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ABSTRACT 
Complex applications in many areas, including scientific 

computations and business-related web services, are created from 

collections of components to form workflows. In many cases end 

users have requirements and preferences that depend on how the 

workflow unfolds, and that cannot be specified beforehand. 

Workflow editors enable users to formulate workflows, but the 

editors need to be augmented with intelligent assistance in order to 

help users in several key aspects of the task, namely: 1) keeping 

track of detailed constraints across the components selected and 

their connections; 2) specifying the workflow flexibly, e.g., top-

down, bottom-up, from requirements, or from available data; and 3) 

taking partial or incomplete descriptions of workflows and 

understanding the steps needed for their completion. We present an 

approach that combines knowledge bases (that have rich 

representations of components) together with planning techniques 

(that can track the relations and constraints among individual steps). 

We illustrate the approach with an implemented system called CAT 

(Composition Analysis Tool) that analyzes workflows and generates 

error messages and suggestions in order to help users compose 

complete and consistent workflows. 

Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentations]: User Interfaces – 

User interface management systems; I.2.0 [Computing 

Methodologies]: Artificial Intelligence 

General Terms: Verification, Algorithms, Human Factors 

Keywords: Knowledge acquisition, workflow composition, 

web service composition, workflow editors, interactive planning 

1. INTRODUCTION 
Composing computational workflows is essential in many areas, 

including scientific computations and business-related web services. 

A new kind of science is emerging from the integration of models 

developed by individual scientists and groups: end-to-end scientific 

applications that result from the composition of those individual 

models. Another example is the composition of web services to 

create new applications from existing software components 

(typically as web services) given a customer’s needs.  

Workflow editors (e.g., [1,2,3]) have been developed to enable users 

to select components from a library, and to link their inputs and 

outputs. However, these tools lack the kind of intelligent assistance 

required in order to: 

• keep track of details to ensure that a correct workflow is 

formulated:  Manual composition of workflows, as any user-

driven process, is a task prone to errors and inconsistencies. As 

users edit the workflow by adding components, linking their 

inputs and outputs, etc., there are many constraints that need to 

be tracked in terms of the validity of the links and the steps 

added.  

• support mixed-initiative interaction: Users can drive the 

process when they have a clear idea of what to specify about 

the workflow, whether they follow a top-down or a bottom-up 

approach. At any point in time, the system should be able to 

take a partially specified workflow from the user and make 

suggestions about how to complete it. 

• systematically generate and manage all of the choices 

throughout the process: At any point during the workflow 

composition, there may be many choices to make: add a 

component (and if so which one), add a link, replace an 

existing component with a more appropriate one, etc. Ideally, 

all these possible choices should be generated systematically, 

and they should be presented according to how each 

contributes to the configuration of the workflow.  

This paper presents an approach to interactive workflow 

composition that incorporates 1) knowledge-rich descriptions of the 

individual components and their constraints; 2) a formal algorithmic 

understanding of partial workflows, based on AI planning 

techniques. Using this approach, a system can analyze a partial 

workflow composed by the user, notify the user of issues to be 

resolved in the current workflow, and suggest to the user what 

actions could be taken next. Using this approach, we have 

developed CAT (Composition Analysis Tool) and used it in two 

distinct domains: a scientific application for earthquake simulation, 

and a simple travel-planning domain to illustrate the approach. 

The paper begins by describing our motivations and goals based on 

a scientific application. We then describe the knowledge bases that 

we have developed to represent components, and present the 

algorithm to analyze a partial workflow and help a user complete it. 

We illustrate the resulting intelligent interaction with a detailed 

scenario of use. 
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2. MOTIVATING GOALS AND 

REQUIREMENTS  
 

 
Figure 1. A computational workflow for earthquake simulation 

analysis. 

To motivate the goals of this research we use a concrete scenario 

from our work with the Southern California Earthquake Center [11], 

though the basic requirements and problems are shared in other 

sciences as well [4,10]. 

Seismic hazard analysis (SHA) enables building engineers to 

estimate the impact of potential earthquakes at a construction site 

and on their building designs. Scientists have developed many 

models that can be used to simulate various aspects of an 

earthquake: the rupture of a fault and the ground shaking that 

follows, the shape of the wave as it propagates through different 

kinds of soil, the vibration effects on a building structure, etc. Some 

of these models are based on physics; others are empirical based on 

historical data on past earthquakes. The models are complex, 

heterogeneous, and come with many constraints on their parameters 

and their use with other models. 

Our ultimate goal is to develop intelligent user interfaces that enable 

unsophisticated users, such as building engineers and safety 

officials, to create end-to-end workflows composed of complex 

scientific models. As a first step to this goal, our work concentrates 

on assisting users to create a complete and correct workflow, 

focusing on relatively simple (though still realistic) models and 

workflows to make the problem more manageable. Currently CAT 

supports development of valid composition of components 

(workflow) that can be executed by providing specific data.  

Figure 1 shows an example of a workflow. Each component has 

several inputs; some are provided values directly by the user (e.g., 

the Duration-Year of the Fault Rupture Model). The user may also 

choose to have an input take the default value provided by the 

knowledge base (e.g., the Wave Propagation Model’s Standard-

Deviation-Type; default = “Total”), and a third group of inputs will 

take values linked from the results of the execution of other 

components (e.g., the simulated Rupture data output by the Fault 

Rupture Model is passed to the input of the Wave Propagation 

Model). 

Engineers may design the workflow in many different ways. One 

way is to think about it in terms of simulation models. They know 

they need two main steps: first, simulation of fault rupture; then, 

simulation of the wave propagation. They may prefer physics-based 

models or empirical models, and are a bit familiar with the scientific 

community and the methodology involved in creating each model. 

But another way to think about the workflow is the particular data 

they want to look at. Sometimes they want the wave's velocity at the 

site, or its acceleration. Sometimes they want the probability of 

earthquake above a certain magnitude affecting that site. Different 

models provide different types of results. Another way to think 

about the workflow is the situation they want to simulate. The 

engineer may start with a specific site, then look at its characteristics 

like basin depth, and then select models that incorporate these 

characteristics. 

In summary, users may design workflows using a variety of 

strategies, including: 1) top-down selection of components, starting 

from abstract types of models and then replacing them with more 

specific versions; 2) result-based selection of components, working 

from desired data to select models that can generate those results; 3) 

situation-based selection of components, working from the initial 

data available to select components whose constraints are consistent 

with those data. 

3. APPROACH 
Given the goals just described, we are developing a mixed-initiative 

approach where users can drive the process and the system 

proactively suggests useful next steps and ensures that the final 

workflow is correct.  

At any time, the user may: 

 select a component for inclusion in the workflow. It may be an 

abstract type of component, or a specific executable one. 

 specialize a component to a more specific one 

 establish a link between two components to indicate that the 

output of  one should be the input of another. 

 specify input data to the overall workflow 

 specify desired results 

(Users can also delete components and links.) 

At any time, the system should analyze the workflow, and suggest 

possible next actions to the user.  

We use two key techniques in our approach:  

1) knowledge-based descriptions of simulation models that 

support reasoning about multiple abstraction hierarchies of 

components. A given executable simulation model may be 

categorized in several abstract classes depending on the features 

being abstracted. In order to reason adequately about an abstract 

type of model, the system should be able to represent common 

features that apply to all models of that type. We use description 

logic to reason about ontologies of component descriptions. 

2) analysis of partially constructed workflows based on AI 

planning techniques. In our current framework, a workflow is a 

directed acyclic graph: components are nodes and links are directed 

edges. At any point during composition, the system can search this 

graph for missing components, for links that are inconsistent with 

the descriptions of the components, for unnecessary components, 

etc. Planning algorithms provide a useful framework to relate steps 

to goals and initial states, and can help us formalize a user's actions 

in terms of incremental plan generation. The next two sections 

describe each of these two techniques in turn. 



3.1 Supporting Knowledge Base 
In order to support the kinds of interactions described above, our 

knowledge base defines the components that can be used in a 

workflow and their input and output parameters. The component 

ontology has hierarchies of components that describe abstract-level 

components as well as specific executable components. The domain 

term ontology defines data types for representing input and output 

parameters and the constraints associated with them. It also defines 

how parameters of different components are related with each other. 

For example, it represents how parameters of abstract components 

are mapped to parameters of more specific ones.  

In developing the domain term ontology, pre-existing definitions 

and constraints can be exploited whenever they are available, 

though new terms and their associated constraints may need to be 

added. The component ontology is built based on the domain term 

ontology by relating inputs and outputs. For example, when a 

component is available as a web service and defined in WSDL 

(Web Service Description Language) [13], we can map its 

“operations” into component types in the component ontology 

based on input parameters in the request messages and output 

parameters in the response messages. Currently these ontologies are 

built by hand but we are exploring approaches for generating 

component ontologies semi-automatically from existing 

descriptions of the components, such as WSDL descriptions.   

Figure 2 shows a part of the ontologies that we are using in a travel-

planning domain. For example, component Car-Rental represents 

car rental operations, covering different types of car rental services. 

It can be specialized based on operation sites (Car-Rental-by-City or 

Car-Rental-by-Airport), vendors (Car-Rental-Enterprise, Car-

Rental-Breezenet, etc.), or both (Car-Rental-Enterprise-by-City). 

That is, the ontology contains features that characterize and 

categorize component subclasses. The parameters of the 

components are mapped to data types in the domain term ontology, 

as shown in the figure. For example, Car-Rental-by-City has two 

input parameters (Arrival-City and Arrival-Date) and one output 

parameter (Car-Reservation). 

 

Figure 2. Example Component Ontology and Domain Term 

Ontology. 

Note that because the component ontology describes abstract 

component types as well as specific components, users can start 

from a high-level description of what they want without knowing 

the details of what actual components are available. We often find 

that users have only partial description of what they want initially, 

and our tool can help users find appropriate ones by starting with a 

high-level component type and then specializing it. The ontology of 

data types can be used in a similar way when users have incomplete 

or high-level description of the desired outcome, as described 

below. 

These ontologies also play a key role in relating components in 

workflows, detecting gaps and errors, and producing suggestions. 

For example, a link between an output of a component to an input of 

another can be checked to see whether the output type is subsumed 

by the input data type. The hierarchy of component types can guide 

the user to specialize an abstract-level component into one he/she 

likes. (The details of errors and suggestions are described in the 

following section.) 

The CAT queries to the knowledge base include: 

• Get-Input-Parameters (Component) 

• Get-Output-Parameters (Component) 

• Subsumes (Data-Type1, Data-Type2) 

• Subsumes (Component1, Component2) 

• Executable (Component): check whether Component is an 

actual executable Component and not an abstract type 

• Get-specializations (Component[,role, val]): retrieve 

subconcepts of Component1, optionally only where value 

for role “role” is “val”.  

• Find-Component-with-Output-data-type (Data-Type) 

• Find-Component-with-Input-data-type (Data-Type) 

• Get-system-default-value (Component, Parameter) 

 

3.2 An Algorithm to Analyze Partial Workflows  
The analysis of partial workflows created by the user is done using 

an AI planning framework [14]. Each component is treated as a step 

in the plan, the inputs of a component are the preconditions of that 

step and the outputs are its effects, the links between components 

are treated as causal links, any data provided by the user form the 

initial state, and the desired end results are the goals for the planning 

problem. Each action taken by the user (add/remove component, 

specialize component, add/remove link) are akin to a refinement 

operator in plan generation. User Provided Data (initial data) and 

End Results (desired data) are handled uniformly as any other 

component, the former as a component with no input parameters and 

the latter as a component with no outputs. While automatic planning 

systems can explore the space of plans systematically and guarantee 

that the final plans are correct, interactive workflow composition 

requires an approach that lets the user decide what parts of the 

search space to explore and that can handle incorrect partial 

workflows.  

We have developed a domain-independent algorithm to support 

mixed-initiative workflow creation that assists the user by ensuring 

that the workflow is well-formed and executable. Specifically the 

final workflow must be compliant with a set of desirable properties: 

• Tasked — contains one or more End Results 

• Satisfied — all input parameters of all components are 

provided by other components, by default values, or as user 

inputs     



• Grounded — all components are executable (i.e., not 

abstract) 

• Justified — at least one output parameter of each component 

is linked to an End Result or to another Justified component  

• Consistent — each link connects an output of a component to 

the input parameter of another component, where the former 

subsumes the latter (its type is more general in the ontology 

• Unique — no link or component is redundant with any other 

one 

A full formalization of these properties and the algorithms below is 

provided elsewhere [5]. 

Note that these properties can also help relate the workflows 

generated by a user to workflows that an automated approach could 

generate. Workflows that contain errors of consistency and 

uniqueness would never be generated automatically. Two additional 

properties are then useful. A partial workflow is correct if it is 

consistent and unique. A workflow is complete if it is satisfied and 

tasked. Automated approaches always form workflows that are 

complete, correct, and justified. Our algorithm considers also the 

space of workflows that do not have these three properties, due to 

user error and non-systematic exploration of options that are natural 

in mixed-initiative approaches. Also note that our approach could be 

combined with an automated approach if our system is configured 

to help the user create a correct and justified workflow, which then 

the planner could use it as a starting point to fulfill the other 

properties and create a complete and grounded workflow. 

A workflow contains an error for each item that does not comply 

with these properties: links may be inconsistent or redundant, 

components may be unjustified, ungrounded, and the workflow 

itself may be untasked. 

Now the potential effects of the user’s primitive actions can be 

described more fully, in terms of the errors that they may introduce 

and the properties that they satisfy. Note the symmetry between add 

and remove actions, in terms of the potential fixes and errors 

generated.  

 

Add Component  

Possible Fixes: Tasked workflow if new component is the only 

End Result. 

    Possible New Errors: New component may not be Satisfied, 

Grounded, or Justified.  

Remove component 

Possible Fixes: Removed component may have been  

not Satisfied,  Grounded, or Justified.  

Possible New Errors: Tasked workflow if removed 

component was the only End Result, inconsistent links  if 

component had any links. 

Add Link 

Possible Fixes: Satisfied component if it now has no   input 

parameters without values. Justified component, if now linked 

to an End Result (or to a component linked to an End Result). 

Possible New Errors: New link may not be Consistent  or Unique. 

Remove Link        

    Possible Fixes: Removed link may have been not 

Consistent or Unique. 

 Possible New Errors: Not Satisfied component if it now has any 

input parameters without values. Unjustified component if now 

not linked to an End Result (or to a component linked to an 

End Result). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The ErrorScan Algorithm 

We have developed the ErrorScan algorithm to check whether a 

given workflow is compliant with the properties above. Each 

deviation from these properties, by the workflow or by one of its 

elements is reported as an error to the user. Based on the analysis of 

user actions shown above, the algorithm also generates specific 

suggestions to the user for how to fix each error found. Also, any fix 

suggested by CAT is an ordered sequence of the primitive actions 

above. The algorithm is shown in Figure 3. 

The algorithm consults the knowledge base to check the properties 

(e.g., the consistency of a link based on the parameter type 

definitions in the ontologies), and to generate suggestions (e.g., if an 

input parameter is not satisfied, ErrorScan will return from the 

knowledge base a list of components that have outputs that subsume 

the type of that parameter). 

In the interest of providing intelligent assistance, the algorithm 

filters its choice of suggestions, in that each suggestion must be a 

sequence of actions that, as a whole, fixes more errors than it causes. 

For instance, the system would never suggest adding an inconsistent 

link to fix an unsatisfied component. The suggestions tend to be 

additive or corrective, i.e., the system will not suggest removing a 

component or link unless added incorrectly by a user not following 

previous suggestions. In summary, if the user consistently applies 

suggested fixes, this will help to generate a workflow whose 

components conform to the desirable properties listed above.  

 

ErrorScan Algorithm 

Input: workflow 

Output: errors and corresponding suggestions 

I. If workflow is not Tasked 

   Suggestions: add [choose from possible End Results] 

II. For each component within workflow  

a. If component is not Justified  
Suggestions: Remove component and its links, or link 

to [choose from list of already Justified components]. 

b. If component is not Grounded  
Suggestions: Specialize component to [choose from 

specialized versions of component]. 

      c. For each input parameter of component 

1. If input parameter is not Satisfied 

    Suggestions: link from [choose from list of 

workflow and knowledge base components’ 

appropriate output parameters], use [parameter 

default value] from knowledge base, or enter a 

value manually.  

III. For each link within workflow 

If link is not Consistent  

 Suggestions: Remove link, or fix link by  

 interposing and linking [choose from appropriate 

components]. 

If link is not Unique  
          Suggestions: Remove link. 



 
Figure 4. CAT Interface, showing the workflow on the left and the system’s suggestions on the right. 

 

We also incorporated heuristics into the algorithm for ordering 

errors and suggestions as they appear in the interface. Errors are 

ordered most recent first (i.e., generated by the most recent user 

actions), and then by the more serious errors before warnings. For 

example, a non-unique link would only generate a warning, as a 

workflow with redundant links may still be correct. Suggestions are 

ordered with specific fixes listed before informational messages, 

and the algorithm filters out fixes that involve the addition of new 

components to the workflow, if similar fixes can be applied using 

components already in the workflow. 

 

4. EXAMPLE    
Figure 4 shows the current web-based interface (for earthquake 

science domain). On the left of the screen are components and links 

currently in the workflow. On the right are workflow errors, and 

suggestions for the selected error. For illustration purposes, the 

example detailed below will use a simpler travel-planning domain. 

Also, subsequent screenshot figures will be cut/pasted from the 

various areas of the interface; each figure will contain elements 

from the components/links area followed by elements from the 

errors/suggestions area.   

The user wants to find a flight reservation number and, based on the 

flight details, a car rental reservation at the arrival airport. The user 

adds “Reserve Flight” component and “Car Rental” component, and 

links these components’ outputs to the appropriate End Results. Fig. 

5 shows the errors that are now present in the workflow. Note that 

the added components are both not executable (i.e., they represent 

generic families of services). Suggestions for specializing “Car 

Rental” are also shown in Fig. 5, based on the component ontology 

(i.e., how they are related to each other). 

 
Figure 5. Component added by applying system’s suggestion; 

system points out that some components are not executable. 



This case represents the system’s “top-down” flexibility, in which 

the user can compose a workflow using abstract components, and 

when desired, specialize those components as necessary.  

 

 

Figure 6. Abstract component specialized by applying system’s 

suggestion; system finds more unsatisfied inputs. 

 
In Fig. 6, the user has fully specified (by location and vendor) “Car 

Rental” to “Car-Rental-Enterprise-by-City”. “Reserve Flight” has 

similarly been fully specialized to “Reserve-Domestic Flight-

Orbitz-by-City”. The value of CAT’s mixed-initiative interface is 

notable here. Instead of having to encode preferences and evaluate 

multiple, similarly valid plans, CAT allows user preference to 

resolve unconstrained choices at each step. Note also that the link 

from the newly specialized “Car Rental: Car-Reservation” 

parameter, to “End Result 1: Car-Reservation”, remains intact 

between Figures 5 and 6. In order to provide this automated 

intelligent assistance, CAT’s component ontology defines how the 

parameters of different component types are related with each other, 

and can track parameter equivalencies between parent (less specific) 

and child (more specific) components.  

Now, most of the remaining errors in the workflow are the inputs to 

the two components, which have no values assigned. However, note 

that the system suggests that at least one of these inputs, “Car 

Rental: Arrival Date” can be satisfied by linking the similarly-typed 

output from “Reserve Flight: Arrival Date” (Figure 6). 

In Fig. 7, the user has provided additional data (Departure City, 

Arrival City, and Departure Date), and linked these to the 

appropriate input parameters of the “Car Rental” and “Reserve 

Flight” components, so that no components are not Satisfied. This 

demonstrates CAT’s flexibility: even when the necessary user data 

is not provided at the start of the composition, the system can still 

provide useful suggestions to make progress. The figure represents a 

correct workflow; the only error remaining is a warning about 

unused output, which may be ignored. 

 
Figure 7. User-provided data is linked to unsatisfied inputs. 

 
Figure 8. Extending a previous workflow for a new situation. 

 
Figure 9. Inconsistency fixed by applying system’s suggestion. 



Suppose after several times using the same workflow to arrange 

domestic trips, the user decides to change “Reserve Flight” to book 

a foreign flight. There is a new wrinkle: foreign flights reservations 

require a Visa number. The user, realistically, attempts to provide 

her passport number for this input (Fig. 8), though this action was 

not suggested by the system. When invoked, ErrorScan reports that 

the link input and output types are mismatched (inconsistent). 

However, the system notes that there is a component "Visa Service" 

which can be interposed into the inconsistent link, creating two 

correct links (as shown in Fig. 9, wherein the error level is resolved 

to warnings-only as in Figure 7). This example demonstrates the 

potential of the system to suggest intelligent solutions to workflow 

errors. Another point of this scenario is that the system can find 

fixes for any user errors, although the interface is flexible enough to 

allow the user to disregard suggestions by manually adding and 

deleting components and links.  

5. RELATED WORK 
Graphical tools to lay out a workflow and draw connections among 

steps abound (e.g., [1,2,3]) but the tools are limited to simple checks 

on the process models, because there is no semantics associated 

with the individual steps and links. In contrast, we assume a 

knowledge-rich environment where the system can check whether 

the workflow makes sense within the background knowledge that it 

has.  

AI planning approaches for web service composition focus on 

automatically generating compositions that satisfy user given goals 

[7,8]. Our work provides an alternative and complementary 

approach addressing the issues that arise when users want to 

influence the composition process, including selection of 

components and their configuration. Our interactive framework also 

helps when the user has an incomplete description of goals or initial 

state since he/she can start from high-level task types and then 

gradually introduce new requirements and preferences while the 

workflow is being built. 

There has been increased interest in mixed-initiative approaches to 

constructing plans [9, 12] but they are not designed to exploit 

background knowledge and ontologies, which we believe is crucial 

technology to providing the strong guidance needed by end users. 

 

6. SUMMARY AND FUTURE WORK 
We presented an approach to interactive workflow composition that 

combines knowledge bases that have rich representations of 

components together with planning techniques that can track the 

relations and constraints among individual steps. The tool we have 

developed has been applied to two different applications: 

constructing workflows in travel planning domain and constructing 

computational workflows in earthquake science domain.  

Our plans for future work include dynamic generation of component 

ontologies, by deriving abstract component classes from initial 

component descriptions, incorporation of automatic composition 

approaches to our interactive framework, and user evaluations. 
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