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AbstractThis paper presents an intelligent navigation method for navigation of a mobile vehicle in 
unknown environments. The proposed navigator consists of three modules: Obstacle Avoidor, 
Environment Evaluator and Navigation Supervisor. The Obstacle Avoidor is a fuzzy controller whose rule 
base is learnt through reinforcement learning. A new and powerful training method is proposed to 
construct the fuzzy rules automatically. The Navigation Supervisor determines the tactical requirement of 
avoiding obstacles or moving towards the goal location at each action step so that the vehicle can achieve 
its task without colliding with obstacles. The effectiveness of the learning method and the whole navigator 
are verified by simulation. 

1 Introduction 
Path planning is an important issue in the navigation of mobile vehicles, which could be divided into two major 
categories: (1) global path planning, and (2) local path planning. Global path planning methods, such as roadmap 
[1], cell decomposition [2] are usually carried out in an off-line manner in a completely known environment. As 
a result, they are not suitable for navigation in complex, unknown or dynamic environments. On the other hand, 
local path planning techniques, also called obstacle avoidance methods which are carried out in an on-line 
manner are more efficient in the navigation of mobile vehicles in such environment. 

Of the local path planning methods, potential field method [3, 4] seems quite efficient in obstacle avoidance, 
however it has two disadvantages: First, it is difficult to find the force coefficients influencing the velocity and 
direction of the mobile vehicle in a complicated environment, which are too complex to be embedded in a 
mathematical model. Second, the potential local minimum could cause the vehicle to be stuck and unable to get 
out. In order to overcome these problems, neural network and fuzzy logic approaches have been tried for this 
type of applications. Fuzzy logic approach [5, 6] seems promising, since it deals with various situations without 
requiring the construction of an analytical model of environment. While compared with the neural network 
approach [7], it has another distinct advantage that each rule of the rule base has a definite meaning and deals 
with a specific situation. This makes it possible to tune the rules manually. However, it is not easy to consistently 
construct the rules in the case of navigating the mobile vehicle in an unknown environment. To tackle this 
drawback, error back-propagation neural network was used to learn these rules[8]. Unfortunately, this method 
requires a sufficiently large set of representative patterns which can characterize the environment to train the 
network. To worsen the case, it is also difficult to obtain these training patterns which contain no contradictory 
input/output pairs. Thus reinforcement learning which requires only a scalar reinforcement signal as a 
performance feedback from the environment is quite attractive for constructing the fuzzy rule base. But due to 
the slow convergence speed of the reinforcement learning method, the Environment Exploration Methods 
(EEM), such as reference [9] which operates the mobile vehicle to explore a complex environment completely 
and have the rules constructed is time consuming and cannot guarantee to end up with sufficiently learned rules. 

In this paper, we introduce a new navigation method which uses fuzzy logic and reinforcement learning, and 
propose a powerful method for constructing the fuzzy rule base. When compared with the EEM, it has four 
distinct advantages: (1) high learning speed; (2) high number of learned rule; (3) high adaptability (4) reliable 
convergence of learning network. 

2 Overview of the navigator 
As shown in Fig. 1, we assume that the vehicle is equipped with a ultrasonic sensor ring in which five sensor are 
equally distributed in space on the front semicircle. Each sensor, s ii ( ,2, , )= 1 5L  gives the distance to the 
obstacle d ii ( , ,..., )= 1 2 5  in its field of view. Here we assume 4 200≤ ≤d cmi  and each sensor covers a view of 
π/4. The control variables of the mobile vehicle are its linear velocity v and its steering angle ∆θ. In order to 
navigate the mobile vehicle to it’s destination, we assume that the position vector of the mobile vehicle p X Y( , )  
is always known from the internal sensor of the vehicle, and the goal vector p X Yg ( , )  is given. Therefore the 
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navigation problem can be described as: given the input variables di , p X Y( , )  and p X Yg ( , ) , control the output 
variables v and ∆θ such that the vehicle avoids obstacles successfully and finally achieves its destination. 

The structure of the proposed navigator is depicted in Fig. 2. The Navigation Supervisor, which is based on the 
If-Then rule, is a command module for controlling the mobile vehicle to move to its goal position or avoid 
obstacles. when the Obstacle Avoidor is activated, the Environment Evaluator performs an evaluation of the 
environment where the vehicle is, and determines the appropriate value of W for the Fuzzy Quantization. 
Further, input sensor readings are fuzzified and certain fuzzy inference is made. Finally the vehicle’s action, v 
and ∆θ are determined by defuzzifiction. In this paper we will focus on the Obstacle Avoidor and the method of 
constructing the fuzzy rule base. 
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Fig. 2  Diagram of the proposed Navigator
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3 Fuzzy control of obstacle avoidance 
The Obstacle Avoidor is a fuzzy controller. The design steps of this module are as follows: (1) definition of 
membership functions for sensor input variables and control output variables; (2) fuzzification of the input 
variables; (3) rule base construction through reinforcement learning; (4) fuzzy inference; (5) defuzzification of 
the output variables. 

Definition of the membership functions for the input/output variables and fuzzification of the input variables: 
The membership functions of the input and output variables are shown in Fig. 3. The crisp value of input 
variable di  is fuzzified and expressed by the fuzzy sets - VN, NR, FR, which stand for very near, near and far, 
respectively. The fuzzy sets of  the output variables v and ∆θ have the definite membership functions, while their 
center positions (b j1  and b j2 , for j = 1,2, ,243L ) are determined by the reinforcement learning. 
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Fig. 3  The membership functions of input and output variables
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Construction of the rule base and fuzzy reasoning: The fuzzy rules which play a role in mapping the sensor input 
space di  to the mobile vehicle’s action space v and ∆θ are denoted by 

Rule j:   IF d1 is Dj1 AND ... AND d5  is Dj 5  THEN v is Vj, ∆θ is ∆Θ j ;   for j = 1 243, ,L  

where d ii ( , , , )= 1 2 5L  stands for the sensor inputs; ( )D iji = 1 5, ,L  are the fuzzy sets for di  in the jth rule, 

which take the linguistic value of VN, NR or FR; v and ∆θ denote the output variables; and Vj and ∆Θ j  are the 
fuzzy sets for v and ∆θ. These rules are constructed through the reinforcement learning.  

Let the fire strength of the jth rule be denoted by µ j . For the inputs d d d d1 1 5 5= =' ', ,L , the fire strength of the 
jth rule can be written as 
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µ µ µ µ µ µj D D D D Dj j j j j
d d d d d= ∧ ∧ ∧ ∧

1 2 3 4 51 2 3 4 5( ) ( ) ( ) ( ) ( )' ' ' ' ' ;   for j = 1 243, ,L              (1) 
If Mamdani’s minimum operation is used for fuzzy implication, the memberships of the inferred fuzzy control 
action, Vj

′ and ∆Θ j
'  are calculated by 

µ µ µ
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Defuzzification of output variables: For the reason of lower computing cost, we use the method of height 
defuzzification. The crisp control action is given by 
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4 Rule learning for obstacle avoidance 
For convenience, we adopt the Sutton and Barto’s model [10] in this paper. The structure of the learning 
algorithm is depicted in Fig. 4. The Fuzzy Quantization section encodes the input crisp value of sensors into µ j  
by equation (1). In order to give the associativity in learning the rules, the trace, µ j t( )  of the fired jth rule, is 
used. The trace at time step, t+1 is given by 

µ λµ λ µj j jt t t( ) ( ) ( ) ( )+ = + −1 1                                                       (4) 
where λ λ,  0 ≤ < 1, is the trace decay rate. When a collision occurs, the associative critic element (ACE) receive 
an external reinforcement signal which is designed as 

r
d i R d

m
i amv s=

− = < + +



1 1 2 5 1
0

       if  |  
           otherwise

min( , , , ) ( )( )minL ε
 for m = 1 2,                        (5) 

where Ramv  is the radius of the mobile vehicle, dsmin  is the minimum distance which the ultrasonic sensor can 
detect, and ε ε,  0 1< < , is a safety factor. While using the temporal difference learning theory, the prediction of 
the external reinforcement signal is  

p t E r tm
t t

m
t t

( ) ( )
'

'

'= +






−

≥
∑γ 1                                                           (6) 

where 0<γ<1, and ( )E •  denotes the expectation. Thus if p tm ( )  is correctly learned, then 
( ) ( ) ( )p t r t p tm m m− = +1 γ                                                               (7) 

In the case of incorrect learning, an internal reinforcement signal will be generate by equation (7) to train the 
ACE, which is defined as 

( ) ( ) ( ) ( )$r t r t p t p tm m m m= + − −γ 1                                                        (8) 
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The prediction value, p tm ( )  is implemented as follows: 

p t G v t tm mj j
j

( ) ( ) ( )=








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=
∑ µ

1

243

                                                               (9) 

Where ( ) ( )G x e x= + −−2 1 1/ ξ . In order to predict p tm ( )  correctly, the weights of ACE must be updated. It 
is expressed by 

v t v t r t tmj mj m j( ) ( ) $ ( ) ( )+ = +1 β µ                                                         (10) 
where β  is a positive constant determining the rate of change of vmj . In the same way, the weights of the 
associative search element (ASE) are updated by  

ω ω αmj mj m mjt t r t e t( ) ( ) $ ( ) ( )+ = +1                                                       (11) 
where α α, , 0 1< ≤  determines the learning rate, e tmj ( ) is the eligibility of the jth rule at time t, which is updated 
by 

( ) ( ) ( ) ( ) ( )e t e t y t tmj mj m j+ = + −1 1δ δ µ                                                    (12) 

where δ δ, , 0 1≤ <  is a trace decay rate, and y t vm

T( ) ( , )= ∆θ  is the control action at time step t. Eventually, if 
the rules are sufficiently learnt in a specific environment, the weights of ASE will converge to fixed values. The 
center position of the fuzzy sets (Fig. 4) at each time step are determined by 

( )b t b
t f

k t t
mj m

mj m

mj mj

( )
( )

max ( ) ( )
= +

+

ω

ω ω
                                                  (13) 

where bm , k and f m  are constants. When the learning process is terminated, the learned b tmj ( )  determined by 
equation (13) at the time step are used as the collision avoidance rule base for the mobile vehicle in its real 
navigation. 

5 Simulation and results analysis 
As we mentioned above, the reinforcement learning methods that have been proposed in the literature typically 
converge slowly. This drawback limits their capability on solving simple learning task. The EEM could be used 
to learn the rules for obstacle avoidance. But it cannot avoid the disadvantages that: (1) it is time consuming in 
exploring the environment; (2) whether the rules are sufficiently learnt or not cannot be ascertained when 
terminating the learning process; (3) it is not clear that an optimum environment for training the vehicle exists.  

In this paper, we proposed a method to tackle this problem. Our key idea is to separate the rule learning and real 
navigation into two stages: (1) in the rule learning stage, we use a small value of W (Fig. 5), so the rule learning 
process could be implemented in a very small and simple environment; (2) in the real navigation stage, the 
Environment Evaluator is activated to generate an appropriate parameter-W of the current environment where 
the vehicle is. As a result, the fuzzy rule base learned in a small environment can be adaptively used in a new 
and fully unknown environment. 

R cm= 28  δ = 0 85.  λ = 0 5.  b cm s1 15= /  b2 0=  β = 0 8.  α = 0 8.  

W cm= 20  γ = 0 95.  ε = 0 2.  f cm s1 15= /  f 2 2= π /  k = 0 2.  ξ = 15.  

Table 1. Parameter Used for simulation 

A simple corridor-like environment (Fig. 5) was used to train the vehicle. Since the environment is regular, the 
trajectory of the vehicle has been kept unchanged when the learning method converges. The parameters for the 
simulation are shown in table 1. At the beginning of the simulation, v tmj ( )  was set to small non-zero values, 

while ω mj t( ) , ( )µ j t , p tm ( )−1 , e tmj ( )  were set to zero. The mobile vehicle began its first trial of the learning 

steps, which consists of a series of learning steps until a collision occurs. When a collision occurred, it 
backtracked 4 steps and the heading direction was reversed, then the next trial began. After several collisions, 
the vehicle navigated successfully in counter-clockwise (CCW) direction (which direction the vehicle takes in 
the environment depends on the start point.) and kept a constant trajectory. Then the CCW training was 
terminated and the clockwise (CW) direction was repeat. If a collision occurs, the vehicle will backtrack 40 steps 
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and the heading angle turn π/30 in the CW direction, then the next trial began. After the vehicle navigated 
successfully in the CW direction and maintained its trajectory unchanged, the whole learning process was 
completed. The performance of the learning process could be expressed as the number of steps which was taken 
before a collision occurred. Simulation was carried out to compare our method with the EEM. In the EEM, the 
vehicle was trained in the environment shown in Fig. 8 with the same parameters as our method. The rules were 
almost sufficiently learnt (1.2% of the rules were blank) in our method after 34 trials, where CCW took up 22 
trials since it began with a blank rule base, and CW took up 12 trials. On the other hand, the EEM took 100 trials 
and the rule base was far from sufficient (30% of the rules were blank). It only handled 3000 learning steps 
before a new collision occurred. Further simulation showed that the rule base was not constructed sufficiently at 
up to 40000 learning steps. Fig. 6 shows that the proposed method is quite efficient than EEM. In some 
situations where the EEM caused the vehicle to go into a dead loop, the performance of learning deteriorated 
significantly. 
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Fig. 7  Control surfaces of the collision avoidor  

 
In the case of W=20cm, we found that the optimum width of the corridor for training the vehicle was 72cm. It 
means that we could get the largest number of rules in this case. For instance, there were only 3 blank rules for 
the width of 72cm while there were 18 blank rules for the width of 80cm. If the width is larger, it becomes more 
difficult to train the vehicle, as it turns in a zigzag trajectory along the corridor. For this reason, the rules learnt 
in the width of 72cm are used as the obstacle avoidance rule base. Furthermore, the three blank rules could be 
constructed in two ways: (1) re-train the vehicle in the situation associated with these rules until it learns to 
handle with the situation. (2) add the three rules manually. For convenience, the second method was adopted. 

After the construction of the rule base, we plotted the control surfaces of the rule base. Whether the rules are 
learnt correctly and sufficiently could be shown by these control surfaces. Fig. 7 shows an example of 
d2=d4=d5=38cm, it is indicated in this figure that if d3 is near and d1 is far, the vehicle will turn a negative ∆θ (in 
the CW direction). This action enables it to move into a collision-free region. In addition, it is found that the 
velocity is reduced while d1 or d3 become small. The adaptability of the rule base was tested in an unknown 
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environment (Fig. 8) by simulation. The vehicle navigated 300000 steps, completely explored the environment 
without a single collision. However, since the rules are learnt with a small W. this makes the obstacle avoidor 
rather nearsighted. So the Environment Evaluator was used in the proposed navigator to generate an appropriate 
W in the simulated navigation. The function of the Environment Evaluator is that it determines a large W in a 
environment of low obstacle density to ensure the vehicle “sees” farther and determines a small W in a 
environment with high obstacle density to ensure it is capable to navigate through this environment. The impact 
of the evaluator is that it reduces the average velocity (Fig. 9). The whole navigator is tested by simulation as 
shown in Fig. 8. 

6 Conclusion 
We have proposed an efficient method to learn the fuzzy rule base of collision avoidance. Based on this method, 
we have further proposed a new scheme for an intelligent navigator, in which an Environment Evaluator was 
introduced to tune the universe of discourse of the input variables. The learning algorithm and the scheme for the 
whole navigator have been verified and proved to be successful by a series of simulation. In our future research, 
The proposed method will find its application in multi-behavior navigation of mobile vehicle in a dynamic 
environment. 
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