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Abstract: Bone malignant tumors are metastatic and aggressive, with poor treatment outcomes and
prognosis. Rapid and accurate diagnosis is crucial for limb salvage and increasing the survival rate.
There is a lack of research on deep learning to segment bone malignant tumor lesions in medical
images with complex backgrounds and blurred boundaries. Therefore, we propose a new intelligent
auxiliary framework for the medical image segmentation of bone malignant tumor lesions, which
consists of a supervised edge-attention guidance segmentation network (SEAGNET). We design
a boundary key points selection module to supervise the learning of edge attention in the model
to retain fine-grained edge feature information. We precisely locate malignant tumors by instance
segmentation networks while extracting feature maps of tumor lesions in medical images. The
rich contextual-dependent information in the feature map is captured by mixed attention to better
understand the uncertainty and ambiguity of the boundary, and edge attention learning is used to
guide the segmentation network to focus on the fuzzy boundary of the tumor region. We implement
extensive experiments on real-world medical data to validate our model. It validates the superiority
of our method over the latest segmentation methods, achieving the best performance in terms of
the Dice similarity coefficient (0.967), precision (0.968), and accuracy (0.996). The results prove the
important contribution of the framework in assisting doctors to improve the accuracy of diagnosis
and clinical efficiency.

Keywords: bone malignant tumor lesion; supervised edge attention; boundary key points; medical
image; intelligent auxiliary

1. Introduction

Bone malignant tumors have always been one of the most serious problems of human
health [1]. They can be divided into primary and metastatic bone tumors. The disease is life-
threatening and difficult to treat. The most frequent bone malignant tumor is osteosarcoma,
and the second is Ewing’s sarcoma [2]. The two types of sarcomas described above are
primary bone malignant tumors that are more prevalent in adolescents and have high
metastatic rates and mortality rates [3]. If patients are not diagnosed and treated in a timely
manner, they may be at risk of amputation or metastasis. Therefore, early detection and
timely treatment of the disease will increase the survival rate.

When a physician lacks sufficient experience, it is difficult to detect and segment bone
malignant lesions accurately in real time using traditional diagnostic methods based on
manual labor. Only about 20 of the approximately 600 MRI images of a patient contain
lesions. Inexperienced doctors may take 10 s to review each medical image and 3–5 min
to review all the images. Clinical efficiency is extremely low when there are a lot of
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patients. Since 10% of bone tumors are malignant and there have been fewer cases in the
past, detection and segmentation require doctors with sophisticated expertise as well as
substantial experience [4]. The diagnostic process can be time-consuming and laborious,
making it difficult to improve the accuracy and efficiency of diagnosis. Furthermore, there
are limitations on healthcare resources and poor construction of medical infrastructure in
low-income areas of developing countries, as well as an inequitable distribution of public
healthcare resources between developed cities and remote areas. In China, for instance,
about 80% of medical resources are centered in developed cities, where only 10% of the
population is located. However, 90% of those living in remote mountainous areas receive
only 20% of healthcare resources [5–8]. Therefore, there is an urgent need for practical
solutions to address these issues. This is why we propose an intelligent auxiliary framework
for segmenting bone malignant tumors.

AI has a wide range of applications in the healthcare industry and can significantly en-
hance clinical diagnosis efficiency by compensating for the shortage of healthcare resources
and doctors’ experience. Currently, deep learning is being extensively applied to medical
image analysis in the field of diseases [9–11] and tumors, such as lung cancer [12,13] and
breast cancer [5,14,15]. Medical AI systems based on deep learning have similarly shown
significant promise in aiding the diagnosis and prognosis prediction of bone tumors based
on imaging scans such as X-rays, CT, MRI, PET, and histopathology slides [16]. As pre-
sented in [17], the authors propose a multi-task deep learning model for segmenting and
classifying primary bone tumors on radiographs with a performance equivalent to that of
a trained doctor. To assist doctors, the authors in [18] used deep learning to classify and
segment knee bone tumors in X-ray images. It should be noted, however, that these studies
were limited to X-ray images without considering MRI data.

In clinical practice, the accurate localization of tumor lesion areas and boundaries
from medical images plays a crucial role in diagnosing disease, making medical decisions,
and developing treatment plans. In particular, MRI is non-radioactive and non-biologically
damaging to the body. It is more effective for soft tissue components such as tumors, blood
vessels, and muscles. Therefore, MRI is an effective diagnostic and evaluation tool for
doctors. According to our knowledge, no relevant studies have been conducted in the area
of segmenting the most common malignant bone tumors in MRI. This paper presents for
the first time an intelligent auxiliary framework that fills an existing gap in the field.

Deep learning is being applied to the field of medical image segmentation in order
to assist doctors in identifying disease lesions efficiently and accurately [19–22]. There
is also the network architecture U-Net [23] for biomedical image segmentation, and its
variants UNet++ [24], UNet 3+ [25]. These methods are suitable only for segmentation tasks
in which anatomical structures are clearly defined. Among the primary bone malignant
tumors, osteosarcoma is the most common. The tumor lesion boundaries on MRI images
are ambiguous and the background relationships are complex. Therefore, we propose the
use of a supervised approach to achieve accurate segmentation of the lesions. Osteosarcoma
has a low survival rate [26] and is prone to metastasis to the lungs [27–30], and if diagnosed
in time, the 5-year survival rate rises to 74% [31,32]. Based on MRI images of osteosarcoma,
we propose an intelligent auxiliary framework for segmenting bone malignant lesions,
aiming to improve the accuracy and efficiency of clinical diagnosis for doctors.

The main contributions of this study are as follows:

1. We propose SEAGNET, a novel segmentation network, for the accurate segmentation
of bone malignant tumor lesions in medical images.

2. We develop a new edge attention module that enables the network to focus on the fuzzy
boundaries of real tumor lesions, which captures more edge detail feature information.

3. We design a boundary key points selection algorithm to encode the selected key points
on the tumor boundary, which supervises the learning of edge attention to correct the
segmentation of the network.
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4. We validate the proposed model with a wide range of experiments on a real-world
dataset. The results show that it outperforms other models in the segmentation of
bone malignant tumor lesions with complex backgrounds and blurred boundaries.

2. Related Work

Although there are some methods which focus on the boundary [33,34] or the edge [35,36],
these methods are based on the segmentation of medical images of skin lesions, blood
vessels, and lungs. It is difficult to apply these methods to the segmentation of targets with
blurred boundaries and complex background relationships in medical images.

In the study of bone tumors based on X-ray images, Furuo et al. [4] used deep learning
to automatically classify tumors as benign or malignant: VGG16 (f1 score: 0.790) and
ResNet152 (f1 score: 0.784). von Schacky et al. [17] proposed a multi-task deep learning
model with 80.2% accuracy, 62.9% sensitivity, and 88.2% specificity in the classification of
tumors as benign or malignant using bounding-box placement IoU (0.52) and the mean
Dice score (0.6) for segmentation. In [18], the authors proposed the Seg-Unet model for
the segmentation of knee bone tumors (mean IoU of 84.84%) as well as for classifying the
tumors as benign or malignant (99.05% accuracy). Since the tissue structures in single-view
X-ray images are overlapping and have limited resolution, unlike MRI images which have
excellent resolution and rich texture details of the tissue, it is difficult for the model to
capture recognizable features, which limits its performance.

Dionisio et al. [3] demonstrated a high similarity between manual and semi-automatic
segmentation of bone sarcomas in MRI. However, their semi-automatic segmentation
method is based on the GrowCut tool, which requires the help of manual labor, rather than
a deep learning model for automatic segmentation. Currently, machine learning is being
applied to primary bone malignant tumors, such as osteosarcoma.

The following studies considered the detection and classification of osteosarcomas based
on histological images. Based on the transformer deep learning technique, Pan et al. [37]
classified necrotic tumors, non-tumors, and viable tumors (99.17% accuracy). However,
the model size is large, and training requires advanced hardware equipment and a lot
of time. Again, Badashah et al. [38] proposed a GAN based on fractional-Harris hawks
optimization, achieving 98% accuracy, sensitivity, and specificity, but the dataset is small,
and the model is difficult to scale up to large datasets. In addition, Anisuzzaman et al. [39]
adopted pre-trained CNNs (VGG19 and Inception V3) and transfer learning techniques.
They achieved the highest accuracy (96%) with VGG19 but the results were not evaluated
by pathologists. A combination of traditional manual features and deep learning features
was used to achieve an overall accuracy of 99.54% by Bansal et al. [32]. All of these studies
identify the three types of osteosarcoma in histological images that require needle biopsy.
There have also been some exploratory studies in the management of treatment response
in osteosarcoma [40–43]. However, this requires specialized biomedical knowledge.

For segmentation, Baidya Kayal et al. [44] used DWI data. The DNN has the highest
accuracy (Dice coefficient: ~73%; Jaccard index: ~62%; precision: ~77%; recall: ~86%;
Pearson correlation coefficient = 0.79). However, the model is very sensitive to the noise
in the image as well as the initialization of the algorithm. Nasor et al. [45] integrated
common image processing techniques such as Canny edge detection, Gaussian filtering,
and machine learning techniques such as the K-means clustering algorithm, resulting in
95.96% precision, 86.15% recall, 99.51% specificity, an 89.84% Dice score coefficient, and
98.02% accuracy, but the test data is only 50 images, and the model is only applicable to
simple tasks.

In addition, Wu et al. [46] considered the relationship between body features and edge
features. With fewer parameters, the percentage of IOU is 90.51%. It can be challenging
to process redundant information when both edge features and full-image information
are taken into consideration. In another work [47], they proposed that the Residual Fu-
sion Network learns image information at different resolutions (DSC: 0.929; IOU: 0.867).
Understanding the consistency of information at different resolutions can lead to more
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complex models that are prone to overfitting. Liu et al. [48] proposed the CaPaN to effi-
ciently encode tumor lesions of different sizes and feature local to global information. There
is a greater advantage (DSC of 0.913) in segmenting small target tumors. However, the
domain adaptivity between multi-scale targets is not sufficiently considered. Wu et al. [49]
proposed the combination of SepUNet and CRF for the segmentation of tumor regions.
Although speed and cost are taken into account to ensure accuracy (DSC: 0.914), the exces-
sive pre-processing of raw data not only leads to a loss of information but also reduces the
error tolerance of the model for sensitive data. Shen et al. [50] introduced the FaBiNet to
learn local detail features and global top information separately, finally integrating them
for the segmentation task with 0.95 accuracy and 2.33 M params. Nevertheless, the lack of
an inherently consistent understanding of high-level semantic information and low-level
information causes performance limitations.

Moreover, the effective use of advanced transformer technology and a self-attention
mechanism, together with noise pre-processing techniques, brings great benefits to medical
image segmentation. Wu et al. [51] proposed ETUNet for the segmentation of osteosar-
coma lesions after filtering medical images with redundancy and noise to improve the
segmentation performance (DSC of 0.935). However, the use of subjective assessments in
pre-processing and noise reduction is subject to bias and error. Wang et al. [52] took into
account the location and regional information of the tumor from the perspective of local
enhancement after processing the noise; the proposed DFANet achieves excellent segmenta-
tion performance (DSC of 0.964). Introducing complex network modules in noise reduction
can lead to bloated models with too large scales. To capture medical image features globally,
Ling et al. [53] used CNN and Swin Transformer. The results show that DSC outperforms
Unet by 2.6% and Unet++ by 1.8%. However, Swin Transformer will generate huge mem-
ory consumption for large-scale resolutions. Ouyang et al. [54] designed a segmentation
architecture (UATransNet) that fuses local to global features based on self-attention and
U-Net to improve the accuracy of segmentation (IOU: 0.922± 0.03, DSC: 0.921± 0.04). This
method cannot accurately segment fuzzy boundaries with little difference in gray level.
Lv et al. [55] proposed a priori guided segmentation networks based on few-shot learning
with a DSC of 0.945. However, few-shot learning tends to be limited to domain-specific
problems. Wu et al. [56] presented BA-GCA Net to learn better texture detail information of
tumor region boundaries in order to achieve better performance, with a DSC of 0.927. In the
case of simple tasks, however, the model trained for complex scenarios will easily overfit.
The transformer technique improves the performance of segmentation, but overly complex
deep learning models are more difficult to train and tune, as well as prone to overfitting.

Unlike the above methods, we focus more on understanding the uncertainty and
ambiguity of fuzzy boundaries in medical images with complex backgrounds, and the
inherent consistency of image features in order to better segment the boundaries of tumors.
We develop an intelligent auxiliary framework for segmenting bone malignant tumors.
The purpose of this is to compensate for the lack of clinical experience of doctors and to
optimize the diagnostic workflow. Since osteosarcoma is very typical and most frequent
among bone malignant tumors, it seriously endangers the life and health of children as
well as adolescents. Therefore, we adopted osteosarcoma in MRI images as the case study
for this paper.

3. Framework Design

This section introduces the framework of the SEAGNET for the precise segmentation
of bone tumors in MRI. Firstly, the feature maps containing low-level features and high-
level semantic information were obtained from the output {P2, P3, P4, P5, P6} of the
Feature Pyramid Network (FPN) with ResNet-50 as the backbone, as shown in Figure 1.
Secondly, all candidate boundary boxes of regions of interest (RoIs) are filtered by a Region
Proposal Network (RPN [57]) module. The RoI Align operation will faithfully preserve the
accuracy of spatial locations; the pixel positions are precisely aligned in space, and then
boundary-box regression and mask generation are performed to localize the region of the
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bone tumor lesion. A mixed attention (MA) module captures abundant context-dependent
information about the tumor lesion region and its edge background from the generated
mask head. In the edge attention (EA) module, the predicted boundary points column
feature maps are generated by the boundary points proposal (BPP) module, and edge
attention is learned so as to weight the extracted features to guide segmentation. Finally,
a boundary key points selection (BKPS) module is used to supervise the learning of edge
attention, and then capture the fine-grained feature information of the ambiguous boundary
of the lesion region.
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Figure 1. The architecture diagram of SEAGNET.

In the overall structure diagram of SEAGNET, firstly, the upper part of the diagram
shows the instance-segmentation architecture that locates the position and region of the
bone tumor. It also includes the regression of the bounding box and the generation of
the head mask. The purpose is to obtain a feature map of the head mask. Secondly, the
network branch with the head mask features as input for the segmentation network for
bone malignant tumor lesions.

3.1. The RoI Align Operation

The process of extracting the head mask features using the instance segmentation
network enables the preservation of important pixel spatial location information on the
bone tumor edges. We follow the RoI Align concept in Mask R-CNN [58] and add a layer
of alignment sampling for the pixel points that cannot be integrable when obtaining the
small feature map (7 × 7) of the proposal bounding box, as shown in Figure 2. Pooling
is performed after sampling by bilinear interpolation, instead of simply performing the
maximum pooling operation. Maximum pooling ignores the key pixels with strong dis-
criminative power near the fuzzy boundary of bone malignant tumors, which will result in
the loss of accurate spatial location information. This is negative for the accurate prediction
of the pixel mask which will limit the performance of bone tumor segmentation.
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Figure 2. The alignment sampling in the RoI Align operation. A window is set up with four sampling
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points covered by the window.

Given that the pixel values of the four nearby grid points are f (x1, y1), f (x1, y2),
f (x2, y1), f (x2, y2), then the pixel value of p(x, y) is:

f (p) = y2 − y
y2 − y1

f (q1) +
y − y1
y2 − y1

f (q2) (1)

The pixel values of q1, q1 are:

f (q1) =
x2 − x
x2 − x1

f (x1, y1) +
x − x1
x2 − x1

f (x2, y1) (2)

f (q2) =
x2 − x
x2 − x1

f (x1, y2) +
x − x1

x2 − x1
f (x2, y2) (3)

3.2. The Edge Attention Module

Using edge attention, the network is guided to focus on the boundaries of tumor
lesions, exploring discriminative pixel information, and avoiding background noise inter-
ference. The module first learns the relevant dependency information of the features in the
mask head using the mixed attention module to obtain an enhanced feature representation
Ftumor ∈ Rw×h×c for the inherent understanding of the boundary fuzzy features. Then,
the boundary points proposal (BPP) module learns the edge key pixel points feature map
Fpoints ∈ Rw×h×1, which contains the weights of the edge pixels, and the Ftumor weights to
guide structural boundary information learning. To avoid the impact of attention features
on the performance of the original Ftumor, a skip connection is used to fuse Ftumor and Fpoints,
which generates the edge attention-enhanced feature map Fedge ∈ Rw×h×c. Its mathematical
representation is:

Fedge = Ftumor ⊗
(
1⊕ Fpoints

)
(4)

where ⊗ denotes multiply and ⊕ denotes add. If the results of the attention Ftumor ⊗ Fpoints
are close to 0, then the Fedge is approximately equal to the Ftumor which preserves the original
features, and the real role of the attention is to enhance the features of the fuzzy borders of
the bone tumor lesion.

3.2.1. The Mixed Attention Module

The feature map of the head mask contains information about bone tumor lesions,
nearby tissues, and the background. Additionally, the segmentation task does not only
focus on the regions of bone tumor lesions, but also on other structures within the medical
image, such as muscles, fat, healthy bone, and other tissues. For this reason, we propose
a mixed attention module that captures rich remote context dependencies from both the
channel dimension and the spatial dimension to better understand the uncertainty and
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ambiguity of fuzzy boundaries. As shown in Figure 3, the module architecture consists of
two branches: the channel attention branch and the spatial attention branch.
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The channel attention branch directly reshapes the head mask features O f ∈ RH×W×C

into RN×C, N = H ×W, preserving the original number of channels. Then the attention
weights A ∈ RC×C between each channel feature are calculated:

ajk =exp(O f k · O f j)/ ∑C
k=1 exp(O f k · O f j) (5)

where ajk is the impact of channel k on channel j.
The features of the bone tumor are soft weighted ajk · O f l , and other instance features

are given very small weights for filtering, thus avoiding the interference of complex back-
ground noise information. Finally, the features are fused with the original features by skip
connection to enhance the discriminative ability of bone tumor features in the channels, the
output is B ∈ RH×W×C:

Bj = ω ∑C
k=1(ajk · O f l) + O f j (6)

where ω is the learning factor.
The spatial attention branch first performs a channel dimensionality reduction of the

input feature O f ∈ RH×W×C by 1 × 1 convolution to produce three new feature maps

{Q, S, V} ∈ RH×W× C
8 . With a structure similar to that of the channel attention branch,

the attention weights E ∈ RN×N , N = H ×W of the relative positions of the features are
calculated:

ejk = exp
(
Qk · Sj

)
/ ∑N

k=1 exp
(
Qk · Sj

)
(7)

where ejk is the impact of position k on position j.
Before the relative spatial positions of the features are soft-weighted, we reshape V into

RN× C
8 . After that, upsampling using 1 × 1 convolution maintains the same dimensionality

as the head mask feature map. Finally skip connection is used to fuse the original features
and attention features in a residual way. The output of the spatial attention branch is
U ∈ RH×W×C:

Uj = ϕ ∑N
k=1(ejk · Vk) + O f j (8)

where ϕ is the learning factor.
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Lastly, the outputs of the two branching networks are integrated into a new feature
map Z = B + U to better understand the inherent consistency of the boundary features
and thus enhance the representation of the original features.

3.2.2. The Boundary Points Proposal Module

In this paper, the proposed BPP module is used to predict the boundary feature
map of the tumor lesion region in medical images. The network activates pixels with
discriminative ability on the edges as candidate boundary points, which locate the position
of the fuzzy boundary.

In order to capture the long-range dependence of pixels, we perform dilated convolu-
tion to expand the receptive field instead of using pooling, which leads to the loss of precise
spatial location information. Moreover, a parallel multi-branch structure is employed to
extract features at various resolutions using different scales of dilated convolution. As a
result, the network is able to better understand the inherent consistency of fuzzy boundary
context features in medical images. This improves the segmentation accuracy of bone
malignant tumors. As shown in Figure 4, the module consists of several parallel branches,
each of which generates feature maps at different scales. The role of 1 × 1 convolution
is to reduce the dimensionality, and the different dilation rate on each branch represents
the different scales of dilated convolution (kernel size of 3 × 3) to capture the features
under different receptive fields. Each convolution (Conv) operation is appended with batch
normalization (BN) for regularization.
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Finally, the network concatenates (Concat) the outputs of the different branches, then
activates the candidate point maps on the fuzzy boundaries using the Sigmoid function, and
outputs the attention matrix of the boundary point columns to weight the original features.

3.3. The Boundary Key Points Selection Module

To make the segmentation network converge rapidly and minimize the uncertainty
of fuzzy boundaries, the problem of the isolated distribution of fuzzy boundaries of bone
malignant tumor lesions in image segmentation is solved. In other words, the edge-
attention network alone cannot perceive the complex tumor boundaries in the ambiguous
lesion region. Therefore, we use supervised learning to correct the training parameters of
the network.

Therefore, there is a need to obtain the key points that most closely match the bound-
aries of real bone tumor lesions in medical images. We designed a boundary key point
selection algorithm (Algorithm 1) to solve this problem. The algorithm is trained iteratively
to generate the optimal boundary points. First, the boundary of the bone tumor is obtained
from the actual MRI image using a traditional edge detection algorithm. Then we randomly
select n points Pt

n =
{(

xt
1, yt

1
)
,
(
xt

2, yt
2
)
, · · · ,

(
xt

n, yt
n
)}

, where t represents the number of
iterative experiments, and we construct a boundary region Regt

n by connecting these points.
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We measure the similarity between the constructed boundary region Regt
n = const

(
Pt

n
)

and
the segmentation region RegGT of the ground truth by computing the Hausdorff distance
(HD); the calculation rules for HD are shown in Figure 5. This metric is more sensitive to
the boundary of the segmentation region. Finally, the boundary points with the minimum
HD value are selected.
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The equation for HD can be written as:

HD(X, Y) = max(dXY, dYX) = max{maxmind(x, y), maxmind(y, x)} (9)

where x ∈ X denotes the pixel points on the boundary of Regt
n and y ∈ Y denotes the pixel

points on the boundary of RegGT .
The selected key points Pselect is calculated as:

Pselect = arg min HD
(

Regt
n, RegGT

)
, t ∈ [1, T] (10)

Algorithm 1 Boundary Key Points Selection.

1: function SELECTION(T, RegGT , n)
2: HDmin ← +∞ // Initialization
3: for t = 1 to T do
4: Pt

n ←
{(

xt
1, yt

1
)
,
(

xt
2, yt

2
)
, · · · ,

(
xt

n, yt
n
)}

// select n boundary points
5: Regt

n ← const
(

Pt
n
)

// construct the region
6: HDt ← HD

(
Regt

n, RegGT
)

// Hausdorff Distance
7: if HDt < HDmin then
8: HDmin ← HDt
9: Pselect ← Pt

n //update
10: else
11: continue
12: return Pselect

To eliminate the effect of outliers, the result retains 95% of the distances between the
boundary points X and Y. X is the boundary point of the region Regt

n, Y is the boundary
point of RegGT . On the right side in Figure 5, through steps (1) to (3), we select the minimum
distance from point x1 in X to all points in Y. Similarly, the minimum distance from the
point x2 in X to all points in Y is selected from (4) to (5). We convert the roles of X and
Y, calculate the bidirectional HD between X and Y, and take the maximum value of the
distance to measure the similarity between X and Y. In other words, the smaller the value
of HD, the higher the similarity between X and Y. The optimal boundary points are selected
by the minimum HD value.

3.4. Model Description

The detailed configuration of the model is shown in Table 1, including the main layers,
their operations, and their input sizes. First, we obtain the feature maps for performing
downstream tasks through the backbone (ResNet50) + FPN architecture: rpn_feature_map
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and mask_feature_map. Second, we obtain the candidate boxes through the RPN network.
RoI Align generates 7 × 7 × 256 feature maps. There are two branches to the network
output: one is a shared, fully connected layer that performs classification and box regres-
sion respectively, and the other is our head mask feature generation, which is used for
downstream tasks in the EA module as input. The final output of the segmentation mask
(512 × 512 × 1) and the boundary point attention map (512 × 512 × 1) will be computed
with the output of the trained BKPS module for loss. The loss is minimized through training
to achieve the purpose of the BKPS module, which is to supervise the EA network and
correct the prediction.

Table 1. Description of the network layer setup of our proposed SEAGNET.

Network Layers Parameters Description

Input layer (512, 512, 1)

Backbone (ResNet50)

C1 layer MaxPooling2D (256, 256, 64)
C2 layer 2 × Identity Block (128, 128, 256)
C3 layer 3 × Identity Block (64, 64, 512)
C4 layer 22 × Identity Block (32, 32, 1024)
C5 layer 2 × Identity Block (16, 16, 2048)

FPN

P2 layer Conv2D (128, 128, 256)
P3 layer Conv2D (64, 64, 256)
P4 layer Conv2D (32, 32, 256)
P5 layer Conv2D (16, 16, 256)
P6 layer MaxPooling2D (8, 8, 256)

rpn_feature_map [P2, P3, P4, P5, P6]
mask_feature_map [P2, P3, P4, P5]

RPN
class_logits Conv2D (16, 512 × 512, 2)

probs Conv2D (16, 512 × 512, 2)
bbox Conv2D (16, 512 × 512, 4)

FC layer Size(1024)
Head layer Conv2D (14, 14, 256)
MA layer Conv2D (14, 14, 256)
BPP layer Conv2D (14, 14, 256)
EA layer Conv2D (14, 14, 256)

3.5. Loss Function

We train the instance segmentation task in medical images to capture features accu-
rately localized to the bone tumor lesion region. The loss function is the sum of the losses
from multiple tasks:

lseg = lcls + lbox + lmask (11)

lcls = −α(1− ρ)γ log(ρ) (12)

where the lcls represents the classification task. The advantage of the loss is to solve the
problem of difficult-to-classify samples and improve the performance of the model in
general. ρ indicates the affinity of the prediction with ground truth, α and γ are two
variable parameters.

The lbox is a variant of the IOU loss for tumor lesion detection:

lbox = lIoU +
(

d
c

)p
(13)

where d denotes the distance between the center point of the prediction box and the ground
truth, c is the distance between the diagonal of the smallest convex shapes, and p is the
control parameter, lIoU = 1− IOU.



Diagnostics 2023, 13, 223 11 of 22

To decouple from the classification task and highlight the exact contribution of each
pixel, a sigmoid activation is used at each pixel and the average binary cross-entropy loss is
employed as the mask loss lmask.

In the supervised learning of edge attention networks by the BKPS module, we
introduce the minimum cross-entropy loss ledge between the distribution Dpred predicted
by the BPP module and the distribution DGT generated using the key points selection
algorithm on the ground truth.

ledge = −DGT · log Dpred − (1− DGT)· log(1− Dpred) (14)

RegGT constructed from the ground truth and the region Regpred segmented by the
edge-attention guidance is:

lreg = −RegGT · log Regpred − (1− RegGT) · log(1− Regpred) (15)

Finally, the total loss of the entire malignant tumor lesions segmentation framework is:

ltotal = lseg + ledge + lreg (16)

4. Experiments
4.1. Datasets

The medical image dataset of bone malignant tumors used in our experiments is over
4000 MRI images of osteosarcoma from 89 patients provided by our domestic partner
institution (The Second People’s Hospital of Huaihua), and the ground truth was annotated
by three doctors with more than 10 years of clinical experience in hospitals. The annotation
of the dataset was conducted in two phases. In the first fully blinded phase, each doctor
independently reviewed each osteosarcoma MRI image without interference from other
doctors and marked the segmentation mask of the tumor lesion. The second phase involved
open review. Each doctor independently reviewed his own segmentation markers as well as
the anonymous segmentation markers of the other two doctors and provided his comments.
For the annotated data, we selected the MRI images annotated by three physicians in
agreement. This was done to avoid potential bias and inconsistency due to the different
experiences of the doctors. The ratio of data used for training and testing in the experiment
is 8:2. These data include T1 and T2 images from MRI, and the tumor lesion areas are
mainly located in the patient’s legs and knees. All data was obtained from within the last
10 years of the hospital’s records.

4.2. Evaluation Metrics

In our experiments, we chose several metrics: accuracy (Acc), precision (Pre), recall
(Re), F1 score (F1), intersection over union (IOU) and Dice similarity coefficient (DSC), to
analyze the performance of the SEAGNET model. In the confusion matrix of the model the
metrics were: true positive (TP), true negative (TN), false positive (FP), and false negative
(FN), where TP represents the predicted lesion region, which is the tumor lesions. TN
represents the indicated normal area, but the actual situation is healthy tissue. FP means
that the predicted pixels are labeled as a tumor lesion, but they are located in the non-lesion
area. FN indicates that the predicted pixels are located in the region of healthy tissue, while
in fact they are in the tumor region. The equations to calculate Acc, Pre, Re, and F1 are
as follows:

Acc =
TP + TN

TP + TN + FP + FN
(17)

Pre =
TP

TP + FP
(18)

Re =
TP

TP + FN
(19)
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F1 =
2 ∗ Pre ∗ Re

Pre + Re
(20)

Both IOU and DSC are metrics that measure the similarity between two sets. The
range of the values of these two metrics is from 0 to 1, and a value closer to 1 means a
segmentation result with close to ground truth. We set I1 to represent the predicted pixels
belonging to the tumor lesion region, and I2 as the ground truth. Then the IOU and DSC
are calculated as follows.

IOU =
I1 ∩ I2

I1 ∪ I2
(21)

DSC =
2 ∗ |I1 ∩ I2|
|I1|+ |I2|

(22)

4.3. Training Strategy

The model was optimized using the Adam optimizer and implemented using PyTorch.
Our model was trained with 182 epochs. The size of the batch was 16, the momentum and
weight decay coefficients were set to 0.9 and 0.0001, respectively, and the initial learning
rate was 0.02. The size of the input images was 512 × 512, and we augmented the medical
image dataset of tumors by scaling, cropping, rotating, transforming, flipping, and salting.

To improve the performance of the model we conducted fine-tuning experiments on
the hyperparameters. According to Figure 6a, when the model was trained to 182 epochs,
the loss was minimized. It was at this point that the model reached its optimal fit. But as
the epoch increases, the loss of the model shakes around the optimal point. Therefore, we
selected the minimum number of epochs that would achieve the optimal solution. At the
same time, we conducted comparison experiments for three learning rates {0.01, 0.02, 0.03}
to identify the most appropriate learning rate (LR). The choice of the initial learning rate is
crucial to the training of the model. For our task, we performed experiment analysis at the
three selectable learning rates mentioned above. The results are shown in Figure 6b. The
learning rate (0.01) that is too small has a slow loss drop and continues training does not
achieve better results. Although the larger learning rate (0.03) has a fast loss drop, it does
not achieve an optimal fit. As for LR=0.02, the loss drop is not obvious at first, but there is a
noticeable drop at epoch=50, and the loss drop is more significant at epoch=130 or so until
the best-fit point. When the model was trained to 182 epochs, the loss of LR = 0.02 was
minimized. As a result, the initial learning rate of our model was determined to be 0.02.
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4.4. Comparison with Different Methods

To demonstrate the effectiveness of our proposed method, we fine-tuned the model
during training. Table 2 shows the superiority of the BKPS module of this method for su-
pervised edge attention learning, which leads to the precise localization and segmentation
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of tumor fuzzy boundaries. In addition, in the edge attention module, the mixed attention
enables the network to better understand the uncertainty and ambiguity of tumor bound-
aries and to be able to model the rich dependencies of boundary contexts, thus enhancing
feature representation and improving segmentation performance. Our method achieves the
best performance in three metrics: DSC (0.967), Pre (0.968), and Acc (0.996). The results for
IOU, Re, and F1 are equivalent to the best existing segmentation methods for osteosarcoma.
Although Eformer + DFANet achieved the best results for IOU (0.928), Re (0.955), and
F1 (0.961), our method is close enough to be in second place among all existing methods.
Some methods are not given for some metrics, but DSC, as the most important evaluation
metric, can be combined with other metrics to evaluate the model comprehensively. This
demonstrates that SEAGNET is effective and feasible in identifying the fuzzy boundaries
of bone tumor lesions in medical images with complex background correlation.

Table 2. Performance statistics of the proposed SEAGNET method compared with existing os-
teosarcoma segmentation methods based on several metrics. The blanks indicate that the data was
not produced.

Methods DSC IOU Pre Re Acc F1

DNN [44] 0.7302 0.7657 0.8612
Multi-technology combination [45] 0.8984 0.9596 0.8615 0.9802

DecoupleSegNet [46] 0.9487 0.9051 0.9529 0.9483 0.9500
Residual Fusion Network [47] 0.929 0.867 0.932 0.926 0.929

CaPaN [48] 0.913 0.936 0.932
ETUNet + denoise + CRF [51] 0.935 0.919 0.964 0.949 0.955

Eformer + DFANet [52] 0.964 0.928 0.959 0.955 0.995 0.961
BA-GCA Net [56] 0.927 0.880 0.938 0.937 0.937

SepUNet + CRF + Prop [49] 0.914 0.883 0.937 0.938 0.937
DUconViT [53] 0.924 0.868 0.934 0.937 0.996

PESNet [55] 0.945 0.898 0.940 0.945 0.995 0.945
OSGABN [50] 0.915 0.853 0.915 0.923 0.919

UATransNet Residual [54] 0.921 0.922 0.962 0.945 0.955
SEAGNET (our method) 0.967 0.924 0.968 0.951 0.996 0.959

We also compare the following classical segmentation methods: FCN [59], DeepLab
V3+ [60], and U-Net [23]. More information is listed below.

(1) FCN takes a VGG network as its backbone, uses an encoder-decoder in the full
convolution layer, and upsamples the feature maps using a bilinear interpolation
algorithm in the decoding operation.

(2) DeepLab V3+ improved the Xception. The network combines the ASPP network
architecture to extract feature maps at different scales in the image. This captures the
fine boundary features of the target and considers global background information.
Such a method is beneficial for image segmentation in complex backgrounds. We
consider this network for experimental analysis in medical image segmentation for
malignant tumor lesions.

(3) U-Net is a proposed method specifically for medical image segmentation, and the
network architecture is excellent for scalability and generality. Many designs and
improvements (UNet++ [24], UNet 3+ [25]) based on this network have emerged for
its application in complex tasks in medical images.

The performance of various classical segmentation methods based on evaluation
metrics is shown in Table 3. Among all methods, FCN-8s had the lowest values for each
metric. DSC, DeepLab V3+, U-Net, and UNet++ perform comparably, but all are 4 points
lower than our method, while UNet3+ is in the second position. From this table, it is
evident that our method outperforms all other methods in all six metrics, reflecting its
superior performance. It indicates that the supervision of the BKPS module makes the edge
attention network achieve the most accurate understanding of both the uncertainty and
ambiguity of the tumor boundary.
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Table 3. Performance comparison of different classical segmentation methods in terms of evalua-
tion metrics.

Model DSC IOU Pre Re Acc F1

FCN-8s 0.834 0.791 0.803 0.827 0.867 0.871
DeepLab

V3+ 0.920 0.906 0.904 0.872 0.895 0.910

U-Net 0.924 0.919 0.926 0.885 0.901 0.914
UNet++ 0.928 0.914 0.907 0.911 0.947 0.932
UNet 3+ 0.946 0.920 0.941 0.938 0.926 0.943

Ours 0.967 0.924 0.968 0.951 0.996 0.959

Figure 7 shows more experimental results. The segmentation effect corresponds to the
data in Table 3. Intuitively, our method achieves robust performance in terms of preserving
critical edge details and resisting noise interference. The closer the segmentation mask is
to the ground truth, the closer the predicted tumor lesion boundary point proposal (BPP)
location is to the true tumor border. Further, this confirms the key role played by mixed
attention in capturing the contextual dependence of ambiguous boundaries of bone tumor
lesions. Through this approach, the model can better understand the ambiguity of the
boundary feature representation.
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Figure 7. Segmentation results of different classical methods for typical osteosarcoma MRI images.

Classical ResNet is used as the backbone in the process of extracting feature maps.
In this experiment specifically, we consider the complex relationships between the tumor
lesion region and the neighboring tissue, background noise information, and fuzzy bound-
aries. Therefore, we chose three relatively complex network architectures: ResNet-34,
ResNet-50, and ResNet-101. Then, we incorporate the FPN architecture to concatenate the
feature maps of the four stages of ResNets and generate feature maps that fuse high-level
semantic and low-level feature information.

As shown in Figure 8, the three backbones influence the overall segmentation per-
formance of SEAGNET according to a variety of metrics. ResNet-50 is most adept at
segmenting MRI images of osteosarcoma and achieves the best results in this paper. In
each of the six metrics, it can be seen that ResNet-50 shows a significant improvement in
segmentation performance compared to ResNet-34. There is a slight shift in performance
when using ResNet-101 due to the large network scale, which increases training costs,
and too many parameters can cause overfitting. Therefore, we adopted ResNet-50 as the
backbone based on the considerations of model performance and complexity.
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Figure 8. The influence of the three backbones on the overall segmentation performance of SEAGNET
according to different metrics.

It is necessary to evaluate the effects of alignment sampling on the performance of
model segmentation since it is the most essential step in the basic task of feature extraction.
In Figure 9 the performance of alignment sampling for each metric is improved by 10%
over that without alignment sampling, at offsets of 0.089 for DSC, 0.069 for IOU, 0.082
for Pre, 0.089 for Re, 0.073 for Acc, and 0.080 for F1. The results show that the alignment
operation preserves the accurate spatial location information of pixels in the medical
image. This is particularly helpful in identifying real tumor boundaries in medical images,
enabling the network to capture robust edge detail features, thus leading to more accurate
segmentation results.
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ment sampling in the RoI Align operation.

To select the optimal boundary key points, when training the BKPS module, we
randomly select n points on the edges detected by the conventional algorithm (Canny) for
the iterative training of Algorithm 1. In our experiments we select n = {10, 15, 20, 25, 30}
for the boundary points optimization. The optimal boundary points Pselect are selected to
generate the output feature maps of the BKPS module, which supervises the learning of
the edge attention network. The results in Figure 10 show the change in HD values; the
number of iterations is between 100 and 600. When n = 20, as the number of iterations
increases, the HD value decreases smoothly with a minimum value of 2–3 mm. Because of
the ambiguity and uncertainty of the tumor boundary, when n = 10 or 15, the segmentation
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mask more similar to the ground truth cannot be constructed. and when n > 20, the
decreasing curve of HD value is around that of n = 20. Especially for n = 30, the falling
curve of HD value fluctuates around n = 20. The reason is that the number of points is
too large, which increases the time complexity of algorithm training. In addition, this will
cause more candidate boundary points to gather near the irregular boundary, which will
cut off the narrow connection region when constructing the segmentation mask, and the
tumor lesion region that exists will be lost. The smaller the HD is, the more similar the
segmentation map constructed from the boundary points is to the ground truth. The n
points with the smallest HD will be selected as the final result for Pselect.

Diagnostics 2023, 13, 223 17 of 24 
 

 

 

Figure 10. The number of boundary key points 𝑛 takes different values, and the corresponding HD 

value decreases curve plots. 

4.5. Ablation Study 

We perform ablation experiments to assess the role of each module as a component 

of the model in the segmentation task. In Table 4 we choose DSC and IOU as the important 

evaluation metrics. The RoI Align sampling operation preserves the exact spatial position 

of real key pixels on the tumor edges, bringing an improvement of 4 points, rather than 

directly pooling to obtain small feature maps leading to the loss of important edge infor-

mation (DSC is only 0.874). 

Table 4. The performance evaluation of each network component in the proposed model based on 

two metrics. The network components include RoI Align sampling operation (RA), channel atten-

tion (CA), spatial attention (SA), edge attention (EA), edge supervision (ES), and region supervision 

(RS), the ✓ represents adding the component to the model for experiments. 

Description RA CA SA EA ES RS DSC IOU 

       0.874 0.832 

 ✓      0.912 0.875 

 ✓ ✓     0.924 0.893 

 ✓  ✓    0.926 0.891 

spatial + channel 

✓ ✓ ✓    0.928 0.894 

✓ ✓ ✓ ✓   0.943 0.901 

✓ ✓ ✓ ✓ ✓  0.959 0.897 

✓ ✓ ✓ ✓ ✓ ✓ 0.963 0.922 

channel + spatial 

✓ ✓ ✓    0.927 0.895 

✓ ✓ ✓ ✓   0.947 0.912 

✓ ✓ ✓ ✓ ✓  0.961 0.919 

✓ ✓ ✓ ✓ ✓ ✓ 0.964 0.921 

channel and spatial in parallel 

✓ ✓ ✓    0.931 0.910 

✓ ✓ ✓ ✓   0.949 0.916 

✓ ✓ ✓ ✓ ✓  0.962 0.923 

✓ ✓ ✓ ✓ ✓ ✓ 0.967 0.924 

Next, a mixed attention module (channel attention + spatial attention) is introduced 

to learn context-rich dependencies, select the important features of bone malignant tu-

mors, and identify boundary contexts in medical images to suppress background noise 

Figure 10. The number of boundary key points n takes different values, and the corresponding HD
value decreases curve plots.

4.5. Ablation Study

We perform ablation experiments to assess the role of each module as a component of
the model in the segmentation task. In Table 4 we choose DSC and IOU as the important
evaluation metrics. The RoI Align sampling operation preserves the exact spatial position of
real key pixels on the tumor edges, bringing an improvement of 4 points, rather than directly
pooling to obtain small feature maps leading to the loss of important edge information
(DSC is only 0.874).

Next, a mixed attention module (channel attention + spatial attention) is introduced to
learn context-rich dependencies, select the important features of bone malignant tumors,
and identify boundary contexts in medical images to suppress background noise informa-
tion, contributing 2 points to the DSC score of the parallel approach. As a comparison,
we performed two different serial approaches of channel attention and spatial attention
branches, but the DSC score only improved by about 1 point, which proves the superiority
of the parallel approach taken in this paper.

The reason for this is that in the “spatial + channel” approach, the spatial attention
branch first weighs and extracts features, and then uses the output results as input to the
channel attention branch. In this sequential relationship, an overconfident decision about
spatial attention occurs. This causes the later attention channel to lose the neighboring
correlation of the original features in the spatial dimension, leading to a decrease in seg-
mentation accuracy. Similarly, in the “channel + spatial” serial approach, features based on
the channel attention branch are selected first, which filters out important spatial reference
information from the channel features and reduces their context-dependent comprehension.
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Table 4. The performance evaluation of each network component in the proposed model based on
two metrics. The network components include RoI Align sampling operation (RA), channel attention
(CA), spatial attention (SA), edge attention (EA), edge supervision (ES), and region supervision (RS),
the 3 represents adding the component to the model for experiments.

Description RA CA SA EA ES RS DSC IOU

0.874 0.832
3 0.912 0.875
3 3 0.924 0.893
3 3 0.926 0.891

spatial + channel

3 3 3 0.928 0.894
3 3 3 3 0.943 0.901
3 3 3 3 3 0.959 0.897
3 3 3 3 3 3 0.963 0.922

channel + spatial

3 3 3 0.927 0.895
3 3 3 3 0.947 0.912
3 3 3 3 3 0.961 0.919
3 3 3 3 3 3 0.964 0.921

channel and
spatial in parallel

3 3 3 0.931 0.910
3 3 3 3 0.949 0.916
3 3 3 3 3 0.962 0.923
3 3 3 3 3 3 0.967 0.924

In contrast, the parallel approach explores the rich contextual dependencies of the
two dimensions on the basis of the original features separately, preserving the original
semantic relationship information in each dimension as much as possible, so as to fully
understand the uncertainty and ambiguity of the boundary, and thus obtain the best
segmentation performance.

We now focus on edge attention (EA) which enables the network to focus enough on the
position information of key pixel points on the edges of tumor lesions, contributing nearly 1
point to the DSC score. However, the fuzzy boundary features of the real lesion regions of
osteosarcoma cannot be fully captured yet, or they are missing or redundant. Therefore, the
BKPS module supervises (Edge Supervision + Region Supervision) the learning of the EA
network so that it can accurately locate the real region boundary of the tumor lesion. The
improvement for DSC is 0.02 and for IOU is 0.01, resulting in 0.967 DSC and 0.924 IOU. The
data for the remaining four metrics (Pre, Re, Acc, F1) are shown in Figure 11.
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For the four metrics, Pre, Re, Acc, and F1, our ablation experimental results also
show that the performance of SEAGNET increases smoothly with the addition of each
important component. It is worth noting that in the mixed attention module, we use the
parallel approach to achieve a significant performance. In Figure 11, we find a significant
change in the performance of two metrics: Pre and Acc. RA raises by about 0.04 for all four
metrics, indicating the important role of alignment sampling in segmenting the model. The
supervision of the BKPS module improves the model by 0.02 for Pre. For Acc, the addition
of the mixed attention module improves the model performance by 0.03, and similarly, the
supervision of the BKPS module also increases the value of Acc by 0.03. In summary, the
contribution of the BKPS module supervision in all six metrics can add 0.01–0.03 to the EA
value. The upward trend of these two metrics indicates the effectiveness of our proposed
method in segmenting bone malignant tumors with fuzzy boundaries.

Figure 12 illustrates the role of the BKPS module by using a typical segmentation
example to demonstrate its effectiveness. Before the BKPS module supervises the segmen-
tation network learning, the segmentation results do not cover the region with ambiguous
boundaries, but the region is actually within the tumor lesion. In contrast, the segmenta-
tion results are better after supervised learning, which both includes regions with blurred
boundaries and portrays as much edge detail as possible, making the segmentation mask
closer to the ground truth. This is where the BKPS module comes into play, by supervising
edge attention to derive the pixel locations of regions with blurred boundaries.
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Figure 12. A typical segmentation example compares the segmentation effect before and after
applying the BKPS module to supervise edge attention learning. The red circles mark the regions
of tumor lesions with ambiguous boundaries that were not captured in the segmentation network
before supervision.

In this paper, we perform a quantitative analysis of the iterative training of the BKPS
module. We evaluate the impact of the value of the number of boundary key points
selection n on the segmentation performance of SEAGNET, as shown in Figure 13. When
n = 10, medical image segmentation with complex backgrounds loses some details of
blurred edges due to insufficient boundary points. This will result in the constructed
region not covering the actual tumor lesion area. When the value of n increases to 20,
the segmentation performance reaches its best. The values of all six evaluation metrics
increased, with Acc being the most significant, improving by approximately 0.03 based on
n = 10. When n > 20, the levels of several metrics show shaking, which is most obvious
for DSC, Acc, Pre, and F1. This phenomenon indicates that the increase in the number of
key points selected does not bring stability to segmentation performance. In addition, it
leads to an increase in training time and computing costs. Therefore, we take n = 20 as the
optimum in this paper, and the number of iterations of the optimal boundary key point
selection algorithm is T = 3000. In practice, we adopt a strategy similar to the early stop
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approach to select the best n value when the HD value between the region constructed by
the selected key points and the ground truth is no longer decreasing.
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5. Discussion

We propose SEAGNET, which has shown excellent results for the segmentation of bone
malignant tumor lesions in MRI with complex backgrounds and blurred boundaries. This
is attributed to the efficient capture of context-dependent information about ambiguous
boundaries through the mixed attention module. This enables the edge attention network
to better understand the uncertainty and ambiguity of the boundary features and thus
accurately locate the true lesion region and its boundaries. We propose the BKPS module
to effectively supervise and correct for the inability of edge attention to accurately segment
tumor lesions with complex background relationships.

Most of the existing research methods for MRI images of osteosarcoma remain in
traditional image processing methods or machine learning. Although there are some
segmentation methods using ResNet or Transformer, these models are too complex and the
parameters are too large to train for fitting. The characteristic uncertainty representation of
the fuzzy boundary cannot be effectively modeled. The advantage of our approach also lies
in the ability to adaptively adjust the complexity of the model according to the difficulty of
the target task. Our method can achieve the segmentation of eight images per second with
continuous input of MRI images of bone malignant tumors. With good enough hardware
equipment, it can process about 20 images in less than 2 s. By the time the doctor views
the first image, our method has already completed the segmentation of all the MRI images
containing the lesion. This is sufficient for real-time requirements in clinical scenarios. It
greatly compensates for shortcomings due to the lack of doctor experience and medical
resources. The performance of our proposed segmentation method is comparable to that of
a trained doctor.

The limitation of this study is that there is no training and validation of datasets from
multiple institutions, as well as of other primary bone malignancy types (Ewing’s sarcoma).
This is the main focus of our work in the next stage, and we will further explore making
the model applicable to medical image segmentation tasks for other malignant diseases or
cancers in the future.

6. Conclusions

In this paper, we propose a novel intelligent auxiliary framework network (SEAGNET)
for the accurate segmentation of bone malignant tumor lesions. For supervision learning of
edge attention, we design a BKPS module that effectively guides the network to identify and
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localize real locations near the fuzzy boundaries. To preserve the precise spatial location
information of key pixels, alignment sampling is performed using the RoI Align operation.
The use of mixed attention allows edge attention to be better able to understand the
uncertainty and ambiguity of the boundary feature space by capturing rich fuzzy boundary
context dependencies. We have extensively validated our model using a real-world medical
image dataset. The experimental results show that our method has the best performance
levels based on the metrics of DSC (0.967), Pre (0.968), and Acc (0.996). We present an
intelligent auxiliary framework that not only effectively increases diagnostic accuracy,
improves clinical workflow, and greatly alleviates the dilemma of medical resource shortage
and doctors’ inexperience, but also reduces the dependence on manual diagnosis by
medical experts according to their domain knowledge, saves time, and improves the
overall efficiency of the medical procedure. In the future, we will further improve the
robustness of the model and apply it to other cancer segmentation tasks.
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