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Abstract. The problem
rt «\

U,(x, t) = / a(t — r) — <r(llz(x, r)) dr + f(x, t), 0 < X < 1, t > 0,
«'o OX

«(0, t) = w(l, <) = 0 w(x, 0) = m0(x)

is considered. Asymptotic stability theorems for the solution are established under
appropriate conditions on a, <x and /. The conditions on a are of frequency domain type
and are related to ones used previously in the study of Volterra integral equations,

- f a(t — r)</(w(r)) dr + f(t)
«'0

on a Hilbert space. An existence theorem for the problem is established under smallness
assumptions on / and u0 ■ This theorem is related to one by Nishida for the damped
non-linear wave equation,

Ult + au, — — <r(wr) = 0.

It is shown that the problem is related to a theory of heat flow in materials with memory.

1. Introduction. This paper is concerned with the problem
ft

u,(x, t) = / a(t — t) — cr(ut(x, t)) dr + f(x, 0, 0 < x < 1, t > 0
J 0 OX

u(0, t) = w(l, t) = 0 u(x, 0) = u0{x). (P)
The problem serves as a very special model for one-dimensional heat flow in materials
with memory [3], This aspect is discussed in Sec. 7. It is also an example in the general
theory of equations of the form,

* This work was supported by the National Science Foundation under Grant MPS71-02693A03.
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u(t) = — [ a(t — r)g(wO)) dr + j(t), u(0) = u0 (E)
*'0

on a Hilbert space H, with g a non-linear unbounded operator.
There is an extensive literature on equation (E); see for example [5], [6], [9], [10] and

[12], The main concern has been asymptotic stability. On infinite-dimensional spaces
with unbounded g's the results are incomplete in two respects. The stability results
depend on a priori smoothness assumptions* and there are no existence theorems. (In
[1] and [7] these difficulties are overcome for modified versions of (E).)

For our special model we partially remedy these defects. We establish an asymptotic
stability result with no a priori assumptions other than existence. It will be seen in
Sec. 4 that this result can easily be extended to a general class of equations (E). We
also establish an existence theorem but this depends crucially on the special form.

This work was prompted by a preprint of a remarkable paper by Nishida [11]. Nishida
uses some ideas of Lax [4] to establish the existence, for small data, of global classical
solutions of the problem

1lt t + au, — — cr(ux) = 0, — < £ < °° , t > 0
(P.)

u(x, 0) = u0(x), u,(x, 0) = u,(x)

when a > 0. This result is indeed remarkable since it is known that (P,) cannot have
classical solutions for all / if a = 0 and a is non-linear.

The major theme of our work is that the problem (P) is closely associated with the
inhomogeneous form of (F,) and that more generally (E) is associated with,

u(t) + au(t) + g(u(t)) = (E0

If a(t) = e~°" it is easy to see that (E) is equivalent to (Ei) (<p — f + «/)• In the general
case (E) is equivalent to,

u(t) + /c(0)m + g(u(t)) + f k(t — t)m(t) dr = <p(t) (E*)
•'0

for some function k. Eq. (E,) admits of a number of energy estimates and the special
case corresponding to (P) admits of a very detailed analysis by means of Riemann
invariants.

The object of this paper is to show that (Efc) admits of the same treatment as (Ej)
provided that the kernel a of equation (E) satisfies the conditions used in [9] to establish
the provisional stability results. (There is a minor technical strengthening of these
conditions.)

The transition from (PJ to the more general equation (E*) is of interest in the physical
context. The inclusion of the term aut , although it stabilizes the equation, is rather
ad hoc. The presence of the hereditary effect in (P) is, on the other hand, a natural
consequence of the assumption of material memory. What we show is that the memory
effect produces the same result as the term au, . On the other hand we want to observe
that our results are incomplete in the physical context. We assume that a £ L[(0, °°). As

* Specifically for problem (P) it would be required that for any i) £ C1 [0, 1], ?;(0) = ?;(1) = 0,
Jo1 <r(ux(x, t))rjx{x) dx is bounded and uniformly continuous in t > 0. See [9].
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we show in Sec. 7, this is natural in the heat flow situation. In the problem of non-
linear viscoelasticity, which is formally the same as (P), one wants a = a„ + b, a„ > 0,
6 G L,(0, °o) and here our theory does not apply. It would be very instructive to have
an extension to this case, especially so since Nishida's problem (P) has non-linear elas-
ticity as a prototype.

2. Statement of results. We denote by La[<p] the Volterra integral operator,

L„[<p](t) = f a(t — t)<p(t) dr, (2.1)
Jo

and we consider the problem (P);

i,(x, t) = <r(ux(x, -))J(<) + f(x, t), 0 < x < 1, t > 0, (2.2)

w(0, t) = w(l, 0 = 0, t > 0, (2.3)
u(x, 0) = u0(x), 0 < x < 1. (2.4)

By a solution we will mean a function u(x, t) £ C<2)([0, 1] X [0, co)) which satisfies
(2.2)-(2.4).

We first list a set of hypotheses on a which will hold throughout the paper. We
assume that a £ C<2)[0, <*>) and that,

o(0) >0, a(0) < 0 (aj

aw E L,(0, °°), k = 0,1,2. (a2)'

It follows from (a2)' that a has a Laplace transform a (s) in Re s > 0. We require that,

Re a (ir\) > 0 for all r\. (a3)

Conditions (aj, (a2)' and (a3) were the ones previously used in [9] in the study of the
general equation (E). (The condition,

(-1)V"(<)>0, k = 0,1,2, (2.5)
was used in [5], It is shown in [9] that, under conditions (a,) and (a2)', (2.5) implies
(a3) but not conversely.)

For the purposes of this paper we need a strengthening of (a2)'. We require that,

t'aa)(t) £ Li(0, <»), fc = 0, 1, 2; j < 3 + N for some N > 0. (a2)

Condition (a2), k = 0, implies that a (s) is of class {7<JV+3) in Re s > 0.
We assume that / £ C<3>([0, 1] X [0, <*=)) and we define fit) by,

fit) = sup (If(x, 01, If,(x, 01). (2.6)
x€[0, 1]

A basic assumption on / is

f £ l,(o, ») n L2(o, ®) n LJ0, »). (fO
For o- we make the assumptions:

a £ C<2,(- ®, oo), ^(O) = 0, </(£) > e > 0 for all t («r,)

Conditions (a,), (a2) (for some N), (a3), (fi), (o-1) hold throughout the paper.
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Theorem (/). (i) If u is a solution of (P) then

lim f u2(x, t) dx = 0. (2.7)
J0

(ii) If, in addition, a satisfies the condition |er(£)| < M(|£| + |£|r) for some M > 0
and r, 1 < r < 2 then for any v £ C<n[0, 1] with ij(0) = ?;(1) = 0,

lim f u,{x, t)r](x) dx = 0. (2.8)
t —*oo J 0

Remark 2.1. Theorem (I) is capable of generalization to the abstract equation (E) as
will be clear from the proof in Sec. 4. It also extends to a result on approach to steady
state. Suppose / in the right side of (2.2) is replaced by fQ(x) + f(x, t) where / satisfies (/1).
It is not difficult to verify from (<j,) that there exists a unique solution of the problem,

*(U0'(x)y = -/o(x)/a>), 0 < x < 1, t/„(0) = f/„(l) = 0. (2.9)

Then the methods of [7] can be used to show that if the solution of (P) is U(x, t) and we
write U(x, t) = U0(x) + u(x, t) then (2.7) and (2.8) hold.

We show that (2.2) can be solved for

ix

in the form (Et), that is,

ult + lc(0)ut — <t(ux) + f lc(t — t)u,{x, t) dr = <p(x, t). (2.10)
OX J o

Our further results require condition (a2) for some N > 4 and the following strengthened
version of (fi):

t'f(t) g l^o, ») n L2(0, oo) n l.(0, »), j < n, (f2)

where N is the integer in (a2).
With these strengthened assumptions we establish a preliminary result (Lemma

5.11) which shows that if a satisfies

k(£)l < 5 l?l f°r all £ ta)
then much stronger energy estimates can be obtained for solutions of (P). Included
in these are estimates of the form

( sup |u(x, t) |)2, [ u,2(x, 0 dx = 0{t~N),
i€[0,l] J<S

(2.11)

where N is the integer in (a2). These strengthen (2.7) and (2.8).
The estimates (2.11) are used in Sec. 6 to establish pointwise bounds for solutions

of (P). These results are strongly dependent on the special form of (P). They use the
ideas of Lax and Nishida and require the conversion of (P) into an initial-value problem.
This, in turn necessitates the further conditions

/(o, t) ^ /(l, 0 = uo, 0 = Ul, t) (f3)
Uo(x) E c(3)[0, 1], «o(0) = Mo(l) = «o"(0) = ua"{ 1) = 0. (Uo)
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Finally the bounds are used to establish our existence theorem. This result needs a
measure of "smallness of data". This is given by:

+ 11''7(01 Ui(o,»)D = sup X)
xG[0, 1 ] |=0

d'u° M
dx* W

+ ||<'7«)IU.<o.-, + ||«'7(0IU-(o,-, • (2.12)
Theorem (II). Suppose (a2) for N > 4, (f2), (f3) and (u0) all hold. Then if D is sufficiently
small there exists a unique solution of (P).

Note that (o-2) is not required in Theorem (II).

3. Linear Volterra operators. We consider operators of the form (2.1). We are
concerned here with the equation

= (3.1)

It is easy to verify, by successive approximations, that (3.1) has a unique solution f
which can be written in the form,

ttt) = ^*(<) + Lk[<p](t). (3.2)

Lemma 3.1. The function 1c satisfies:

(i) k = K + m, k„ = (<f (0))"\ KU) G L,(0, »), j = 0, 1, 2,
(ii) t'K('n) £ Li(0, °°), B = 0, 1; j < N where N is the integer in (a2),

(ii« m -
Moreover there exists an a > 0 such that for any T > 0 and any <p £ C[0, T],

(iv) ^ <p(t) jt Lk[<p](t) dt > a ^ <p\t) dt.

Proof: We proceed formally by using Laplace transforms. If we transform (3.1) we
obtain:

f («) = -4- <p'(s) = /(a) + k'(s)<fi'(s), (3.3)
sa (s)

where

fc"(s) " " JT <3'4)

We study the properties of k . We observe first that k is defined in Re s > 0, s ^ 0.
For (a3) and the maximum principle for harmonic functions guarantees that a (s) ^ 0
in Re s > 0. 1c is analytic in Re s > 0. We have,

k'(s) = -J— + K'(s), K~(s) = ~ ° (g). (3.5)
sa (0) sa (s)a (0)
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It can be verified that (a2) implies that K is N + 2 times continuously differentiable
in Re s > 0.

We next consider k (s) for large s. From (a2) one finds, after integrating by parts,

a (s) = a(0)s_1 + a(0)s~2 + o(s'2) as s —» <».

It follows from (3.4) that

' Ss + °(?)a(0) s

We now set

as s —> 0° . (3.6)

K(t) = (2inT1 [' e"K~(s) ds, k(t) = K + K(t), K = -4— (3.7)
a (0)

From (3.5) and (3.6) one has

KM - IV' + <*.-), T - (3.8)

It follows from (3.8) that the integral in (3.7) exists for c > 0, is independent of c and
defines a continuous function K(t) with i£(0) = r. It can be verified (see [8]) that k
satisfies (3.2) and if(0) = r implies (iii). If we take c = 0 in (3.7) the Riemann-Lebesgue
lemma implies that Kit) —* 0 as t —* . We can say more. We have already indicated
that K (s) is N + 2 time continuously differentiable in we s > 0. From (a2) it can also
be verified that the derivatives of K up to order N + 2 have estimates for large s which
are those obtained by differentiating (3.8). Thus we can integrate by parts N + 2 times
in (3.7) for c = 0 and obtain

K{t) = (:2-K)-\it)~N-2 f e'v'(K~yN+2)(iri) dv. (3.9)

Since > 0, (3.9) and the Riemann-Lebesgue lemma yield Kit) = 0(t~2) so K £
Li(0, oo)* and also tNK g Lj(0, oo). Since the transform of K is sK — K{0) we can
apply the same process to obtain the other estimates in (i) and (iii).

It remains to verify (iv). From (3.4) and (a3) we have

— t] Im 1c (irj) = (Re a (jt/)) |a (t'i))|~2 > 0 for all rj ^ 0.

For sufficiently large rj we have from (3.6)

Im Mi,) > > 0.

For sufficiently small jj we have by (3.5)**

-t] Im k {it]) > —^— > 0.
2 a (0)

* This result is related to one in [2]. We conjecture that K is always in Li(0, °°) as long as a G L\
and that one does not need the condition t'a £ Li. We have not been able to verify this.

** It is here that we use a G Li. If we had a = a^, + b where aco > 0 and b (E Li then we would
have a~(s) = a^s-1 + 6~(s) near zero. This would yield (sa'(s))-1 = + 0(1) near s = 0 and we
would have r; Im a'(it)) —> 0 as v —> 0.
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We conclude that there exists an a > 0 such that

— 7i Im/c (iif) > a for all tj. (3.10)

It follows by a simple extension of Lemma 2.2 of [8] that for any <p £ C<2,[0, T] with
<p(0) =0 we have

f* <fi(t) ft Lk[<p](t) dt = ? f -v Im k(iv){C(<p, V; T)2 + S(v, T)} dr, (3.11)

where

C(ip, 7i; T) = I <p(t) cos 7jt dt, S(<p, ?y, T) = f <p(t) sin rit dt.
J 0 Jo

It follows from (3.10), (3.11) and Parseval's theorem that (iv) holds for the special <p's.
Since these are dense in L2(0, T) it holds for arbitrary <p. This concludes the proof of
Lemma 3.1.

4. Preliminary energy estimates. In this section we derive some integral estimates
for solutions of (P). The hypotheses on a are (aj, (a2) for some N, and (a3). We also
require (fi) and (crO. We carry out the calculations in detail only for problem (P) but we
will phrase them in such a way as to try to make clear that they would hold for a quite
large class of equations of type (E). (See [9].)

There are two norms associated in a natural way with problem (P). For functions
V £ Cl[0, 1] we set

Ik 11 = <p(xf dxj , |k||i = ^ <p'(x)2 dxj . (4.1)

For <p's in the domain* of g in (P) || ||( dominates || ||. (||<p|| < ||<p||i .) Under condition
(cT[) the operator g in (P) is coercive in || ||i that is,

(g(u), u) = — I a(ux)u dx = f a(ux)ux dx > e [ u2 dx = « ||m||i2. (4.2)
Jo OX J0 J 0

We observe also the following property of g. Define a functional G(u) on Dg by

G(u) = f [ <r(Z) d£ dx. (4.3)
•'o Jo

Then if u G Cu> and u(0, t) = u( 1, 0=0 we have
p 1 ^ /»1 ^

(u, g(u)) = — J u, — tr(uj) dx = j utx<j(ux) dx = ^ G(u(■, t)). (4.4)

By (a,) we have

G(u) > | J ux2 dx = | ||u||,2. (4.5)

For functions which are in C1 ([0, 1] X [0, T]) we write

For (P) we take domain of g as Dg = | : <p G C(2) [0, 1], v>(0) = ^(1) = 0).
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\u\\ (0 = ||m(-, oil, IMIi (0 = IK-, Olli
I 11 11"\u\ = ([ IHI2(0<^) IIMIIir = (fo UuUAtfcit)

(4.6)

Lemma 4.1. There exists a constant M such that for any solution u o/ (P) and, any T > 0,

||u,|| (t), j \u\ |! it), liKlir, ||u|| (0 < M (4.7)
IIMII/, 11|w111r < M. (4.8)

We observe that Lemma 4.1 yields the proof of Theorem I(i) immediately. (4.8)
implies that ||m|| (t) £ £2(0, °°) while (4.7) implies that this quanta is uniformly
continuous. Hence ||w|| (t) —» 0 as t —* and this is the conclusion of Theorem I(i).

We begin the proof of Lemma 4.1 by differentiating (2.2), and solving for

From (3.2) we obtain

1 s 1
a(0) U" + L^u"^ ~ dx = ^(0+ L^'^'

Jo)u" + ftLt[u']-£aM = *' (4-9)
where

Mx, t) = 0 + OKO + k(t)u,(x, 0)

= ^ /<(*, 0 + 'c(0)f(x, t) + Lk[f(x, •)](<) + Kt)[u,(x, 0) - f(x, 0)]

But by (2.2) u,{x, 0) = f(x, 0); hence

$(•£, 0 = 0 + HOW*, 0 + Lk[j(x, -)](0. (4-10)

We recall that, by Lemma 3.1 (i) k £ L^O, °°). It follows from this and (fx) that
lll^i[/(") ')ll|r is bounded independently of T. (fj) shows that the same is true of the
first two terms in (4.10). Thus we have

11 l$l 11T < Mi independently of T. (4.11)
We multiply (4.9) by u, and integrate with respect to x from 0 to 1 and t from 0 to T.

By (4.3), (4.4), (4.5), Lemma 3.1(iv) and (4.11) this yields

1 II 119   7\ 9 . tii ,,9 * Ot , |7'\2 ■ 1
2a(0)l|M'112 (T) + "(HHII7')2 + I INI*2 W < % (Ilk I NT + M* + M2 . (4.12)
This yields the first three estimates in (4.7). The last follows from ||w|| < ||i/.||x .

The estimates (4.8) are derived from another energy integral. We need two prelim-
inary estimates. By (4.7) we have
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/ / uun dx dt = / u,(x, T)u(x, T) dx
IJo Jo I Jo

- [ u,(x, 0)u(x, 0) dx - (llklim < Ci . (4.13)
^0

Next we have, by (4.7) and the fact that k £ Lj(0, °°),

/ / m(x, /)Li[w,(^, -)](0 dx dt
|Jo *'0

We write (4.9) as

< iiMir ii^iu,(o.») iikiir < c2 iimii7. (4.i4)

+ /c(°)w' - = $ - L (4.15)

We multiply by w and integrate. By (4.13), 4.2) and (4.14) this yields

u\|2 (2') + t([ ||w| ||iT)2 < Ci + c2 11 |m| | |T + f f u(x, t)$(x, t) dx dt + c3 . (4.16)
J 0 *'0

m
2

Since 11 |m| 11r < 111^1111r Eqs. (4.16) and (4.11) yield the first and hence also the second
of estimates (4.8).

Proof of Theorem (I)(ii): Eq. (4.7) shows that \\u,|| £ £2(0, °°). It follows that
the quantity

x(0 = / u,(x, t)t]{x) dx
Jo

is in L2(0, 00). Thus the conclusion will follow if we can show that, for the 77's described,
X(0 is uniformly continuous.

Recall that a is to satisfy here the estimate |<r($)| < M(|£| + |£|r), 1 < r < 2. We
have then for the 77's described

I <j{u,)y] dx - / <r(ux)r\x dx < M [ (^1 + \ux\')-qt dx
I J() &X I Jo Jo

< Mjll^lK MU + IWI.r/2(/o' kl2/2_r ̂ )2""2} < C. (4.17)

We multiply (2.2) by -q and integrate from 0 to 1. This yields

x(t) = [ a(t — T) f <r(uz(x, t))jj dx dr + I f{x, t)t]{x) dx. (4.18)
J 0 J0 Jo

From (f,) it follows that the second term is uniformly continuous. For the first we have
for <2 > ti ,

I a(t2 — t) I ~~ <t{uz{x, r))r] dx dr — [ a(ti — r) / -j- <r(uz(x, r))v dx dr
| Jo Jo Jo Jo uX

r* t 1 /' t 2

<c \a(t2 — r) — a(<! — r)| dr + c / |a(£2 — r)| dr,
Jo J11

where we have used (4.17). Since a El Li both terms on the right side are uniformly
small with t2 — U . Hence x is indeed uniformly continuous.
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5. Further energy estimates. In this section we establish some stronger integral
estimates. These require stronger hypotheses. We demand that (a2) hold with an N > 0.
By Lemma 3.1 (ii) this means that t'k £ L,(0, °°), 0 < j < N, that is,

kj = f t' \k(t)I dt < co, 0 < j < N. (5.1)
^0

We require also that (f2) and (<r2) hold. We write for any v(x, t),

"IIMIf = (( fo tmv\x, t) dx dtj ; "llklll/ = tmvz\x, t) dx dtj . (5.2)
Lemma 5.1. For any m < N there exists a constant Mm such that any solution of (P)
satisfies,

Tm\\ut\\2 (T), T"' H^ll,2 (T), -UMir, r\\u\\2(T) < Mm , (5.3)
IIMII/, m\\\u\\\T < Mm . (5.4)

The proof is by induction. The case m = 0 is contained in Lemma 4.1. We assume
the conclusion holds for to — 1. The induction step is accomplished by the same two
calculations as in the last section except that we multiply by tmut and tmu. We need some
preliminary formulas.

We need an extension of (4.14). This is

[T [' rP(x, t)Li[q(x, •)](<) dxdt < -lllpllf fc01/2 £ (i)a\\q\\\T)K-r. (5.5)
Jo ^ 0 j=0 \ J

We need also a somewhat more refined formula of the same type. This states

d
|/ in rP(X' ^ Jt Lk')K^ dX dt ~~ [ [ tm/2p(X' ®

r1 I m~1
• k(t - r)Tm/2p(x, r)drdt\ < Km"\\\P\\\T E'IIIpIII'

0 I r = 0
(5.6)

for some constant Km depending on m and k.
Formula (5.5) is quite straightforward while (5.6) is somewhat more delicate and

we outline the proof at the end of the section. First, however, let us complete the proof
of Lemma (5.1). From (4.3), (4.4), (4.5), and (<j2) we have the following extension of
(4.4):

/ / <r(uJt'"Ut = [0 (ft ^

= TmG(u(-, T)) - m [ tm-'G{u(t))
Jo

dt

dt

> | Tm ||m||i2 (T) — ml f tm ' [ f <r(£) d£ dx dt
Z | J o o J o

> | Tm Hull,2 (7') - ™ ("-'IIMII.T (5.7)
From (<7i) we have a similar extension for (4.2):

r»r /»i ^ *tr c n r r
/ / — a(ux)tmu dx dt = / / a(ux)tmux dx dt > e(m\\\u\\\iT)2. (5.8)

Jo J o oX J q J o
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We set = 11| 1^11[r and note that (f2), (4.10) and (5.1) imply that these are bounded,
independently of T, for j < N.

We multiply (4.9) by Cu, and integrate. We integrate by parts in the first term.
For the second we use (5.6) and Lemma (3.1)(iv). For the third we use (5.7). If we
insert the bounds from the induction hypothesis the result is the inequality

||w(||2 (T) + a("'|||w1|||r)2 + | Tm | Ml,2 (T) < C.rilMin

+ j' £ r \u,\ |$| dxdt + c2< Cxdiknr) + fnikllD2 + c2'.
This yields the first of three inequalities (5.3). The last follows from ||u|| < | |m| [1 .

Next we multiply (4.15) by tmu and integrate. If we use (5.3), (5.5), (5.7) and the
and the induction hypothesis, this produces the inequality

Tm ||m||2 (T) + e(m|||u|||1r)2 < [ [ tm |u| |$| dx dt
Z Jo Jo

m

+ fco,/2raiNir Zc.-nikiiD + c. (5.9)
1=0

By (5.3) the sum on the right side is bounded. Hence we have

eC'IIMHi1)2 < I ("II Ml IT + C'CIIMir) + C.
Since |||w|||ir > IIM||r the estimates (5.4) follow.

We indicate the proof of (5.6). Denote the quantity whose absolute value is taken
in (5.6) by I and suppose m = 2n is even. Then we have

T r* 1 /* t

I = / tnp(x, t) / k(t — r)(tn — r")p(x, t) drdxdt
J 0 J 0 Jo

~ f f t"+'p(xi 0 [ Ht ~ T)Tnl~'p(x, T) drdxdt, (5.10)
j =0 J0 J0 Jo

where k(l) = th(t). We have the following estimates:
In T pi i*t

/ / tn+'p(x> 0 / Tc(t — r)rn~1~'p(x, t) drdxdt
Jo Jo Jo

< *|||p||f {/# fo t2'(fo % - W^'vix, r) dr) dxdt^j

< -|||p|ir{jr' £ **'(£ | Ht - r)| dr) £ I k(t - r) | r2n~2~2'p2(x, r) drdxdt

IcM T f1 r2n-2-2ip\x, r) f f \Ht - r)|
UO *'0 Jr

< 2"lllp|ir /ciV2<! I / r2n~2~2'p2(x, r) I t2i \k(t - r)| dtdxdr

= 2"\\\v\\\Tk (^(/J ^ r2"-2~2i + 'p2(x, r) drdx) |*(„)| r,2'"' d„}"'2

< 2"lllp|||r Kl/2{t (2/)r-2-2i + !|||p|l|r)2fc2,-! + 1}1/2. (5.H)
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Since j < n — 1 we have 2j — I + 1 < 2j + 1 < 2n — 1 = m — 1 < iV; hence the
k2j-i +1 are bounded. Thus the sum in (5.11) involves only constants times r 111 p 111r for
r < 2n — 2 = m — 2. Inserting these estimates into (5.10) yields (5.6) with, in fact,
'llWir for r < m — 2. The case of m odd proceeds the same way except that one uses
fc(t) = t1/2k. The sums corresponding to (5.11) then contain r|||p|||r for r upto m — 1.

6. Pointwise estimates. In this section we derive some L„ bounds for u and its
derivatives. These will suffice to prove Theorem II. Throughout this section, except
in the proof of Theorem II, all the hypotheses in Sec. 5 hold and the constant N in
(a2) is greater than or equal to 4. We indicate immediately the significance of this last
statement. We introduce the notation

M (0 = sup \v(x, 01, \v\T = sup \v(x, 01- (6.1)
iGlO.l] i€ [0,1]

teio.ri

Lemma 6.1. If N > 4 then for any solution of (P) we have |w| (t) £ Li(0, &>).
Proof. For a solution we have u(0, t) = 0 hence \u\ (t) < ||w||i (/). For N > 4, we

have by (5.4),

\u\ (T) = 0(T~2), (6.2)

and the result follows.
We also assume throughout this section that conditions (f3) and (u0) are satisfied.

We establish the following two results.
Lemma 6.2. There exists a constant M independent of T such that any solution of (P)
satisfies

kr, i u,r < m. (6.3)
Lemma 6.3. If D (see (2.8)) is sufficiently small there exists a constant M independent
of T such that

\uJT, k,r, |uu\T < M. (6.4)
We write (4.15) as,

^ ult + /c(0)m, - ^ a{ux) = R(x, t), (6.5)

where

R(x, t) = $>(x, t) — Lk[u,(x, •)](<) = $(z, 0 — k(0)u(x, t)

+ k(t)u(x, 0) + Lk[u(x, -)](t). (6.6)

We view (6.5) as a non-linear hyperbolic equation with a forcing term R. Eq. (4.10)
together with (f,) and Lemmas 3.1 and 5.1 imply that

\R(; -)l (0 G^(0, -). (6.7)
This is the crucial result of all our energy estimates. We solve (6.5) subject to the initial
conditions (see (2.2))

u{x, 0) = u0(x), ut(x, 0) = f(x, 0) (6.8)
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and the boundary conditions

m(0, t) = u( 1, t) = 0. (6.9)

We show that, under conditions (f3) and (u0), (6.5) and (6.8) are equivalent to an
initial-value problem. Let us extend u°(x) and j(x, t) to x £ (— 00, °°) as odd functions
of x which are periodic of period two in x. Call these functions u°(x) and f(x, t). Con-
ditions (f3) and (u0) guarantee that u° is of class Cl3) and / is of class C<2). We extend
the function $ in (4.10) in a similar way to i>. (f3) insures that $ £ C<2> and that $(0, t) =
$(1, t) = 0. Then (4.15) and (6.9) show that

^ a(ux(0, 0) = ^ <r(ux( 1, 0) = 0

from which we deduce that uxx(0, t) = uXI( 1, t) = 0. Thus we can extend u to u £ C<2).
It is readily checked that u is a solution of (6.5) for all x, with R replaced by its extension
R and with

u(x, 0) = ua(x), m,(x, 0) = f(x, 0). (6.10)

Conversely if u is a solution of (6.5), with R replacing R, and (6.10) and if the solution
of this problem is unique then u restricted to 0 < x < 1 is a solution of (P). For one checks
that —w( — x, t) is a solution of the same problem as u(x, t). Hence by uniqueness — u(x, t)
^ u{x, t) so that u(0, t) = 0. Similarly u( 1, t) = 0.

From the above remarks we will henceforth treat Eq. (6.5) on (— <*>, °°) X [0, <»)
with the initial condition (6.8). In (6.7) \R(-, -)l (0 is then to be interpreted as
sup|/?(•, -)| (t) and the initial data are bounded for all x.

We now proceed along the lines of Nishida. We write (6.5) as a system by letting
^ = ut , x = ux . Then,

x' = ^ (6.11)
\p, + fc( 0)i — <t'(x)xx = R-

Since a'(x) > e > 0 the system is always hyperbolic. We set

I = =F V7W (6.12)
and introduce the Riemann invariants,

= i ± r(x), r(x) = r df. (6.13)
Jo

c'(x) > " guarantees that the map x) —> (r, s) is one-to-one from R X R onto R X R.
Eqs. (6.11) become

r, + Xrx + a(r + s) = R ^ 14^

+ ot(r + s) = R

where we have set the positive constant

m i +—— equal to a.
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We introduce the characteristic curves defined by

x = Xi{t, 13) = P + f X dr, x = x2(t, y) = y + f n dr (6.15)
Jo Jo

and we denote by ' and v differentiation along these curves; that is

, d d v d d . 1
— t; + X—, + I-" (6.16)dt dx dt dx

Along the curve Xi Eq. (6.14)i yields

-Jtr(.xiit, 13), I) + ar{xi{t, (3), t) = asixi{t, (3), t) + R(xi(t, 13), t).

We can integrate this ordinary differential equation and obtain

ea'r(x1(l, /?), t) = r(0, 0) - a f eaTs(xl(r, 13), t) dr + f eaTR(xi(r, 13), r) dr. (6.17)

From (6.14)2 we obtain in a similar way

e"'s(x2(t, y), t) = s(y, 0) — a f eaTr(x2ir, y), r) dr + f eaTR(x2(r, y), r) dr. (6.18)
J 0 J 0

In (6.17) and (6.18) we let /3 and y vary over ( — °°, °°). The characteristic curves
Xi and x2 will exist as long as X and n, that is r and s, remain bounded. Let ft denote the
set of all (x, t) such that x = xl(t, (3) and x = x2(t, y) for some 13 and y. Let

pit) = sup e°'(\r(x, 0| + |s(z, <)!)•
(z.t)E n

Then (6.17) and (6.18) yield

Pit) < c + a /* p(r) dr + f eaTJ(r) dr (6.19)
* 0 ^ 0

where c = sup (|r(x, 0)| + |s(i, 0)|) and J(r) = 2 |R(-, -)| (r). By (6.7) J (r) £ L,(0, oo).
Hence (6.19) yields

pit) <c+[o e°V(r) dr + a £ |c + a f J(ij) dl\eaU-r) dr

= cea' + ea' f J(r) dr < Me0".
Jo

Thus we have proved that

sup (|r(x, 0| + |s(z, 01) < (6-2°)
(x.oe n

From (6.20), (6.12), (6.13) and (6.15) it follows that the slopes dx/dt of the characteristic
curves remain bounded and this shows that ft is all of t > 0. Hence r and s remain bounded
and, by (6.14), we obtain (6.3).

In order to prove Lemma 6.3 we again follow the ideas of Nishida. We differentiate
(6.14)j with respect to x and obtain,

rxt + Xr„ = — \rrx — \,sxrx — a(rx + sx) + Rx . (6.21)
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Now from (6.16), (6.12) and (6.14)2 we have,

s' — st + Xsx = s, + fj.sx + (X — /x)sj; = -f- 2\sx = —a(r + s) + 2Xsx + R,

or,

+ + <6-22'

Observe that by (6.12) arid (6.13) X and n are functions of r — s. Consider the function

h = \ log (—X(r - s)).

We have, by (6.14),

»' = 2V+|S'=-f (r + .)+%* + (6-23)
We substitute (6.22) and (6.23) into (6.21) and obtain

rj + r, {a + \rrx + h'\ = s' - ~(r + s) + ~ + Rx ,

(e"r,y + e"rx {a + \rx\ = ^ (r + s)e" + f^Re" + Rxeh. (6.24)

We let
f*r — s

2Xft)
Then by (6.14),

-f'l
ae" , ae'S' a" . cteV ae''

«' = 2Xr' ~2Xe (r + ~ ~2x" + 2X E'

Hence (6.24) can be written

(eVx) + ekrx {a + Xrrv} = g' + Rxeh. (6.26)

We are now ready to use the constant D. A careful study of all our estimates will
show that all the bounds tend to zero as D tends to zero. We are particularly concerned
with the quantity R. Since |w|r —> 0 with D it follows from (6.6) that |/21r —> 0 with D.
Since M —■* 0 with D in (6.3) it follows also that |i?x|7, |-Ri|r and hence 1r tend to zero
with D. From (6.25) we see also that |<7|r —> 0 with D.

We start by making D less than some fixed quantity Di . Then the quantities

vx , v, , r, s, X, y , y and e

are all bounded. We next choose D < Di so small that

|Xr(r(z, 0) - s(x, 0))rx(x, 0)| < |- (6.27)

We integrate (6.26) along the xl characteristic starting at (/3, 0). Let
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f(0 = a + \Trx

z(t) = ehrx along x,(t, /3) (6.28)

7(0 = g' + Rj-
Then integration of (6.26) yields

exp u f(r) drjz(t) = 2(0) + ^ cxp ̂  f(£) dijy(T) dr,

or

2(0 = 2(0) exp [~Jn t(r) drj + J exp / f(Q c^yM dr. (6.29)

Suppose we have

a

Then, by (6.28) we have

|A,r,| < 2" (6.30)

r(0 > |
and (6.29) yields

WO I < |2(0)|e-<a/2" + fe-—' \y(r)\dr,
♦'0

or

sup \z(t)\ < |z(0)| + - sup |t(0I■ (6.31)
t<T a t < T

The right side of (6.31) tends to zero with D. Also we have Xrr, = XTe~hz and \re~h
uniformly bounded. Thus \rrx is uniformly bounded in terms of 2. We choose D so small
that the right-hand side of (6.31), after multiplication by the maximum of \re~h is less
than a/2. Then by (6.27) \rrx starts out satisfying (6..30) and by the preceding remarks
continues to do so for all t. It follows that rx is bounded independently of T. A similar
argument shows that sx is bounded. By (6.13) we conclude that 1px and x* that is uxx
and ux, are bounded. It follows from (6.5) that ult is bounded. This concludes the proof
of Lemma 6.3.

Proof of Theorem II. We return to Eq. (6.5) but with R expressed in terms of
the solution u according to (6.6). This is a linear perturbation of a non-linear hyper-
bolic equation and the local existence and uniqueness theory for the latter carries over
with trivial modifications. This local solution yields a local solution of (P) to which all
our estimates apply. Thus we have, by Lemma 6.3, a priori bounds for the second deriva-
tives of the local solution of (6.5). But just as in the hyperbolic equation case this yields
global existence and hence a global existence theorem for (P).

This argument does not quite prove Theorem II. The reason is that all our bounds in
Sec. 5 and hence here were predicted on the estimate (<r2), that is |<r(£)| < <r(£). We
can overcome this difficulty for small data. Choose S > 0 and let <r(£) = u(£) for |£| < 5
but with |(x(£)| < M |£| for all £ where M is sufficiently large but fixed constant. Now
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solve (P) with <f replacing a. The data are then made so small that the problem with a
has a solution and for that solution Im^J < 8. Then cr(ux) = cr(ux) so one has in fact a
solution of the original problem.

7. One-dimensional heat flow in materials with memory. Consider a rigid heat
conductor in which heat flows in only one dimension. Let u(x, t), e(x, t) and r(x, t) denote
the temperature, internal energy, heat flux and heat supply respectively. The balance
of heat requires that the equation

e,(x, t) = q(x, t) + r(x, t) (7.1)

should hold. The simple linear theory of heat flow, in a homogeneous material, is ob-
tained by assuming that t(x, t) = cu(x, t) and q(x, t) = —Kux(x, t) then (7.1) becomes
the one-dimensional heat equation. One can obtain a simple non-linear theory by retain-
ing the assumption e = cu but taking q(x, t) = — Ka(ux(x, t))a non-linear. This results
in the equation,

cw,(;r, t) = K ~ <r(ux(x, 0) + r(x, t). (7.2)

Our condition (o-j) is a natural one for Eq. (7.2). Using it one can show that (7.2)
has a unique solution, say on 0 < x < 1, with w(0, t) = u{\, t) = 0, and u{x, 0) =
u0(x). If r(x, t) = /n(x) + /(.r, t) where |/(-, -)| (t) G Lx one can show further that the
solution tends to u°(x), a solution of the problem

~ <y{u\x)) = -K- W, u°(0) = «°(1) = 0. (7.3)

Models of the form (7.2) for heat flow have the disadvantage that they yield infinite
speeds of propagation. Gurtin and Pipkin [2] have suggested a heat flow model which is
based on a memory eflect in the material. The linear one-dimensional version of their
theory assumes that

t(x, t) = bu{x, t) + f B(t)u(x, t — t) dr (7.4)
•'0

q{x, t) — I c(t)ux(x, t — t) dr. (7.5)
Jo

Thus « and q are functional of the histories, u(x, t — r) and ux(x, t — t), of temperature
and temperature gradient respectively.

On the basis of the present paper we can treat a partially non-linear version of (7.4)
and (7.5). We keep (7.4) and replace (7.5) by

q(x, t) = — f K(t)<t(ux(x, t — t)) dr. (7.6)
Jo

Assume that the material is at zero temperature and internal energy up to time t = 0*
Then (7.4), (7.6) and (7.1) lead to the equation

but + [ B(t — t)ut(x, t) dr = [ K(t ~ t) cr(ux(x, r)) dx + r(x, t). (7.7)
J o «'o OX

Non-zero initial histories can be incorporated into the forcing term.
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This equation is equivalent to (2.2) with

a(t) = | K(t) + f P(t - t)K(t) dr

■fix, t) = | r(x, t) + ^ p{t - r)r(x, r) dr.

Here p is the resolvant for B, that is the function such that

u(x, 0 = | «(z> 0 + p(< — r)e(x, r) dr (7.9)

solves the equation

e(x, t) = bu(x, t) + f B{t — t)u(x, t) dr. (7.10)
Jo

We assert that it is to be expected in this context that a will be in L, . Indeed it is
to be expected that for a steady temperature gradient, ux(x, t) = <p(x), the heat flux
would remain bounded. From (7.5) thisjimplies that c £ L, . Suppose that the energy,
for some x, is zero up to time t = 0 and then assumes a constant value. Then one would
expect that u would remain bounded. By Eq. (7.9) this implies that p £ L, . Hence
from (7.8) one should have a £ L, .

Suppose r(x, t) = r„(x) + R(x, t), R(x, •) £ Li(0, <»). Then it can be verified from
(7.8)2 that /(.x, t) = j0(x) + F(x, t), where F(x, ■) £ Lt and

«*> - (! + b + b (oy
From Remark 2.1 one would then have u(x, t) —> u°(x) (in L2(0, 1)) where u° is a solution
of,

«"<»> = = 0. (7.11)

By (7.8)

Hence

»"«,) - (! + - (I+vrm]K'{0)-
1 1

a (0) K (0)

If we compare (7.11) with (7.3) we see that as regards approach to steady state (7.7)
behaves like the parabolic model (7.3) if one takes

K = f a(t) dt.
Jo

It is shown in [7] that Eq. (2.2) also arises in the theory of one-dimensional visco-
elasticity. In that context, however, one wants to have an a such that a(t) = a„ +
b(t), a„ > 0, 6 £ Z/j . Thus our present theory does not apply.
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