
����������
�������

Citation: Tarawneh, H.; Alhadid, I.;

Khwaldeh, S.; Afaneh, S. An

Intelligent Cloud Service

Composition Optimization Using

Spider Monkey and Multistage

Forward Search Algorithms.

Symmetry 2022, 14, 82. https://

doi.org/10.3390/sym14010082

Academic Editor: Deming Lei

Received: 6 November 2021

Accepted: 7 December 2021

Published: 5 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

An Intelligent Cloud Service Composition Optimization Using
Spider Monkey and Multistage Forward Search Algorithms
Hassan Tarawneh 1, Issam Alhadid 2 , Sufian Khwaldeh 2,* and Suha Afaneh 3

1 Faculty of Information Technology, Al-Ahliyya Amman University, Amman 19328, Jordan;
h.altarawneh@ammanu.edu.jo

2 Faculty of Information Technology and Systems, University of Jordan, Aqaba 77111, Jordan;
i.alhadid@ju.edu.jo

3 Society of Arabic Language Computerization and Enrichment of Arabic E-Content, Amman 11143, Jordan;
suha.afaneh1211@gmail.com

* Correspondence: skhwaldeh@googlemail.com

Abstract: Web service composition allows developers to create and deploy applications that take
advantage of the capabilities of service-oriented computing. Such applications provide the developers
with reusability opportunities as well as seamless access to a wide range of services that provide
simple and complex tasks to meet the clients’ requests in accordance with the service-level agreement
(SLA) requirements. Web service composition issues have been addressed as a significant area of
research to select the right web services that provide the expected quality of service (QoS) and attain
the clients’ SLA. The proposed model enhances the processes of web service selection and composition
by minimizing the number of integrated Web Services, using the Multistage Forward Search (MSF).
In addition, the proposed model uses the Spider Monkey Optimization (SMO) algorithm, which
improves the services provided with regards to fundamentals of service composition methods
symmetry and variations. It achieves that by minimizing the response time of the service compositions
by employing the Load Balancer to distribute the workload. It finds the right balance between the
Virtual Machines (VM) resources, processing capacity, and the services composition capabilities.
Furthermore, it enhances the resource utilization of Web Services and optimizes the resources’
reusability effectively and efficiently. The experimental results will be compared with the composition
results of the Smart Multistage Forward Search (SMFS) technique to prove the superiority, robustness,
and effectiveness of the proposed model. The experimental results show that the proposed SMO
model decreases the service composition construction time by 40.4%, compared to the composition
time required by the SMFS technique. The experimental results also show that SMO increases the
number of integrated ted web services in the service composition by 11.7%, in comparison with the
results of the SMFS technique. In addition, the dynamic behavior of the SMO improves the proposed
model’s throughput where the average number of the requests that the service compositions processed
successfully increased by 1.25% compared to the throughput of the SMFS technique. Furthermore,
the proposed model decreases the service compositions’ response time by 0.25 s, 0.69 s, and 5.35 s
for the Excellent, Good, and Poor classes respectively compared to the results of the SMFS Service
composition response times related to the same classes.

Keywords: web service; composition; optimization; Spider Monkey; Multistage Forward Search

1. Introduction

Service-Oriented Architecture (SOA) is a style of software design that utilizes Web
Services. SOA creates applications and services using different technologies. SOA has been
adopted by organizations to implement simple or complex tasks and provide business
processes workflow called service composition.

Service composition is a workflow organized and supervised by the Service Execution
Engine. Each service composition consists of several web services that can be managed,

Symmetry 2022, 14, 82. https://doi.org/10.3390/sym14010082 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14010082
https://doi.org/10.3390/sym14010082
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-5536-4333
https://doi.org/10.3390/sym14010082
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14010082?type=check_update&version=1

Symmetry 2022, 14, 82 2 of 18

replaced, and updated at runtime, without interrupting the ongoing business processes
that affect the Quality of Service (QoS) attributes [1–4].

The QoS is related to the integrated web services that compose the service compo-
sition, which might be affected by different internal or external factors such as hosting
environment, network, and service upgrade [2,4,5], the problems of web service scalability,
performance, and the ability to respond to a massive number of synchronous requests
while satisfying the expected SLA requirements, functionality, and behavior [6–9].

Selecting the right web service directly affects the constructed service composition
QoS. There are two types of methods and techniques that are used to select and construct
the service compositions: static and dynamic methods. Static methods and techniques are
based on the idea of selecting the available web services to construct the service composi-
tions that achieve the required task. This type is usually used when the number of web
services is limited, and the number of synchronous requests can be handled by constructed
service compositions [10,11]. The dynamic methods and techniques are used when there
is a massive number of web services that can be used to construct a substantial number
of service compositions. The integrated web services can be replaced automatically to
provide and satisfy the clients’ expected SLA requirements [12,13]. Dynamic methods
and techniques are complex processes that satisfy the SLA functional and non-functional
requirements. These requirements’ constraints are still a challenge, and they are not efficient
enough when applied in real-time and large-scale environments, in addition to the men-
tioned factors that affect the QoS of the web services [8,14,15]. It is still a complex process to
find web services that provide identical functionality, with the required resources to create
the service composition on a large-scale web services repository [16]. Uc-Cetina et al. [6]
claimed that web services selection and composition processes complexity involve three
main factors: the available substantial number of web services with similar functionality,
the different possibilities of integrating web services into a service composition, and various
QoS requirements of the service composition.

Other problems that may affect the service composition QoS include the utilization
of web services’ resources. This issue relates to the value of the maximum capacity of
integrated web services. Maximum capacity is the maximum number of requests that
can be accepted and handled by the service, per second. The maximum capacity of the
integrated web services is determined by the maximum capacity of the web service with the
least value [8]. This means that the other web services (web services excluding the one with
the least value) will not have their leftover requests utilized, even when the clients request
the services at peak times. Moreover, this research has considered the framework proposed
by Dubey et al. [17]. This framework proposed the fundamentals of service composition
methods symmetry and variations.

According to the discussed points, there are three major research perspectives to
be analyzed:

1. Design a dynamic approach to improve the processes of the Orchestrator web service
selection and service composition construction, to satisfy the set of predefined QoS
constraints specified in the clients’ SLA.

2. Control the workload on the web services and service compositions and upgrade the
service composition dynamically. The following is achieved by replacing one or more
of the integrated web services. This provides the identical functionality and QoS of
the web service that is unavailable or with an unacceptable QoS.

3. Improve the service composition flexibility and scalability and optimize the integrated
web services’ resources utilization.

To achieve our goals, we propose a novel model based on the Spider Monkey Opti-
mization (SMO) algorithm and adopt cloud computing capabilities.

Cloud computing is used to provide scalable and elastic service compositions using
virtualization technology [18–20]. Virtualization technology enables resource sharing and
the creation of multiple network virtual environments or resources, from a single processing
machine [21,22]. In addition to the auto-scaling capabilities (to upgrade or downgrade the

Symmetry 2022, 14, 82 3 of 18

server of the Virtual Machine (VM) capabilities), it helps meet the demand for resources by
adding or removing VM capacity, which includes computing, storage, or network services;
to maintain the services and SLA requirements [23]. Virtualization and auto-scaling provide
the new VM with the same computational capabilities. This means that the execution will
be in parallel, and the tasks will be divided on the VMs using the time sharing and memory
sharing scheduler [18,21–23].

Virtualization uses a software layer called a hypervisor to coordinate between VM
operating system and applications and the underlying physical hardware, where hypervisor
separates the operating system and applications from the physical computer hardware,
in addition, it allocates physical computing resources including processors, memory, and
storage. Accordingly, new VMs are created on-demand to handle new tasks when the
existing VM becomes over-utilized [21,23]. While the Cloud Load balancer is used to find
the right balance between the VM resources and the service compositions capabilities.
Where the VM resources include the processing Capacity, memory load, Computation
(CPU) load, and network load. While the service compositions’ capabilities related to
the integrated web services resources, include handling, processing, and responding to
the invocations.

Meanwhile, the SMO algorithm simulates the fission–fusion social structure of Spider
Monkeys during their foraging behavior. SMO illustrates two essential concepts of swarm
intelligence; self-organization and division of monkey groups (where SMO split or combine
based on food scarcity or availability) [24]. The VM resources and processing capacity
represent the food, while the web services represent the Spider Monkeys. When the
workload on the VM resources is high, the VM utilizes the auto-scaling to split the VM into
two or more VMs to increase the capabilities of the VMs. On the other hand, if the workload
is high on the integrated web services group related to the service compositions, the web
services‘ group splits into two or more groups. It does that to reduce the workload, handle
more clients’ requests, and provide the mandatory service within the SLA requirements.
The SMO is intended to optimize the selection of service composition orchestration and
upgrade the service composition and the service QoS.

VM resources and processing capacity are affected directly by the clients’ requests;
if the clients’ requests increase, then the available VM resources will decrease. In that case,
it may not be able to handle the requests and invoke the involved integrated web services
of the service composition successfully.

When put together, SMO and cloud computing provide the capabilities to enhance the
VMs and the web services’ performance and resources by utilizing the Cloud Computing
virtualization and the auto scaling capabilities.

To achieve our goals using the proposed model, classification on two distinct levels
should be performed: classifying the web services according to the attributes of the QoS
and grouping the web services into different classes according to their actions. Then using
the SMO, identify a local leader for each class of the web service. The local leader is a Load
Balancer VM that will monitor the service compositions in the class. After identifying the
local leader; a dependency graph is constructed by the Multistage Forward Search (MFS)
algorithm, which is used to find the best service compositions in the graph.

During the process of providing the services to the clients, the Load Balancer will
control and monitor the web service, compositions workload, QoS, and capacity. Accord-
ingly, the web services groups are updated either by combining or dividing the group and
using the auto-scaling capabilities to upgrade or downgrade the VM capabilities. After the
upgrade process, the dependency graph is either updated or recreated. The MFS algorithm
will be used again to find the new service compositions in the updated graph and provide
the service again to the clients.

This research presents the proposed model (using the SMO algorithm) to solve the
service composition construction process and the web service resources utilization problems
efficiently. The main contributions are:

Symmetry 2022, 14, 82 4 of 18

• Using dependency graphs and the MSF algorithm to find the paths and the candidate
service compositions in each group.

• Utilizing the SMO algorithm. Each web services class will be grouped according to
the web services’ QoS attributes.

• Assigning a VM and identifying a load balancer for each group, to control and monitor
the workload on the provided services.

• Optimizing the utilization of the available web service resources so that they can be
used in other service compositions.

• Tracking the service composition’s QoS and accordingly, splitting or combining the
web service groups using the VM virtualization and auto-scale.

This research is organized in the following manner: Section 2 introduces related lit-
erature about web services’ selection and composition. In Section 3, the paper describes
the proposed method, which includes modifications to the Service execution engine ar-
chitecture and SMO algorithm. Section 4 discusses the simulation, dataset, results, and
evaluation. Section 5 finally gives the research conclusions and the future directions.

2. Related Work

WS selection and composition have been addressed as one of the active research areas.
This research aims to improve the WS performance and reliability, using different heuristic
and non-heuristic approaches, to achieve the SLA requirements [16,25–27]. To achieve
SLA requirements, some researchers suggest ignoring the clients’ requests once the SLA’s
maximum capacity is exceeded. Yau et al. [28] proposed a method to avoid the denial of
service and distributed denial of service attacks. while [5] recommended the prioritization
of the clients’ requests based on the SLA contract. In this connection, [8] proposed a dynamic
mechanism to enhance the web service’s selection and service composition processes. The
mechanism was based on Simulated Annealing (SA) to achieve the SLA requirements,
as well as improve the service compositions’ availability and response time. On the
other hand, several researchers employed metaheuristic optimization algorithms to solve
the services’ composition challenge [29–31]. In this regard, Shree et al. [30] proposed a
method by combining the Ant Colony Optimization Algorithm with Artificial Bee Colony
Optimization Algorithm (IACO-ABCOA), to find the optimal web service configuration
solution and to solve the stagnation, as well as convergence problems. Jung et al. [32]
proposed the cosine similarity-based method for business process clustering by identifying
similar processes. The following was achieved by comparing and reengineering business
process models to support new business process designs. Gao et al. [33] proposed an
algorithm based on SA and Genetic Algorithm to optimize the process of web service
selection and composition. Furthermore, Sangaiah et al. [34] proposed a method based on
evolutionary optimization, using biogeography-based optimization (BBO).

Androcec et al. [35] addressed the problem of platform as a service interoperability.
This issue appears when different API’s from different vendors are delt with as service
and as response, a new algorithm for identifying the interoperability problem alongside
providing a specific application domain which is composed of operations defined in
PaaS API’s.

Mousaa and Bentahara [36] proposed a mathematical model to optimize the web
services selection and composition using the Social Spider Algorithm (SSA). The SSA
proposed model showed promising results. Where SSA overpassed the Particle Swarm
Optimization (PSO) web services selection and composition results, in terms of both
execution time and fitness, with different tasks and substitutable web services.

Elmaghraoui et al. [37] presented a method that is based on modeling the semantic
relationship between all the evolved web services, into a directed graph. The graph was
constructed to find all the shortest paths to optimize the computational efforts related to
the web services composition.

Alhadid et al. [25] proposed the Smart Multistage Forward Search (SMFS) as an
effective technique to select and construct the service composition. It searched for a web

Symmetry 2022, 14, 82 5 of 18

service with available resources to create a new service composition, even when the web
services are integrated within other compositions (to provide more service compositions).

Dongre and Ingle [8] presented their investigation and analysis of the QoS parameters
and optimality criteria for services selection and composition. The parameters were: the
response time, availability, and reliability. These attributes were the most used ones with
minimum/maximum values as optimality criteria.

Researchers proposed several cloud load balancing algorithms and approaches to
optimize the VMs’ performance and resources utilization. Mishra et al. [38] studied and
presented a taxonomy for the load balancing algorithms used in Cloud Computing, which
include static and dynamic algorithms. In addition to that, an analysis of the approaches
and performance parameters that affect the algorithms was conducted. Chen et al. [39]
proposed a dynamic Cloud load balancing (CLB) method to enhance the tasks’ scheduling.
The proposed model evaluates the VM Load balancing capacity using the computer loading
and the server processing power. Lavanya, Vaithiyanathan [40], and Kapur [41] suggested
resource scheduling methods to enhance the scalability of the VM. proposed models. They
are used to predict the VM workload and to expect the future resource demand to avoid
the VM resource overload.

According to the previous discussion, web service selection and construction are still
a challenge. Optimization techniques can be adopted to solve the problem of optimizing
the web services’ selection and service composition. Also, Cloud computing capabilities
and the SMO can be utilized to enhance the selection and composition processes and to
provide a dynamic solution for resource utilization.

In this research, we will introduce an efficient technique using Cloud computing
capabilities and SMO algorithm, to reduce the duration of the web services’ selection and
composition process and minimize the number of integrated web services. In addition
to that, we will also work on enhancing the utilization of the web services’ resources
and optimizing the resources’ reusability effectively and efficiently. The experimental
results will be compared with the results of the SMFS technique, to determine the superior
algorithm in terms of optimizing service compositions construction processes and utilizing
the web service resources.

3. Proposed Model

In this study, we propose a novel service composition model and work on the en-
hancements implemented on the services’ execution engine. The model helps improve the
web services’ selection and composition processes and optimize the utilization of the web
services’ available resources. All of that is performed using the SMO algorithm and Cloud
computing capabilities. Figure 1 illustrates the process of the proposed model.

Symmetry 2022, 14, 82 6 of 18Symmetry 2021, 13, x FOR PEER REVIEW 6 of 20

Figure 1. Proposed model processes.

Figure 1. Proposed model processes.

3.1. Step 1. Initialize

During this step, the following must be identified: the number of the Web service
repository, number of clients, clients’ SLA requirements, clients’ classes, virtual machines,

Symmetry 2022, 14, 82 7 of 18

and mapping between each VM and clients’ classes. In the initial state, the set of Virtual
Machines (VMs) includes only one VM, which will be used to evaluate the web services. It
will be split into more than one VMs according to the number of web service classes. The
set of VM for each web service class created (related to the number of VMs) will be empty
until the related VMs are created.

Set of Web Services: WS = {WS1, WS2, . . . ,WSn}
Set of clients: CL = {CL1, CL2, . . . , CLm}
Set of Clients’ SLA Requirements: CLR = {CLR1, CLR2, . . . , CLRL}
Set of Clients’ Classes: CLC = {CLC1, CLC2, . . . , CLCx}
Set of Virtual Machines VMs = {VM1}
Set of VM for each CLC: CLC_VM = { }

3.2. Step 2. Evaluate the Population

The web services, located in the repository, are classified on two levels. First, they are
classified according to the web services’ QoS attributes which are: the response time, the
Throughput, and the availability. The QoS attributes are used to find the Reward Function
of the web service and the service compositions. Next, the web services are grouped
into different classes according to their actions, which represent the functionality of each
web service.

The total time needed for a web service to successfully respond to a request is referred
to as “web service response time”. Table 1 shows the response time related to the web
services classifications [12,33,42].

Table 1. Classifications of the web services response time adapted from [12,33,42].

Class Web Services

Excellent ≥0.1–0.5 s
Good >0.5–1.0 s
Poor >1.0–3 s

Web Service response time can be calculated using the following equation, proposed
by Emeakaroha et al. [43]:

RespTime = RespTime (in) + RespTime (out) (1)

where
RespTime (in) =

packetsize
available bandwidth− in bytes

(2)

RespTime (out) =
packetsize

available bandwidth in− out bytes
(3)

Another QoS attribute related to web services is throughput. Throughput is the
number of requests that the web service can process successfully within a defined period.
Table 2 shows the web services’ throughput classifications [44].

Table 2. Web services’ throughput classifications adapted from [44].

Class Value

Excellent 1800 req./s
Good 1600 req./s
Poor 1000 req./s

Web services throughput can be calculated using the following equation [39]:

Thr=
Cs

Time
(4)

where:

Symmetry 2022, 14, 82 8 of 18

• Cs is the number of web service requests served successfully.
• Time is the period of the web service’s operation being investigated.

The web service’s availability is considered as one of the most important QoS attributes.
It measures the probability of the web service’s accessibility and readiness for immediate
use, to deliver the service when demanded [43]. Table 3 represents the web services’
availability classifications.

Table 3. SAL, web services’ availability classifications adapted from [12,42].

Class Value

Excellent 99–100%
Good 97–98%
Poor 94–96%

Web services’ availability can be calculated using the following equation [43]:

Ava =
up time

Total Time
∗ 100% (5)

where:

• Up time is the web service’s operational time between the last web service failure to
the next failure, which is also known as the mean time between failure (MTBF).

• Total time is the overall period of the web service’s operation being investigated.

Reward Functions (R1 and R2) are used to find the web service’s QoS reward, the
values of R1 and R2 are gained using the web service’s QoS attributes. The goal of cal-
culating the R1 and R2 is to provide the web service with the maximum availability and
throughput, while keeping the minimum response time considering the SLA constraints
and requirements. In addition, R1 and R2 values provide which attribute affects the web
service QoS. R1 and R2 are employed to confirm that the web service achieves an acceptable
range for the values of availability, response time, and throughput, and as a result, R1 and
R2 values are used to enhance the process of web service classification.

The value of R1 is calculated by the following equation:

R1(WSi) = α − β + γ (6)

While the value of R2 is calculated by the following equation:

R2(WSi) = γ − β (7)

where:

• R(WSi): is the reward value gained by the web service (i).
• α: is the throughput reward value related to the web service (i).
• β: is the response time reward value related to the web service (i).
• γ: is the availability reward value related to the web service (i).

The value of the web service’s throughput reward (α) can by calculated using:

α =
Thrs − Thrmin

Thrmax − Thrmin (8)

where:

• ThrS: The throughput value of the web service with state (i) calculated using Equation (4).
• Thrmax: The maximum value of the web service’s throughput in the web services’ class.
• Thrmin: The minimum value of the web service’s throughput in the web services’ class.
• While the value of the web service’s response time reward (β) can be calculated using:

β =
RespTimes − RespTimemin

RespTimemax − RespTimemin (9)

where:

• RespTimeS: The response time value of the web service with state (i) calculated using
Equation (1).

Symmetry 2022, 14, 82 9 of 18

• RespTimemax: The maximum value of the web service’s Response Time in the Web
Services’ class.

• RespTimemin: The minimum value of the web service’s Response Time in the Web
Services’ class.

• Finally, the value of the web service’s availability reward (γ) can be calculated using:

γ =
Avas − Avamin

Avamax − Avamin (10)

where:

• AvaS: The availability value of the web service with state (i) calculated using Equation
(5).

• Avamin: The minimum value of the web service’s availability in the web services’ class.
• Avamax: The maximum value of the web service’s availability in the web services’ class.

After completing the required calculations, we will have three of the web services
classes; Excellent, Good, and Poor. Each class includes all the web services within the
same QoS class that can perform all tasks to carry out the required business process, which
represents the service composition.

The values of R1 and R2 are used to show the effect of the QoS attributes, if there is a
remarkable difference between the R1 and R2 values then the clients’ SLA requirements
might not be satisfied. The value of the reward function (R2) is related to the web service’s
response time and availability QoS attributes while the value of the reward function R1 is
influenced by the R2 QoS attributes in addition to the throughput of the web service. If the
value of the R1 is greater than the value of R2 and the difference is remarkable, this means
that web services throughput is high, and we must study the other QoS attributes to make
sure that it will be affect the SLA requirements and we must check the values of the QoS
attributes before the classification process. Otherwise, if R1 and R2 have the same values,
this shows that the values of the QoS attributes within the same range and the web service
can be classified according to the value of the R1. For example, if the value of R1 = 0.99
while the value of R2 = 0.83, this means that the web service’s throughput has a significant
effect on the values of the reward functions. Table 4 shows the QoS attributes’ values of the
mentioned example.

Table 4. QoS attributes’ values.

Response Time Availability Throughput γ β α R1 R2 R1–R2

302.75 89 7.1 0.88 0.054 0.16 0.99 0.83 0.16

The values in Table 4 confirm that the web services’ throughput might influence the
reward function R1 value and give a misleading value related to the web service QoS, and
as a result, the SLA may not be achieved.

According to the web service action, we build the service composition. If the web
service’s action value equals 1, then it represents the first task performed in the service
composition, while the web service with the action value equals 2, which represents the
second task. This continues until the last action, which is the last task in the service
composition. The number of actions is decided by the service composition that shows the
business process and the web services found in the dataset. To perform this at a quicker
pace, we group the web services according to their action after completing the first level of
classification (where the reward function is calculated). More information on the usage of
service actions will be explained below.

Service composition reward value can be calculated using the Equation (11).

SCr =
n

∑
i=1

Rx(WSi) (11)

where:

Symmetry 2022, 14, 82 10 of 18

• Rx(WSi): Where Rx is the value of the reward function R1 if there is no significant
difference between the values of R1 and the value of R2. If there is a significant and
remarkable difference between the values of R1 and R2 then R2 will be considered as
the value of Rx in Equation (11). Where R1 is gained using the Equation (6), while R2
is calculated using Equation (7).

3.3. Step 3. Identify Local Leaders for Each Web Service’s Class

For each group, assign a Leader by creating a VM and service Load Balancer Object
from the Service Load Balancer Class. The Leader handles all the requests dispatched from
the service execution engine. So, a set of virtual machines will be changed based on the
number of classes. The set of VM for each web service class will be updated according to
the number of VMs created.

• Set of Virtual Machines VMs = {VM1}
• Set of VM for each CLC: CLC_VM = {{ CLC1_VM1 }, { CLC2_VM1}, {CLC3_VM1}}

3.4. Step 4. Position Update by Local Leader Phase and Construct Service Compositions Groups

Three service composition groups are constructed using the MFS algorithm. Web
services related to each class of clients will be assigned to a global leader, to decrease
the time complexity from O(N2) to O(N1)2+ O(N2)2 + O(N3)2 using the virtualization
technology. N1 is the total number of web services that belong to the excellent class, N2
is the number of web services with QoS attributes related to the good class, and N3 is the
web services classified with poor QoS specifications. A multistage dependency graph is
created for each class group by the VM, where the graph nodes represent the related web
services found in the same class. To create the graph, the web services are divided into
a set of stages based on their action and output. Meanwhile, the reward function R(WSi)
for each node is calculated to find the weight for each node in the graph. Later, the MFS
algorithm is implemented to discover the best paths from the source to the target, which
signifies the service compositions to be stored on the VM and to be ready for the clients’
invocations when the service is requested.

The following equation presents the SMFS’ time complexity:

T(n) = (N1)2 + (N2)2 + (N3)2 + 3(N)2 (12)

while Equation (12) shows the proposed model’s time complexity:

T(n) = (N1)2 + (N2)2 + (N3)2 + (
N1
M1

)
2
+(

N2
M2

)
2
+ (

N3
M3

)
2

(13)

The following Algorithm 1 shows the web service multistage dependency graph
construction algorithm.

Algorithm 1. Web Services Dependency Graph’s Construction Algorithm.

var K = 5/ number of stages in the graph G which represent the business process web services
var i = 1; // stages loop
var T; // number of tuples in graph G
T = 1;
Do until (no more tuple to create)

Do until (i = k)
Set all stages values in the tuple to INF; // INF: infinity

For each WS ∈WSR // WS is the web service located in the WS repository
If WS /∈ G & WSAction = k & WSk ∈ S k-1(L) & WSTempMaxCap > 0

then
// Sk ∈ S k-1(L): There are links to the S from the prior S
Calculate the R(WS);
Assign the R(WS) to the Node;
Add WS to graph G;

Next WS
K++;

Loop // Do until (i = k)
Loop // next tuple in graph G

Symmetry 2022, 14, 82 11 of 18

A service composition is constructed by finding the best path from the source. The
path represents the first web service that will be invoked by the service execution engine
to the last web service in the business process. The process of construction is carried
out by selecting the web services with minimum cost that form the service composition.
Algorithm 2 shows the MFS algorithm used to construct the service compositions. Although
the service composition with the highest SCr value is the path that provides the best service
composition to the client, the workload on the web services and the service compositions
must be considered to balance the load on the invoked services during the execution.

Algorithm 2. The proposed MFS Algorithm used to construct the service compositions.

var K; // number of stages in graph G
var i = K -2; // current stage

var L; // all edges connected to j in the next stage (i + 1)
Do until (No More Service compositions can be constructed)

Do until (i = 1)
Cost(i, j) = Min {C(i, L) + cost (i + 1), L)} where L in Vi + 1 & (j, L) ∈ G.

–i; // prior stage
Loop // stages loop

Loop // Find next SC

Processing capacity PC of VM(i) is calculated using the following equation:

PCi = Pei ×mipsi (14)

where:

• Pei: number of processing elements on host.
• mipsi: million instructions per second can be processed by host processors.

On the other hand, the workload can be found using the following equation:

Workload(VMi) =
Tasks in VM(i)queue× processing time f or each task in the queue

Processing Capacity (PC)o f VM(i)

The service composition available capability (SCavaCap) is calculated using the equation:

SCavaCap = service composition max. capability − current processing requests (15)

After the service compositions construction process, SMO generates uniformly dis-
tributed VMs that host the load balancer for each group j where SMi represents the ith VM.
Each SMij is initialized as follows:

SM(i,j) = SMminj + U (0,1) + (SMmaxj − SMminj) (16)

where:

• SMminj: is the VM with the least acceptable workload and the minimum service com-
position available capability of the group (j) that meets the minimum SLA expectations.
Where SMminj equals:

SMminj =
(

PCi [min]
100

)
∗ 50% +

SCavaCap [min]
100

∗ 50% (17)

SMmaxj: is the VM with the most workload and the maximum service composition
available capability that can achieve and satisfy the group (j) related to the client’s class
SLA requirements. Where SMmaxj equals:

SMmaxj =
(

PCi [max]
100

)
∗ 50% +

SCavaCap [max]
100

∗ 50% (18)

• U (0,1) is a uniformly distributed random number in the range (0,1).

During the initialization phase, the VMs might have the same processing capacities and
service composition available capability. Therefore, the initial VMs’ processing capacities
and service composition capabilities will be selected to find the values of the SMminj
and SMmaxj.

Symmetry 2022, 14, 82 12 of 18

For each calculated SM(i,j) value, find the fitness using:

Fitness =

{
1

1+SMij if SMij ≥ 0

1 + abs(SMij) if SMij < 0

SM(i,j) with maximum fitness value will be the global leader and the local leader in
the initialization phase. Later, the system supplies the services to the clients and gathers
information about the VM workload and recourse, in addition to the service compositions
and the Web Services QoS attributes’ values.

4-The Load Balancer evaluates the workload of the VM (i) by analyzing the hardware
systems and measuring the available capabilities and capacity. In addition, the load balancer
evaluates the available capability of the service compositions (SCavaCap) and the workload
on the integrated web services.

3.5. Step 5: Position Update Process in Local Leader Phase (LLP)

According to the Service Execution Engine evaluation in step (4), the Position update
process in the Local Leader Phase (LLP) Algorithm is implemented to update the VM’s
current state, as shown in Algorithm 3.

Algorithm 3. Position update process in Local Leader Phase (LLP).

for each member SMi ∈ kth group do
for each j ∈ { 1, . . . , D} do

SM(i,j) = SMminj + U (0,1) + (SMmaxj − SMminj)
if SMij ≥ 0

Fitness = 1
1+SMij

Else
Fitness = 1 + abs(SMij)

end for
end for

SM(i,j) with the maximum fitness value will be identified as the local leader of the
group. This means that the VM with the highest capabilities and available resources is
found to be the local leader of the group. The constructed service composition is moved to
the new local leader to enhance the provided services.

3.6. Step 6. Learning through Local Leader Learning Phase

According to the QoS attributes’ values related to the integrated web services and the
service compositions; the system learns about the workload on each class, response time,
throughput, and availability, which are used to distribute the load between the different
load balancing objects in the same class.

3.7. Step 7: Decide Fission or Fusion

The results of steps (4) and (6) include the updated processing capacity of the VM
and the workload of the integrated web services and the service compositions. The results
of the load balancer either combine or divide the VM using the virtualization and auto-
scaling capabilities or the integrated web services. This aims to improve the services
provided and to satisfy the clients’ SLA requirements by creating new VMs and/or new
service compositions.

Algorithm 4 illustrates the Load Balancer pseudocode and the processes of the group’s
fission or fusion.

If the VM’s workload exceeds 50%, this is considered as a sign that the VMs’ processing
capacities might soon be exhausted. Accordingly, the load balancer uses the virtualization
and auto-scaling capabilities to identify new VMs and divide the web service group. New
service compositions are also created to avoid the inability to respond to the clients’ requests
or reach the maximum capacity of the integrated web services and the service composition.
On the other hand, if the VM’s workload is equal to or less than 50% while the service
composition available capability (SCavaCap) is more than 50% (the same is applicable on

Symmetry 2022, 14, 82 13 of 18

the available VM’s resources), the system may not provide the service within the acceptable
SLA constraints shortly. In this case, the load balancer uses virtualization and auto-scaling
to combine the VMs in the same CLC_VM and merge the web services’ groups into one
group. Identifying new VM and new load balancer reconstructs new service compositions.
Finally, when the VM’s workload is less than 50% and the service composition available
capability (SCavaCap) is less than 50%, the load balancer keeps the status of the VMs as is,
without any upgrades or modifications on the VMs or the service compositions.

The next section shows the experimental results executed using the simulator and
real-life data set and the compassion between the results of the proposed model and the
result of the SMFS technique, using the service execution engine hosted on three servers.

Algorithm 4. Load Balancer Pseudo Code.

For each CLC_VM ∈ CLC_VM set
For each VM ∈ CLC_VM do
if VM_Workload ≤ 50% AND SCavaCap ≤ 50% then

- keep the current state of the system.
else if VM_Workload > 50% then // even if the SCavaCap is greater or less than 50%

-Identify new VM and new Load Balancer; divide the web sevice group and create new
service compositions

-Create new service compositions using the unused available integrated Web Services’
resources (high max. capacity value)

else if VM_Workload ≤ 50% AND SCavaCap > 50% then
-Combine VMs in the same CLC_VM and merge the Web Services groups into one group,

identify new VM and new Load Balancer to reconstruct new service compositions.
Loop // Next VM

Loop // Next CLC_VM

4. Simulation Results and Evaluation
4.1. Simulator and Dataset

The performance of the proposed method has been evaluated using a simulator pro-
grammed using VB.NET. The simulator simulates the WS selection, composition, Spider
Monkey optimization behavior, and cloud computing execution. In addition to that, it
shows the performance of the web services and the QoS changes and variations. All simu-
lation experiments were performed on an i7-3632QM machine equipped with a 2.20 GHz
processor and 8 GB DDR3 RAM. Table 5 shows the initial values of the simulator parameters.

Table 5. Simulator setup parameters.

Parameter Value

Number of runs 20
Number of clients 1000

Task Length 1–15 sec.
Min. Number of requests/Client 100
Max. Number of requests/Client 5000

Number of VMs 3 (initial)
Number of VMs Processing Elements (PEs) 1

Number of Hosts 1

The simulation dataset has been generated using the real data QWS dataset proposed
by Al-Masri and Mahmoud [45]. Generated datasets illustrate different workflow scenarios
to evaluate the proposed model’s effectiveness and efficiency. The QWS dataset is a labeled
dataset describing real-world web services QoS. The dataset includes the web services’
response time, throughput, and other QoS results from the results of 2509 web services. For
research purposes, the QWS dataset is categorized into three categories: Excellent, Good
and Poor web service in all the generated datasets.

Symmetry 2022, 14, 82 14 of 18

4.2. Experimental Results and Discussion

In this section, we compare the simulation runs’ results of the proposed model and the
results of the SMFS technique [25]. They are hosted on three VMs without virtualization
and auto-scaling capabilities, to decide the superior algorithm in terms of optimizing
service compositions construction processes, in addition to the use of web service resources.
The comparison between the results is based on the SLA clients’ classes, which are excellent,
good, and poor classes.

Figure 2 shows the number of integrated web services in the service composition, the
figure shows that the resources’ use of the web services using the proposed model is better
than the other models. Where all the web services joined the SMO groups and integrated
into service compositions in all web services classes. The results show that using SMO
enhances the average number of the integrated web services in the service composition by
11.7%, in comparison with the results of the Simulated Annealing SMFS technique. The
enhancement is a result of sharing resources by web services in the same group, where the
web service might be integrated into more than one service composition at the same time
according to the maximum capacity of the web service.

Symmetry 2021, 13, x FOR PEER REVIEW 15 of 20

service compositions construction processes, in addition to the use of web service re-
sources. The comparison between the results is based on the SLA clients’ classes, which
are excellent, good, and poor classes.

Figure 2 shows the number of integrated web services in the service composition, the
Figure shows that the resources’ use of the web services using the proposed model is bet-
ter than the other models. Where all the web services joined the SMO groups and inte-
grated into service compositions in all web services classes. The results show that using
SMO enhances the average number of the integrated web services in the service composi-
tion by 11.7%, in comparison with the results of the Simulated Annealing SMFS technique.
The enhancement is a result of sharing resources by web services in the same group, where
the web service might be integrated into more than one service composition at the same
time according to the maximum capacity of the web service.

Figure 2. Number of the integrated web services in the service composition.

Figure 3 illustrates the comparison between the number of constructed service com-
positions using the SMO and SMFS. The results show that the number of constructed ser-
vice compositions by the SMFS is greater than that of the proposed SMO model by 11.8%.
This SMFS technique searches the available web services and integrated web services for
available resources, to construct new service compositions. As a result of the engagement
of the web services with groups in the proposed SMO model, two or more web services
with the same functionality might integrate within the same service composition to sup-
ply the service—this is related to the maximum capacity of the web services and the num-
ber of the client’s requests that the web service can handle per second, where each service
composition consists of at least five web services to provide an end-to-end full service.

Figure 3. Number of the Constructed Service Compositions.

Figure 2. Number of the integrated web services in the service composition.

Figure 3 illustrates the comparison between the number of constructed service com-
positions using the SMO and SMFS. The results show that the number of constructed
service compositions by the SMFS is greater than that of the proposed SMO model by 11.8%.
This SMFS technique searches the available web services and integrated web services for
available resources, to construct new service compositions. As a result of the engagement
of the web services with groups in the proposed SMO model, two or more web services
with the same functionality might integrate within the same service composition to supply
the service—this is related to the maximum capacity of the web services and the number
of the client’s requests that the web service can handle per second, where each service
composition consists of at least five web services to provide an end-to-end full service.

Figure 4 shows that the proposed model improves the composition time. The results
presented in Figure 4 confirm that the time needed by the SMFS technique during the
construction of the composition services is longer than the time needed by the proposed
model using SMO. The composition time required by the SMFS is 1645.71 s, while the time
necessary to complete the composition process by the SMO proposed model is 1172.03 s.

Moreover, the comparison of the proposed model and the SMFS technique’s through-
put is shown in Figure 5, the dynamic behavior of the proposed model’s SMO enhances
the system throughput. The results show that the average number of requests successfully
processed by the service compositions within the acceptable SLA response time increased
by 24.8%, compared to the throughput of the SMFS technique within the acceptable SLA
response time for all client classes.

Symmetry 2022, 14, 82 15 of 18

Symmetry 2021, 13, x FOR PEER REVIEW 15 of 20

service compositions construction processes, in addition to the use of web service re-
sources. The comparison between the results is based on the SLA clients’ classes, which
are excellent, good, and poor classes.

Figure 2 shows the number of integrated web services in the service composition, the
Figure shows that the resources’ use of the web services using the proposed model is bet-
ter than the other models. Where all the web services joined the SMO groups and inte-
grated into service compositions in all web services classes. The results show that using
SMO enhances the average number of the integrated web services in the service composi-
tion by 11.7%, in comparison with the results of the Simulated Annealing SMFS technique.
The enhancement is a result of sharing resources by web services in the same group, where
the web service might be integrated into more than one service composition at the same
time according to the maximum capacity of the web service.

Figure 2. Number of the integrated web services in the service composition.

Figure 3 illustrates the comparison between the number of constructed service com-
positions using the SMO and SMFS. The results show that the number of constructed ser-
vice compositions by the SMFS is greater than that of the proposed SMO model by 11.8%.
This SMFS technique searches the available web services and integrated web services for
available resources, to construct new service compositions. As a result of the engagement
of the web services with groups in the proposed SMO model, two or more web services
with the same functionality might integrate within the same service composition to sup-
ply the service—this is related to the maximum capacity of the web services and the num-
ber of the client’s requests that the web service can handle per second, where each service
composition consists of at least five web services to provide an end-to-end full service.

Figure 3. Number of the Constructed Service Compositions. Figure 3. Number of the Constructed Service Compositions.

Symmetry 2021, 13, x FOR PEER REVIEW 16 of 20

Figure 4 shows that the proposed model improves the composition time. The results
presented in Figure 4 confirm that the time needed by the SMFS technique during the
construction of the composition services is longer than the time needed by the proposed
model using SMO. The composition time required by the SMFS is 1645.71 s, while the time
necessary to complete the composition process by the SMO proposed model is 1172.03 s.

Figure 4. Service composition time.

Moreover, the comparison of the proposed model and the SMFS technique’s through-
put is shown in Figure 5, the dynamic behavior of the proposed model’s SMO enhances
the system throughput. The results show that the average number of requests successfully
processed by the service compositions within the acceptable SLA response time increased
by 24.8%, compared to the throughput of the SMFS technique within the acceptable SLA
response time for all client classes.

Figure 5. Throughput.

Finally, Figure 6 shows the results of the service composition response time related
to the proposed model and the SMFS technique. The R\response time results for both
models are within the acceptable range for all classes.

Figure 4. Service composition time.

Symmetry 2021, 13, x FOR PEER REVIEW 16 of 20

Figure 4 shows that the proposed model improves the composition time. The results
presented in Figure 4 confirm that the time needed by the SMFS technique during the
construction of the composition services is longer than the time needed by the proposed
model using SMO. The composition time required by the SMFS is 1645.71 s, while the time
necessary to complete the composition process by the SMO proposed model is 1172.03 s.

Figure 4. Service composition time.

Moreover, the comparison of the proposed model and the SMFS technique’s through-
put is shown in Figure 5, the dynamic behavior of the proposed model’s SMO enhances
the system throughput. The results show that the average number of requests successfully
processed by the service compositions within the acceptable SLA response time increased
by 24.8%, compared to the throughput of the SMFS technique within the acceptable SLA
response time for all client classes.

Figure 5. Throughput.

Finally, Figure 6 shows the results of the service composition response time related
to the proposed model and the SMFS technique. The R\response time results for both
models are within the acceptable range for all classes.

Figure 5. Throughput.

Finally, Figure 6 shows the results of the service composition response time related to
the proposed model and the SMFS technique. The R\response time results for both models
are within the acceptable range for all classes.

Figure 6 confirms that the proposed model’s response time is better than that of the
SMFS technique (for all classes); where the response time of the proposed model is less than
the SMFS’ by 0.25, 0.69, and 5.35 s for the Excellent, Good and Poor classes, respectively.

Symmetry 2022, 14, 82 16 of 18Symmetry 2021, 13, x FOR PEER REVIEW 17 of 20

Figure 6. Service compositions’ Response time.

Figure 6 confirms that the proposed model’s response time is better than that of the
SMFS technique (for all classes); where the response time of the proposed model is less
than the SMFS’ by 0.25, 0.69, and 5.35 s for the Excellent, Good and Poor classes, respec-
tively.

5. Conclusions
The experimental results show that using the proposed SMO model decreases the

average composition time by 40.4% compared to the composition time required by the
SMFS technique, where the Equation (12) presents the SMFS’ time complexity, while
Equation (13) shows the proposed model’s time complexity

In both Equations (11) and (12), the variable N is the number of all web services found
in the repository. N1 is the total number of web services that belong to the excellent class,
N2 is the number of web services with QoS attributes related to the good class, and N3 is
classified as web services with poor QoS specifications. While the variables M1, M2, and
M1 in Equation (12) are the number of web service groups of the 1st, 2nd, and 3rd VMs,
respectively.

According to Equations (11) and (12), the initial time complexity for both models
equal (N1)2, (N2)2, (N3)2 defined and described in the previous paragraph. During the ex-
ecution of the proposed model, the time complexity changed to () , () and () ,
because of dividing the web services’ groups N1, N2, and N3 into the number of groups
M1, M2, and M3 respectively.

On the other hand, 3(N)2 is the extra time needed to search and construct new service
compositions in the multi-classes pool by the SMFS technique during the execution, which
confirms the results of the simulation mentioned in Section 4.2. The experimental results
also show that the web services joined the SMO groups and integrated into service com-
positions, SMO increased the average number of integrated web services in the service
composition by 11.7%, in comparison with the results of the SMFS technique.

The results also show that the dynamic behavior of the SMO improves the proposed
model throughput. The average number of requests that the service compositions pro-
cessed successfully increased by 1.25% compared to the throughput of the SMFS tech-
nique. In addition to that, the proposed model decreases the Service compositions’ re-
sponse time by 0.25 s, 0.69 s, and 5.35 s for the Excellent, Good and Poor classes respec-
tively, compared to the results of the SMFS Service compositions’ Response time related
to the same classes. On the other hand, the number of constructed service compositions
by the SMFS is greater than the one achieved using the proposed SMO model by 11.8%. It
is a result of integrating the web services into more than one service composition and
using the available resources to construct new service compositions.

Figure 6. Service compositions’ Response time.

5. Conclusions

The experimental results show that using the proposed SMO model decreases the
average composition time by 40.4% compared to the composition time required by the SMFS
technique, where the Equation (12) presents the SMFS’ time complexity, while Equation (13)
shows the proposed model’s time complexity

In both Equations (11) and (12), the variable N is the number of all web services
found in the repository. N1 is the total number of web services that belong to the excellent
class, N2 is the number of web services with QoS attributes related to the good class, and
N3 is classified as web services with poor QoS specifications. While the variables M1,
M2, and M1 in Equation (12) are the number of web service groups of the 1st, 2nd, and
3rd VMs, respectively.

According to Equations (11) and (12), the initial time complexity for both models equal
(N1)2, (N2)2, (N3)2 defined and described in the previous paragraph. During the execution
of the proposed model, the time complexity changed to (N1

M1)
2
, (N2

M2)
2

and (N3
M3)

2
, because

of dividing the web services’ groups N1, N2, and N3 into the number of groups M1, M2,
and M3 respectively.

On the other hand, 3(N)2 is the extra time needed to search and construct new ser-
vice compositions in the multi-classes pool by the SMFS technique during the execution,
which confirms the results of the simulation mentioned in Section 4.2. The experimental
results also show that the web services joined the SMO groups and integrated into service
compositions, SMO increased the average number of integrated web services in the service
composition by 11.7%, in comparison with the results of the SMFS technique.

The results also show that the dynamic behavior of the SMO improves the proposed
model throughput. The average number of requests that the service compositions processed
successfully increased by 1.25% compared to the throughput of the SMFS technique. In
addition to that, the proposed model decreases the Service compositions’ response time by
0.25 s, 0.69 s, and 5.35 s for the Excellent, Good and Poor classes respectively, compared to
the results of the SMFS Service compositions’ Response time related to the same classes.
On the other hand, the number of constructed service compositions by the SMFS is greater
than the one achieved using the proposed SMO model by 11.8%. It is a result of integrating
the web services into more than one service composition and using the available resources
to construct new service compositions.

One of the drawbacks of the proposed model is the machines’ hardware specifications,
which may directly affect the efficiency of the cloud system and the services provided
if the machines’ hardware is not appropriate for the required workload. Furthermore,
the availability of the web service that provides different functionalities and belongs to
different classes in the repository is one of the major challenges to construct the service
compositions. It is considered a drawback because when the web service with the required
functionality is not available, it will be difficult to construct the service composition. The

Symmetry 2022, 14, 82 17 of 18

service load balancer will not be able to achieve the required SLA when the workload is
high, or in case there is no substitutional web service when the web service is down or
cannot offer the service with the minimum SLA requirements.

In the future work, we suggest adopting cloud services to enhance the model by using
the virtualization and auto-scaling capabilities, which will increase the number of web
service threads with the same function and will provide the service to a substantial number
of clients with the same SLA constraints and requirements.

Author Contributions: Conceptualization, I.A. and H.T.; methodology, I.A.; soft-ware, I.A.; valida-
tion, H.T., I.A. and S.A.; investigation, S.A.; resources, I.A.; data curation H.T.; writing—original
draft preparation, I.A.; writing—review and editing, S.K.; visualization, H.T. and I.A.; supervision,
S.K.; project administration, S.K. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zeng, L.; Benatallah, B.; Dumas, M.; Kalagnanam, J.; Sheng, Q.Z. Quality driven web services composition. In Proceedings of the

12th International Conference on World Wide Web, New York, NY, USA, 20 May 2003; pp. 411–421.
2. Dongre, Y.V.; Ingle, R.B. QoS Based Optimal Resource Allocation in Service Composition for Heterogeneous Devices.

In Proceedings of the 2019 International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India,
17–19 July 2019; pp. 763–767. [CrossRef]

3. Mathew, G.E.; Shields, J.; Verma, V. QoS based pricing for web services. In International Conference on Web Information Systems
Engineering; Springer: Berlin/Heidelberg, Germany, 2004; pp. 264–275.

4. Zhao, X.; Li, R.; Zuo, X. Advances on QoS-aware web service selection and composition with nature-inspired computing. CAAI
Trans. Intell. Technol. 2019, 4, 159–174. [CrossRef]

5. Dongre, Y.; Ingle, R. An Investigation of QoS Criteria for Optimal Services Selection in Composition. In Proceedings of the 2020
2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), Bangalore, India, 5–7 March 2020;
pp. 705–710.

6. Uc-Cetina, V.; Moo-Mena, F.; Hernandez-Ucan, R. Composition of web services using Markov decision processes and dynamic
programming. Sci. World J. 2015, 2015, 545308. [CrossRef] [PubMed]

7. Afaneh, S.; Alhadid, I. Airport enterprise service bus with three levels self-healing architecture (AESB-3LSH). Int. J. Space Technol.
Manag. Innov. 2013, 3, 1–23. [CrossRef]

8. AlHadid, I.; Abu-Taieh, E. Web Services Composition Using Dynamic Classification and Simulated Annealing. Mod. Appl. Sci.
2018, 12, 376–386. [CrossRef]

9. Rai, G.N.; Gangadharan, G.R.; Padmanabhan, V.; Buyya, R. Web service interaction modeling and verification using recursive
composition algebra. IEEE Trans. Serv. Comput. 2018, 14, 300–314. [CrossRef]

10. Jatoth, C.; Gangadharan, G.; Fiore, U.; Buyya, R. QoS-aware big service composition using MapReduce based evolutionary
algorithm with guided mutation. Future Gener. Comput. Syst. 2018, 86, 1008–1018. [CrossRef]

11. Zheng, Z.; Zhang, Y.; Lyu, M.R. Investigating QoS of Real-World Web Services. IEEE Trans. Serv. Comput. 2014, 7,
32–39. [CrossRef]

12. Wang, C.; Ma, H.; Chen, G.; Hartmann, S. A memetic NSGA-II with EDA-based local search for fully automated multi objective
web service composition. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, Prague, Czech
Republic, 13–17 July 2019; pp. 421–422.

13. Juric, M.B.; Mathew, B.; Sarang, P.G. Business Process Execution Language for Web Services: An Architect and Developer’s Guide to
Orchestrating Web Services Using BPEL4WS; Packt Publishing Ltd.: Birmingham, UK, 2006.

14. Muthusamy, V.; Jacobsen, H.-A.; Chau, T.; Chan, A.; Coulthard, P. SLA-driven business process management in SOA.
In Proceedings of the 2009 Conference of the Center for Advanced Studies, Toronto, ON, Canada, 2–5 November 2009;
pp. 86–100.

15. Fan, S.-L.; Yang, Y.-B.; Wang, X.-X. Efficient web service composition via knapsack-variant algorithm. In International Conference
on Services Computing; Springer: Cham, Switzerland, 2018; pp. 51–66.

16. Mirzayi, S.; Rafe, V. A hybrid heuristic workflow scheduling algorithm for cloud computing environments. J. Exp. Theor. Artif.
Intell. 2015, 27, 721–735. [CrossRef]

http://doi.org/10.1109/ICCES45898.2019.9002278
http://doi.org/10.1049/trit.2019.0018
http://doi.org/10.1155/2015/545308
http://www.ncbi.nlm.nih.gov/pubmed/25874247
http://doi.org/10.4018/ijstmi.2013070101
http://doi.org/10.5539/mas.v12n11p376
http://doi.org/10.1109/TSC.2018.2789454
http://doi.org/10.1016/j.future.2017.07.042
http://doi.org/10.1109/TSC.2012.34
http://doi.org/10.1080/0952813X.2015.1020524

Symmetry 2022, 14, 82 18 of 18

17. Dubey, A.; Pal, S. Dynamic Service Composition towards Database Virtualization for Efficient Data Management; IEEE: New York, NY,
USA, 2017; ISBN 978-1-5090-3519-9.

18. Chen, L.; Xian, M.; Liu, J.; Wang, H. Research on Virtualization Security in Cloud Computing. IOP Conf. Ser. Mater. Sci. Eng. 2020,
806, 012027. [CrossRef]

19. Singh, P.; Kaur, A.; Gupta, P.; Gill, S.S.; Jyoti, K. RHAS: Robust hybrid auto-scaling for web applications in cloud computing.
Clust. Comput. 2021, 24, 717–737. [CrossRef]

20. Al Rawajbeh, M. Performance evaluation of a computer network in a cloud computing environment. ICIC Express Lett. 2019, 13,
719–727.

21. Sharma, H.; Hazrati, G.; Bansal, J.C. Spider monkey optimization algorithm. In Evolutionary and Swarm Intelligence Algorithms;
Springer: Cham, Switzerland, 2019; pp. 43–59.

22. Mousa, A.; Bentahar, J. An efficient QoS-aware web services selection using social spider algorithm. Procedia Comput. Sci. 2016,
94, 176–182. [CrossRef]

23. Sangaiah, A.K.; Bian, G.-B.; Bozorgi, S.M.; Suraki, M.Y.; Hosseinabadi, A.A.R.; Shareh, M.B. A novel quality-of-service-aware web
services composition using biogeography-based optimization algorithm. Soft Comput. 2020, 24, 8125–8137. [CrossRef]

24. Emeakaroha, V.C.; Brandic, I.; Maurer, M.; Dustdar, S. Low level metrics to high level SLAs-LoM2HiS framework: Bridging the
gap between monitored metrics and SLA parameters in cloud environments. In Proceedings of the 2010 International Conference
on High Performance Computing and Simulation (HPCS), Caen, France, 28 June–2 July 2010; pp. 48–54.

25. Karimi, M.; Esfahani, F.S.; Noorafza, N. Improving response time of web service composition based on QoS properties. Indian J.
Sci. Technol. 2015, 8, 1–8. [CrossRef]

26. Jung, J.; Krishnamurthy, B.; Rabinovich, M. Flash crowds and denial of service attacks: Characterization and implications for
CDNs and web sites. In Proceedings of the 11th International Conference on World Wide Web, Honolulu, HI, USA, 7–11 May
2002; pp. 293–304.

27. Gao, Y.; Na, J.; Zhang, B.; Yang, L.; Gong, Q. Optimal web services selection using dynamic programming. In Proceedings of the
11th IEEE Symposium on Computers and Communications (ISCC’06), Cagliari, Italy, 26–29 June 2006; pp. 365–370.

28. Yau, D.K.Y.; Lui, J.C.S.; Liang, F. Defending against distributed denial-of-service attacks with max-min fair server-centric router
throttles. IEEE/ACM Trans. Netw. 2005, 13, 29–42. [CrossRef]

29. Tilahun, S.L.; Ngnotchouye, J.M.T.; Hamadneh, N. Continuous versions of firefly algorithm: A review. Artif. Intell. Rev. 2017, 51,
445–492. [CrossRef]

30. Shree, S.U.; Amuthan, A.; Joseph, K.S. Integrated Ant Colony and Artificial Bee Colony Optimization Meta Heuristic Mechanism
for Quality of Service Based Web Service Composition. J. Comput. Theor. Nanosci. 2019, 16, 1444–1453. [CrossRef]

31. Jung, J.-Y.; Bae, J.; Liu, L. Hierarchical clustering of business process models. Int. J. Innov. Comput. Inf. Control 2009, 5, 1349–4198.
32. Gao, Z.-P.; Chen, J.; Qiu, X.-S.; Meng, L.-M. QoE/QoS driven simulated annealing-based genetic algorithm for Web services

selection. J. China Univ. Posts Telecommun. 2009, 16, 102–107. [CrossRef]
33. Elmaghraoui, H.; Zaoui, I.; Chiadmi, D.; Benhlima, L. Graph based E-Government web service composition. arXiv 2011,

arXiv:1111.6401.
34. Mishra, S.K.; Sahoo, B.; Parida, P.P. Load balancing in cloud computing: A big picture. J. King Saud Univ.-Comput. Inf. Sci. 2020,

32, 149–158. [CrossRef]
35. Androcec, D.; Vrček, N.; Küngas, P. Service-Level Interoperability Issues of Platform as a Service. In Proceedings of the 2015 IEEE

World Congress on Services, New York, NY, USA, 27 June–2 July 2015; pp. 349–356.
36. Chen, S.L.; Chen, Y.Y.; Kuo, S.H. CLB: A novel load balancing architecture and algorithm for cloud services. Comput. Electr. Eng.

2017, 58, 154–160. [CrossRef]
37. Lin, Z.; Zhao, H.; Ramanathan, S. Pricing Web Services for Optimizing Resource Allocation—An Implementation Scheme of the

2nd Workshop on e-Business, Seattle, WA, USA, 13–14 December 2003. Available online: https://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.94.7799&rep=rep1&type=pdf (accessed on 6 December 2021).

38. Al Rawajbeh, M.; Al Hadid, I.; Aqaba, J.; Al-Zoubi, H. Adoption of cloud computing in higher education sector: An overview.
Indian J. Sci. Technol. 2019, 5, 23–29.

39. Al-Masri, E.; Mahmoud, Q.H. Toward quality-driven web service discovery. IT Prof. 2008, 10, 24–28. [CrossRef]
40. Karunamurthy, R.; Khendek, F.; Glitho, R.H. A novel architecture for Web service composition. J. Netw. Comput. Appl. 2012, 35,

787–802. [CrossRef]
41. Alhadid, I.; Tarawneh, H.; Kaabneh, K.; Masa’Deh, R.; Hamadneh, N.N.; Tahir, M.; Khwaldeh, S. Optimizing Service Composition

(SC) Using Smart Multistage Forward Search (SMFS). Intell. Autom. Soft Comput. 2021, 28, 321–336. [CrossRef]
42. Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A.D.; Katz, R.; Konwinski, A.; Lee, G.; Patterson, D.; Rabkin, A.; Stoica, I.; et al. A view

of cloud computing. Commun. ACM 2010, 53, 50–58. [CrossRef]
43. Lavanya, M.; Vaithiyanathan, V. Load prediction algorithm for dynamic resource allocation. Indian J. Sci. Technol. 2015, 8, 1–4. [CrossRef]
44. Ludwig, H.; Keller, A.; Dan, A.; King, R.P.; Franck, R. Web Service Level Agreement (WSLA) Language Specification; IBM Corporation:

Armonk, NY, USA, 2002.
45. AlHadid, I.; Kabbaneh, K.; Tarawneh, H.; Alhroob, A.; Abu-Taieh, E.; Khwaldeh, S.; Alrwashdeh, D.; Alkhawaldeh, R.S. Adaptive

Methods to Optimize Web Services Selection and Service Compositions Construction. New Ideas Concern. Sci. Technol. 2021,
8, 74–86.

http://doi.org/10.1088/1757-899X/806/1/012027
http://doi.org/10.1007/s10586-020-03148-5
http://doi.org/10.1016/j.procs.2016.08.027
http://doi.org/10.1007/s00500-019-04266-y
http://doi.org/10.17485/ijst/2015/v8i16/55122
http://doi.org/10.1109/TNET.2004.842221
http://doi.org/10.1007/s10462-017-9568-0
http://doi.org/10.1166/jctn.2019.8057
http://doi.org/10.1016/S1005-8885(08)60347-7
http://doi.org/10.1016/j.jksuci.2018.01.003
http://doi.org/10.1016/j.compeleceng.2016.01.029
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.94.7799&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.94.7799&rep=rep1&type=pdf
http://doi.org/10.1109/MITP.2008.59
http://doi.org/10.1016/j.jnca.2011.11.012
http://doi.org/10.32604/iasc.2021.014892
http://doi.org/10.1145/1721654.1721672
http://doi.org/10.17485/ijst/2015/v8i35/86637

	Introduction
	Related Work
	Proposed Model
	Step 1. Initialize
	Step 2. Evaluate the Population
	Step 3. Identify Local Leaders for Each Web Service’s Class
	Step 4. Position Update by Local Leader Phase and Construct Service Compositions Groups
	Step 5: Position Update Process in Local Leader Phase (LLP)
	Step 6. Learning through Local Leader Learning Phase
	Step 7: Decide Fission or Fusion

	Simulation Results and Evaluation
	Simulator and Dataset
	Experimental Results and Discussion

	Conclusions
	References

