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Pairs trading is an important and challenging research area in computational 	nance, in which pairs of stocks are bought and
sold in pair combinations for arbitrage opportunities. Traditional methods that solve this set of problems mostly rely on statistical
methods such as regression. In contrast to the statistical approaches, recent advances in computational intelligence (CI) are leading
to promising opportunities for solving problems in the 	nancial applications more e
ectively. In this paper, we present a novel
methodology for pairs trading using genetic algorithms (GA). Our results showed that theGA-basedmodels are able to signi	cantly
outperform the benchmark and our proposed method is capable of generating robust models to tackle the dynamic characteristics
in the 	nancial application studied. Based upon the promising results obtained, we expect this GA-based method to advance the
research in computational intelligence for 	nance and provide an e
ective solution to pairs trading for investment in practice.

1. Introduction

In the past decades, due to the ine�cacy of traditional
statistical approaches, such as regression-based and factor
analysis methods for solving di�cult 	nancial problems,
the methodologies stemming from computational intelli-
gence, including fuzzy theory, arti	cial neural networks
(ANN), support vector machines (SVM), and evolutionary
algorithms (EA), have been developed as more e
ective
alternatives to solving the problems in the 	nancial domain
[1, 2].

Among the CI-based techniques studied for 	nance, the
models may be classi	ed as two major areas of applications:
(1) stock selection, portfolio management, and optimization
[3–6] and (2) prediction of 	nancial time series [7, 8]. For
the 	rst category, earlier research works include the fuzzy
multiple attribute decision analysis for portfolio construction
[9]. Zargham and Sayeh [10] employed a fuzzy rule-based
system to evaluate a set of stocks for the same task. Chapados
and Bengio [11] trained neural networks for estimation and
prediction of asset behavior to facilitate decision-making in
asset allocation.

In EA applications along this line of research, Becker
et al. [12] employed genetic programming (GP) to develop
stock ranking models for the U.S. market. Lai et al. [13]
used a double-stage GA to select stocks from the Shanghai
stock exchange for the time period of years 2001 to 2004.
In Lai et al.’s work, ROCE, EPS, PE, and liquidity ratios are
used to rank stocks, and they used the GA to compute the
optimal percentage of capital assigned to each of the assets.
Lai et al. then concluded that their GA-based optimization
method is more e
ective for 	nancial applications than fuzzy
or arti	cial neural networks. Recently, Huang [5] devised a
hybrid machine learning-based model to identify promising
sets of features and optimal model parameters; Huang’s
model was demonstrated to be more e
ective than the
benchmark and some traditional statistical methods for stock
selection. To improve the performance of the single-objective
GA-based models, more recently, Chen et al. [14] proposed a
multiobjective GA-based method for the goals of increasing
investment return and reducing the risk simultaneously. In
that approach, the authors used the nondominated sorting
to search for nondominated solutions and showed that the
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multiobjective method outperformed the single-objective
version proposed by Huang [5].

Another popular study of computational intelligence
has been particularly concerning the prediction of 	nancial
time series. A certain amount of research employs network
learning techniques, including feed-forward, radial basis
function or recurrent NN [7], and SVM [8]. Other intelligent
methods, such as genetically evolved regression models [15]
and inductive fuzzy inference systems [16], were also available
in the literature.

Pairs trading [17] is an important research area of com-
putational 	nance that typically relies on time series data of
stock price for investment, in which stocks are bought and
sold in pairs for arbitrage opportunities. It is a well-known
speculative strategy in the 	nancial markets developed in the
1980s and has been employed as one important long/short
equity investment tool by hedge funds and institutional
investors [18]. Although there has been a signi	cant amount
of CI-based studies in 	nancial applications, reported CI-
based research for pairs trading is sparse and lacks serious
analysis. To date, many existing works along this line of
research rely on traditional statistical methods such as the
cointegration approach [19], the Kalman 	lters [20, 21],
and the principle component analysis [18]. In the CI area,
�omaidis et al. [17] employed a method of neural networks
for the paired companies of Infosys and Wipro in India and
accomplished reasonable return on investment using the pair
of stocks. Saks andMaringer [22] used genetic programming
for various pairs of stocks in Eurostoxx 50 equities and also
found good pair-trading strategies.

Although there exist these previous CI-based studies for
pairs trading, they lacked serious analysis such as themethod
of temporal validation used in [5, 23] for further evaluation
of the robustness of the trading systems. In addition, in
these previous studies, the trading models were constructed
using only two stocks as a trading pair; here, we propose a
generalized approach that uses more than two stocks as a
trading group for arbitrage in order to further improve the
performance of the models. In this study, we also employ the
GA for the optimization problems in our proposed arbitrage
models. In a past study [23], Huang et al. compared the
traditional linear regression and the GA for the task of stock
selection and showed that the GA-based model is capable of
outperforming the linear regressionmodel. Motivated by this
research work, we thus intend to employ the GA to optimize
our intelligent system for pairs trading, and the experimental
results will show that our proposed GA-based methodology
is promising in outperforming the benchmark. Furthermore,
in contrast to traditional pairs-trading methods that aim at
matching pairs of stocks with similar characteristics, we also
show that our method is able to construct working trading
models for stocks with di
erent characteristics. In this study,
we also investigate the robustness of our proposed method
and the results show that our method is indeed e
ective in
generating robustmodels for the dynamic environment of the
pairs-trading problem.

�is paper is organized into four sections. Section 2
outlines the method proposed in our study. In Section 3, we
describe the research data used in this study and present

the experimental results and discussions. Section 4 concludes
this paper.

2. Materials and Methods

In this section, we provide the relevant background and
descriptions for the design of our pairs-trading systems using
the GA for model optimization.

2.1. Pairs Trading. Pairs trading is widely assumed to be the
“ancestor” of statistical arbitrage, which is a trading strategy
to gain pro	t from pricing discrepancies in a group of stocks
[17]. Traditional decision-making for investment typically
relies on fundamentals of companies to assess their value
and price their stocks, accordingly. As the true values of
the stocks are rarely known, pairs-trading techniques were
developed in order to resolve this by investing stock pairswith
similar characteristics (e.g., stocks from the same industry).
�is mutual mispricing between two stocks is theoretically
formulated by the notion of spread, which is used to identify
the relative positions when an ine�cientmarket results in the
mispricing of stocks [18, 21]. As a result, the trading model
is usually market-neutral in the sense that it is uncorrelated
with the market and may produce a low-volatility investment
strategy.

A typical form of pairs trading of stocks operates by
selling the stock with a relatively high price and buying the
other with a relatively low price at the inception of the trading
period, expecting that the higher one will decline while the
lower one will rise in the future. �e price gap of the two
stocks, also known as spread, thus acts as a signal to the
open and close positions of the pairs of stocks. During the
trading period, position is opened when the spread widens
by a certain threshold, and therea�er the positions are closed
when spread of the stocks reverts. �e objective of this long-
short strategy is to pro	t from the movement of the spread
that is expected to revert to its long-term mean.

Consider initial capital �0, with an interest rate of � per
annum and a frequency of compounding � in a year; the
capital � a�er a year may be expressed as

� = (1 + �
�)� ⋅ �0. (1)

If the frequency of compounding � gets arbitrarily large, we
have

lim�→∞(1 + �
�)� = ��. (2)

In the case of continuously compounded return, the process
of capital growth is de	ned as

� = �� ⋅ �0. (3)

�erefore, the continuously compounded rate � is calculated
by taking the natural logarithm as follows:

ln( �
�0) = �, (4)

where ln(⋅) is the natural log function.



Computational Intelligence and Neuroscience 3

Now consider the two price time series,�1(�) and�2(�), of
two stocks 
1 and 
2 with similar characteristics, the process
of a pairs-trading model can be described as follows [18]:

ln( �1 (�)�1 (�0)) = � (� − �0) + � ln( �2 (�)�2 (�0)) + � (�) , (5)

where �(�) is a stationary, mean-reverting process; the dri�� is small compared to the �uctuations of �(�) and can be
neglected in many applications.

�e rationale behind the mean-reverting process is that
there exists a long-term equilibrium (mean) for the spread.
�e investor may bet on the reversion of the current spread
to its historical mean by selling and buying an appropriate
amount of the pair of the stocks. As (5) shows, one expects the
returns of stocks 
1 and 
2 to track each other a�er controlling
for proper �. �is model suggests an investment strategy in
which one goes long 1 dollar of stock 
1 and short � dollars of
stock 
2 if �(�) is small. Conversely, if �(�) is large, one takes
an opposite strategy that goes short 
1 and long 
2. As a result,
the return of the long-short portfolio may oscillate around a
statistical equilibrium.

In real-world practice, the return of the long-short port-
folio above for a period of time may be calculated as follows:

Ret� = ln( �1 (�)�1 (� − 1)) − � ln( �2 (�)�2 (� − 1)) , (6)

where�1(�) and�1(�−1) denote the price of stock 
1 where we
are long at time � and �−1, respectively; and�2(�) and�2(�−1)
denote the price of stock 
2 where we are short at time � and� − 1, respectively.

�e pairs-trading method can be generalized to a group
of stocks in which mispricing may be identi	ed through a
proper combination of assets whose time series is mean-
reverting. Consider a set of assets, 
1, . . . , 
�, and the corre-
sponding time series of stock prices, �1(�), . . . , ��(�); a statis-
tical mispricing may be considered as a linear combination� = (�1, �2, . . . , ��) such that

ln( � (�)
� (�0)) = � (� − �0) + �∑

�=1
�� ln( �� (�)�� (�0)) + � (�) , (7)

where �(�) is a mean-reverting process and vector � repre-
sents the proportions of one’s capital assigned to each asset
in the portfolio. Mean reversion in the equation above refers
to the assumption that both the high and low prices of the
synthetic asset � are temporary and that its price tends to
move toward its average price over time.

2.2. Trading Systems

2.2.1. Market Timing Models. In this work, the long-term
mean of an asset’s price in the mean-reverting process may
be modeled by the celebrated moving average [24], which is
the average price of an asset in a speci	ed period. Let �(�) be
the price of a stock at time �.�emoving average at time �, the

mean of the prices corresponding to the most recent � time
periods, is de	ned as

MA� (�) = 1
�
�∑
�=1

� (� − � + 1) . (8)

In this study, we employ the Bollinger Bands [24] to
determine if the spread of a pair of stocks departs from
its dynamic average value. Typically, the Bollinger Bands
prescribe two volatility bands placed above and below a
moving average, in which volatility may be de	ned as a
multiple of the standard deviation of the prices in the past.
Formally the Bollinger Bands can be de	ned as follows:

MB� (�) = MA� (�) ;
UB� (�) = MB� (�) + � ∗ �� (�) ;
LB� (�) = MB� (�) − � ∗ �� (�) ,

(9)

where ��(�) is the standard deviation of the prices, at time�, over the past � time periods; � ∈ � is a parameter used to
control the width of the upper and lower bands to themoving
average.

An important component of a successful trading system
is to construct models for market timing that prescribe
meaningful entry and exit points in the market. In this study,
we will use the moving averages and Bollinger Bands to
develop a trading system, which is described in the next
subsection.

2.2.2. Trading Strategy and Performance Evaluation. We cal-
culate the spread for the synthetic asset generated by� stocks
as

� (�) = �∑
�=1

���� (�) , (10)

where ��(�), � = 1, . . . , �, is the price of stock � at time �, and��’s are the model parameters of generalized pairs trading to
be estimated.

In this work, we designate the trading strategy for one to
buy (sell) the spread right a�er it gets � standard deviations
below (above) its mean value and the position is closed right
a�er the spread gets closer than � standard deviations to its
mean, where �, � ∈ � and � > � > 0.

Here we evaluate the performance of a trading system in
terms of its compounded return, which is to be determined
by the relevant parameters of the trading models employed.
We 	rst de	ne the return of a trading system for the  th trade
as�	(!) ∈ �, where ! denotes the set of themodel parameters.
�en the performancemetric we use here is through the total
cumulative (compounded) return, �
, where �
 is de	ned by
the product of the returns over " consecutive trades as

�
 =
�∏
	=1

�	. (11)

�erefore, in the process of capital growth, the capital �� at
the end of " trades is

�� = �
�0, (12)

where �0 represents the initial capital.
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Figure 1: Chromosome encoding.

2.3. Optimization of Trading Systems. Given the market tim-
ing and pairs-trading models, the performance of a trading
system shall be enhanced by suitable values of the corre-
sponding model parameters. For the market timing models,
the parameters include the period � for the moving average
and parameters � and � for the Bollinger Bands that controls
themultiples of the standard deviations of themoving average
for entry and exit points. For the pairs-trading model, the
parameters consist of the set of the weighting terms (��’s) in
the syntactic asset from (10). In this study, we propose using
genetic algorithms (GA) for the search of optimal parameters
of the trading system. We will describe the basics of GA as
well as our proposed optimization scheme in the following.

Genetic algorithms [25] have been used as computational
simulation models of natural evolutionary systems and as
adaptive algorithms for solving complex optimization prob-
lems in the real world.�e core of this class of algorithms lies
in the production of new genetic structures, along the course
of evolution, that provide innovations to solutions for the
problem. Typically, theGAoperate on an evolving population
of arti	cial agents whose composition can be as simple as
a binary string that encodes a solution to the problem at
hand and a phenotype that represents the solution itself.
In each iteration, a new generation is created by applying
crossover and mutation to candidates selected as the parents.
Evolution occurs by iterated stochastic variation of genotypes
and selection of the 	t phenotypes in an environment based
on how well the individual solutions solve a problem.

In our proposed encoding design, the composition of
a chromosome is devised to consist of four portions that
encode the period parameter � for the moving average, the
multiples � and � of standard deviations for the Bollinger
Bands, and the set of the weighting coe�cients (��’s) for the
pairs-tradingmodel from (10). Here we use the binary coding
scheme to represent a chromosome in the GA. In Figure 1,

loci $1� through $��� represent the encoding for the period

� of moving average. Loci $1� through $��� and $1
 through$��
 represent the encoding of � and � for the Bollinger

Bands, respectively. Finally, loci $1�� through $����� represent the
encoding of the weighting coe�cient ��, � = 1, . . . , �.

In our encoding scheme, the chromosome representing
the genotypes of parameters is to be transformed into the
phenotype by (13) below for further 	tness computation.
�e precision representing each parameter depends on the
number of bits used to encode it in the chromosome, which
is determined as follows:

� = min
 + %
2� − 1 × (max
 − min
) , (13)

where � is the corresponding phenotype for the particular
parameter; min
 and max
 are the minimum and maximum
values of the parameter; % is the corresponding decimal value

Stock market data

GA for optimization of moving 
average, Bollinger Bands, and
stock weighting coe�cients

Investment by the arbitrage 
system

Performance evaluation

End/reiterate

Figure 2: Flow chart of the GA-based arbitrage system.

(% being truncated to integers if the parameter is of integer
type), and  is the length of the block used to encode the
parameter in the chromosome.

With this scheme, we de	ne the 	tness function of a
chromosome as the annualized return of the trading system
over ℎ years of investment:

	tness = ℎ√�
, (14)

where �
 is the total cumulative return computed by (11).
Our overall GA-based arbitrage system is a multistage

process, including the simultaneous optimization on the
weighting coe�cients for stocks, the period for the moving
average, and the width of the Bollinger Bands. �e input
to the system is the time series datasets of stock price. For
any given combinations of model parameters of the moving
average, Bollinger Bands, and the weighting coe�cients of
stocks, we employ the pairs-trading arbitrage system for
investment. In this work, the timing for trading is designated
as buying (selling) the spread right a�er it gets to a certain
distance (measured by standard deviations to the average)
below (above) the average and the position is then closed
right a�er the spread gets closer to the mean. �e stocks
to be long or short are determined by the weighting terms
(��’s) in the syntactic asset from (10). We then compute the
corresponding returns for the performance evaluation of the
system. In this study, the GA is used as the optimization tool
for simultaneous optimization of these model parameters.
�e 	nal output is a set of models parameters (optimized by
the GA) that prescribes the pairs-trading and timing models.
�e�owchart of this GA-based trading system is summarized
in Figure 2.
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Table 1: �e 10 semiconductor stocks used in this study.

Ticker
Name

(Chinese)
Name (English)

2325 矽品
Siliconware Precision
Industries Co, Ltd.

2330 臺積電
Taiwan Semiconductor
Manufacturing

2303 聯電
United Microelectronics
Corp.

2311 日月光
Advanced Semiconductor
Engineering, Inc.

2337 旺宏
Macronix International
Company, Ltd.

2301 光寶科 Lite-On Technology Corp.

2308 台達電 Delta Electronics, Inc.

2409 友達 AU Optronics Corporation

2451 創見
Transcend Information,
Inc.

2454 聯發科 MediaTek Inc.

3. Results and Discussion

In this section we examine the performance of our proposed
method for pair-trading systems. We use two sets of stocks
listed in the Taiwan Stock Exchange for illustration: (1) the
set of 10 stocks with similar characteristics from the semicon-
ductor industry, which is themost important industrial sector
in Taiwan over the past two decades, and (2) the set of the 10
stocks with largestmarket capitalization from various sectors,
which denote distinct industrial characteristics in Taiwan.

3.1. 10 Stocks from the Semiconductor Industry. �e daily
returns of the 10 semiconductor stocks in Taiwan from years
2003 to 2012 were used to examine the performance of the
GA-optimized trading system. Table 1 shows the 10 stocks
used for this subsection. Figure 3 displays an illustration of
the best-so-far curve for the accumulated return (i.e., the total
cumulative return) attained by the GA over 50 generations.
(In order to study the quality of solutions over time, a
traditional performancemetric for theGA is the “best-so-far”
curve that plots the 	tness of the best individual that has been
seen thus far by generation �, i.e., a point in the search space
that optimizes the objective function thus far. In addition, in
this study, the GA experiments employ a binary tournament
selection [26], one-point crossover, and mutation rates of 0.7
and 0.005, resp. We also use 10 bits to encode each variable in
the chromosome and use 50 individuals for the size of the
population in each generation.) �is 	gure shows how the
GA searches for the solutions over the course of evolution to
gradually improve the performance of the trading system.

Figure 4 displays an illustration of the accumulated return
of the benchmark and that of our GA-based model. (In
this study, the benchmark is de	ned as the traditional buy-
and-hold method where we allocate one’s capital in equal
proportion to each stock and the accumulated return is
calculated as the product of the average daily returns of
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Figure 3: An illustration for the best-so-far curve by the GA.
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Figure 4: Accumulated return of the benchmark versus the GA-
based model for the 10 semiconductor stocks from years 2003 to
2012.

all the 10 stocks over the 10 years; i.e., an investor invests
all the capital in the stocks initially and sell all of them
only at the end of the course of investment.) �is 	gure
shows that the GA-based model gradually outperforms the
benchmark and the performance discrepancy becomes quite
signi	cant at the end of year 2012. As opposed to the buy-and-
hold method that allocates one’s capital in equal proportions
to each stock, the GA proactively searches for the optimal
proportions for long or short positions for each asset in order
to construct the spread by (10). In addition, the GA also
searches for the optimal timing for buying and shorting the
stocks dynamically using the Bollinger Bands. In our study
here, the weighting coe�cients for the proportions of capital
allocated to stocks, the period for themoving average, and the
width of the Bollinger Bands are optimized simultaneously.
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1
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Figure 5: Temporal validation.

As a result, in our proposed methodology, a trading system
optimized by the GA is a composite of optimal arbitrage and
market timing models. �us, one may expect the GA to be
advantageous to the construction of the arbitrage systems and
Figure 4 indeed shows that the GA-basedmodel outperforms
the benchmark in the long run. �erefore, these results shed
some light on how the optimization by the GA may be
advantageous to the pairs-trading model.

In order to further examine the validity of our proposed
method, statistical validation on the models is conducted in
this study. In reality, the learnedmodel using the training data
has to be tested by unseen data. Here, as shown in Figure 5,
we use the stock data of the 	rst several quarters to train
the model, and the remaining data is used for testing. �is
setup is to provide a set of temporal validations to examine
the e
ectiveness of the models in the dynamic environment
of 	nancial problems, which is di
erent from the regular
cross-validation procedure where the process of data being
split into two independent sets is randomly repeated several
times without taking into account the data’s temporal order.
However, in the 	nancial study here, temporal order is critical
since one would like to use all available data so far to train the
model and to apply the models in the future for pro	ts.

In the training phase of each TV, we conduct 50 runs
for the GA and the best model learned from each run is
examined in the testing phase. In both of the training and
testing phases, the cumulative total return (accumulated
return) of a model over the quarters is calculated and the
corresponding annualized return is computed by (14). �e
annualized returns of the best 50 models in each TV are
then averaged and displayed for the training and testing
phases in Table 2. In this table, we also provide the annualized
benchmark return for further comparisonwith theGA-based
models, where the cumulative total return for the benchmark
is calculated from the product of the average quarterly returns
of the 10 semiconductor stocks over the period of time in
training or testing, and the corresponding annualized return
is again computed by (14).

In Table 2, an inspection on the means of annualized
model returns shows that in all the 39 TVs of the training case
the GA-based method outperforms the benchmark. For the
testing phase, in 30 out of 39 cases the GA-basedmethod out-
performs the benchmark. Figure 6 further displays a visual
gist on this performance discrepancy of the two methods
in the testing phase. As can be seen, in most of the TVs,
the annualized return of the GA-based model is larger than
that of the benchmark. �ese results thus demonstrate our

1 5 10 15 20 25 30 35 39

0

10

20

30

Temporal validation (TV)

A
n

n
u

al
iz

ed
 r

et
u

rn
 (

%
)

−10

−20

Benchmark

GA-based model

Figure 6: Averaged annualized return of the top 50 GA-based
models versus the benchmark (in each TV of the testing phase) for
the 10 semiconductor stocks from years 2003 to 2012.

GA-based method is promising for solving the pairs-trading
problem.

3.2. 10 Stocks with the Largest Market Capitalization. Next we
use the 10 stocks of the largest market capitalization listed in
the Taiwan Stock Exchange to further examine our proposed
method. �e daily returns of stocks from years 2003 to 2012
were again used for the optimization task by the GA. Table 3
shows the 10 stocks with the largest market cap used in this
study.

Figure 7 displays an illustration of the accumulated return
of the benchmark (which is again de	ned as the product
of the average daily returns of the 10 largest market cap
stocks over the 10 years) and that of our GA-based model.
As can be seen, the GA-based model gradually outperforms
the benchmark over the course of investment during years
2003 to 2012, and the performance discrepancy becomes
signi	cant at the end of year 2012. �is 	gure thus illustrates
how the GA-based model may outperform the benchmark in
the long run.

For the temporal validation, by the same procedure used
in the previous subsection, Table 4 shows the annualized
benchmark return and the average of the annualized model
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Table 2: Comparisons of the annualized returns of the GA-based model and the benchmark for the 10 semiconductor stocks from years 2003
to 2012.

TV Training period
Annualized
benchmark

return

Mean of
annualized
model return

Standard
deviation

Testing period
Annualized
benchmark

return

Mean of
annualized
model return

Standard
deviation

1 2003Q1 −27.23% 157.55% 0.0494 2003Q2–2012Q4 3.60% 0.01% 0.5125

2 2003Q1–2003Q2 36.06% 137.35% 0.1117 2003Q3–2012Q4 0.80% −4.42% 0.5494

3 2003Q1–2003Q3 39.79% 119.60% 0.1119 2003Q4–2012Q4 0.21% 3.49% 0.5392

4 2003Q1–2003Q4 20.67% 85.98% 0.1498 2004Q1–2012Q4 0.59% 2.05% 0.4707

5 2003Q1–2004Q1 24.25% 72.06% 0.1553 2004Q2–2012Q4 −0.19% 2.55% 0.4833

6 2003Q1–2004Q2 5.26% 59.23% 0.1626 2004Q3–2012Q4 2.22% 5.14% 0.7364

7 2003Q1–2004Q3 −2.64% 55.70% 0.3206 2004Q4–2012Q4 3.80% 4.49% 0.6824

8 2003Q1–2004Q4 −1.33% 53.64% 0.3889 2005Q1–2012Q4 3.83% 5.17% 0.8286

9 2003Q1–2005Q1 0.03% 45.19% 0.3904 2005Q2–2012Q4 3.20% 2.58% 0.6446

10 2003Q1–2005Q2 4.49% 42.85% 0.4555 2005Q3–2012Q4 1.88% 3.24% 0.6986

11 2003Q1–2005Q3 5.36% 42.02% 0.4171 2005Q4–2012Q4 1.48% 1.58% 0.4788

12 2003Q1–2005Q4 11.17% 34.85% 0.3509 2006Q1–2012Q4 −0.77% 4.70% 0.5345

13 2003Q1–2006Q1 9.63% 34.61% 0.2917 2006Q2–2012Q4 −0.57% 5.29% 0.5652

14 2003Q1–2006Q2 6.65% 32.14% 0.2780 2006Q3–2012Q4 0.71% 5.92% 0.5332

15 2003Q1–2006Q3 7.54% 31.70% 0.3518 2006Q4–2012Q4 −0.22% 4.58% 0.4451

16 2003Q1–2006Q4 9.38% 30.56% 0.3527 2007Q1–2012Q4 −2.03% 4.16% 0.3340

17 2003Q1–2007Q1 11.74% 30.21% 0.4362 2007Q2–2012Q4 −3.41% 5.25% 0.3628

18 2003Q1–2007Q2 15.86% 27.98% 0.5660 2007Q3–2012Q4 −7.02% 8.11% 0.6571

19 2003Q1–2007Q3 16.65% 31.03% 0.7558 2007Q4–2012Q4 −8.30% 7.48% 0.4423

20 2003Q1–2007Q4 10.80% 32.33% 0.7995 2008Q1–2012Q4 −4.31% 7.86% 0.5680

21 2003Q1–2008Q1 7.98% 31.33% 1.0381 2008Q2–2012Q4 −2.88% 8.24% 0.3712

22 2003Q1–2008Q2 5.50% 35.78% 1.4992 2008Q3–2012Q4 −0.23% 7.87% 0.3083

23 2003Q1–2008Q3 2.35% 34.33% 1.9692 2008Q4–2012Q4 3.05% 6.84% 0.2409

24 2003Q1–2008Q4 −2.29% 34.66% 1.9921 2009Q1–2012Q4 9.29% 8.63% 0.2430

25 2003Q1–2009Q1 1.88% 31.07% 1.7270 2009Q2–2012Q4 3.90% 9.78% 0.2099

26 2003Q1–2009Q2 4.43% 29.88% 1.6957 2009Q3–2012Q4 −0.90% 10.43% 0.2683

27 2003Q1–2009Q3 8.62% 31.06% 2.1604 2009Q4–2012Q4 −8.58% 8.68% 0.2157

28 2003Q1–2009Q4 9.09% 31.06% 2.3144 2010Q1–2012Q4 −11.09% 6.66% 0.1684

29 2003Q1–2010Q1 8.39% 31.53% 2.3984 2010Q2–2012Q4 −11.47% 5.74% 0.2323

30 2003Q1–2010Q2 5.83% 30.06% 2.5543 2010Q3–2012Q4 −5.19% 5.89% 0.1809

31 2003Q1–2010Q3 5.83% 27.71% 2.2193 2010Q4–2012Q4 −7.93% 6.05% 0.1847

32 2003Q1–2010Q4 5.80% 27.26% 2.7974 2011Q1–2012Q4 −8.53% 5.48% 0.1443

33 2003Q1–2011Q1 3.86% 29.38% 2.8889 2011Q2–2012Q4 −3.09% 1.32% 0.1056

34 2003Q1–2011Q2 3.11% 28.69% 3.3213 2011Q3–2012Q4 0.29% 0.20% 0.1043

35 2003Q1–2011Q3 1.82% 27.14% 2.7034 2011Q4–2012Q4 11.66% 5.24% 0.0842

36 2003Q1–2011Q4 1.22% 27.73% 3.7890 2003Q1–2012Q4 18.89% 11.33% 0.0745

37 2003Q1–2012Q1 2.03% 25.98% 3.3508 2003Q1–2012Q4 13.27% 12.24% 0.0604

38 2003Q1–2012Q2 1.58% 25.08% 3.2671 2003Q1–2012Q4 26.57% 11.28% 0.0582

39 2003Q1–2012Q3 2.50% 25.38% 3.6955 2012Q4 10.91% 12.68% 0.0414
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Table 3: �e 10 largest market cap stocks used in this study.

Ticker Name (Chinese) Name (English)

2330 臺積電
Taiwan Semiconductor

Manufacturing

2317 鴻海 Hon Hai Precision

2454 聯發科 MediaTek Inc.

1301 臺塑 Formosa Plastics

1303 南亞 Nan Ya Plastics

1326 台化 Formosa Chemicals

2412 中華電 Chunghwa Telecom

2882 國泰金 Cathay Financial Holding

2308 台達電 Delta Electronics, Inc.

2008 高興昌 Kao Hsing Chang Iron
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Figure 7: Accumulated return of the benchmark versus the GA-
based model for the 10 largest market cap stocks from years 2003
to 2012.

returns for the training and testing cases. As can be seen from
the means of the annualized model returns in the training
case, the GA-based method outperforms the benchmark in
all the 39 TVs. For the testing phase, in 29 out of 39 cases
the GA-based method outperforms the benchmark, as well.
Figure 8 then displays the results in Table 4 for each TV in
the testing phase. An inspection of Figure 8 thus shows that,
in 29 out of 39 TVs, the GA-based models outperform the
benchmark in terms of annualized returns.

3.3. Model Robustness. Finally, we examine the robustness of
the models generated by our method using the measure of
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Figure 8: Averaged annualized return of the top 50 GA-based
models versus the benchmark (in each TV of the testing phase) for
the 10 largest market cap stocks from years 2003 to 2012.

precision studied in [5], which is de	ned as

Precision = TP

TP + FP
. (15)

In this de	nition, TP and FP denote the number of true
positives and false positives, respectively. In this study, a true
positive occurs when a model outperforms the benchmark in
training, and it later turns out to outperform the benchmark
in testing, as well; otherwise, the model generates a false
positive. �is statistic is an important metric that indicates
whether our proposed method can generate robust models
when the problem is in a dynamic environment, such as the
	nancial problem studied here.

Typically, if a method generates amodel that outperforms
the benchmark in the training phase, one would like the
model to continue to outperform the benchmark in the
testing phase. �erefore, if our proposed method is able to
generate many true positives that leads to high precision, it
is an indication that our method is e
ective in generating
robust models. Table 5 displays the results of precision for
the 10 semiconductor and largest market cap stocks. As can
be seen, the results show that the precision of our proposed
method ismore than 0.7 in both cases, thereby indicating that
our proposed method is indeed e
ective.

4. Conclusions

In this paper, we presented a GA-based methodology for
the application of pairs trading in computational 	nance. In
order to examine the validity of the proposed methodology,
we conducted a statistical validation on the learnedmodels to
account for the temporal order and dynamic characteristics of
the stock data, which is critical for the real-world investment
as practically one expects the models constructed to gain
pro	ts in the future. �rough the optimization of parameters
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Table 4: Comparisons of the annualized returns of the GA-based model and the benchmark for the 10 largest market cap stocks from years
2003 to 2012.

TV Training period
Annualized
benchmark

return

Mean of
annualized
model return

Standard
deviation

Testing period
Annualized
benchmark

return

Mean of
annualized
model return

Standard
deviation

1 2003Q1 −9.13% 133.86% 0.3965 2003Q2–2012Q4 33.58% 1.03% 0.0472

2 2003Q1–2003Q2 18.81% 109.67% 0.1066 2003Q3–2012Q4 18.51% −3.06% 0.0348

3 2003Q1–2003Q3 33.87% 86.87% 0.1665 2003Q4–2012Q4 −0.69% 4.74% 0.0571

4 2003Q1–2003Q4 26.40% 54.91% 0.0853 2004Q1–2012Q4 6.10% −2.38% 0.0344

5 2003Q1–2004Q1 31.57% 52.05% 0.0939 2004Q2–2012Q4 −13.55% −2.43% 0.0558

6 2003Q1–2004Q2 16.71% 60.24% 0.1204 2004Q3–2012Q4 1.99% −6.57% 0.0407

7 2003Q1–2004Q3 11.80% 62.13% 0.0971 2004Q4–2012Q4 9.94% −8.50% 0.0273

8 2003Q1–2004Q4 15.29% 55.99% 0.1029 2005Q1–2012Q4 3.50% −8.68% 0.0305

9 2003Q1–2005Q1 12.64% 49.95% 0.0850 2005Q2–2012Q4 4.91% −9.07% 0.0449

10 2003Q1–2005Q2 15.71% 40.65% 0.0636 2005Q3–2012Q4 −7.39% −9.01% 0.0498

11 2003Q1–2005Q3 6.79% 37.80% 0.0596 2005Q4–2012Q4 5.58% 4.94% 0.0401

12 2003Q1–2005Q4 12.54% 35.57% 0.0478 2006Q1–2012Q4 9.46% 5.46% 0.0724

13 2003Q1–2006Q1 29.21% 30.42% 0.0591 2006Q2–2012Q4 −42.67% 3.09% 0.0614

14 2003Q1–2006Q2 32.17% 39.09% 0.0536 2006Q3–2012Q4 −42.45% 0.26% 0.0623

15 2003Q1–2006Q3 23.30% 32.03% 0.0724 2006Q4–2012Q4 −39.08% 3.91% 0.0655

16 2003Q1–2006Q4 9.71% 28.78% 0.0284 2007Q1–2012Q4 −18.77% 7.38% 0.0341

17 2003Q1–2007Q1 10.42% 28.97% 0.0271 2007Q2–2012Q4 −19.82% 7.71% 0.0382

18 2003Q1–2007Q2 15.69% 27.25% 0.0357 2007Q3–2012Q4 −33.97% 6.24% 0.0324

19 2003Q1–2007Q3 16.14% 29.75% 0.0323 2007Q4–2012Q4 −37.09% 3.59% 0.0397

20 2003Q1–2007Q4 11.22% 31.29% 0.0383 2008Q1–2012Q4 −22.89% −0.22% 0.0292

21 2003Q1–2008Q1 9.96% 33.59% 0.0436 2008Q2–2012Q4 −21.45% −1.16% 0.0466

22 2003Q1–2008Q2 13.56% 28.81% 0.0756 2008Q3–2012Q4 −31.51% 0.29% 0.0438

23 2003Q1–2008Q3 8.29% 27.84% 0.0506 2008Q4–2012Q4 −12.44% 0.18% 0.0357

24 2003Q1–2008Q4 1.30% 24.99% 0.0535 2009Q1–2012Q4 26.95% 0.81% 0.0501

25 2003Q1–2009Q1 5.04% 23.92% 0.0516 2009Q2–2012Q4 0.86% 1.23% 0.0725

26 2003Q1–2009Q2 7.37% 25.11% 0.0395 2009Q3–2012Q4 −12.45% −2.67% 0.0802

27 2003Q1–2009Q3 6.73% 24.79% 0.0252 2009Q4–2012Q4 −16.92% 5.16% 0.0357

28 2003Q1–2009Q4 7.63% 25.15% 0.0215 2010Q1–2012Q4 −24.31% 2.24% 0.0326

29 2003Q1–2010Q1 7.14% 25.32% 0.0201 2010Q2–2012Q4 −23.97% 2.14% 0.0378

30 2003Q1–2010Q2 7.28% 23.47% 0.0337 2010Q3–2012Q4 −14.58% 0.59% 0.0753

31 2003Q1–2010Q3 9.81% 21.78% 0.0373 2010Q4–2012Q4 −31.17% 1.08% 0.0947

32 2003Q1–2010Q4 11.29% 20.65% 0.0395 2011Q1–2012Q4 −39.94% −0.85% 0.0970

33 2003Q1–2011Q1 12.29% 21.09% 0.0343 2011Q2–2012Q4 −45.11% 1.84% 0.0532

34 2003Q1–2011Q2 13.44% 20.05% 0.0388 2011Q3–2012Q4 −47.78% 0.58% 0.0600

35 2003Q1–2011Q3 7.56% 21.41% 0.0359 2011Q4–2012Q4 −22.33% 0.75% 0.1054

36 2003Q1–2011Q4 8.08% 18.04% 0.0389 2003Q1–2012Q4 −13.53% 11.13% 0.0909

37 2003Q1–2012Q1 6.51% 19.60% 0.0388 2003Q1–2012Q4 −19.06% 8.32% 0.0801

38 2003Q1–2012Q2 4.77% 19.41% 0.0253 2003Q1–2012Q4 −1.38% 6.64% 0.1144

39 2003Q1–2012Q3 3.43% 19.58% 0.0171 2012Q4 0.91% 10.26% 0.1145
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Table 5: Precision for the 10 semiconductor and largest market cap
stocks.

10 semiconductor stocks
10 largest market cap

stocks

Precision 0.7692 0.7180

of the trading models for a group of stocks, the experimental
results showed that our GA-based method is able to signif-
icantly outperform the benchmark and can generate robust
models for pairs trading. We thus expect this GA-based
method to advance the research in computational intelligence
for 	nancial applications and provide a promising solution to
pairs trading.
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