cf>o € C2+7(f2) as the solution to the equation

eA0o = Q(x) (2.4)

subject to the boundary conditions (1.2). Let u = <fi — 4>q. Then u satisfies

ZiCie-^e-^ , N
eAu = - > T—' ' 7 . rT— 2.5

Jne_z o(y)e_Ziu(y)d2/

and the homogeneous boundary conditions

u(x) = 0 forzeFi, u{x) — 0 for x € T2,
du (2-6)
— (x) = 0 for ier3.

Proving Theorem 1.1 is equivalent to showing that Eqs. (2.5) and (2.6) have a unique
solution in C2+7(f2).

In what follows, k, k\, &2,..., and M, M\, M2,... will denote generic positive con-
stants. From the definition of fo, we have ||^>o||oo < &1-

Let z = max\zi\ and |fi| = meas(fi). Multiplying Eq. (2.5) by — u2n+1 and integrating
over Q, we have, from (2.3),

2n + l [ n+1. n+1. , ^ ^ Le-z"fi°e-z<uu2n+1dx
£- —tttt / V(u + )-V(un+1)dx = y ZiCi Q

Jn(n + l)2 Jfi ■' 11 JQe z^oe dy
  r P ^100 \qi 12TI- —|— 1 (Jrp

<T>|Q^ , (2-7)
fne dy

<M f \u\2n+l dx
Jn
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where M — J2 \zi\Cie2zkl/|fi|. In particular, taking n = 0 in Eq. (2.7) and employing
Poincare's inequality, we have

„2 M.. M, .. „ M, „||w||//i < — IMIi < —Mu||2 ^ —h\\u\\m-
Thus ||w||//i < /c4 and we conclude that

\\u\\2 < k5. (2.8)

We now bootstrap this estimate to obtain an L°° bound on u. We concentrate on the
case TV > 3 since the case TV = 2 is easier.

Lemma 2.3. Let TV > 3 and let n > 1 be a positive integer. Define

p = 2N{n + 1)/(TV- 2). (2.9)
Then there exists a constant Mi, independent of n, such that

||u||„ < Mij9(Ar+1)/(iV+4). (2.10)

Proof. For any w € H1^) with w = 0on part of the boundary dtt, Sobolev's inequal-
ity implies that

IM|2JV/(W-2) ^ k\\w\\Hi.

Prom (2.7),

||,,||2n+2 _ ||?/n + 1||2 < A-2 Il7/rl+1 II2 < ^ M (n+1) || ,[2n-H
HUH2W(n+l)/(N-2) - \\2N/(N—2) — II IIh1^ £ (2n + 1) " "2n+1'

Now we employ the interpolation equation (7.9) on p. 146 of [4] to obtain

II i|2n+2 < k M (n+ 1)' /|| ||A||U||l-A \2n+l ^ -q\
ll"ll2JV(n-Hl)/(JV—2) — £ (2n + 1) ^" "2 " "2N(n+l)/(N-2) >

where A satisfies

It can be checked that

1 _ h + 1 ~ A

and

From (2.11),

2n + 1 2 2TV(n + 1)/(TV — 2)'

\ — TV -f 4n + 2
(2n+l)(nTV + 2)' '

, i \t*- , i> (n+1)(TV+ 4) ,011^
1 + A(2n + 1) = nN + 2 , (2.13)

1 TV
as n —> oo. (2-14)

1 + A(2n+1) TV+ 4

II ||l+A(2n+l) ^ k2M (n + l)2 M M(2n+1)A ^ 2fc2nM M u(2n+l)A
\\U\\2N(n+l)/(N-2) ^ £ (2n + 1) "W"2 - £ l|U|'2

From (2.8),

l|w||2N(n+l)/(W-2) < fcin1/(1 + A(2n + 1))
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where k\ > 1 is independent of n. From (2.14),

IM|2JV(n+l)/(AT-2) < fcin(JV+1)/(iv+4)

for sufficiently large n. By increasing k\ if necessary, the above inequality holds for all
n. From (2.9),

/nlN — D \(N+1)/(N+4)
1MIP < fci ( 2N ~ 1 j < Mip(N+1^(N+4\

The proof of the lemma is complete.

Corollary 2.4. For any 1 < p < oo,

||u||p < 00.

Lemma 2.5. Let N >3. For any integer r > 4N/(N — 2), there exists M2 > 0, indepen-
dent of r, such that

\H\r < M2r(iV+1)/(iV+4). (2.15)

Proof. Given r > 4N/(N — 2), choose an integer s such that

2 Ns 2N(s + 1)
< r <N-2 ~ N-2

Define p = 2N(s + 1)/(N — 2). Then it is easy to see that 0 < 1/r — 1/p < 1. Hence
|Q|i/r-1 /p < From Holder's inequality,

||u||r < |f2|1/r-1/p||u||p. (2.16)

From Lemma 2.3,

IMIr < /CiMip(Ar+1)/(Ar+4)

< k\M\
4Ns ^ (JV+1)/(JV+4)

viV — 2,
< M2r(A,+1)/(Ar+4).

This completes the proof of the lemma.

Lemma 2.6. For any constant (3 6 R, there exists Mp > 0 such that

[ efu dx < Mg. (2.17)
Jn

Proof. Since

myp IaJ /»

/ dx < /
J a ./fi— ^ r!

dx

and u G Lr for any positive integer r because of Corollary 2.4, it suffices to show that
the above series converges.

From (2.15), we have, for any ro > 4N/(N — 2)

tf-T£ E ttW; £ £ (2.18)
r=ro ' r=ro ' r=ro
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Stirling's formula implies that

rT\/2-Krlim  ;— = 1.
r—>oo err\

Thus by increasing ro if necessary, for r > r0,
1 2 pr
- <  S=. (2.19)
r! rrV27rr

Therefore,

f (W,<f 2e*M;\W (N+1)r/(N+4) = 2(eM2\P\Y (2 2Q)
^ L r! r3r/(jv+4)^-

r=r o r=ro t=tq

This series converges because of the root test and (2.17) follows. The lemma is also valid if
N — 2 since in this case there exist constants c\, c? >0 such that fn exp(ci|w|/||u||//i)2 dx
< C2 (see p. 162 in [4]) and ||u||//i has been shown to be bounded.

Lemma 2.7. For any 1 < p < oo, there exists an Mp > 0 such that

fn e-z'^o(y'>e-z'u(y'> dy

Proof. Recall that 11 ^>o 11 oo < &i and z = max \Zi\. From Lemma 2.6

l|e~2*lP < k2

where k2 may depend on p. Hence

< Mp. (2.21)

(2.22)

||e-«i0oe-xiu||p<fc2e»fci- (2.23)

The function f(v) — l/v is convex so that Jensen's inequality implies that

{w\ie"Mdyy'-mi'""")dy- (2-24)

[ e-*iMv)e-zMy) dy > e-5fci f e-*iu{y) dyj (2.25)
Jn Jn

Since

we have

7 JTT ^ / eZiU(v) dy<h- (2.26)
fne~z'My)e-z'u(y) dy |ft|2 Jn

Inequality (2.21) follows from (2.23) and (2.26).

Lemma 2.8. There exists an M3 > 0 such that

llullc2+^(n) — ̂3- (2.27)
Proof. From Lemma 2.7, the right-hand side of (2.5) is bounded in the Lp norm for

any 1 < p < 00. Thus u £ W2'p by regularity estimates. By taking p sufficiently large,
Sobolev's imbedding theorem implies that u G C1+7(f2). Since <f>0 £ C2+7(fi), the right-
hand side of Eq. (2.5) is bounded in the C1+7(f2) norm. Schauder's estimate then gives
a bound in the C2+7(f2) norm. The proof of the lemma is complete.



INTEGRO-DIFFERENTIAL EQUATION FROM ELECTROCHEMISTRY MODEL 685

Remark. Suppose the right-hand side of Eq. (2.5) is multiplied by A G [0,1] and
that the same a priori bounds (2.27) for this new equation subject to the same boundary
condition (2.6) also hold. In other words, M3 can be taken to be independent of A G [0,1].
This is important in our proof in the next section.

3. Proof of Theorem 1.1. Let M3 be defined as in Lemma 2.8 and let

S = {u G C7(fi) : u = 0 on Ti U r2, du/dn = 0 on T3, ||w||C7(n) < M3}. (3.1)

We employ the notation A_1(/) to denote the solution w of Aw = / satisfying the
boundary conditions (2.6).

Consider the map T\ : S —► C7(Q) such that for any u G 5,
/     -yn Oo-ZiU \

Tx(u) =u + A 1 j^e-z,My)e-zMy)dyJ ' (3'2)

From Lemma 2.8 and its following remark, there is no solution to T\(u) — 0 on dS for any
0 < A < 1. Thus deg(T\, S, 0) is well-defined for 0 < A < 1. By the homotopy property,
deg(To,5,0) = deg(Ti,5,0). Since T0 is the identity map, deg(T0,S,0) = 1. Therefore
deg(Ti, 5,0) = 1 and a solution of the equation T\(u) — 0 exists. By the regularity
estimate, u G C2+7(f2). With cf> = 4>o + u and 0o G C2+7(S7), we have (j> G C2+7(f2).
This proves the existence of a solution to Eqs. (1.1)—(1.2).

Next define

U = {u G Cx(fi) : u — 0 on I\ U T2, du/dn = 0 on r3}, (3.3)

and /:[/—> R by

I(u) = [ £-\Vu\2dx + V^log [ e-^e'^dx. (3.4)
Jn 2 Jn

It can be checked that I is Frechet differentiate, and for any u,v G U,

... f fa e^Zi^°e~ZiUv dx
I (u)v = / eVu-Vvdx —    

Jn ^ fne-***>e-*i»dy
In fact, I G C2. For any u,v,w G U,

I"(u)(v,w) = f sVw-Vvdx + y^ z2Ci —
Jn

-X>,2c

(3-5)

In e ZiU dy
fn e~Zi^°e~ZiUv dx fQ e~Zi't'0e~ZiUw dx

(3.6)

(fne Zi^°e ZiU dy)2

Cauchy-Schwarz's inequality implies that

[ e'^e-^dx [ e~Zi^°e~ZiUv2 dx > ( [ e-^e'^v dx] . (3.7)
Jn Jn \Jn J

Let v — w in Eq. (3.6). Then (3.7) implies that

I"(u)(v,v)>e f \Vv\2dx>0 (3-8)
Jn
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and

l"(u)(v,v) = 0 if and only if v — 0. (3.9)

We are now in a position to prove the uniqueness result in Theorem 1.1. Let u\ and
U2 be two solutions of Eqs. (2.5)-(2.6). We can multiply Eq. (2.5) by any v 6 U, and
integrate by parts to obtain

I'(ui)v — 0 fori = 1,2. (3.10)

Now

I'(u-2)v - I'{u\)v = / I"(ui + t(U2 - Ui))(u2 - U\, v) dt.
Jo

Take v — u2 — u\. Employing Eqs. (3.8) and (3.10), we have

0 = / I"(u\ + tv){v, v) dt > 0. (3-11)

Since I G C2, so I"[u\ + tv)(v,v) = 0 for all t € [0,1]. Hence v — — u\ — 0 by Eq.
(3.9). Thus, the solution u to Eqs. (2.5)-(2.6) is unique. The proof of Theorem 1.1 is
complete.

Remark. For N = 2, we can define

V — {u & Hl(£l) : u — 0 on Ti U T2, du/dn = 0on r3},

and I : V —> R by Eq. (3.4). Then we can proceed using variational calculus to show
the existence and uniqueness of the solution to Eqs. (2.5)-(2.6). This approach fails for
N > 3 since e~ZiU may not be integrable for u £ V. Moreover, the Frechet derivative of
I may not exist, making it difficult to relate the critical points of I to the weak solutions
of Eqs. (2.5)-(2.6).
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