
Citation: Jia, Z.; Liu, H.; Zheng, H.;

Fan, S.; Liu, Z. An Intelligent

Inspection Robot for Underground

Cable Trenches Based on Adaptive

2D-SLAM. Machines 2022, 10, 1011.

https://doi.org/10.3390/

machines10111011

Academic Editors: Qing Gao,

Michael V. Basin and Yu Pan

Received: 19 September 2022

Accepted: 30 October 2022

Published: 1 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

An Intelligent Inspection Robot for Underground Cable
Trenches Based on Adaptive 2D-SLAM
Zhiwei Jia *, Haohui Liu, Haoliang Zheng, Shaosheng Fan and Zheng Liu

Hunan Province Key Laboratory of Electric Power Robot, School of Electrical and Information Engineering,
Changsha University of Science and Technology, Changsha 410205, China
* Correspondence: jiayege@csust.com

Abstract: With the rapid growth of underground cable trenches, the corresponding inspections be-
come a heavy burden, and an intelligent inspection robot for automatic examinations in underground
cable trenches would be a suitable solution. To achieve this, this paper establishes one new navigation
methodology for intelligent inspection robots, especially when applied in complex scenarios and
the corresponding hardware. Firstly, to map the underground trenches with higher precision, an
improved graph optimization cartographer-SLAM algorithm is proposed, which is based on the
combination of depth camera and LIDAR. The depth image is converted into pseudo laser data,
and fused with LIDAR data for calibration. Secondly, to overcome the low precision of the Laser
odometer due to the uneven ground, an adaptive keyframe selection method is designed. Thirdly, the
forward A* model is presented, which has been adjusted in three aspects, including the convergence
of node searching, the cost function, and the path smoothness, to adapt to the narrow underground
environment for global path planning. Fourthly, to realize dynamic obstacle avoidance, an improved
fusion scheme is built to integrate the proposed global path planning algorithm and the dynamic
window approach (DWA). In the case study, the simulation experiments showed the advantage of the
forward A* algorithm over the state-of-the-art algorithm in both time consumption and the number
of inflection points generated, the field tests illustrated the effect of the fusion of depth camera images
and LIDAR. Hence, the feasibility of this navigation methodology can be verified, and the average
length of path and time consumption decreased by 6.5% and 17.8%, respectively, compared with the
traditional methods.

Keywords: inspection robot; underground cable trench; inspection robot; Simultaneous Localization
and Mapping (SLAM); navigation; LIDAR; forward A* algorithm; path planning; dynamic window
approach (DWA)

1. Introduction

Compared with overhead cable, underground cable is safer, easier to maintain, and
better able to satisfy the demands of urban planning. As time goes on, underground
cable monitoring will require more and more applications as it continues to become a very
important part of urban distribution networks [1]. The growing length of underground
cables requires more and more routine maintenance. In addition, the environment of most
underground cable trenches is relatively treacherous [2]. The trenches are narrow and
enclosed and are surrounded by high-voltage cables. They can be dangerous and difficult
for workers to access. The risk of fire or explosion increases with time due to accumulating
harmful gas and aging cables within the trenches. Narrow spaces make them hard to
access, especially for workers equipped with multiple inspection tools. These aspects make
manual inspection dangerous, time-consuming, and inefficient.

To precisely and timely assess the conditions of the underground cable trench, gas
concentration, temperature, and humidity, the in-site and real-time pictures or videos
should be collected [3]. A cable trench monitoring system is a pioneering trend. It can
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obtain all kinds of information in the cable trench in real-time, and report when and where
a fire is found or could happen. Unfortunately, owing to the long length of the cable trench,
the use of fixed monitor systems has its downsides: blind spots, and high construction
costs. Both of these make this system hard to implement in the great lengths of existing
underground cable trenches [4]. Therefore, an intelligent inspection robot for underground
cable trenches is of great significance for routine patrol inspection. The use of intelligent
inspection robots will avoid the dangers of manual inspection and the work intensity will
be greatly reduced [5,6].

The orbital robot [7,8] has been shown to be more suitable for underground pipe
galleries with a relatively wide area. Although the speed of the ground walking robot is
relatively low, it is suitable for underground cable trenches with narrow spaces. There are
already some reports about such robots. A remote-controlled cable trench monitoring robot
was designed by Shanghai Jiaotong University, but the remote-control mode is inconvenient
for such a narrow cable trench environment and is unsuitable for routine inspections [7].
Even though inspection robots for substations are becoming more robust, they are relatively
large and their mapping and positioning methods are not very reliable in the cable trench
environment. An inspection robot for the underground cable trench could perform the
inspection function according to the given route in a standard environment, but the current
mapping methods contain large errors and the robot by itself cannot navigate in such
complex situations [8].

Automatic navigation is one of the key technologies needed for this robot. As shown
in Figure 1, the main challenge of navigation is the complicated environment within the
trench. The typical size of an underground cable trench is about 100 m × 1.2 m × 1.5 m,
cable brackets are installed on both sides. Multiple cables are placed on the brackets. The
surfaces of the trench are composed of sand and pipes and might even contain construction
waste and bodies of animals). The trenches are composed of up-and-down slopes and pits,
which makes odometer readings unreliable and inaccurate.
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To inspect within such complex environments, an intelligent inspection robot is de-
signed and a relevant navigation methodology are proposed. The main contributions are
outlined as:
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1. The hardware of an inspection robot is designed according to the demands of the
underground cable trench inspection works.

2. An adaptive 2D-SLAM method is established for better localization and more accurate
mapping within such structured environments of uneven ground.

3. A path planning method for the underground cable trench is proposed.

The remaining sections of this paper are outlined as follows. Section 2 presents the
related work. Section 3 presents the methods used including system demands, system
overview, simultaneous localization and mapping, and path planning. Section 4 describes
the results and analysis. Section 5 presents the conclusions.

2. Related Work

With the continuous development of Simultaneous Localization and Mapping (SLAM)
research, various sensors are widely used in different scenarios, owing to their specific
characteristics. Of these sensors, the laser sensor is the most mature one. It obtains
environmental information accurately and quickly and also meets real-time requirements
with low computational complexity. Therefore, it is widely used to create traditional two-
dimensional raster maps. LIDAR data and IMU (Inertial measurement unit) data could
be used for self-localization and mapping in the indoor environment. However, single
LIDAR cannot deal with the complex situations found within the cable trenches, especially
hanging cables and cable brackets, because the detection area of single LIDAR is planar
instead of 3D.

Due to the overreliance on odometer readings and poor large-scale mapping, the
conventional SLAM algorithm based on filters [9,10] cannot correct the pose estimation
and allows errors to accumulate. Cartographer SLAM algorithm [11] based on graph
optimization is adapted because it can get a complete estimation of global trajectory and
map instead of the local pose and avoid the mapping failures led by the accumulated
errors of odometer readings. However, considering the cost and production efficiency,
the Cartographer SLAM algorithm cannot play to its strengths within an underground
cable trench.

Therefore, the use of multi-sensor data fusion in such scenarios is a prerequisite for
mapping and localization. Vision sensors, such as binocular cameras and depth cameras,
are another way to detect the environment. Compared with single-line LIDAR, it can obtain
rich environmental information for SLAM. For example, ORB-SLAM2 of RaulMur Artal
can use monocular and binocular cameras and depth cameras to create sparse point cloud
maps of the environment [12]. Felix Endres, et al. proposed that RGB-D-SLAM based on
Kinect makes full use of the information of depth cameras to create environmental maps.
Therefore, the fusion of laser sensor information and depth camera information is a feasible
way to create a three-dimensional raster map of the environment.

SLAM technology based on LIDAR is a relatively mature positioning scheme. It is
applied to inspection robots in long-channel environments. Most of them use the 2D-SLAM
method for map construction and positioning. There are two main ways to realize this
method: filtering method and graph optimization. The main representative of filtering-
based 2D-SLAM is GMapping-SLAM [13]. This algorithm relies too much on particle
confidence and no loopback detection, and it is easy to cause map dislocation when
building larger maps. The main representative of 2D-SLAM based on graph optimization
is Cartographer-SLAM. Graph optimization introduces the idea of loop detection, which
optimizes the entire pose of the robot by optimizing the poses of all keyframes of the state
quantity, and solved the problem of large scene mapping and positioning. However, in a
heavily structured environment, if only laser registration is used to obtain state estimation,
the 2D-SLAM based on graph optimization has problems, such as scene degradation and
laser odometry [14]. Therefore, using a variety of sensors for fusion has become a necessary
option for accurate mapping and positioning.

When fusing multi-sensor data, loose-coupling or tight-coupling methods can be
used. At present, 2D-SLAM multi-sensor fusion mainly adopts a loose-coupling mode,
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for example, Cartographer-SLAM [10] uses a lossless Kalman filter to fuse multi-source
data to obtain the pose of the robot. The loose-coupling method of data is simple and has
high real-time performance, but it is prone to problems, such as cumulative error and poor
robustness. The tight-coupling method fuses the states of multiple sensors to construct
the motion equation and observation equation. Even without loopback, the constructed
map and positioning accuracy is high [14]. For example, the VINS-mono algorithm uses
vision/IMU pre-integration for tight-coupling [15], and the LIO-mapping algorithm uses
3D LIDAR/IMU prediction score for tight-coupling. There are no reports on the application
of tight-coupling to 2D-SLAM. Considering that it is difficult to use loop closure detection
for long-structured scenes, a method is proposed to construct high-precision 2D maps by
tightly coupling 2D radar and IMU pre-integration.

Robot path planning is used to plan a collision-free path movement to a specific
destination in the constructed static or dynamic obstacle maps [16]. The artificial potential
field (APF) method [10] uses a potential field function to cover the whole map and plan the
robot’s path at once. However, for more complex environments, the destination is often
unreachable due to the local minimum. Sampling-based algorithms, such as probability
roadmap (PRM) [17] and rapidly exploring random trees (RRT) [18], are effective methods
to solve high-dimensional and multi-constrained path-planning problems. However, they
only provide weak completeness (also known as probabilistic completeness), and have
more inflection points. Without considering the path cost, the resulting paths generated are
not optimal. Ant colony algorithm [19] has the advantages of a large amount of calculation,
slow convergence, and ease of falling into the local optimal solution.

The Dijkstra algorithm uses traversal search. With more points, the node network
becomes very large, and the algorithm is inefficient [20]. Based on the Dijkstra algorithm,
the A* algorithm introduces the estimated cost from the current point to the target point
and determines the path search direction according to the estimated cost. This improves the
efficiency of the algorithm [21]. The A* algorithm can quickly determine the collision-free
shortest global path of the mobile robot in the known environment. However, the node
search strategy of the improved A* algorithm is an eight-neighborhood search. This leads
to the planning of the navigation path of a larger map. Low efficiency and more inflection
points are not conducive to the normal movement of the robot. This is especially true
within cable trenches, where the road surface is covered with sand, has more pits, and up
and down slopes.

The dynamic window approach (DWA) [22,23] has a good obstacle avoidance ability
by combining sensor data for online real-time local path planning and can give the optimal
forward speed as well as the angle of the actual robot. It is suitable for robot path planning
in a dynamic environment. Unfortunately, the low speed (even in simple environments)
leads to a lack of timeliness for global planning.

Taking the special underground cable trench environment and time consumption
into consideration, a novel path-planning method, combining the local path-planning
algorithm with the global path-planning algorithm should be researched. This research
should not only consider the obstacles in the environment but also ensure the completeness
and accuracy of real-time path planning and meet the motion constraints of the robot.

3. Methods
3.1. System Demands

Considering the narrow and irregular passible areas in the underground cable trench
(as shown in Figure 1), the moving mechanisms should fit in the size and the obstacle
(the max ramp angle should be large than 30◦). In addition, many tasks need to be done
by the robot, in addition to evaluating the underground cable trench’s overall internal
environment. There are four modules needed to be added to the robot, due to the tasks and
environmental features.

(i) The visual module. To observe and detect abnormalities of the underground cable
trench by infrared thermal imaging and a high-definition camera.
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(ii) The information detection module. To detect harmful gases, temperature, and humid-
ity by multi-sensor.

(iii) The automatic navigation module. Perform SLAM and plan inspection path.
(iv) The assessment module. To assess the underground cable trench environment by the

diagnosis system based on leading-edge intelligence.

3.2. System Overview

To meet the special demands of the underground cable trench environment, the robot is
designed as a double crawl-type drive as shown in Figure 2a. The double drive mode adapts
the crawler to connect the front and rear wheels for driving, which has some advantages,
such as low consumption, small size, and convenient control. The actual parameters of
the robot are as follows: length, width, and height: 500 mm × 300 mm × 120 mm. Chassis
dead weight: 8.45 kg; maximum load: 30 kg; maximum climbing angle: 35◦; maximum
obstacle crossing: 90 mm; maximum span: 250 mm. The corresponding kinematics model
of the robot is shown in Figure 2b [24]. The motion mechanism is a dual-motor caterpillar
chassis, which is driven independently by the brushless DC motors on both sides to drive
the driving wheels on both sides. There is no mechanical steering mechanism between
the driving wheels on both sides. The dual-motor caterpillar chassis system is tuned
by controlling the speed and torque of the motors on both sides through an electronic
differential steering system, and an incremental PID control method is designed to track
the track provided by the navigation system.
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To design the system structure as shown in Figure 3 of the underground cable trench
robot that can meet the requirements of multi-sensor information collection and cooperative
multitasking, multi-CPU collaborative work architecture is used to improve the ability of
data processing. The information on location and mapping is provided by LIDAR. The core
information computing module uses NVIDIA core main control board and ROS, which
can provide a system platform for achieving autonomous navigation algorithms. The
NVIDIA main control board connects an infrared imager, HD camera, and other visual
sensors to realize high-definition images and infrared thermal imaging information reading.
The video data stream is uploaded to the operator terminal via WLAN. In addition, it
also contains two embedded sub-processors. One is used for determining the attitude
and platform control of the robot. Another is used to perceive the environment of the
underground cable trench, which utilizes several sensors for monitoring temperature and
humidity, and gas and water levels.
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Figure 3. System structure of intelligent inspection robot for cable trench.

To show and evaluate the collected information, the relevant sensor information was
collected, analyzed, and communicated over WLAN to the operating terminal and back-
ground server. Dual wireless network cards and high-power base stations are combined
to transmit a large quantity of data, boost wireless transmission power, and guarantee
the stability and reliability of communication to ensure the stability and reliability of
data transmission.

3.3. Simultaneous Localization and Mapping

The overall framework of the mapping and positioning system proposed in this paper
is mainly composed of data preprocessing, front-end odometer, map construction, and
LIDAR/IMU tight coupling optimization.

The depth camera and the laser sensor are used to jointly calibrate the position.
In the data preprocessing part, the attitude is obtained by IMU integration to perform

adaptive inter-frame registration selection and angle de-distortion of the laser point. The
front-end odometer part registers the laser points at successive moments obtained after
screening to obtain laser odometer information. In the map construction process, the
current laser frame whose state estimation update exceeds 0.2 m and satisfies the pose
similar to the starting pose of the map is used as a keyframe to register with the global map
and added to the global map as the registration object of the next frame keyframe. The
tightly coupled optimization part of LIDAR/IMU constructs a global residual block system.
Each residual block inserts the relative pose between adjacent keyframes as a measurement
item and the pre-integration between adjacent keyframes as an estimation item.

The depth camera and the laser sensor are used to jointly calibrate the position based
on the data collected and to create a two-dimensional raster map of the environment. The
fusion scheme is shown in Figure 4.
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Figure 4. The scheme of simultaneous localization and mapping.

Defining the effective range of depth images is the first step to utilizing the depth
information of depth images. The pixels generated, which are located higher than the top of
the robot or lower than the maximum height of the ability to surmount the vertical obstacle
of the robot, are discarded since they are not obstacles to the movement of the robot. As
shown in Figure 5, avoiding too many inflection points in the route, the detection distance
is the minimum turning radius of the robot (r). Projecting the depth image onto the plane
x = d + r, the whole height of this projection is h4, which could be calculated as:

h4= h1+(d + r) × tan (α + θ − π

2

)
(1)

α = atan
(

d + r
h1

)
(2)

where: h1 is the height of the camera, d is the distance from the camera to the front of the
robot, θ is the sum of up and down shooting angles of the depth camera. h2 is the upper
limit of the perpendicular obstacle capability of the robot, h3 is the projection that is out of
the reach of the robot and could be calculated as:

h3 = h4 − h1 − tan(β)× (d + r) (3)

where: β is the real-time elevation of the robot provided by the gyroscope.
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Figure 5. Available detection range of depth camera.

Since the resolution of the depth map obtained is 240× 320, the section of the available
lines are

[[
240× h2

h4

]
,
[
240× h4−h3

h4

]]
.
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As shown in Figure 6, any point P in-depth image could be expressed as P(x, y, z),
where y is the line number, x is the column number, y is the line number and z is the
distance between the nearest obstacle in this direction and the camera. When converting
a 3D depth image into a 2D grid map, all the points are projected to the ground, and the
nearest points to the camera in every column turn out to be the nearest obstacle in the
direction of projection.
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The distance between the camera and the obstacle in the 2D grid is D(x,z), the direction
of which is from the camera to the projection of column x. D(x,z) could be expressed
as follows:

D(x,z) = minz
st. y∈[[240× h2

h4
],[240× h4−h3

h4
]]

, x ∈ [0, 320] (4)

As shown in formula (5), after compressing, depth image points D(x,z) are mapped to
the points R(u,v,w) in the depth camera coordinate system.

u = h ∗ x ∗ du
f

v = 0
w = z

(5)

where: (u, v, w) represents the three-dimensional coordinate point in the world coordinate
system, the depth image has been compressed into two-dimensional data d(x,z).

Therefore, v is always 0, and f is the internal parameter of the camera.
Formula (6) illustrates the processing of this mapping, and θ is calculated as follows:

θ = atan(u/w) (6)

when θ is mapped into the corresponding laser data slot, the rotation range of the LIDAR is
[0, 360◦], and the laser resolution is 0.5, which means, the laser beam is subdivided into
720 laser beams.

The laser data converted from the depth image represented as array laser_ depth [N],
and the index value N, projected from point R(u, v, w), is calculated as follows:

N = 720× θ/360 = 2atan(u/w) (7)

The distance of the corresponding laser data slot is OR, where R is the point that
R(u, v, w) projects to U Axis, and O is the camera origin. OR could be calculated as:

laser_depth[N] = OR =
√

u2 + w2 (8)
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Laser data and LIDAR data are both obtained based on the position of the sensors
instead of the position of the robot. As a result, when the system is established with the
center of the robot chassis as the origin, the coordinates relative to the LIDAR as well as the
camera should be transformed to the robot one.

After coordinate transformation, the laser_ depth [N] is obtained from the depth image
relative to the center of the robot, and the laser [N] of the LIDAR is obtained. If the laser
data obtained by the LIDAR of the current angle minus the depth image is more than 5 cm,
the laser [N] of the current index is replaced by laser_depth [N]:

laser[N] = laser_depth[N] (laser[N]− laserdepth[N] > 5(cm)) (9)

Owing to the lack of loopback constraint for mapping in a long channel environment,
high accuracy of the laser odometry is demanded. Laser odometry is obtained by the
registration form frame-to-model or frame-to-frame. When the robot is moving on rough
ground, the lidar may vibrate violently. On the one hand, there may be a large number of
laser spots hitting the ground, leading to a significant increment in the inter-frame error
and the obvious effects on the accuracy of the odometer. On the other hand, even if a bad
situation, such as a laser spot hitting the ground, does not happen, the violent jitter of the
LIDAR will make the actual overlap of the obtained laser frame and the keyframe very
negligible. Although the long channel environment can make the inter-frame registration
converge to obtain the pose structure as well, the two-dimensional map constructed by
the pose, in this case, has a large deviation from the actual environment, resulting in the
reduction in the overall map length, more map ghosting, etc. As a result, choosing a
suitable keyframe, which contains enough new information and no significant deviation in
pitch angle from the former keyframe, is very critical for high-precision mapping in such
an environment. To select a keyframe correctly, an adaptive keyframe selection method
is designed.

The adoptive keyframes selection method could be illustrated in the flow chart of
Figure 7. Assuming the original position and gesture of the robot is P0, the prediction
position and gesture of the robot obtained by IMU integration based on the last frame of
LIDAR data is PI , and the position and gesture of the robot observed by the registration of
the inter-frame of LIDAR is PL, the current position and gesture of the robot is Pm, then the
absolute angle error (AAE) between P0 and PI could be expressed as:

AAE = ‖Log
(

P−1
0 PI

)
‖ (10)

The absolute translational error (ATE) between P0 and PL could be expressed as:

ATEtrans = ‖trans
(

P−1
0 PL

)
‖ (11)

If AAE is less than a certain threshold value θ, then this frame meets the condition
of pitch angle. If ATEtrans is larger than a certain threshold value τ, then this frame meets
the condition of absolute translational error. When both AEE and ATEtrans are less than
their respective threshold values, the current frame of LIDAR could be treated as the new
keyframe and perform registration. In all other cases, the registration failed. Once the
number of registration failures exceeds a certain number K, the optimization fails.
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3.4. Path Planning

Path planning includes two kinds of situations. One is global path planning, dealing
with situations without dynamic obstacles. The other one is local path planning, dealing
with situations with dynamic obstacles. The improved A* algorithm [25] is adopted as the
original model for global path planning, since it combines the breadth-first algorithm and
heuristic search, and shows advantages in solving the optimal path in a static environment.
The improved A* algorithm estimates the cost function through an 8-neighborhood search.
The cost function formula of the A* algorithm is as follows:

F(n) = G(n) + H(n) (12)

where: G(n) is the actual path cost of the node from the starting point to the current point, H
(n) is the estimated cost of the current node to reach the endpoint, excluding whether there
is an obstacle in front of, F(n) for the sum of the estimated path cost of the current node
from the starting point to the endpoint. In the implementation of path planning, the A*
algorithm mainly uses two tables to expand nodes and select the best points, and records
nodes through the OpenList table and CloseList table. Among them, the function of the
Openlist table is to save the extended nodes encountered in the search process, sort these
nodes according to the cost, take the node with the lowest value as the current node, and
then add all the neighboring nodes of the current node to the Openlist table according to the
neighbor node rule. However, there are too many turn points planned by the improved A*
algorithm, which makes the robot move a short distance at a time, and causes the stuttering
phenomenon of the robot. Therefore, the forward A* algorithm is proposed to be applied in
the environments of the underground cable trench, and the main improvements compared
with the improved A* algorithm are as follows:

I. The improvement in the node search scope
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Taking the relative size of the cable trench and robot into consideration, backward
motion is not allowed during the planning, since the general direction is definitely to
move forward, eight search directions of the A* algorithm could simplify into five, with
a non-backward choice. This is the reason why we named this algorithm as the forward
A* algorithm.

The direction angle between the current and the target position is calculated as:

θk = arctan

(
ygoal − ypre

xgoal − xpre

)
(13)

where: θk is the angle between the vector from the kth node
(
xpre, ypre

)
to the target point(

xgoal , ygoal

)
and the X-axis.

To satisfy the forward demand, these search directions, of which the absolute value
of the angle between them with θk bigger than 5/4π being abandoned. Furthermore,
converging faster in the direction of heuristic search, a coefficient constraint is added to the
cost equation H (n):

F(n) = G(n) + (1 + rc/R)H(n) (14)

where rc is the distance from the current search node to the target point, and R is the
distance from the starting point to the target point.

The search scope of the improved A* algorithm and the forward A* algorithm is
illustrated in Figure 8. Compared with the improved A* algorithm, the node search scope
of the forward A* algorithm has dropped by almost one-third, which surely raises the
response speed of the robot.
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II. The improvement in avoiding collision

If there are three nodes with an obstacle at the edges of the Openlist, the improved A*
algorithm will treat the middle node as a redundant one and delete it, and there will be a
diagonal line passing through the vertices of the obstacles, which is particularly dangerous
in the real navigation process. In solving this problem, the one with the smallest cost
function in the three nodes will be treated as a collision high-risk point and will be deleted
in the forward A* algorithm. In this way, there is a certain safe distance between the path
planning and the obstacles. Figure 9 shows the pathway of the improved A* algorithm (in
red) and the forward A* algorithm (in blue). That is to say, the pathway of the forward A*
algorithm avoids the risk of colliding with an obstacle in certain special situations.
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III. Improvement in path smoothing

Too many inflection points in the path make the robot turn too much and easily slip,
affecting the robot’s positioning. The proposed improvement starts at the second node
of the path planning. If the motion direction of the current node is the same as its parent
node, delete the parent. Otherwise, change the motion destination of the parent node to
the current node destination, and determine whether the straight line connected by the two
points contains obstacles, if not, update the parent node to the current node, otherwise, no
change should be made. Figure 10 shows the initial pathway obtained by the improved A*
algorithm (in red) and the smoothing result of the forward algorithm (in blue). By doing so,
the number of turning nodes is reduced and the motion of the robot will more fluid.

Machines 2022, 10, 1011 12 of 18 
 

 

the current node destination, and determine whether the straight line connected by the 

two points contains obstacles, if not, update the parent node to the current node, other-

wise, no change should be made. Figure 10 shows the initial pathway obtained by the 

improved A* algorithm (in red) and the smoothing result of the forward algorithm (in 

blue). By doing so, the number of turning nodes is reduced and the motion of the robot 

will more fluid. 

 

Figure 10. The pathway before and after smoothing. 

In determining the global path, the local path-planning method is used to deal with 

dynamic obstacles. The dynamic window approach, which is based on the forward kine-

matics solution of the robot, is adapted to local path planning [26]. The integration of 

global path planning and local path planning is closely related to the performance of path 

planning. As for this fusion scheme [27], after obtaining the global path and deleting those 

redundant points on the path, the turning point in the global path is regarded as the start 

point and endpoint of the local path planning. When the robot reaches a certain endpoint 

through local planning, this endpoint will turn into the next start point and search the 

way to the next endpoint until the robot reaches the target endpoint. However, the exist-

ing fusion method, which merges the global path and the local path in the underground 

cable trench, may lead to the following problems: 

(i). Due to the narrow space in the trench, the local planning will lead to more inflection 

points during the straight section of the global path, which would destroy the 

smoothness of the global path and make the motion of the robot discontinuous. 

(ii). If dynamic obstacles appear in the global path, the dynamic window approach may 

be called several times, which makes the robot linger around the obstacles for a while 

and lower the inspection efficiency. 

To overcome these problems, a novel fusion algorithm of global path planning and 

local path planning for the underground cable trench environment is proposed. The flow 

chart of the fusion algorithm is illustrated in Figure 11. If the current trajectory is feasible, 

move along the current trajectory at a constant speed and keep detecting the surrounding 

environment in real-time. Once a new obstacle is detected in the global path, a circle with 

this obstacle as the center and the length of the robot as the radius will be determined. All 

the global path points inside the circle will be deleted and the next nearest point on the 

global path will be the endpoint of local path planning. DWA local planning will be called. 

All the paths generated from the starting point to the endpoint will be evaluated by the 

evaluation function and the trajectory with the lowest cost is chosen as the best one. 

Figure 10. The pathway before and after smoothing.

In determining the global path, the local path-planning method is used to deal with
dynamic obstacles. The dynamic window approach, which is based on the forward kine-
matics solution of the robot, is adapted to local path planning [26]. The integration of
global path planning and local path planning is closely related to the performance of path
planning. As for this fusion scheme [27], after obtaining the global path and deleting those
redundant points on the path, the turning point in the global path is regarded as the start
point and endpoint of the local path planning. When the robot reaches a certain endpoint
through local planning, this endpoint will turn into the next start point and search the way
to the next endpoint until the robot reaches the target endpoint. However, the existing
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fusion method, which merges the global path and the local path in the underground cable
trench, may lead to the following problems:

(i) Due to the narrow space in the trench, the local planning will lead to more inflec-
tion points during the straight section of the global path, which would destroy the
smoothness of the global path and make the motion of the robot discontinuous.

(ii) If dynamic obstacles appear in the global path, the dynamic window approach may
be called several times, which makes the robot linger around the obstacles for a while
and lower the inspection efficiency.

To overcome these problems, a novel fusion algorithm of global path planning and
local path planning for the underground cable trench environment is proposed. The flow
chart of the fusion algorithm is illustrated in Figure 11. If the current trajectory is feasible,
move along the current trajectory at a constant speed and keep detecting the surrounding
environment in real-time. Once a new obstacle is detected in the global path, a circle with
this obstacle as the center and the length of the robot as the radius will be determined. All
the global path points inside the circle will be deleted and the next nearest point on the
global path will be the endpoint of local path planning. DWA local planning will be called.
All the paths generated from the starting point to the endpoint will be evaluated by the
evaluation function and the trajectory with the lowest cost is chosen as the best one.
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4. Results and Analysis

The experiment uses Jetson Nano as the core processor, loads the Ubuntu 18.04 envi-
ronment, and builds the ROS (Robot Operating System) system. The sensors are Silan-A2
single-line LIDAR, MPU6050 (gyroscope with a frequency of 200 Hz), and depth camera
Astra Pro. All experiments were performed by the same robot with an angular velocity of
0.1 rad/s and a linear velocity of 0.2 m/s, and other experimental-related equipment was
also the same.
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A. Experiments of the fusion of LIDAR and depth camera

The actual experimental verification is carried out in the cable trench environment in
Figure 1. Figure 12 shows the process of laser data fusion in a real environment, where
the top of Figure 12a is the RGB image of the underground cable trench obtained by the
camera, and the bottom of Figure 12a is the corresponding depth map from the depth
camera. Figure 12b is point cloud information that is converted from the depth map,
Figure 12c is the comparison of the laser points (red ones) to the pseudo-laser points (white
ones), and Figure 12d is the fusion results of the two-laser data. There is a wire hanging in
front of the robot in Figure 12a, and the corresponding position is circled in the red box in
Figure 9a. This depth information was converted into a white 3D point cloud and circled in
the green box in Figure 12b. After being processed through the formula (3)–(8) projection
and coordinate transformation, this depth information resulted in the white points cloud in
Figure 12c. Finally, this depth information was fused with the laser data and resulted in the
2D grid map shown in Figure 12d.
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The robot can “see” more clearly by fusing the two-laser data. The combination of
depth camera and single-line LIDAR makes up for the lack of 3D information when the
robot navigates in the underground cable trench.

B. Experiments of the adaptive registration method

To verify the effects of the proposed adaptive registration method, mapping tests are
performed in the environment of Figure 12a at the same distance. There are three parameters
contained in the method, the absolute translational error τ, the pitch angle θ, and the
registration failure up limit K. Figure 13 shows the built map by the adaptive registration
method with different parameters. Figure 13a is the map without the application of
the proposed adaptive registration method. Since the keyframes are selected without
constraints, a large number of laser spots hit the ground and make the registration fail
frequently, leading to the significant shortening of the map and the disorder of the wall
of the cable trench. Figure 13b is mapped when θ = 15◦, τ = 0.5 m, K = 20. Owing
to the application of the adaptive registration method, the phenomenon of laser spots
hitting the ground is reduced markedly, and the shortened degree of the map is decreased
as well. However, the wall of the map is relatively crooked leading to false registration.
Figure 13c is the built map when θ = 10◦, τ = 0.3 m, K = 20. Since the pitch angle is more
limited, the disorder degree of the wall in the built map, as well as the length of the map, is
improved. Figure 13d is the built map when θ = 5◦, τ = 0.2 m, K = 10. Compared with
Figure 13c, attributing the success to the lower threshold value, the disorder degree of the
wall in Figure 13d is further improved. However, when these threshold values are reduced
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furtherly, the accuracy of the map is reduced instead, because the keyframes that satisfied
all these conditions are too limited.
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Figure 13. The map built by the adaptive registration method with different parameters. (a) map
built without the adaptive registration method, (b) map built when θ = 15◦, τ = 0.5 m, K = 20,
(c) map built when θ = 10◦, τ = 0.3 m, K = 20, (d) map built when θ = 5◦, τ = 0.2 m, K = 10.

C. Experiments of our global path planning algorithm

To verify the effectiveness of our global path planning algorithm, three grid map
scenes of the same size are constructed. with the same start point and endpoint. The
forward A* algorithm is performed as well as the improved A* algorithm [27], Dijkstra [24],
and RRT [26] algorithm. The simulation results are shown in Figure 14.
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As shown in Table 1, the computing time of the RRT algorithm is the shortest, but
the RRT algorithm is composed of random tree nodes, with too many inflection points
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within the route. This will increase the probability of wheel slip of the robot, leading to low
accuracy of positioning and even navigation failure. Compared with the Dijkstra algorithm
and the improved A* algorithm, the proposed Forward A* method takes less time and
has fewer inflection points after curve smoothing. Meanwhile, the risk of collision of the
path planned by our method is lower since there is no diagonal crossing of the obstacle.
Simulation results indicate that our method is safer, has better real-time performance,
and has better smoothness and it is more suitable for high-risk environments such as
cable trenches.

Table 1. Comparison of different path planning algorithms.

Algorithm Forward A* Improved A* RRT Dijkstra

Map scenario 3 1 2 3 1 2 3 1 2 3 1 2
Average time (ms) 11.78 12.12 12.45 13.57 13.56 15.01 6.28 6.96 8.45 14.28 14.75 15.46

Inflection point 3 3 4 5 6 5 11 9 16 7 8 6
Risk of collision Low low low high high high high high high high high high

D. Experiments of the fusion of global path and local path

The trajectories in the site of the underground cable trench given by the proposed
global planning algorithm, traditional fusion algorithm, and proposed fusion method are
illustrated in Figure 15, which are screenshots from Rviz on Ubuntu. Where the green curve,
the blue curve, and the red curve are the path obtained by the proposed global planning
algorithm, traditional fusion algorithm, and proposed fusion method, respectively, and the
object in the red box is a dynamic obstacle. As shown, the global path provided by our
global planning algorithm cannot avoid the dynamic obstacle, while the fusion path could
avoid the dynamic obstacle. Furthermore, compared with the traditional fusion method
(blue path), our fusion method (red path) has fewer turning points and avoids lagging
around the dynamic obstacle.
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To verify the effectiveness and operability of the proposed fusion algorithm, experi-
ments on-site with different starting points and endpoints were done using the traditional
fusion algorithm and the proposed method, respectively. Experiments (Video S1) are di-
vided into three groups with different distances: 10 m, 20 m, and 30 m. Each group contains
five experiments with different starting points and endpoints, and each experiment repeats
five times. The average path length and average time consumption of each method are
measured as shown in Table 2. Compared with the traditional method, the average length
of path and time consumption of the proposed integration method decreases by 6.5%
and 17.8%, respectively. The robot successfully arrived at the endpoint according to the
planned path, and the actual tracking error is less than 10 cm, which satisfied the basic
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demands of underground cable trenches inspection. The video of the robot’s motion in the
underground cable trench is attached in the complement. Moreover, Figure 16 illustrates
the monitoring interface of the upper computer. The real-time gas concentrations and the
wading information are given in the middle of the interface, the maximum temperature is
recorded in the lower right, the built map is shown in the upper right, and infrared video,
depth video, and high-definition video are illustrated as well. The gas concentrations and
temperature of the upper computer correspond with the information on-site, which verified
the feasibility of the robot.

Table 2. The results of experiments on site.

Algorithm Traditional Integration Method Proposed Integration Method

Inspection channel
length (m) 10 20 30 10 20 30

Average time (s) 79.4 164.3 240.7 61.2 131.6 197.8
Average total path

length (m) 12.2 24.6 35.7 11.4 21.8 32.7Machines 2022, 10, 1011 17 of 18 
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5. Conclusions

The navigation technology of intelligent inspection robots for the underground cable
trench is a bottleneck of auto patrol inspection tasks in such a complicated environment.
Addressing this issue, the forward A* algorithm is proposed for global path planning and
DWA is adopted as local path planning, and an improved fusion algorithm is presented
to integrate these two algorithms for underground cable trenches. Moreover, to deal with
the uneven ground of the underground cable trench, an adaptive registration method for a
Laser odometer is designed based on the map built by the combination of depth camera and
LIDAR. Simulation results verified the superiority of our method over existing algorithms
in the environment of the underground cable trench. A field test in an underground cable
trench proved the effect of the mapping method combined with LIDAR and depth camera
and shows the feasibility of the proposed robot.
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