
An Intelligent Assistant for Interactive Workflow
Composition

Jihie Kim, Marc Spraragen and Yolanda Gil

University of Southern California/Information Sciences Institute
Marina del Rey, CA 90292 USA

+1 310 448 8769

{jihie,marcs,gil}@isi.edu

ABSTRACT
Complex applications in many areas, including scientific

computations and business-related web services, are created from

collections of components to form workflows. In many cases end

users have requirements and preferences that depend on how the

workflow unfolds, and that cannot be specified beforehand.

Workflow editors enable users to formulate workflows, but the

editors need to be augmented with intelligent assistance in order to

help users in several key aspects of the task, namely: 1) keeping

track of detailed constraints across the components selected and

their connections; 2) specifying the workflow flexibly, e.g., top-

down, bottom-up, from requirements, or from available data; and 3)

taking partial or incomplete descriptions of workflows and

understanding the steps needed for their completion. We present an

approach that combines knowledge bases (that have rich

representations of components) together with planning techniques

(that can track the relations and constraints among individual steps).

We illustrate the approach with an implemented system called CAT

(Composition Analysis Tool) that analyzes workflows and generates

error messages and suggestions in order to help users compose

complete and consistent workflows.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentations]: User Interfaces –

User interface management systems; I.2.0 [Computing

Methodologies]: Artificial Intelligence

General Terms: Verification, Algorithms, Human Factors

Keywords: Knowledge acquisition, workflow composition,

web service composition, workflow editors, interactive planning

1. INTRODUCTION
Composing computational workflows is essential in many areas,

including scientific computations and business-related web services.

A new kind of science is emerging from the integration of models

developed by individual scientists and groups: end-to-end scientific

applications that result from the composition of those individual

models. Another example is the composition of web services to

create new applications from existing software components

(typically as web services) given a customer’s needs.

Workflow editors (e.g., [1,2,3]) have been developed to enable users

to select components from a library, and to link their inputs and

outputs. However, these tools lack the kind of intelligent assistance

required in order to:

• keep track of details to ensure that a correct workflow is

formulated: Manual composition of workflows, as any user-

driven process, is a task prone to errors and inconsistencies. As

users edit the workflow by adding components, linking their

inputs and outputs, etc., there are many constraints that need to

be tracked in terms of the validity of the links and the steps

added.

• support mixed-initiative interaction: Users can drive the

process when they have a clear idea of what to specify about

the workflow, whether they follow a top-down or a bottom-up

approach. At any point in time, the system should be able to

take a partially specified workflow from the user and make

suggestions about how to complete it.

• systematically generate and manage all of the choices

throughout the process: At any point during the workflow

composition, there may be many choices to make: add a

component (and if so which one), add a link, replace an

existing component with a more appropriate one, etc. Ideally,

all these possible choices should be generated systematically,

and they should be presented according to how each

contributes to the configuration of the workflow.

This paper presents an approach to interactive workflow

composition that incorporates 1) knowledge-rich descriptions of the

individual components and their constraints; 2) a formal algorithmic

understanding of partial workflows, based on AI planning

techniques. Using this approach, a system can analyze a partial

workflow composed by the user, notify the user of issues to be

resolved in the current workflow, and suggest to the user what

actions could be taken next. Using this approach, we have

developed CAT (Composition Analysis Tool) and used it in two

distinct domains: a scientific application for earthquake simulation,

and a simple travel-planning domain to illustrate the approach.

The paper begins by describing our motivations and goals based on

a scientific application. We then describe the knowledge bases that

we have developed to represent components, and present the

algorithm to analyze a partial workflow and help a user complete it.

We illustrate the resulting intelligent interaction with a detailed

scenario of use.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

IUI’04, January 13–16, 2004, Madeira, Funchal, Portugal.

Copyright 2004 ACM 1-58113-815-6/04/0001…$5.00.

In Proceedings of the International Conference on Intelligent User Interfaces (IUI-2004); Madeira, Portugal, 2004

2. MOTIVATING GOALS AND

REQUIREMENTS

Figure 1. A computational workflow for earthquake simulation

analysis.

To motivate the goals of this research we use a concrete scenario

from our work with the Southern California Earthquake Center [11],

though the basic requirements and problems are shared in other

sciences as well [4,10].

Seismic hazard analysis (SHA) enables building engineers to

estimate the impact of potential earthquakes at a construction site

and on their building designs. Scientists have developed many

models that can be used to simulate various aspects of an

earthquake: the rupture of a fault and the ground shaking that

follows, the shape of the wave as it propagates through different

kinds of soil, the vibration effects on a building structure, etc. Some

of these models are based on physics; others are empirical based on

historical data on past earthquakes. The models are complex,

heterogeneous, and come with many constraints on their parameters

and their use with other models.

Our ultimate goal is to develop intelligent user interfaces that enable

unsophisticated users, such as building engineers and safety

officials, to create end-to-end workflows composed of complex

scientific models. As a first step to this goal, our work concentrates

on assisting users to create a complete and correct workflow,

focusing on relatively simple (though still realistic) models and

workflows to make the problem more manageable. Currently CAT

supports development of valid composition of components

(workflow) that can be executed by providing specific data.

Figure 1 shows an example of a workflow. Each component has

several inputs; some are provided values directly by the user (e.g.,

the Duration-Year of the Fault Rupture Model). The user may also

choose to have an input take the default value provided by the

knowledge base (e.g., the Wave Propagation Model’s Standard-

Deviation-Type; default = “Total”), and a third group of inputs will

take values linked from the results of the execution of other

components (e.g., the simulated Rupture data output by the Fault

Rupture Model is passed to the input of the Wave Propagation

Model).

Engineers may design the workflow in many different ways. One

way is to think about it in terms of simulation models. They know

they need two main steps: first, simulation of fault rupture; then,

simulation of the wave propagation. They may prefer physics-based

models or empirical models, and are a bit familiar with the scientific

community and the methodology involved in creating each model.

But another way to think about the workflow is the particular data

they want to look at. Sometimes they want the wave's velocity at the

site, or its acceleration. Sometimes they want the probability of

earthquake above a certain magnitude affecting that site. Different

models provide different types of results. Another way to think

about the workflow is the situation they want to simulate. The

engineer may start with a specific site, then look at its characteristics

like basin depth, and then select models that incorporate these

characteristics.

In summary, users may design workflows using a variety of

strategies, including: 1) top-down selection of components, starting

from abstract types of models and then replacing them with more

specific versions; 2) result-based selection of components, working

from desired data to select models that can generate those results; 3)

situation-based selection of components, working from the initial

data available to select components whose constraints are consistent

with those data.

3. APPROACH
Given the goals just described, we are developing a mixed-initiative

approach where users can drive the process and the system

proactively suggests useful next steps and ensures that the final

workflow is correct.

At any time, the user may:

 select a component for inclusion in the workflow. It may be an

abstract type of component, or a specific executable one.

 specialize a component to a more specific one

 establish a link between two components to indicate that the

output of one should be the input of another.

 specify input data to the overall workflow

 specify desired results

(Users can also delete components and links.)

At any time, the system should analyze the workflow, and suggest

possible next actions to the user.

We use two key techniques in our approach:

1) knowledge-based descriptions of simulation models that

support reasoning about multiple abstraction hierarchies of

components. A given executable simulation model may be

categorized in several abstract classes depending on the features

being abstracted. In order to reason adequately about an abstract

type of model, the system should be able to represent common

features that apply to all models of that type. We use description

logic to reason about ontologies of component descriptions.

2) analysis of partially constructed workflows based on AI

planning techniques. In our current framework, a workflow is a

directed acyclic graph: components are nodes and links are directed

edges. At any point during composition, the system can search this

graph for missing components, for links that are inconsistent with

the descriptions of the components, for unnecessary components,

etc. Planning algorithms provide a useful framework to relate steps

to goals and initial states, and can help us formalize a user's actions

in terms of incremental plan generation. The next two sections

describe each of these two techniques in turn.

3.1 Supporting Knowledge Base
In order to support the kinds of interactions described above, our

knowledge base defines the components that can be used in a

workflow and their input and output parameters. The component

ontology has hierarchies of components that describe abstract-level

components as well as specific executable components. The domain

term ontology defines data types for representing input and output

parameters and the constraints associated with them. It also defines

how parameters of different components are related with each other.

For example, it represents how parameters of abstract components

are mapped to parameters of more specific ones.

In developing the domain term ontology, pre-existing definitions

and constraints can be exploited whenever they are available,

though new terms and their associated constraints may need to be

added. The component ontology is built based on the domain term

ontology by relating inputs and outputs. For example, when a

component is available as a web service and defined in WSDL

(Web Service Description Language) [13], we can map its

“operations” into component types in the component ontology

based on input parameters in the request messages and output

parameters in the response messages. Currently these ontologies are

built by hand but we are exploring approaches for generating

component ontologies semi-automatically from existing

descriptions of the components, such as WSDL descriptions.

Figure 2 shows a part of the ontologies that we are using in a travel-

planning domain. For example, component Car-Rental represents

car rental operations, covering different types of car rental services.

It can be specialized based on operation sites (Car-Rental-by-City or

Car-Rental-by-Airport), vendors (Car-Rental-Enterprise, Car-

Rental-Breezenet, etc.), or both (Car-Rental-Enterprise-by-City).

That is, the ontology contains features that characterize and

categorize component subclasses. The parameters of the

components are mapped to data types in the domain term ontology,

as shown in the figure. For example, Car-Rental-by-City has two

input parameters (Arrival-City and Arrival-Date) and one output

parameter (Car-Reservation).

Figure 2. Example Component Ontology and Domain Term

Ontology.

Note that because the component ontology describes abstract

component types as well as specific components, users can start

from a high-level description of what they want without knowing

the details of what actual components are available. We often find

that users have only partial description of what they want initially,

and our tool can help users find appropriate ones by starting with a

high-level component type and then specializing it. The ontology of

data types can be used in a similar way when users have incomplete

or high-level description of the desired outcome, as described

below.

These ontologies also play a key role in relating components in

workflows, detecting gaps and errors, and producing suggestions.

For example, a link between an output of a component to an input of

another can be checked to see whether the output type is subsumed

by the input data type. The hierarchy of component types can guide

the user to specialize an abstract-level component into one he/she

likes. (The details of errors and suggestions are described in the

following section.)

The CAT queries to the knowledge base include:

• Get-Input-Parameters (Component)

• Get-Output-Parameters (Component)

• Subsumes (Data-Type1, Data-Type2)

• Subsumes (Component1, Component2)

• Executable (Component): check whether Component is an

actual executable Component and not an abstract type

• Get-specializations (Component[,role, val]): retrieve

subconcepts of Component1, optionally only where value

for role “role” is “val”.

• Find-Component-with-Output-data-type (Data-Type)

• Find-Component-with-Input-data-type (Data-Type)

• Get-system-default-value (Component, Parameter)

3.2 An Algorithm to Analyze Partial Workflows
The analysis of partial workflows created by the user is done using

an AI planning framework [14]. Each component is treated as a step

in the plan, the inputs of a component are the preconditions of that

step and the outputs are its effects, the links between components

are treated as causal links, any data provided by the user form the

initial state, and the desired end results are the goals for the planning

problem. Each action taken by the user (add/remove component,

specialize component, add/remove link) are akin to a refinement

operator in plan generation. User Provided Data (initial data) and

End Results (desired data) are handled uniformly as any other

component, the former as a component with no input parameters and

the latter as a component with no outputs. While automatic planning

systems can explore the space of plans systematically and guarantee

that the final plans are correct, interactive workflow composition

requires an approach that lets the user decide what parts of the

search space to explore and that can handle incorrect partial

workflows.

We have developed a domain-independent algorithm to support

mixed-initiative workflow creation that assists the user by ensuring

that the workflow is well-formed and executable. Specifically the

final workflow must be compliant with a set of desirable properties:

• Tasked — contains one or more End Results

• Satisfied — all input parameters of all components are

provided by other components, by default values, or as user

inputs

• Grounded — all components are executable (i.e., not

abstract)

• Justified — at least one output parameter of each component

is linked to an End Result or to another Justified component

• Consistent — each link connects an output of a component to

the input parameter of another component, where the former

subsumes the latter (its type is more general in the ontology

• Unique — no link or component is redundant with any other

one

A full formalization of these properties and the algorithms below is

provided elsewhere [5].

Note that these properties can also help relate the workflows

generated by a user to workflows that an automated approach could

generate. Workflows that contain errors of consistency and

uniqueness would never be generated automatically. Two additional

properties are then useful. A partial workflow is correct if it is

consistent and unique. A workflow is complete if it is satisfied and

tasked. Automated approaches always form workflows that are

complete, correct, and justified. Our algorithm considers also the

space of workflows that do not have these three properties, due to

user error and non-systematic exploration of options that are natural

in mixed-initiative approaches. Also note that our approach could be

combined with an automated approach if our system is configured

to help the user create a correct and justified workflow, which then

the planner could use it as a starting point to fulfill the other

properties and create a complete and grounded workflow.

A workflow contains an error for each item that does not comply

with these properties: links may be inconsistent or redundant,

components may be unjustified, ungrounded, and the workflow

itself may be untasked.

Now the potential effects of the user’s primitive actions can be

described more fully, in terms of the errors that they may introduce

and the properties that they satisfy. Note the symmetry between add

and remove actions, in terms of the potential fixes and errors

generated.

Add Component

Possible Fixes: Tasked workflow if new component is the only

End Result.

 Possible New Errors: New component may not be Satisfied,

Grounded, or Justified.

Remove component

Possible Fixes: Removed component may have been

not Satisfied, Grounded, or Justified.

Possible New Errors: Tasked workflow if removed

component was the only End Result, inconsistent links if

component had any links.

Add Link

Possible Fixes: Satisfied component if it now has no input

parameters without values. Justified component, if now linked

to an End Result (or to a component linked to an End Result).

Possible New Errors: New link may not be Consistent or Unique.

Remove Link

 Possible Fixes: Removed link may have been not

Consistent or Unique.

 Possible New Errors: Not Satisfied component if it now has any

input parameters without values. Unjustified component if now

not linked to an End Result (or to a component linked to an

End Result).

Figure 3. The ErrorScan Algorithm

We have developed the ErrorScan algorithm to check whether a

given workflow is compliant with the properties above. Each

deviation from these properties, by the workflow or by one of its

elements is reported as an error to the user. Based on the analysis of

user actions shown above, the algorithm also generates specific

suggestions to the user for how to fix each error found. Also, any fix

suggested by CAT is an ordered sequence of the primitive actions

above. The algorithm is shown in Figure 3.

The algorithm consults the knowledge base to check the properties

(e.g., the consistency of a link based on the parameter type

definitions in the ontologies), and to generate suggestions (e.g., if an

input parameter is not satisfied, ErrorScan will return from the

knowledge base a list of components that have outputs that subsume

the type of that parameter).

In the interest of providing intelligent assistance, the algorithm

filters its choice of suggestions, in that each suggestion must be a

sequence of actions that, as a whole, fixes more errors than it causes.

For instance, the system would never suggest adding an inconsistent

link to fix an unsatisfied component. The suggestions tend to be

additive or corrective, i.e., the system will not suggest removing a

component or link unless added incorrectly by a user not following

previous suggestions. In summary, if the user consistently applies

suggested fixes, this will help to generate a workflow whose

components conform to the desirable properties listed above.

ErrorScan Algorithm

Input: workflow

Output: errors and corresponding suggestions

I. If workflow is not Tasked

 Suggestions: add [choose from possible End Results]

II. For each component within workflow

a. If component is not Justified
Suggestions: Remove component and its links, or link

to [choose from list of already Justified components].

b. If component is not Grounded
Suggestions: Specialize component to [choose from

specialized versions of component].

 c. For each input parameter of component

1. If input parameter is not Satisfied

 Suggestions: link from [choose from list of

workflow and knowledge base components’

appropriate output parameters], use [parameter

default value] from knowledge base, or enter a

value manually.

III. For each link within workflow

If link is not Consistent

 Suggestions: Remove link, or fix link by

 interposing and linking [choose from appropriate

components].

If link is not Unique
 Suggestions: Remove link.

Figure 4. CAT Interface, showing the workflow on the left and the system’s suggestions on the right.

We also incorporated heuristics into the algorithm for ordering

errors and suggestions as they appear in the interface. Errors are

ordered most recent first (i.e., generated by the most recent user

actions), and then by the more serious errors before warnings. For

example, a non-unique link would only generate a warning, as a

workflow with redundant links may still be correct. Suggestions are

ordered with specific fixes listed before informational messages,

and the algorithm filters out fixes that involve the addition of new

components to the workflow, if similar fixes can be applied using

components already in the workflow.

4. EXAMPLE
Figure 4 shows the current web-based interface (for earthquake

science domain). On the left of the screen are components and links

currently in the workflow. On the right are workflow errors, and

suggestions for the selected error. For illustration purposes, the

example detailed below will use a simpler travel-planning domain.

Also, subsequent screenshot figures will be cut/pasted from the

various areas of the interface; each figure will contain elements

from the components/links area followed by elements from the

errors/suggestions area.

The user wants to find a flight reservation number and, based on the

flight details, a car rental reservation at the arrival airport. The user

adds “Reserve Flight” component and “Car Rental” component, and

links these components’ outputs to the appropriate End Results. Fig.

5 shows the errors that are now present in the workflow. Note that

the added components are both not executable (i.e., they represent

generic families of services). Suggestions for specializing “Car

Rental” are also shown in Fig. 5, based on the component ontology

(i.e., how they are related to each other).

Figure 5. Component added by applying system’s suggestion;

system points out that some components are not executable.

This case represents the system’s “top-down” flexibility, in which

the user can compose a workflow using abstract components, and

when desired, specialize those components as necessary.

Figure 6. Abstract component specialized by applying system’s

suggestion; system finds more unsatisfied inputs.

In Fig. 6, the user has fully specified (by location and vendor) “Car

Rental” to “Car-Rental-Enterprise-by-City”. “Reserve Flight” has

similarly been fully specialized to “Reserve-Domestic Flight-

Orbitz-by-City”. The value of CAT’s mixed-initiative interface is

notable here. Instead of having to encode preferences and evaluate

multiple, similarly valid plans, CAT allows user preference to

resolve unconstrained choices at each step. Note also that the link

from the newly specialized “Car Rental: Car-Reservation”

parameter, to “End Result 1: Car-Reservation”, remains intact

between Figures 5 and 6. In order to provide this automated

intelligent assistance, CAT’s component ontology defines how the

parameters of different component types are related with each other,

and can track parameter equivalencies between parent (less specific)

and child (more specific) components.

Now, most of the remaining errors in the workflow are the inputs to

the two components, which have no values assigned. However, note

that the system suggests that at least one of these inputs, “Car

Rental: Arrival Date” can be satisfied by linking the similarly-typed

output from “Reserve Flight: Arrival Date” (Figure 6).

In Fig. 7, the user has provided additional data (Departure City,

Arrival City, and Departure Date), and linked these to the

appropriate input parameters of the “Car Rental” and “Reserve

Flight” components, so that no components are not Satisfied. This

demonstrates CAT’s flexibility: even when the necessary user data

is not provided at the start of the composition, the system can still

provide useful suggestions to make progress. The figure represents a

correct workflow; the only error remaining is a warning about

unused output, which may be ignored.

Figure 7. User-provided data is linked to unsatisfied inputs.

Figure 8. Extending a previous workflow for a new situation.

Figure 9. Inconsistency fixed by applying system’s suggestion.

Suppose after several times using the same workflow to arrange

domestic trips, the user decides to change “Reserve Flight” to book

a foreign flight. There is a new wrinkle: foreign flights reservations

require a Visa number. The user, realistically, attempts to provide

her passport number for this input (Fig. 8), though this action was

not suggested by the system. When invoked, ErrorScan reports that

the link input and output types are mismatched (inconsistent).

However, the system notes that there is a component "Visa Service"

which can be interposed into the inconsistent link, creating two

correct links (as shown in Fig. 9, wherein the error level is resolved

to warnings-only as in Figure 7). This example demonstrates the

potential of the system to suggest intelligent solutions to workflow

errors. Another point of this scenario is that the system can find

fixes for any user errors, although the interface is flexible enough to

allow the user to disregard suggestions by manually adding and

deleting components and links.

5. RELATED WORK
Graphical tools to lay out a workflow and draw connections among

steps abound (e.g., [1,2,3]) but the tools are limited to simple checks

on the process models, because there is no semantics associated

with the individual steps and links. In contrast, we assume a

knowledge-rich environment where the system can check whether

the workflow makes sense within the background knowledge that it

has.

AI planning approaches for web service composition focus on

automatically generating compositions that satisfy user given goals

[7,8]. Our work provides an alternative and complementary

approach addressing the issues that arise when users want to

influence the composition process, including selection of

components and their configuration. Our interactive framework also

helps when the user has an incomplete description of goals or initial

state since he/she can start from high-level task types and then

gradually introduce new requirements and preferences while the

workflow is being built.

There has been increased interest in mixed-initiative approaches to

constructing plans [9, 12] but they are not designed to exploit

background knowledge and ontologies, which we believe is crucial

technology to providing the strong guidance needed by end users.

6. SUMMARY AND FUTURE WORK
We presented an approach to interactive workflow composition that

combines knowledge bases that have rich representations of

components together with planning techniques that can track the

relations and constraints among individual steps. The tool we have

developed has been applied to two different applications:

constructing workflows in travel planning domain and constructing

computational workflows in earthquake science domain.

Our plans for future work include dynamic generation of component

ontologies, by deriving abstract component classes from initial

component descriptions, incorporation of automatic composition

approaches to our interactive framework, and user evaluations.

7. ACKNOWLEDGEMENTS
We would like to thank researchers at the Southern California

Earthquake Center for very valuable discussions. We would also

like to thank Varun Ratnakar and Sid Shaw for their help with the

CAT system implementation. This research was funded by the

National Science Foundation (NSF) with award number EAR-

0122464.

8. REFERENCES
1. Chin Jr, G., Leung, L. R., Schuchardt, K., and Gracio, D. New

paradigms in problem solving environments for scientific

computing. Proceedings of Intelligent User Interfaces’02, pp.

39-46, 2002.

2. Edge Diagrammer. http://www.pacestar.com/edge/.

3. KHOROS PRO 2001. http://www.khoral.com/.

4. GriPhyN. http://www.griphyn.org/.

5. Kim, J., Gil, Y., and Spraragen, M. A Knowledge-Based

Approach to Interactive Workflow Composition. ISI Internal

Project Report, 2003.

6. Kim, J. and Gil, Y. User Studies of an Interdependency-Based

Interface for Problem-Solving Knowledge. Proceedings of the

Intelligent User Interface, 2000.

7. McIlraith, S. and Son, T. Adapting Golog for programming in

the semantic web. Fifth International Symposium on Logical

Formalizations of Commonsense Reasoning, 2001.

8. McDermott, D. Estimated-Regression Planning for Interactions

with Web Services. AI Planning Systems Conference, 2002.

9. Myers, K., Jarvis, P., Tyson, M., and Wolverton, M. A

Mixed-Initiative Framework for Robust Plan Sketching.

Proceedings of Int’l Conf. on Automatic Planning and

Scheduling, 2003.

10. NVO (US National Virtual Observatory). http://www.us-vo.org/.

11. SCEC (Southern California Earthquake Center).

http://www.scec.org/.

12. Smith, S., Lassila, O., and Becker, M. Configurable mixed

initiative systems for planning and scheduling. In A. Tate,

editor, Advanced Planning Technology. AAAI Press, 1996.

13. W3C: WSDL specification.

http://www.w3c.org/TR/WSDL/.

14. Weld, D. Recent Advances in AI Planning. AI Magazine, 1999.

