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Abstract. A bottleneck in the real-time simulation of belt grinding pro-
cesses is the calculation of the force distribution between the workpiece
and the grinding wheel, which can be simplified by the Signorini contact
problem. The Finite Element Method (FEM) is the conventional way
of solving such a contact problem, but too computationally expensive
to meet the real-time requirement. This paper demonstrates a new ap-
proach to model the Signorini contact problem based on learning. This
new model approximates the FEM model so that it is not necessary to
execute optimization for each contact in run time; hence the calculation
time is dramatically reduced.

1 Background

The key link in the real-time simulation of belt grinding processes is to get
the removals on the workpiece surface in time [1]. The different removals on
the workpiece surface result from the different local contact forces between the
workpiece surface (hard) and the elastic grinding wheel (soft).

A contact problem between an elastic body and an idealistically rigid body is
named the Signorini contact problem. According to this theory the elastic body
deforms in a way that tends to minimize its strain potential energy when in
contact with the rigid body, requiring that some initial and boundary conditions
are satisfied. Once the strain field (deformation) is known, the force distribution
can be easily obtained by Hooke’s law. Blum and Suttmeier [2] worked out a
FEM model that considers this contact problem as the Signorini contact prob-
lem. Although having adopted an optimized mesh discretization, it still requires
about 15 minutes for doing the subjected optimization of one contact situation.
The calculation of the force distribution becomes a bottleneck in the real-time
simulation flow.

To accelerate the calculation two branches are under research nowadays. The
first branch is to optimize the mesh division; another one is to improve the con-
vergent rate and the stability of the optimization algorithm. Both cannot avert
doing the iteration steps each time when a new contact situation is presented. To
overcome this a learning machine is introduced in this paper to approximate the
well-established FEM model. Although an optimization process is also necessary
in the training phase, it can finish the calculation of one contact situation in a
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very short time because the time-consuming transaction is put into the training
phase and no longer in the run time. The Multi-Layer Perceptrons (MLP) and
Support Vector Regression (SVR) are tested as the learning machines because
both methods are capable of multi-dimensional regression problems.

2 Data Representation and Numerical Experiments

The input of the Signorini problem is the initial boundary condition that can
be digitized in terms of the geometrical data of the workpiece. For simplification
the contact area is limited to a 50mm × 50mm square area and is discretized
into a 50×50 mesh evenly spaced with 1mm interval. Thus the initial boundary
condition can be written as a height matrix H, in which each elements represent
the vertical distance between the workpiece and the grinding wheel. It is not
a good idea to impose all elements of the matrix H directly as the input to
learning machine, just like what is done by FEM, because one cannot expect good
results or generalization with such a high input dimension (2500). According
to one assumption the contact problem can be localized to reduce the input
dimension. The assumption is that The force on one mesh point is affected only
by the contact situation (heights) of its surrounding points inside a finite size
area (function area). The force of the center point is determined only by the
heights in the function area, which is normally a partial contact area. Obviously,
if the function area is large enough, or is the whole contact area, the assumption
is undoubtedly correct. The small function leads to a low input dimension, but
weakens the correctness of the assumption. Thus the function area size must
not be too small to guarantee the assumption’s correctness. Through training
experiments the best function area size is 11mm×11mm. Therefore, the learning
machine takes 121 heights in the function area as input and the force on the
center point of the function area as output. One contact point generates one
input/output pair for training and testing. 180 characteristic contact situations
are defined for training and 64 for testing and there are over 100,000 contact
points in the training situations and about 50,000 in the testing situations.

Two methods can be used to further reduce the input dimension. One is the
Partial Point Selection (PPS); the other one is the classical Principle Component
Analysis (PCA). The PPS, as its name implies, takes only a couple of points in
the function area instead of all points with preferences. PPS can easily lower the
input dimension without losing much information because the workpiece surface
is assumed to be continuous in every direction and varies smoothly, not sharply.
Only 41 points, which locate on four (vertical, horizontal and two diagonals)
lines, are selected out from all 121 points in the 11 × 11mm2 function area.

For MLP, one hidden layer is used because more than one hidden layer didn’t
show any advantages in experiments. Only the RBF kernel is considered in the
SVR. Table 1 shows the best results of different batches of training pairs. All
models are managed to simulate the 64 contact situations after they are trained.
The mean relative simulation error in table 1 indicates an average simulation
error of 64 testing contact situations. The best result of SVR is 6.5%, which
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Table 1. One model for all training sets

MLP SVR

Training Neurons Mean Relative Training nSV Mean Relative
Pairs Simulation Error Pairs Simulation Error

1570 10 10.5% 5160 606 8.8%

3140 11 10.2% 6880 675 6.5%

4710 15 10.8% 10264 880 8.2%

is still a little high. A training set classification strategy is applied in order
to get higher precision. The training sets (contact points) are divided into 16
categories according to the relative position of contact points and the function
area in a physical manner and then train a model for each category. However,
the results in the adjoining area may be not as smooth as wanted. This can
be overcome by an overlapping training strategy. That means that the contact
points in the adjoining area of different categories should be involved in training
all these categories for smoothness. There are two advantages of this classification
strategy. The first one is that the learning machine can converge to a smaller
error, another is that the number of neurons or support vectors is less than only
one model with the same error endurance, which indicates a faster calculation. By
this classification strategy the mean relative simulation error of testing situations
reaches 4.1% using the SVR compared to 4.9% using the MLP. Additionally, the
force distribution given by the SVR looks smoother than that by the MLP.
However, the MLP model conducts the calculation much faster than that of the
SVR model.

3 Conclusion

This paper demonstrates a new way to model the Signorini problem using the
SVR and MLP to learn non-linear mapping rather than solving the optimization
problem each time when a new contact situation is given. The experiments show
that both SVR and MLP can approximate the traditional FEM model with an
error below 5%. The SVR has a relatively better approximating precision than
the MLP, but a longer calculating time. The calculating time is reduced to about
1 second compared to 15 minutes of original FEM model. This makes it possible
to real-time simulation of belt grinding processes.
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