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Abstract. This paper introduces an intelligent system that performs alarm 
correlation and root cause analysis. The system is designed to operate in large-
scale heterogeneous networks from telecommunications operators. The 
proposed architecture includes a rules management module that is based in data 
mining (to generate the rules) and reinforcement learning (to improve rule 
selection) algorithms. In this work, we focus on the design and development of 
the rule generation part and test it using a large real-world dataset containing 
alarms from a Portuguese telecommunications company. The correlation engine 
achieved promising results, measured by a compression rate of 70% and 
assessed in real-time by experienced network administrator staff. 
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1   Introduction 

During the last decades, with the growth of the Internet and cellular phones, there has 
been an increase in telecommunications demand. To support this growth, 
telecommunication companies are investing in new technologies to improve their 
services. In particular, real-time monitoring of infrastructures and services is a key 
issue within any telecommunication operator. On one hand, the quality of service has 
to be assured by a timely fault diagnosis with evaluation of service impact and 
recovery. This is particularly needed to fulfill the Service Level Agreements (SLAs) 
that are set between the service provider and customers. On the other hand, 
operational tasks must be simplified to guarantee reduced OPerating EXpenses 
(OPEX). Hence, there are a wide variety of software tools and applications that were 
developed to address this issue [5][19] and most of these tools require a human 
intervention for corrective action. In particular, several of these solutions incorporate 
correlation engines, which is the “smart” part of the management platform. The goal 
is to exploit data collected by monitoring subsystems, as well as notifications sent 
spontaneously by managed entities. However, as networks become larger, with more 
intricate dependencies and dynamics, new challenges are posed to these correlation 
engines, such as [11]: 



(i) Large telecommunication companies’ networks are very heterogeneous and 
event correlation rules rely heavily on information provided by the vendor, which 
may not be always available. Hence, the effectiveness of these solutions depends 
heavily on the business relation with the device vendor. 
(ii) Most paradigms for rule correlation, including rule-based reasoning, 
probabilistic reasoning, model-based reasoning and case-based, are configured out 
of the box (i.e. predefined) and they do not learn with experience, thus they cannot 
respond properly to new situations. 
(iii) “Keeping users in the loop”, i.e., maintaining users informed of changes in 
service availability is not always done properly. Therefore, it is difficult to assess 
effectiveness of the results on problem reporting. What if trouble ticketing does 
not point the correct root cause for a certain situation or what if the problem 
description is incomplete and misses important event details? 
Ideally, an intelligent alarm management system should be capable of parsing the 

massive amount of received alarm events while reducing human intervention. Yet, 
designing and maintaining such an ideal system is not a trivial process. Traditional 
event correlation paradigms do not work well when the managed domains that they 
cover are large-scale and dynamic (i.e. change through time) [18].  
 Advances in information technologies have made it possible to collect, store and 
process massive, often highly complex datasets. All this data hold valuable 
information such as trends and patterns, which can be used to improve decision 
making and optimize chances of success. Data mining techniques, such as association 
rules [4], aim at extracting high-level knowledge from raw data [22]. The goal of this 
paper is to study the feasibility of building a decision support tool for large 
telecommunications operators using data mining algorithms. Similar to market-basket 
data sequences [7], we will assume that a network generates sets of events that are 
related to the same situation. For example, in the access network of GSM systems, the 
Base Station Subsystem (BSS) contains Base Stations (BS) that are connected via a 
multiplexing transmission system to the Base Station Controller (BSC). These 
connections are very often realized with microwave line-of-sight radio transmission 
equipment. Heavy rain or snow can temporarily disturb the connections between the 
antennas. The temporary loss of sight of a microwave disconnects all chained BS 
from the BSC and results in an alarm burst. Our goal is to automatically discover 
these patterns. When this information is combined with other features (e.g. trouble-
ticket data) it is possible to generate rules that lead to alarm correlation and root cause 
analysis. The data mining algorithms can generate these rules automatically, from the 
collected data, in opposition to traditional systems where the rules are pre-coded or 
manually configured. Thus, our approach may have a large impact in the business, 
since it can potentially save the company a considerable amount of lost revenue. A 
timely and correctly identification of the root cause will aid in the anomaly correction, 
reducing the maintenance costs. Furthermore, by providing a better service, it is 
expected that the costumer complaints will be reduced, diminishing the costumer risk 
of leaving the operator. 
 In this paper, we propose an architecture that is targeted to address an adaptive 
and self-maintained alarm correlation system. In particular, we are working on an 
automatic rule discovery approach applied to a large telecommunications operator. 
Our approach adapts an association rule algorithm (i.e. Generalized Sequential 



Patterns) to the telecommunication domain. It has the advantage of being independent 
of the network topology and uses trouble-ticket information to get feedback from the 
event correlation results. The final aim of this line of research is to incorporate a 
reinforcement learning system that will guide the association rule generation and 
selection. As such, this is a milestone where implementation results are assessed and 
overall architecture presented for the first time.  

2   Related Work 

The concept of sequential pattern was introduced by Agrawal and Srikant [3] from a 
set of market-basket data sequences, where each sequence element is a set of items 
purchased in the same transaction. The same researchers also proposed in [2] the 
Generalized Sequential Patterns (GSP) algorithm, which allows a time-gape 
constraint, where an item from a given sequence can span a set of transactions within 
a user-specified window. In addition, the algorithm allows that the item can cover 
different taxonomies. 

Mannila et al. [16][17] presented the WINEPI framework for discovering frequent 
episodes from alarm databases, allowing the discrimination of serial and parallel 
episodes. Later, this framework was adopted to analyze Synchronous Digital 
Hierarchy (SDH) [9] and GSM [21] network alarms. In [24][26], Wang et al. studied 
the data mining of asynchronous periodic patterns in time series data with noise, 
proposing a flexible model, based on a two-phase algorithm, for dealing with 
asynchronous periodic patterns. They only considered the model in the time series 
domain and did not consider other periodic patterns in the data. 

Sequential algorithms are helpful for mining alarm databases in order to support 
the creation of rule-based expert systems. Rules like “‘If A and B then C’’ are the 
main approach for solving the alarm correlation problem and root cause analysis. An 
advanced event correlation system is the EMC Smarts Network Protocol Manager [8], 
which uses the patented “Code Book”. It works as a black box, retrieving a problem 
from a set of symptoms. The drawback of this solution is that the rules are pre-coded 
(i.e. static) and rely heavily on information provided by the vendor. 

A problem that often comes from the usage of unsupervised learning processes, 
such as the popular Apriori algorithm, is the large quantity of rules generated. In 
order to select only the most interesting rules it is necessary to select proper criteria to 
filter and order them. Several measures of interestingness have been proposed within 
the context of association rules (e.g. confidence, support and lift). Choosing an 
adequate metric is a key issue for the success of generating useful rules. 

There are also other techniques that have been applied by several commercial 
network management solutions. Smart-Plugins (SPIs) are being utilized for managing 
new devices and protocols. These plugins extend the base management capabilities 
with specific vendor/technology functionalities. HP OpenView’s Network Node 
Manager (NNM) [13] offers a broad multi-vendor device coverage by allowing 
deployment of several SPIs. However, often the required information to develop SPIs 
is difficult to get due to the existence of proprietary protocols and technology.  



In an attempt to resume the state-of-the-art in network management and present 
future perspectives, Gupta [11] listed several innovative frameworks, such as EMC 
SMARTS and SPIs that are being used for advanced root cause analysis. As a future 
direction, Gupta suggests the implementation of environment aware network 
management solutions. The concept is to use historical data collected from the 
network to help identify anomalous situations from the deviation of the traditional 
patterns. Expert systems are also pointed as a way to reduce human intervention. Such 
a system would learn from human experience and assist the proposal for repair 
actions. It could also be used to teach standard procedures to new team members. 

Martin et al. [18] explain why event correlation is still an open issue. The 
complexity of event correlation has increased over the last few years. Current 
algorithms make inappropriate simplifying assumptions and new models, algorithms 
and systems are required to deal with such complex and dynamic networks. To 
overcome current limitations, it is necessary to improve network information in order 
to build learning models to assist infrastructure managers. Such models are required 
to deal with uncertain knowledge and learn from past experience. 

Often, equipment vendors are responsible for specifying alarm’s parameters, and 
telecommunication companies do not have the flexibility to adapt them to their 
specific necessities. For example, alarm severity is defined in the X.733 standard 
(ITU-T, 1992). It would be expected that severity level is closely related to the 
malfunction priority, but this is not always true. Assigning a malfunction’s priority 
relies heavily on network’s administrator’s experience, depending on a dynamic 
evaluation of redundancy, network topology and eventual SLAs. Wallin and Landén 
[23] proposed a solution that uses neural networks to automatically assign alarm 
priorities. The authors point that the advantages of using neural networks come from 
their good noise tolerance capabilities and the ability to learn from network 
administrator staff by using the manually assigned priorities in trouble ticket reports. 

3   Proposed Architecture 

A common fragility of most paradigms for event correlation is the lack of ability to 
learn with experience or adapt to situations that have not been pre-coded. In contrast, 
we propose an alarm management system that automatically extracts correlation rules 
from historical alarm data. Changes in the network will not affect the correlation 
performance, since the extraction process will run periodically. The information is 
provided to network administrators for supporting the associated trouble tickets 
management. By supervising the trouble ticket lifecycle we gain feedback on the 
rules’ performance and this information can be used to adjust selection from the pool 
of available rules.  

Within the considered telecommunications operator (PT Inovação), the Fault 
Management and Fault Reporting modules work independently. Some interface 
features are used to enhance trouble ticket generation, but users still have to manually 
select related alarms and indicate one that is pointed to be the cause the problem. This 
type of system is quite similar to what can be found in the majority of the network 
operating centers.  



The following steps can describe the telecommunication alarm management tasks: 
• parse the received alarms and group the ones related to the same problem; 
• associate alarms with a trouble ticket to manage the problem resolution 

process and indicate the cause (i.e. to identify the root cause); 
• assign a priority to the trouble ticket; and 
• analyze and fix the problem. 

To achieve the above goals, we proposed an integrated intelligent management 
architecture that is illustrated in Fig. 1. The main components of the system are: 

• Fault Management Platform – collects, processes and displays alarm 
events via a Web GUI integrated in the portal Server. 

• Fault Reporting Platform – records and forwards fault reports, also known 
as TTKs (Trouble Tickets), to suppliers. 

• Preprocessing – is responsible for the correct linking of all the values in 
order to create valid records. It proceeds with the copy of the values entered 
by network administrators during fault reporting activity and also alarm 
events. 

• Assurance Warehouse – stores information about alarms (events plus user 
operation logs) and TTKs creation and management, with information on 
intervention or unavailability. 

• Rules Generator – generates rules for alarm correlation and root cause 
analysis from off-line training using the data from the warehouse. Rules can 
also be created by a human editor. It runs with a predefined periodicity (a 
configuration parameter) in order to allow the replacement of poor 
performing rules. Possible algorithms are Case-Based Reasoning [9], a 
solving paradigm that relies on previously experienced cases, and association 
rules (addressed in this paper). 

• CORC Rule Database – stores the correlation and root cause analysis rules 
along with several evaluation metrics. The evaluation metrics include 
support, lift, support and information on reception order. These statistics are 
updated every time new information is collected. 

• Reinforcement Learning Module – refines the rules database based on 
feedback obtained from the Portal Server. This process receives feedback 
from two distinct ways: after the resolution of the network malfunction 
reported in TTK, it is possible to evaluate if proposed correlation and root 
cause were correct, by means of text mining [6]; also, it is expected that all 
alarms related to one malfunction cease nearly at the same time and 
immediately after its root cause resolution. 



• Alarm Prioritization – it uses a supervised learning algorithm (e.g. neural 
networks) to learn from alarm priorities assigned by network administrators 
in TTK. This module has been already been proposed in [23] with a 71% 
success rate. This information is passed to users and is also used so that in 
overflow situations the most important alarms are processed first by the 
management mechanism. 

• Management – receives real-time alarms from the fault management and 
processes them. A business rules engine is included to support output from 
the Rules Management System and from Alarm Prioritization and returns 
decision-making logic. The enriched result is then passed to the Fault 
Management platform that has a dedicated web-based GUI to present 
correlated alarms with visual indication of root cause and assigned priority. 

 

 

Fig. 1. The proposed intelligent alarm management architecture.  

As indicated in the figure, we propose feedback loops for making correlation and 
root cause analysis. The first loop is periodically executed and involves calculating 
candidate rules by several specialized association rules algorithms utilizing more 
static information on the alarm history. The output of the algorithms is combined in 
one rule database which is used to dynamically associate related alarms and select 
root cause. In the second loop we continuously gather and evaluate user reaction to 
the presented suggestions. The learning module uses this information to refine the 
associations and root causes in the database and thus to immediately affect the 
selection of future results. In the present paper, we will focus only in the automatic 
correlation rule discovery part of the proposed architecture (module Rules Generator 
from Figure 1). 



4   Materials and Methods 

4.1   Alarm Data 

This study will consider an alarm database from a major Portuguese 
telecommunication company. The data was collected from PT Inovação’s alarm 
management system, called Alarm Manager. This platform’s architecture follows the 
most recent guidelines for the implementation of next generation Operations Support 
Systems (OSS), as laid down in TM Forum’s NGOSS [20]. It was developed in Java 
and contains J2EE middleware. This system is operating stably for more than 2 years, 
dealing daily with huge amounts of data collected from heterogeneous networks 
including access, aggregation/metro and core segments of transport and technologies, 
such as IP/MPLS, CET, ATM, SDH, PDH, DSL or GPON. 

The dataset contains the history of alarm events that occurred from March 2007 to 
November 2008. Each alarm record already includes a basic type of correlation that 
aggregates all events if they represent repetitions of an active alarm with the same 
description and entity. The beginning and termination of the alarm occurrence, along 
with other events that occurred in between, are registered as a single record. 
The overall table contains near 15 million of rows. In addition to identification of 
related fields, it contains several attributes that describe an alarm event. Thereby, it 
has several time occurrence values, including the starting and ending time and date of 
an alarm. Other time stamps are the moment where the alarm changed its state, the 
time it was recognized by a network supervisor and the time it was archived in the 
history table. Note that only the alarms terminated have this last time stamp and these 
are the ones that will be considered in this work. Moreover, the database contains 
other attributes, such as: ending type (an alarm can be terminated normally, manually 
by a network administrator or automatically by configuration on the management 
system); the number of events that each alarm aggregates; network domain and, 
finally, a description of the specific problem that the alarm reports. 

Before applying the data mining algorithms, we first performed a cleaning and 
data selection stage. Experts from PT Inovação were consulted in order to discard 
irrelevant variables. Some statistical tests were additionally performed (e.g. Pearson 
correlation [1]) to check each attribute independency. Furthermore, we noticed that 
certain attributes had a very limited range of values and were not strictly related to the 
alarm occurrence, thus these were also discarded. Finally, we discard all topological 
attributes, as our approach does not require such data and we do not want to constrain 
the data mining process. Table 1 resumes the selected attributes that will be used in 
the analysis. 

We performed additional preprocessing operations, after a feedback that was 
obtained from the network management people. For instance, we removed alarms 
terminated manually by network managers or automatically by system configuration, 
since these suffered from an abnormal ending. In addition, the Specific Problem 
records were reported in two different languages (i.e. English or Portuguese). Thus, 
we standardized these records by using auxiliary information that was available in 
supplied catalogs. 



Table 1.  Summary of the selected alarm data attributes. 

Attribute  Description 
Alarm ID Alarm identification, an information that can be 

used to obtain the order of the alarms arrival 
into the Alarm Manager. 

Event Counter The number of alarm events aggregated into a 
single alarm. 

Starting Time The initial time of the alarm. 
Ending Time The ending time of the alarm. 
Specific Problem The specific problem occurred in the network 

that the alarm carries with it. 
End Type Information on how the alarm was terminated. 

4.2   Methods  

We will base the alarm correlation and root cause detection on the events’ time and its 
characteristics. This approach is closely related to the problem of finding sequential 
patterns in large amounts of data. Therefore, we adopted the GSP algorithm, which 
already has an implementation in the open source data mining tool Weka [25]. The 
GSP algorithm uses the concept of a sliding window to group raw data into candidate 
sequences of alarms that regular association algorithms, such as the well-known 
Apriori, are capable to use. Apriori based algorithms are then able to find the 
sequential patterns that we aim. However, the GSP was not specialized enough. More 
context orientation was required for pre-processing and candidate sequence extraction 
stages. Not to mention that the issue of root cause is obviously not covered by this 
algorithm and needs to be addressed here. 

The first obstacle in applying our approach came from the high number of 
consecutive alarms, or very close in, having the same specific problem. This happens 
because a single problem might generate errors in several dependent entities. For 
example, the same Alarm Indication Signal is sent for all the ports in a SDH slot 
when the connected STM is down with a Loss of Signal. Thus, we decided to 
aggregate similar alarms to obtain rules containing only different ones, updating the 
event counter for the resulting alarm to be used in candidate extraction. The sliding 
window is used to modulate data and the time window for this aggregation should be 
equal to the maximum interval defined for timely windows. An example of the data to 
sequence extraction is represented in Tables 2 and 3. 

At this point it is possible to extract candidate sequences. To achieve this, sliding 
windows were adopted for the starting time and ending times. This way, two or more 
alarms are only aggregated in the same sequence if both the starting and ending times 
fit the sliding window. This should highly improve the confidence of candidate 
extraction. Also, a degree of flexibility is considered so that sliding windows can 
adapt to particular situations. Based on preliminary experiments, we set heuristically a 
minimum interval of three seconds. This interval was corroborated by a network 
expert as a recommended value. Nevertheless, if a sequence is being constructed and 
this time is reached, the sliding window is extended to a maximum value in which the 
found alarms are joined into the sequence. Again, for the same reasons, this value was 



set to five seconds. This process is done over the preprocessed data ordered by the 
alarms starting date. Result sequences, after applying the described methods to the 
previous example dataset, would be: 

• Sequence 1: B / A / C; 
• Sequence 2: D / E; 

Before candidate sequences proceed to the rule finding phase, they are sorted to 
ensure that the order of constituting elements is always the same. For instance, we 
want that the sequence B / A / C is considered equally as the sequence A / B / C, 
because the relation between the constituting events is the same. 

Table 2.  Example of the original dataset. 

Specific Problem Starting Time Ending Time Event Counter Alarm ID 
B 00:00:01 00:00:06 1 2 
A 00:00:01 00:00:06 1 1 
B 00:00:01 00:00:06 1 4 
B 00:00:01 00:00:06 1 3 
C 00:00:03 00:00:07 1 5 
D 00:00:10 00:00:15 2 6 
E 00:00:13 00:00:15 2 7 
B 00:00:01 00:00:06 1 2 

Table 3.  Example of the dataset result after event aggregation. 

Specific Problem Starting Time Ending Time Event Counter Alarm ID 
B 00:00:01 00:00:06 3 2 
A 00:00:01 00:00:06 1 1 
C 00:00:03 00:00:07 1 5 
D 00:00:10 00:00:15 2 6 
E 00:00:13 00:00:15 2 7 

 
By now, the information on probable root cause for each built candidate sequence 

must be considered. In our analysis, root cause calculation is based in two factors: the 
first alarm of a sequence found in time and the number of events aggregated by each 
alarm. It is frequent to have several events with the same generation time stamp, 
because time precision is measured in milliseconds. For these situations, first event 
received in Alarm Collection Gateway is considered. This solution has some risks that 
might mislead root cause analysis due to different event propagation times in the 
network (the protocol most used is SNMP). However, considering the vast dataset 
used for modeling, there are some guaranties of attribute relevance. Moreover, in 
particular analysis scenario, there is an acknowledge (ACK) mechanism between 
monitoring agents and alarm collection which guaranties delivering and correction of 
order over SNMP’s connectionless protocol. On other hand, the usage of event 
counters is based on the observation that typically the root cause is a single alarm 



event that can cause a wide number of alarm events. These two aspects are combined 
in an editable rule system, which is used to classify the probability of the root cause 
for each sequence. For example, if we have a rule where the percentage of an alarm 
being the first to appear is very high, then it is highly probable that this is the root 
cause. Also, if the percentage of occurrences is low, when compared to the remaining 
events of the sequence, then this increases the probability of being the root cause. If 
none of these situations occur, the confidence of the suggestion is set to a negligible 
value. Going back to our example dataset, we had the following root cause 
information for our sequences: 

• Sequence 1: First Alarm – A, Event Counter – A:1,B:3,C:2; 
• Sequence 2: First Alarm – D, Event Counter – D:2,B:2; 

After founding a frequent rule, all the information related to managing root cause 
selection must be updated. We have now candidate sequences and the last step is to 
call the Apriori algorithm to build and classify the resulting association rules. Apriori 
bases its behavior on the support of candidate sequences, by removing candidates that 
are below a given threshold. The use of Apriori instead of a simple counting of 
candidates is justified by its main principle that increases the rule finding scalability: 
if a sequence is frequent then all of its subsets should also be frequent. In other words, 
if a sequence is infrequent then all the sequences that contain that sequence can be 
pruned and not taken into process. The Apriori algorithm implemented also computed 
additional metrics, such as the confidence and lift, for a more detailed rule evaluation, 
as we are going to describe in next section. 

4.3   Evaluation 

As said before, the classic Apriori algorithm only classifies a sequence for its support, 
which is clearly insufficient for our purpose. We do not only want to know high 
frequent sequences present in data, but also less frequent ones that also apply as good 
modeling rules. In fact, these rules are also very interesting in terms of business value 
because as rare as rules become, the more difficult is for network administrators to 
discover their underlying behavior. The inheriting risk is a possible overflow of rules, 
so it is mandatory to define a minimum support threshold. 

In order to classify the discovered rules, we will adopt two additional measures, 
well known within the association rules context, confidence and lift, and try to 
adequate their meaning to the present problem of discovering sequential alarm 
patterns. Lift provides information about the change in probability of the consequent 
in presence of the antecedent. The ‘IF’ component of an association rule is known as 
the antecedent. The THEN component is known as the consequent. The antecedent 
and the consequent are disjoint; they have no items in common. Both metrics depend 
on the division of the association rule in two parts (the antecedent and the 
consequent) but this is not really consistent with the rules we want to obtain, where 
there is only an unordered sequence of alarms that are somehow correlated. To make 
possible the use of this metric, we assume that the rule’s lift is the maximum possible 
for that sequence. In other words, we find the antecedent that maximizes the 



confidence rule metric, because its formula depends on the antecedent support. This is 
done because it is more harmful to lose a good rule than to over classify one. We have 
to keep in mind that the rules will suffer posterior evaluation from feedback results 
and even might get eliminated by the reinforcement learning system (not presented in 
this work but to be addressed in the future). The confidence of a rule indicates the 
probability of both the antecedent and the consequent appear in the same transaction. 
Confidence is the conditional probability of the consequent given the antecedent. This 
gives us a better classification for the items within a rule than the simple support of 
the occurrence of all of them together. Confidence can be expressed in probability 
notation as the support of A and B together dividing by the support of A: 
 

Confidence (A implies B) = P (B/A), or 
Confidence (A implies B) =  P(A, B) / P(A) . (1) 

 
Regular confidence implementation cannot be used for Apriori because we are not 

interested in finding rules with antecedents and consequents. These are more 
appropriate, for instance, within the retail industry, where it is relevant knowing the 
difference between rules such as “buying milk implies buying cereal” or vice-versa. 
In our case, we calculate the highest confidence of a rule, selecting the possible 
antecedent for a rule with least support. 

Both support and confidence will be used to determine if a rule is valid. However, 
there are times when both of these measures may be high, and yet still produce a rule 
that is not useful. If in our case the support of the rule consequent, not used in 
calculation of confidence, is very high then we are producing a rule that, even with 
high confidence, is not very interesting because it is normal that the antecedent is 
commonly seen with the consequent, given the fact that the consequent is very 
frequent. Thus, a third measure is needed to evaluate the quality of the rule. Lift 
indicates the strength of a rule over the random co-occurrence of the antecedent and 
the consequent, given their individual support. It provides information about the 
improvement, the increase in probability of the consequent given the antecedent. Lift 
is defined as [12]: 

Lift (A implies B) = (Rule Support) / (Support(A) * Support(B)) (2) 

Any rule with an improvement (lift) of less than 1 does not indicate an interesting 
rule, no matter how high its support and confidence are. Lift will be used as another 
parameter that classifies a rule and gives it more reliability. For example, a rule with 
low confidence but high lift has a higher degree of reliability than if we are just 
looking for the confidence metric. The computation of lift in our work is based in the 
same purpose used to calculate confidence, using the earlier defined antecedent and 
consequent of a rule to get the needed values for lift formula. 

5   Current Results 

To test our approach, we considered a recent sample of the alarm database, from 1st 
of March 2009 until the 15th of the same month, with a total of approximately 2.4 
million of alarm events. The dataset was further divided into two subsets: the first 2/3 



of the data was used to extract the candidate sequences, while the remaining 1/3 was 
used for testing. In the training stage, minimum thresholds considered were: for 
support 1%, confidence 40% and lift 1. The minimum sliding window time interval 
was restricted to 3 seconds. Under this setup, the rule that aggregated a maximum 
number of alarm types contained 7 elements and 268 rules were discovered. The rules 
with maximum support and lift are presented in Fig. 2. The first result shows a 
sequence of two alarms IMALINK (IMA Link Error) and LOC (Loss of Cell 
Delineation). Due to monitored network’s characteristics, this sequence occurs very 
frequently, with a support of 1057 and a lift above 2. This sequence represents the 
situation when a group of virtual ports have an ATM layer above them working as a 
single communication channel. One problem in a single port is sufficient to affect all 
others in the same group and also the ATM layer. So, in some error situations, virtual 
ports send IMALNK alarms and the LOC is related to the ATM layer. 
 

 

Fig. 2. Examples of discovered association rules (with highest support and lift values). 

A prototype was implemented using JRules, an open source and standards-based 
business rules engine [14]. The previous discovered rules were adapted to fit JRules 
requirements and then events from the testing set were injected into the rules engine, 
simulating a real-time alarm collection scenario. This was performed for a total of 
501.218 events. The objective was to measure the degree of compression of the 
alarms that would be presented to end users, if using our correlation method, and to 
validate the real significance of discovered sequences. 

In result of compression using the discovered correlation rules, the number of 
correlated alarms was 158.191, achieving a compression rate of near 70%. This rate is 
similar to the results achieved by the currently used systems [27]. In correlation by 
compression, alarm events from the same alarm type and regarding the same entity 
are grouped, as well as end notifications of respective alarms. 

We asked a very skilled network administrator to validate the discovered rules 
with higher support and lift values (from Figure 2). In this expert’s opinion, this 
approach is very interesting, “as it reveals certain patterns not strongly presented in 



network protocols, but discovered with experience”. Also, this solution enables a 
service oriented monitoring which is clearly more effective than the current single 
network entity approach. Regarding the previous described example (rule for 
IMALINK and LOC), during the performed runtime experiments our correlation 
engine grouped sequences of 4 to 8 alarms of type IMALNK associated with 1 LOC 
alarm. In this way, an immediate action can be set in order to create the respective 
trouble ticket, which launches the reporting of this malfunction to the operational 
staff. While reducing the supervisor’s parsing work, the process of reparation is also 
speeded up, contributing to better service levels. 

6   Conclusions 

Fault management is a critical but difficult task in network management. The flow of 
alarms received by a management center should be correlated automatically to a more 
intelligible form, in order to facilitate identification and correction of faults. 
Unfortunately, the construction of an alarm correlation system requires high expertise 
and developing time. In opposition to current adopted solutions, with static pre-coded 
rules, we propose a smarter system that is able to learn from raw data and based in 
data mining techniques (for rule generation) and reinforcement learning (for rule 
selection). In particular, we focus on one component of the proposed architecture, the 
rule generator. A prototype was implemented to test it in a J2EE environment with 
real-world data from a large Portuguese telecommunications operator. A total of 15 
millions of alarm records were used for training and testing, resulting in 268 
association rules. The employment of correlation methods compressed the total 
amount of events with a 70% rate and the network administrator feedback was that 
there is a great potential to reduce operational costs, fault identification and reparation 
times. In future work, we intend to explore additional measures of interest for rule 
selection (e.g. Loevinger rank) [15]. We also expect to develop the remaining 
components, until the final architecture is implemented and tested in a real-world 
environment. 
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