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Parkinson's disease (PD) is a common neurodegenerative disease, which has attracted more and more attention. Many arti	cial
intelligence methods have been used for the diagnosis of PD. In this study, an enhanced fuzzy k-nearest neighbor (FKNN) method
for the early detection of PD based upon vocal measurements was developed. �e proposed method, an evolutionary instance-
based learning approach termed CBFO-FKNN, was developed by coupling the chaotic bacterial foraging optimization with Gauss
mutation (CBFO) approach with FKNN. �e integration of the CBFO technique e
ciently resolved the parameter tuning issues
of the FKNN. �e e�ectiveness of the proposed CBFO-FKNN was rigorously compared to those of the PD datasets in terms of
classi	cation accuracy, sensitivity, speci	city, and AUC (area under the receiver operating characteristic curve). �e simulation
results indicated the proposed approach outperformed the other 	ve FKNN models based on BFO, particle swarm optimization,
Genetic algorithms, fruit �y optimization, and 	re�y algorithm, as well as three advanced machine learning methods including
support vector machine (SVM), SVMwith local learning-based feature selection, and kernel extreme learning machine in a 10-fold
cross-validation scheme. �e method presented in this paper has a very good prospect, which will bring great convenience to the
clinicians to make a better decision in the clinical diagnosis.

1. Introduction

Parkinson's disease (PD), a degenerative disorder of the
central nervous system, is the second most common neu-
rodegenerative disease [1]. �e number of people su�ering
from PD has increased rapidly worldwide [2], especially in
developing countries in Asia [3]. Although its underlying
cause is unknown, the symptoms associated with PD can be
signi	cantly alleviated if detected in the early stages of illness
[4–6]. PD is characterized by tremors, rigidity, slowed move-
ment, motor symptom asymmetry, and impaired posture [7,
8]. Research has shown phonation and speech disorders are
also common among PD patients [9]. In fact, phonation and

speech disorders can appear in PD patients as many as 	ve
years before being clinically diagnosed with the illness [10].
�e voice disorders associated with PD include dysphonia,
impairment in vocal fold vibration, and dysarthria, disability
in correctly articulating speech phonemes [11, 12]. Little et al.
[13] 	rst attempted to identify PD patients with dysphonic
indicators using a combination of support vector machines
(SVM), e
cient learning machines, and the feature selection
approach. �e study results indicated that the proposed
method e
ciently identi	ed PD patients with only four
dysphonic features.

Inspired by the results obtained by Little et al. [13],
many other researchers conducted studies on the use of
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machine learning techniques to diagnose PD patients on
the same dataset (herea�er Oxford dataset). In [14], Das
made a comparison of classi	cation score for diagnosis of PD
between arti	cial neural networks (ANN), DMneural, and
Regression and Decision Trees. �e ANN classi	er yielded
the best results of 92.9%. In [15], AStröm et al. designed a
parallel feed-forward neural network system and yielded an
improvement of 8.4% on PD classi	cation. In [16], Sakar et al.
proposed amethod that combined SVMand feature selection
using mutual information to detect PD and obtained a
classi	cation accuracy of 92.75%. In [17], a PD detection
method developed by Li et al. using an SVM and a fuzzy-
based nonlinear transformation method yielded a maximum
classi	cation accuracy of 93.47%. In another study, Shahbaba
et al. [18] compared the classi	cation accuracies of a nonlin-
ear model based on a combination of the Dirichlet processes,
multinomial logit models, decision trees, and support vector
machines, which yielded the highest classi	cation score of
87.7%. In [19], Psorakis et al. put forward novel convergence
methods and model improvements for multiclass mRVMs.
�e improved model achieved an accuracy of 89.47%. In
[20], Guo et al. proposed a PD detection method with a
maximum classi	cation accuracy of 93.1% by combination
of genetic programming and the expectation maximization
algorithm (GP-EM). In [21], Luukka used a similarity clas-
si	er and a feature selection method using fuzzy entropy
measures to detect PD, and a mean classi	cation accuracy of
85.03% is achieved. In [22], Ozci� et al. presented rotation
forest ensemble classi	ers with feature selection using the
correlation method to identify PD patients; the proposed
model yielded a highest classi	cation accuracy of 87.13%. In
[23], Spadoto et al. used a combination of evolutionary-based
techniques and the Optimum-Path Forest (OPF) classi	er
to detect PD with a maximum classi	cation accuracy of
84.01%. In [24], Polat integrated fuzzy C-means clustering-
based feature weighting (FCMFW) into a KNN classi	er,
which yielded a PD classi	cation accuracy of 97.93%. In
[25], Chen et al. combined a fuzzy k-nearest neighbor
classi	er (FKNN) with the principle component analysis
(PCA-FKNN) method to detect PD; the proposed diagnostic
system yielded amaximum classi	cation accuracy of 96.07%.
In [26], Zuo et al. developed an PSO-enhanced FKNN based
PD diagnostic system with a mean classi	cation accuracy of
97.47%. In [27–29], Babu et al. proposed a ‘projection based
learning meta-cognitive radial basis function network (PBL-
McRBFN)’ approach for the prediction of PD,which obtained
an testing accuracy of 96.87% on the gene expression data
sets, 99.35% on standard vocal data sets, 84.36% on gait PD
data sets, and 82.32% on magnetic resonance images. In [30],
the hybrid intelligent system for PD detection was proposed
which included several feature preprocessing methods and
classi	cation techniques using three supervised classi	ers
such as least-square SVM, probabilistic neural networks, and
general regression neural network; the experimental results
gives a maximum classi	cation accuracy of 100% for the
PD detection. Furthermore, in [31], Gök et al. developed a
rotation forest ensemble KNN classi	er with a classi	cation
accuracy of 98.46%. In [32], Shen et al. proposed an enhanced
SVM based on fruit �y optimization algorithm, and have

achieved 96.90% classi	cation accuracy for diagnosis of
PD. In [33], Peker designed a minimum redundancy max-
imum relevance (mRMR) feature selection algorithm with
the complex-valued arti	cial neural network to diagnosis
of PD, and obtained a classi	cation accuracy of 98.12%.
In [34], Chen et al. proposed an e
cient hybrid kernel
extreme learning machine with feature selection approach.
�e experimental results showed that the proposed method
can achieve the highest classi	cation accuracy of 96.47%
and mean accuracy of 95.97% over 10 runs of 10-fold CV.
In [35], Cai et al. have proposed an optimal support vector
machine (SVM) based on bacterial foraging optimization
(BFO) combined with the relief feature selection to predict
PD, the experimental results have demonstrated that the
proposed framework exhibited excellent classi	cation perfor-
mance with a superior classi	cation accuracy of 97.42%.

Di�erent from the work of Little et al., Sakar et al. [36]
designed voice experiments with sustained vowels, words,
and sentences from PD patients and controls. �e paper
reported that sustained vowels had more PD-discriminative
power than the isolated words and short sentences. �e
study result achieved 77.5% accuracy by using SVM clas-
si	er. From then on, several works have been proposed to
detect PD using this PD dataset (herea�er Istanbul dataset).
Zhang et al. [37] proposed a PD classi	cation algorithm
that integrated a multi-edit-nearest-neighbor algorithm with
an ensemble learning algorithm. �e algorithm achieved
higher classi	cation accuracy and stability compared with
the other algorithms. Abrol et al. [38] proposed a kernel
sparse greedy dictionary algorithm for classi	cation tasks,
comparing with kernel K-singular value decomposition algo-
rithm and kernel multilevel dictionary learning algorithm.
�e method achieved an average classi	cation accuracy of
98.2% and the best accuracy of 99.4% on the Istanbul PD
dataset with multiple types of sound recordings. In [39], the
authors investigated six classi	cation algorithms, including
Adaboost, support vector machines, neural network with
multilayer perceptron (MLP) structure, ensemble classi	er,
K-nearest neighbor, naive Bayes, and presented feature
selection algorithms including LASSO, minimal redundancy
maximal relevance, relief, and local learning-based feature
selection on the Istanbul PD dataset. �e paper indicated
that applying feature selection methods greatly increased the
accuracy of classi	cation. �e SVM and KNN classi	ers with
local learning-based feature selection obtained the optimum
prediction ability and execution times.

As shown above, ANN and SVM have been extensively
applied to the detection of PD. However, understanding the
underlying decision-making processes of ANN and SVM is
di
cult due to their black-box characteristics. Compared to
ANN and SVM, FKNN ismuch simpler and yieldmore easily
interpretable results. FKNN [40, 41] classi	ers, improved
versions of traditional k-nearest neighbor (KNN) classi	ers,
have been studied extensively since 	rst proposed for the use
of diagnostic purposes. In recent years, many variant versions
of KNNs based on fuzzy sets theory and several extensions
have been developed, such as fuzzy rough sets, intuitionistic
fuzzy sets, type 2 fuzzy sets, and possibilistic theory based
KNN [42]. FKNN allows for the representation of imprecise
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knowledge via the introduction of fuzzy measures, providing
a powerfulmethod of similarity description among instances.
In FKNN methods, fuzzy set theories are introduced into
KNNs, which assign membership degrees to di�erent classes
instead of the distances to their k-nearest neighbors. �us,
each of the instances is assigned a class membership value
rather than binary values. When it comes to the voting stage,
the highest class membership function value is selected.�en
based on these properties, FKNN has been applied to numer-
ous practical problems, such as medical diagnosis problems
[25, 43], protein identi	cation and prediction problems [44,
45], bankruptcy prediction problems [46], slope collapse
prediction problems [47], and grouting activity prediction
problems [48].

�e classi	cation performance of an FKNN greatly relies
on its tuning parameters, neighborhood size (k), and fuzzy
strength (m). �erefore, the two parameters should be pre-
cisely determined before applying FKNN to practical prob-
lems. Several studies concerning parameter tuning in FKNN
have been conducted. In [46], Chen et al. presented the parti-
cle swarmoptimization (PSO) basedmethod to automatically
search for the two tuning parameters of an FKNN. According
to the results of the study, the proposed method could be
e�ectively and e
ciently applied to bankruptcy prediction
problems. More recently, Cheng et al. [48] developed a
di�erential evolution optimization approach to determine
the most appropriate tuning parameters of an FKNN and
successfully applied to grouting activity prediction problems
in the construction industry. Later, Cheng et al. [47] pro-
posed using 	re�y algorithm to tune the hyperparameters
of the FKNN model. �e FKNN model was then applied
to slop collapse prediction problems. �e experiment results
indicated that the developed method outperformed other
common algorithms. �e bacterial foraging optimization
(BFO) method [49], a relatively new swarm-intelligence
algorithm, mimics the cooperative foraging behavior of
several bacteria on a multidimensional continuous search
space and, therefore, e�ectively balances exploration and
exploitation events. Since its introduction, BFO has been
subtly introduced to real-world optimization problems [50–
55], such as optimal controller design problems [49], stock
market index prediction problems [56], automatic circle
detection problems involving digital images [57], harmonic
estimation problems [58], active power 	lter design problems
[59], and especially the parameter optimization of machine
learning methods [60–63]. In [60], BFO was introduced
to wavelet neural network training and applied success-
fully to load forecasting. In [61], an improved BFO algo-
rithm was proposed to 	ne-tune the parameters of fuzzy
support vector machines to identify the fatigue status of
the electromyography signal. �e experimental results have
shown that the proposed method is an e�ective tool for
diagnosis of fatigue status. In [62], BFO was proposed to
learn the structure of Bayesian networks. �e experimental
results verify that the proposed BFO algorithm is a viable
alternative to learn the structures of Bayesian networks
and is also highly competitive compared to state-of-the-
art algorithms. In [63], BFO was employed to optimize the

training parameters appeared in adaptive neuro-fuzzy infer-
ence system for speed control of matrix converter- (MC-)
fed brushless direct current (BLDC) motor. �e simulation
results have reported that the BFO approach ismuch superior
to the other nature-inspired algorithms. In [64], a chaotic
local search based BFO (CLS-BFO) was proposed, which
introduced the DE operator and the chaotic search operator
into the chemotaxis step of the original BFO.

Inspired from the above works, in this paper, the BFO
method was integrated with FKNN for the maximum clas-
si	cation performance. In order to further improve the
diversity of the bacteria swarm, chaos theory combination
with theGaussianmutationwas introduced in BFO.�en, the
resulting CBFO-FKNN model was applied to the detection
of PD. In our previous work, we have applied BFO in the
classi	cation of speech signals for PD diagnosis [35]. In this
work, we have further improved the BFO by embedding the
chaotic theory and Gauss mutation and combined with the
e�ective FKNNclassi	er. In order to validate the e�ectiveness
of the proposed CBFO-FKNN approach, FKNN based on
	ve other meta-heuristic algorithms including original BFO,
particle swarm optimization (PSO), genetic algorithms (GA),
fruit �y optimization (FOA), and 	re�y algorithm (FA) was
implemented for strict comparison. In addition, advanced
machine learning methods, including the support vector
machine (SVM), kernel based extreme learning machine
(KELM)methods, and SVMwith local learning-based feature
selection (LOGO) [65] (LOGO-SVM), were compared with
the proposed CBFO-FKNN model in terms of classi	ca-
tion accuracy (ACC), area under the receiver operating
characteristic curve (AUC), sensitivity, and speci	city. �e
experimental results show that the proposed CBFO-FKNN
approach has exhibited high ACC, AUC, sensitivity, and
speci	city on both datasets. �is work is a fully extended
version of our previously published conference paper [66]
and that further improved method has been provided.

�e main contributions of this study are as follows:

(a) First, we introduce chaos theory and Gaussian muta-
tion enhanced BFO to adaptively determine the two
key parameters of FKNN, which aided the FKNN
classi	er in more e
ciently achieving the maximum
classi	cation performance, more stable and robust
when compared to 	ve other bio-inspired algorithms-
based FKNN models and other advanced machine
learning methods such as SVM and KELM.

(b) �e resulting model, CBFO-FKNN, is introduced to
discriminate the persons with PD from the healthy
ones on the two PD datasets of UCImachine learning
repository. It is promising to serve as a computer-
aided decision-making tool for early detection of PD.

�e remainder of this paper is structured as follows. In
Section 2, background information regarding FKNN, BFO,
chaos theory, and Gaussian mutation is presented. �e
implementation of the proposedmethodology is explained in
Section 3. In Section 4, the experimental design is described
in detail. �e experimental results and a discussion are
presented in Section 5. Finally, Section 6 concludes the paper.
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2. Background Information

2.1. Fuzzy k-Nearest Neighbor (FKNN). In this section, a brief
description of FKNN is provided. A detailed description of
FKNN can be referred to in [41]. In FKNN, the fuzzy mem-
bership values of samples are assigned to di�erent categories
as follows:

�� (�) = ∑��=1 ��� (1/ ������ − �������2/(�−1))
∑��=1 (1/ ������ − �������2/(�−1)) (1)

where i=1,2,. . .C, j=1,2,. . .,K, C represents the number of
classes, and K means the number of nearest neighbors. �e
fuzzy strength parameter (m) is used to determine how heav-
ily the distance is weighted when calculating each neighbor’s
contribution to themembership value.� ∈ (1,∞). ‖�−��‖ is
usually selected as the value of m. In addition, the Euclidean
distance, the distance between x and its jth nearest neighbor��, is usually selected as the distance metric. Furthermore,��� denotes the degree of membership of the pattern �� from
the training set to class i among the k-nearest neighbors of�. In this study, the constrained fuzzy membership approach
was adopted in that the k-nearest neighbors of each training
pattern (i.e., ��) were determined, and the membership of xk
in each class was assigned as

��� (��) = {{{{{{{
0.51 + (���) ∗ 0.49, if � = �
(���) ∗ 0.49, if � ̸= �. (2)

�e value of �� denotes the number of neighbors belong-

ing to �th class. �e membership values calculated using (2)
should satisfy the following equations:

�∑
�=1

��� = 1,
� = 1, 2, ⋅ ⋅ ⋅ , �, � is the number of classes

0 < 	∑
�=1

��� < �, ��� ∈ [0, 1] .
(3)

A�er calculating all of the membership values of a query
sample, it is assigned to the class with which it has the highest
degree of membership, i.e.,

� (�) = �
argmax
�=1

(�� (�)) (4)

2.2. Bacterial Foraging Optimization (BFO). �e bacterial
foraging algorithm (BFO) is a novel nature-inspired opti-
mization algorithm proposed by Passino in 2002 [49]. �e
BFO simulates the mechanism of approaching or moving
away while sensing the concentration of peripheral sub-
stances in bacterial foraging process. �is method contains
four basic behaviors: chemotaxis, swarming, reproduction,
and elimination-dispersal.

2.2.1. Chemotaxis. �e chemotaxis behavior simulates two
di�erent positional shi�s of E. coli bacterium that depend on
the rotation of the �agellum, namely, tumbling and moving.
�e tumbling refers to looking for new directions and the
moving refers to keeping the direction going. �e speci	c
operation is as follows: 	rst, a unit step is moved in a certain
random direction. If the 	tness value of the new position
is more suitable than the previous one, it will continue
to move in that direction; if the 	tness value of the new
position is not better than before, the tumble operation is
performed and moves in another random direction. When
themaximumnumber of attempts is reached, the chemotaxis
step is stopped.�e chemotaxis step to operate is indicated by
the following:

�� (� + 1, �, �) = �� (�, �, �) + � (�) ∗ � !�
� !� = Δ (�)√Δ
 (�) Δ (�)

(5)

where ��(�, �, �) is the position of the ith bacterium. �e
j, k, and l, respectively, indicate the number of bacterial
individuals to complete the chemotaxis, reproduction, and
elimination-dispersal. C(i) is the chemotaxis step length for
the ith bacteria to move. Δ is the random vector between [-1,
1].
2.2.2. Swarming. In the process of foraging, the bacterial
community can adjust the gravitation and repulsion between
the cell and the cell, so that the bacteria in the case
of aggregation characteristics and maintain their relatively
independent position. �e gravitation causes the bacteria
to clump together, and the repulsion forces the bacteria to
disperse in a relatively independent position to obtain food.

2.2.3. Reproduction. In the reproduction operation of BFO
algorithm, the algorithm accumulates the 	tness values of
all the positions that the bacterial individual passes through
in the chemotaxis operation and arranges the bacteria in
descending order. �en the 	rst half of the bacteria divides
themselves into two bacteria by binary 	ssion, and the other
half die. As a result, the new reproduced bacterial individual
has the same foraging ability as the original individual, and
the population size of bacterial is always constant.

2.2.4. Elimination-Dispersal. A�er the algorithm has been
reproduced for several generations, the bacteria will undergo
elimination-dispersal at a given probability Ped, and the
selected bacteria will be randomly redistributed to new
positions. Speci	cally, if a bacterial individual in the bacte-
rial community satis	es the probability Ped of elimination-
dispersal, the individual loses the original position of foraging
and randomly selects a new position in the solution space,
thereby promoting the search of the global optimal solution.

2.3. ChaoticMapping. Chaos, as a widespread nonlinear phe-
nomenon in nature, has the characteristics of randomness,
ergodicity, sensitivity to initial conditions and so on [67]. Due
to the characteristics of ergodicity and randomness, chaotic
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motions can traverse all the states in a certain range according
to their own laws without repetition. �erefore, if we use
chaos variables to search optimally, we will undoubtedly
have more advantages than random search. Chaos ergodicity
features can be used to optimize the search and avoid falling
into the local minima; therefore, chaos optimization search
method has become a novel optimization technique. Chaotic
sequences generated by di�erent mappings can be used such
as logistic map, sine map, singer map, sinusoidal map, and
tent map. In this paper, several chaotic maps were tried and
the best one was chosen to combine with the BFO algorithm.
According to the preliminary experiment, logistic map has
achieved the best results. �us, the chaotic sequences are
generated by using logistic map as follows:

��+1 = ��� (1 − ��) (6)

u is the control parameter and let u = 4. When u = 4, the
logistic mapping comes into a thorough chaotic state. Let�� ∈ (0, 1) and �� ̸= 0.25, 0.5, 0.75.

�e initial bacterial population � is mapped to the chaotic
sequence that has been generated according to (6), resulting
in a corresponding chaotic bacterial population pch.

$ ℎ = �� ∗ � (7)

2.4. Gaussian Mutation. �e Gaussian mutation operation
has been derived from the Gaussian normal distribution and
has demonstrated its e�ectiveness with application to evolu-
tionary search [68]. �is theory was referred to as classical
evolutionary programming (CEP).�e Gaussian mutations
have been used to exploit the searching capabilities of ABC
[69], PSO [70], and DE [71]. Also, Gaussian mutation is
more likely to create a new o�spring near the original parent
because of its narrow tail. Due to this, the search equation
will take smaller steps allowing for every corner of the
search space to be explored in a much better way. Hence
it is expected to provide relatively faster convergence. �e
Gaussian density function is given by

&������	(0,�2) (') = 1√2-32 6−�2/2�2 (8)

where 32 is the variance for each member of the population.

3. Proposed CBFO-FKNN Model

In this section, we described the new evolutionary FKNN
model based on the CBFO strategy. �e two key parameters
of FKNN were automatically tuned based on the CBFO
strategy. As shown in Figure 1, the proposedmethodology has
two main parts, including the inner parameter optimization
procedure and outer performance evaluation procedure.
�e main objective of the inner parameter optimization
procedure was to optimize the parameter neighborhood
size (k) and fuzzy strength parameter (m) by using the
CBFO technique via a 5-fold cross-validation (CV). �en,
the obtained best values of (k, m) were input into the FKNN
prediction model in order to perform the PD diagnostic

Table 1: Description of the Oxford PD data set.

Label Feature

S1 MDVP:Fo(Hz)

S2 MDVP:Fhi(Hz)

S3 MDVP:Flo(Hz)

S4 MDVP:Jitter(%)

S5 MDVP:Jitter(Abs)

S6 MDVP:RAP

S7 MDVP:PPQ

S8 Jitter:DDP

S9 MDVP:Shimmer

S10 MDVP:Shimmer(dB)

S11 Shimmer:APQ3

S12 Shimmer:APQ5

S13 MDVP:APQ

S14 Shimmer:DDA

S15 NHR

S16 HNR

S17 RPDE

S18 D2

S19 DFA

S20 Spread1

S21 Spread2

S22 PPE

classi	cation task in the outer loop via the 10-fold CV. �e
classi	cation error rate was used as the 	tness function.

&�!�688 = (∑��=1 !68!;>>?>�)� (9)

where testErrori means the average test error of the FKNN
classi	er.

�e main steps conducted by the CBFO strategy are
described in detail as shown in Algorithm 1.

4. Experimental Design

4.1. Oxford Parkinson’s Disease Data. �e Oxford Parkinson’s
disease data set was donated by Little et al. [13], abbreviation
as Oxford dataset. �e data set was used to discriminate
patients with PD from healthy controls via the detection
of di�erences in vowel sounds. Various biomedical voice
measurements were collected from 31 subjects. 23 of them
are patients with PD, and 8 of them are healthy controls.
�e subjects ranged from 46 to 85 years of age. Each subject
provided an average of six sustained vowel “ahh. . .” phona-
tions, ranging from 1 to 36 seconds in length [13], yielding
195 total samples. Each recording was subjected to di�erent
measurements, yielding 22 real-value features. Table 1 lists
these 22 vocal features and their statistical parameters.

4.2. Istanbul Parkinson’s Disease Data. �e second data set in
this study was deposited by Sakar et al. [36] from Istanbul,
Turkey, abbreviation as Istanbul dataset. It contained mul-
tiple types of sound recordings, including sustained vowels,
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Figure 1: Flowchart of the proposed CBFO-FKNN diagnostic system.
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Begin
Step 1: Parameter Initialization. Initialize the number of dimensions in the search space p, the

swarm size of the population S, the number of chemotactic steps Nc, the swimming length Ns, the
number of reproduction steps Nre, the number of elimination-dispersal events Ned, the
elimination-dispersal probability Ped, the size of the step C(i) taken in the random direction
speci�ed by the tumble.

Step 2: Population Initialization. Calculate chaotic sequence according to Eq. (6). �e
corresponding chaotic bacterial population is calculated according to the original bacterial
population mapped into the chaotic sequence according to Eq. (7). From the original and its
corresponding chaotic bacterial populations, S superior individuals are selected as the initial
solutions of bacterial populations.

Step 3: for ell=1:Ned /∗Elimination and dispersal loop∗/
for K=1:Nre /∗Reproduction loop∗/

for j=1:Nc /∗ chemotaxis loop∗/
Intertime=Intertime+1; /∗ represent the number of iterations∗/
for i=1:s

/∗fobj represents calculating the �tness of the ith bacterium at the jth
chemotactic, Kth reproductive, and lth elimination-dispersal steps.∗/
J(i,j,K,ell)=fobj(P(:,i,j,K,ell));
/∗ Jlast stores this value since a cost better than a run may be identi�ed.∗/
Jlast=J(i,j,K,ell);
/∗ gbest(1,:) stores the current optimal bacterial individual.∗/

gbest(1,:)=P(:,i,j,K,ell);
Tumble according to Eq.(5)
/∗Swim (for bacteria that seem to be headed in the right direction)∗/
m=0; /∗ Initialize counter for swim length∗/
while m<Ns
m=m+1;
if J(i,j+1,K,ell)<Jlast

/∗ Jlast stores this value since a cost better than a run may be identi�ed.∗/
Jlast=J(i,j+1,K,ell);
Tumble according Eq.(5)
if Jlast<Gbest

/∗ Gbest stores the current optimal �tness function value.∗/
Gbest = Jlast;
gbest(1,:)=P(:,i,j+1,K,ell);

End
else

m=Ns;
End

Gaussian mutation operation
Moth pos m gaus=gbest(1,:)∗(1+randn(1));
Moth �tness m gaus=fobj(Moth pos m gaus);
Moth �tness s=fobj(gbest(1,:));
Moth �tness comb=[Moth �tness m gaus,Moth �tness s];
[∼,mm]=min(Moth �tness comb);
if mm==1

gbest(1,:)=Moth pos m gaus;
end
�tnessGbest = fobj(gbest(1,:));
if �tnessGbest<Gbest

Gbest = �tnessGbest;
end

End
End /∗Go to next bacterium∗/

End /∗Go to the next chemotactic∗/
/∗Reproduction∗/
Jhealth=sum(J(:,:,K,ell),2); /∗ Set the health of each of the S bacteria∗/
[Jhealth, sortind]=sort(Jhealth); /∗Sorts the nutrient concentration in order of ascending∗/
/∗ Rearrange the bacterial population∗/
P(:,:,1,K+1,ell)=P(:,sortind,Nc+1,K,ell);
/∗Split the bacteria (reproduction)∗/

for i=1:Sr

Algorithm 1: Continued.
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/∗�e least �t do not reproduce, the most �t ones split into two identical copies∗/
P(:,i+Sr,1,K+1,ell)=P(:,i,1,K+1,ell);

End
End /∗Go to next reproduction∗/
/∗Elimination-Dispersal∗/
for m=1:s
if Ped>rand /∗randomly generates a new individual anywhere in the solution space.∗/

Reinitialize bacteria m
End

End
End /∗Go to next Elimination-Dispersal∗/

End

Algorithm 1: �e steps of CBFO.

numbers, words, and short sentences from 68 subjects.
Speci	cally, the training data collected from 40 persons
including 20 patients with PD ranging from 43 to 77 and
20 healthy persons ranging from 45 to 83, while testing data
was collected from 28 di�erent patients with PD ranging 39
and 79. In this study, we selected only 3 types of sustained
vowel recordings /a/, /o/, and /u/, with similar data type to the
Oxford PD dataset. We merged them together and produced
a database which contains total 288 sustained vowels samples
and the analyses were made on these samples. As shown
in Table 2, a group of 26 linear and time-frequency based
features are extracted for each voice sample.

4.3. Experimental Setup. �e experiment was performed on
a platform of Windows 7 operating system with an Intel (R)
Xeon (R) CPU E5-2660 v3 @ 2.6 GHz and 16GB of RAM.�e
CBFO-FKNN, BFO-FKNN, PSO-FKNN, GA-FKNN, FOA-
FKNN, FA-FKNN, SVM, and KELM classi	cation models
were implemented with MATLAB 2014b. �e LIBSVM pack-
age [72] was used for the SVM classi	cation. �e algo-
rithm available at http://www3.ntu.edu.sg/home/egbhuang
was used for the KELM classi	cation. �e CBFO-FKNN
method was implemented from scratch. �e data was scaled
into a range of [0, 1] before each classi	cation was conducted.

�e parameters C and C in �(�, ��) = exp(−C‖� − ��‖2)
used during the SVM and KELM classi	cations were deter-
mined via the grid search method; the search ranges were

de	ned as � ∈ {2−5, 2−3, . . . , 215} and C ∈ {2−15, 2−13, . . . , 25}.
A population swarm size of 8, chemotactic step number of
25, swimming length of 4, reproduction step number of 3,
elimination-dispersal event number of 2, and elimination-
dispersal probability of 0.25 were selected for the CBFO-
FKNN. �e chemotaxis step value was established through
trial and error, as shown in the experimental results section.
�e initial parameters of the other four meta-heuristic algo-
rithms involved in training FKNN are chosen by trial and
error as reported in Table 3.

4.4. Data Classi�cation. A strati	ed k-fold CV [73] was used
to validate the performance of the proposed approach and
other comparative models. In most studies, k is given the
value of 10. During each step, 90% of the samples are used

Table 2: Description of the Istanbul PD data set.

Label Feature

S1 Jitter(local)

S2 Jitter(local, absolute)

S3 Jitter(rap)

S4 Jitter(ppq5)

S5 Jitter(ddp)

S6 Number of pulses

S7 Number of periods

S8 Mean period

S9 Standard dev. of period

S10 Shimmer(local)

S11 Shimmer(local, dB)

S12 Shimmer(apq3)

S13 Shimmer(apq5)

S14 Shimmer(apq11)

S15 Shimmer(dda)

S16 Fraction of locally unvoiced frames

S17 Number of voice breaks

S18 Degree of voice breaks

S19 Median pitch

S20 Mean pitch

S21 Standard deviation

S22 Minimum pitch

S23 Maximum pitch

S24 Autocorrelation

S25 Noise-to-Harmonic

S26 Harmonic-to-Noise

to form a training set, and the remaining samples are used as
the test set. �en, the average of the results of all 10 trials is
computed. �e advantage of this method is that all of the test
sets remain independent, ensuring reliable results.

A nested strati	ed 10-fold CV, which has been widely
used in previous research, was used for the purposes of
this study [74]. �e classi	cation performance evaluation
was conducted in the outer loop. Since a 10-fold CV was
used in the outer loop, the classi	ers were evaluated in one

http://www3.ntu.edu.sg/home/egbhuang
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Table 3: Parameter setting of other optimizers involved in training
FKNN.

Parameters GA PSO FA FOA

Population size 8 8 8 8

Max iteration 250 250 250 250

Search space [2−8, 28] [2−8, 28] [2−8, 28] [2−8, 28]
Crossover rate 0.8 - - -

Mutation rate 0.05 - - -

Acceleration constants - 2 - -

Inertia weight - 1 - -

Di�erential weight - -

Alpha - - 0.5 -

Beta - - 0.2 -

Gamma - - 1 -

ax - - - 20

bx - - - 10

ay - - - 20

by - - - 10

independent fold of data, and the other nine folds of data
were le� for training. �e parameter optimization process
was performed in the inner loop. Since a 5-fold CV was used
in the inner loop, the CBFO-FKNN searched for the optimal
values of k and m, and the SVM and KELM searched for the
optimal values of C and C in the remaining nine folds of data.
�e nine folds of data were further split into one fold of data
for the performance evaluation, and four folds of data were
le� for training.

4.5. Evaluation Criteria. ACC, AUC, sensitivity, and speci-
	city were taken to evaluate the performance of di�erent
models. �ese measurements are de	ned as

D�� = EF + EG(EF + HF + HG + EG) × 100% (10)

I6�8�!�V�!J = EF(EF + HG) × 100% (11)

I$6 �&� �!J = EG(HF + EG) × 100% (12)

where TP is the number of true positives, FN means the
number of false negatives, TN represents the true negatives,
and FP is the false positives. AUC [75] is the area under the
ROC curve.

5. Experimental Results and Discussion

5.1. Benchmark Function Validation. In order to test the per-
formance of the proposed algorithm CBFO, 23 benchmark
functions which include unimodal, multimodal, and 	xed-
dimension multimodal were used to do experiments. �ese
functions are listed in Tables 4–6 where Dim represents the
dimension, Range is the search space, and &min is the best
value.

In order to verify the validity of the proposed algo-
rithm, the original BFO, Fire�y Algorithm(FA)[76], Flower
Pollination Algorithm (FPA)[77], Bat Algorithm (BA)[78],
Dragon�y Algorithm (DA)[79], Particle Swarm Optimiza-
tion (PSO)[80], and the improved BFO called PSOBFO were
compared on these issues. �e parameters of the above
algorithm are set according to their original papers, and the
speci	c parameter values are set as shown in Table 7. In
order to ensure that the results obtained are not biased, 30
independent experiments are performed. In all experiments,
the number of population size is set to 50 and the maximum
number of iterations is set to 500.

Tables 8–10 show average results (Avg), standard devia-
tion (Stdv), and overall ranks for di�erent algorithms dealing
with F1-23 issues. It should be noted that the ranking
is based on the average result (Avg) of 30 independent
experiments for each problem. In order to visually compare
the convergence performance of our proposed algorithm
and other algorithms, Figures 2–4 use the logarithmic scale
diagram to re�ect the convergence behaviors. In Figures
2–4, we only select typical function convergence curves
from unimodal functions, multimodal functions, and 	xed-
dimension multimodal functions, respectively. �e results
of the unimodal F1-F7 are shown in Table 8. As shown,
the optimization e�ect of CBFO in F1, F2, F3, and F4 is
the same as the improved PSOBFO, but the performance is
improved compared with the original BFO. Moreover, From
the ranking results, it can be concluded that, compared with
other algorithms, CBFO is the best solution to solve the
problems of F1-F7.

With respect to the convergence trends described in
Figure 2, it can be observed that the proposed CBFO is
capable of testifying a very fast convergence and it can be
superior to all other methods in dealing with F1, F2, F3, F4,
F5, and F7. For F1, F2, F3, and F4, the CBFO has converged so
fast during few searching steps compared to other algorithms.
In particular, when dealing with cases F1, F2, F3, and F4, the
trend converges rapidly a�er 250 iterations.

�e calculated results for multimodal F8-F13 are tabu-
lated in Table 9. It is observed that CBFO has attained the
exact optimal solutions for 30-dimension problems F8 and
F12 in all 30 runs. From the results for F9, F10, F11, and
F13 problems, it can be agreed that the CBFO yields very
competitive solutions compared to the PSOBFO. However,
based on rankings, theCBFO is the best overall technique and
the overall ranks show that the BFO, FA, BA, PSO, FPA, and
DA algorithms are in the next places, respectively.

According to the corresponding convergence trend
recorded in Figure 3, the relative superiority of the proposed
CBFO in settling F8, F11, and F12 test problems can be
recognized. In tackling F11, the CBFO can dominate all its
competitors in tackling F11 only during few iterations. On
the other hand, methods such as FPA, BA, DA, and PSO
still cannot improve the quality of solutions in solving F11
throughout more steps.

�e results for F14 to F23 are tabulated in Table 10.
�e results in Table 10 reveal that the CBFO is the best
algorithm and can outperform all other methods in dealing
with F15 problems. In F16, F17, and F19, it can be seen that
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Table 4: Unimodal benchmark functions.

Function Dim Range &min

&1 (�) = 	∑
�=1

��2 30 [-100, 100] 0

&2 (�) = 	∑
�=1

KKKK��KKKK + 	∏
�=1

KKKK��KKKK 30 [-10, 10] 0

&3 (�) = 	∑
�=1

( �∑
�−1

��)2 30 [-100, 100] 0

&4 (�) = max
�

{KKKK��KKKK , 1 ≤ � ≤ �} 30 [-100, 100] 0

&5 (�) = 	−1∑
�=1

[100(��+1 − ��2)2 + (�� − 1)2] 30 [-30, 30] 0

&6 (�) = 	∑
�=1

([�� + 0.5])2 30 [-100, 100] 0

&7 (�) = 	∑
�=1

���4 + >S��?�[0, 1) 30 [-1.28, 1.28] 0

Table 5: Multimodal benchmark functions.

Function Dim Range &min

&8 (�) = 	∑
�=1

−�� sin(√KKKK��KKKK) 30 [-500,500] -418.9829∗5
&9 (�) = 	∑

�=1
[��2 − 10 cos (2-��) + 10] 30 [-5.12,5.12] 0

&10 (�) = −20 exp(−0.2√ 1�
	∑
�=1

��2) − exp(1�
	∑
�=1

cos (2-��)) + 20 + 6 30 [-32,32] 0

&11 (�) = 14000
	∑
�=1

��2 − 	∏
�=1

cos( ��√�) + 1 30 [-600,600] 0

&12 (�) = -� {10 sin (-J1) + 	−1∑
�=1

(J� − 1)2 [1 + 10 sin2 (-J�+1)] + (J	 − 1)2} 30 [-50,50] 0

+ 	∑
�=1

� (��, 10, 100, 4)

J� = 1 + �� + 14 � (��, S, �, �)
{{{{{{{{{{{

� (�� − S) �� > S
0 −S < �� < S
� (�� − S) �� < −S

&13 (�) = 0.1 {sin2 (3-�1) + n∑
i=1

(�i − 1])2 [1 + sin2 (3-�i + 1)] + (�n − 1)2 [1 + sin2 (2-�n)]} 30 [-50,50] 0

+ n∑
i=1

�(�i, 5, 100, 4)

the optimization e�ect of all the algorithms is not much
di�erent. In dealing with F20 case, the CBFO’s performance
is improved compared to original BFO and the improved
PSOBFO. Especially in solving F18, the proposed algorithm
is much better than the improved PSOBFO. From Figure 4,
we can see that the convergence speed of the CBFO is better
than other algorithms in dealing with F15, F18, F19, and F20.
For F15, it surpasses all methods.

In order to investigate signi	cant di�erences of obtained
results for the CBFO over other competitors, the Wilcoxon
rank-sum test [81] at 5% signi	cance level was also employed
in this paper. �e p values of comparisons are reported in
Tables 11–13. In each table, each p value which is not lower

than 0.05 is shown in bold face. It shows that the di�erences
are not signi	cant.

�e p values are also provided in Table 11 for F1-F7.
Referring to the p values of the Wilcoxon test in Table 11,
it is veri	ed that the proposed algorithm is statistically
meaningful. �e reason is that all p values are less than 0.05
except PSOBFO in F1, F2, F3, and F4. According to the p
values in Table 12, all values are less than 0.05 except PSOBFO
in F11 problem. Hence, it can be approved that the results of
the CBFO are statistically improved compared to the other
methods. As can be seen from the p value in Table 13, the
CBFO algorithm is signi	cantly better than the PSOBFO,
FPA, BA, and PSO for F14-F23.
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Table 6: Fixed-dimension multimodal benchmark functions.

Function Dim Range &min

&14 (�) = ( 1500 + 25∑
�=1

1
� + ∑2�=1 (�� − S��)6)

−1

2 [-65,65] 1

&15 (�) = 11∑
�=1

[S� − �1 (c2� + c��2)c2� + c��3 + �4 ]
2

4 [-5, 5] 0.00030

&16 (�) = 4�21 − 2.1�41 + 13�61 + �1�2 − 4�22 + 4�42 2 [-5,5] -1.0316

&17 (�) = (�2 − 5.14-2 �21 + 5-�1 − 6)2 + 10 (1 − 18-) cos�1 + 10 2 [-5,5] 0.398

&18 (�) = [1 + (�1 + �2 + 1)2 (19 − 14�1 + 3�21 − 14�2 + 6�1�2 + 3�22)] 2 [-2,2] 3× [30 + (2�1 − 3�2)2 !��68 (18 − 32�1 + 12�21 + 48�2 − 36�1�2 + 27�22)]
&19 (�) = − 4∑

�=1
 � exp(− 3∑

�=1
S�� (�� − $��)2) 3 [1,3] -3.86

&20 (�) = − 4∑
�=1

 � exp(− 6∑
�=1

S�� (�� − $��)2) 6 [0,1] -3.32

&21 (�) = − 5∑
�=1

[(g − S�) (g − S�)T +  �]−1 4 [0,10] -10.1532

&22 (�) = − 7∑
�=1

[(g − S�) (g − S�)T +  �]−1 4 [0,10] -10.4028

&23 (�) = − 10∑
�=1

[(g − S�) (g − S�)T +  �]−1 4 [0,10] -10.5363

Table 7: Parameters setting for the involved algorithms.

Method Population size Maximum generation Other parameters

BFO 50 500 Δ ∈ [-1, 1]
BA 50 500 Q Frequency∈[0 2]; A Loudness: 0.5; r Pulse rate: 0.5

DA 50 500 h ∈ [0.9 0.2]; s = 0.1; a = 0.1; c = 0.7; f = 1; e = 1

FA 50 500 i0=1; ' ∈ [0 1]; C=1
FPA 50 500 switch probability p=0.8; j=1.5
PSO 50 500 inertial weight=1; c1=2; c2=2

PSOBFO 50 500 inertial weight=1; c1=1.2; c2=0.5; Δ ∈ [-1, 1]
�e results demonstrate that the utilized chaotic mapping

strategy and Gaussian mutation in the CBFO technique have
improved the e
cacy of the classical BFO, in a signi	cant
manner. On the one hand, applying the chaotic mapping
strategy to the bacterial population initialization process can
speed up the initial exploration of the algorithm.On the other
hand, adding Gaussian mutation to the current best bacterial
individual in the iterative process helps to jump out of the
local optimum. In conclusion, the proposed CBFO can make
a better balance between explorative and exploitative trends
using the embedded strategies.

5.2. Results on the Parkinson’s Disease. Many studies have
demonstrated that the performance of BFO can be a�ected
heavily by the chemotaxis step size C(i). �erefore, we have
also investigated the e�ects of C(i) on the performance of the
CBFO-FKNN. Table 14 displays the detailed results of CBFO-
FKNNmodel with di�erent values ofC(i) on the two datasets.
In the table, the mean results and their standard deviations
(in parentheses) are listed. As shown, the CBFO-FKNN

model performed best with an average accuracy of 96.97%,
an AUC of 0.9781, a sensitivity of 96.87%, and a speci	city
of 98.75% when C(i) = 0.1 on the Oxford dataset and an
average accuracy of 83.68%, an AUC of 0.6513, a sensitivity
of 96.92%, and a speci	city of 33.33% when C(i) = 0.2 on the
Istanbul dataset. Furthermore, the CBFO-FKNN approach
also yielded the most reliable results with the minimum
standard deviation when C(i) = 0.1 and C(i) = 0.2 on the
Oxford dataset and Istanbul dataset, respectively. �erefore,
values of 0.1 and 0.2 were selected as the parameter value of
C(i) for CBFO-FKNNon the two datasets, respectively, in the
subsequent experimental analysis.

�e ACC, AUC, sensitivity, speci	city, and optimal (k,m)
pair values of each fold obtained via the CBFO-FKNNmodel
with C(i) = 0.1 and C(i) = 0.2 on the Oxford dataset and
Istanbul dataset are shown in Tables 15 and 16, respectively.
As shown, each fold possessed a di�erent parameter pair
(k, m) since the parameters for each set of fold data were
automatically determined via the CBFO method. With the
optimal parameter pair, the FKNN yielded di�erent optimal



12 Computational and Mathematical Methods in Medicine

Table 8: Results of unimodal benchmark functions (F1-F7).

F CBFO PSOBFO BFO FA FPA BA DA PSO

F1

Avg 0 0 8.73E-03 9.84E-03 1.45E+03 1.70E+01 2.15E+03 1.45E+02

Stdv 0 0 3.85E-03 3.20E-03 4.07E+02 2.09E+00 1.13E+03 1.56E+01

Rank 1 1 3 4 7 5 8 6

F2

Avg 0 0 3.55E-01 3.88E-01 4.59E+01 3.32E+01 1.53E+01 1.65E+02

Stdv 0 0 7.44E-02 8.27E-02 1.49E+01 3.35E+01 6.54E+00 2.87E+02

Rank 1 1 3 4 7 6 5 8

F3

Avg 0 0 4.96E-12 2.59E+03 1.99E+03 1.15E+02 1.46E+04 5.96E+02

Stdv 0 0 8.97E-12 8.38E+02 4.84E+02 3.68E+01 8.91E+03 1.57E+02

Rank 1 1 3 7 6 4 8 5

F4

Avg 0 0 3.24E-02 8.43E-02 2.58E+01 3.78E+00 2.95E+01 4.94E+00

Stdv 0 0 5.99E-03 1.60E-02 3.96E+00 3.02E+00 8.22E+00 4.34E-01

Rank 1 1 3 4 7 5 8 6

F5

Avg 2.90E+01 0 6.55E+04 2.33E+02 2.57E+05 4.48E+03 4.96E+05 1.77E+05

Stdv 2.62E-02 0 NA 4.30E+02 1.88E+05 1.24E+03 6.46E+05 4.95E+04

Rank 2 1 5 3 7 4 8 6

F6

Avg 1.34E-01 3.71E-01 2.11E+03 1.14E-02 1.53E+03 1.70E+01 2.06E+03 1.39E+02

Stdv 1.76E-02 5.99E-02 1.15E+04 4.71E-03 4.23E+02 2.51E+00 1.52E+03 1.67E+01

Rank 2 3 8 1 6 4 7 5

F7

Avg 3.62E-04 4.88E-03 3.77E-03 1.08E-02 4.60E-01 1.89E+01 6.92E-01 1.05E+02

Stdv 3.21E-04 3.44E-03 3.33E-03 2.79E-03 1.42E-01 2.00E+01 3.79E-01 2.44E+01

Rank 1 3 2 4 5 7 6 8

Sum of ranks 9 11 27 27 45 35 50 44

Average rank 1.2857 1.5714 3.8571 3.8571 6.4286 5 7.1429 6.2857

Overall rank 1 2 3 3 7 5 8 6

Table 9: Results of multimodal benchmark functions (F8-F13).

F CBFO PSOBFO BFO FA FPA BA DA PSO

F8

Avg -3.47E+04 -2.55E+03 -2.47E+03 -6.55E+03 -7.58E+03 -7.45E+03 -5.44E+03 -7.05E+03

Stdv 1.79E+04 5.80E+02 5.25E+02 6.70E+02 2.12E+02 6.56E+02 5.55E+02 5.98E+02

Rank 1 7 8 5 2 3 6 4

F9

Avg -2.89E+02 -2.90E+02 -2.88E+02 3.37E+01 1.44E+02 2.73E+02 1.71E+02 3.78E+02

Stdv 2.98E-01 0 8.61E-01 1.13E+01 1.68E+01 3.08E+01 4.15E+01 2.46E+01

Rank 2 1 3 4 5 7 6 8

F10

Avg -9.66E+12 -1.07E+13 -9.08E+12 5.47E-02 1.31E+01 5.56E+00 1.02E+01 8.71E+00

Stdv 3.21E+11 3.97E-03 7.34E+11 1.31E-02 1.59E+00 3.77E+00 2.15E+00 3.94E-01

Rank 2 1 3 4 8 5 7 6

F11

Avg 0 0 4.99E-03 6.53E-03 1.49E+01 6.35E-01 1.65E+01 1.04E+00

Stdv 0 0 3.18E-03 2.63E-03 3.38E+00 6.31E-02 8.41E+00 6.33E-03

Rank 1 1 3 4 7 5 8 6

F12

Avg 1.34E-11 1.27E-08 3.04E-10 2.49E-04 1.16E+02 1.33E+01 7.90E+04 5.49E+00

Stdv 3.46E-11 2.02E-08 5.97E-10 1.06E-04 4.75E+02 4.93E+00 4.26E+05 9.04E-01

Rank 1 3 2 4 7 6 8 5

F13

Avg 4.20E-02 9.92E-02 9.92E-02 3.18E-03 6.18E+04 2.77E+00 4.46E+05 2.90E+01

Stdv 4.64E-02 2.52E-08 4.17E-10 2.53E-03 9.34E+04 4.37E-01 7.19E+05 6.58E+00

Rank 2 3 3 1 7 5 8 6

Sum of ranks 9 16 22 22 36 31 43 35

Average rank 1.5000 2.6667 3.6667 3.6667 6.0000 5.1667 7.1667 5.8333

Overall rank 1 2 3 3 7 5 8 6
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Table 10: Results of 	xed-dimension multimodal benchmark functions (F14-F23).

F CBFO PSOBFO BFO FA FPA BA DA PSO

F14

Avg 9.83E+00 3.11E+00 2.96E+00 1.82E+00 1.04E+00 4.53E+00 1.30E+00 4.41E+00

Stdv 4.51E+00 1.71E+00 2.22E+00 8.42E-01 1.56E-01 3.91E+00 6.96E-01 3.20E+00

Rank 8 5 4 3 1 7 2 6

F15

Avg 4.33E-04 9.49E-04 6.24E-04 2.85E-03 7.44E-04 8.29E-03 3.73E-03 1.41E-03

Stdv 1.65E-04 3.00E-04 2.25E-04 4.71E-03 1.41E-04 1.35E-02 5.95E-03 4.04E-04

Rank 1 4 2 6 3 8 7 5

F16

Avg -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00

Stdv 5.23E-06 1.60E-04 7.96E-06 3.36E-09 2.55E-08 8.94E-04 3.47E-06 2.49E-03

Rank 1 1 1 1 1 1 1 1

F17

Avg 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.99E-01

Stdv 2.24E-06 4.80E-05 2.02E-06 1.76E-09 6.28E-09 5.45E-04 1.84E-07 1.65E-03

Rank 1 1 1 1 1 1 1 1

F18

Avg 3.00E+00 3.01E+00 3.00E+00 3.00E+00 3.00E+00 3.10E+00 3.00E+00 3.24E+00

Stdv 2.00E-04 6.53E-03 3.13E-04 2.59E-08 1.60E-06 8.65E-02 6.09E-07 3.61E-01

Rank 1 6 1 1 1 6 1 8

F19

Avg -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.83E+00 -3.86E+00 -3.84E+00

Stdv 4.86E-04 4.56E-03 5.87E-04 1.03E-09 2.38E-06 2.49E-02 1.16E-03 2.10E-02

Rank 1 1 1 1 1 8 1 7

F20

Avg -3.29E+00 -3.24E+00 -3.27E+00 -3.28E+00 -3.31E+00 -2.89E+00 -3.25E+00 -2.71E+00

Stdv 2.41E-02 2.38E-02 2.48E-02 6.10E-02 6.06E-03 1.31E-01 1.01E-01 3.54E-01

Rank 2 6 4 3 1 7 5 8

F21

Avg -6.03E+00 -1.01E+01 -9.80E+00 -7.92E+00 -1.01E+01 -4.64E+00 -6.61E+00 -3.67E+00

Stdv 9.74E-01 4.27E-02 1.28E+00 3.47E+00 1.30E-01 2.43E+00 2.62E+00 1.31E+00

Rank 6 1 3 4 1 7 5 8

F22

Avg -6.45E+00 -1.01E+01 -1.02E+01 -9.89E+00 -1.02E+01 -5.03E+00 -7.35E+00 -4.33E+00

Stdv 1.22E+00 9.60E-01 9.61E-01 1.94E+00 4.87E-01 2.93E+00 2.98E+00 1.67E+00

Rank 6 3 1 4 1 7 5 8

F23

Avg -6.91E+00 -9.73E+00 -9.98E+00 -1.05E+01 -1.02E+01 -5.36E+00 -6.35E+00 -4.42E+00

Stdv 1.30E+00 1.82E+00 1.63E+00 1.07E-06 4.94E-01 2.90E+00 3.36E+00 1.33E+00

Rank 5 4 3 1 2 7 6 8

Sum of ranks 32 32 21 25 13 59 34 60

Average rank 3.2 3.2 2.1 2.5 1.3 5.9 3.4 6

Overall rank 4 4 2 3 1 7 6 8

Table 11: �e calculated p-values from the functions (F1-F7) for the CBFO versus other optimizers.

Problem PSOBFO BFO FA FPA BA DA PSO

F1 1 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F2 1 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F3 1 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F4 1 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F5 1.73E-06 1.73E-06 6.04E-03 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F6 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F7 1.92E-06 3.52E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

classi	cation performance values in each fold. �is was
attributed to the adaptive tuning of the two parameters by the
CBFO based on the speci	c distribution of each data set.

In order to investigate the convergence behavior of the
proposed CBFO-FKNN method, the classi	cation error rate
versus the number of iterations was recorded. For simplicity,

herein we take the Oxford dataset for example. Figures
5(a)–5(d) display the learning curves of the CBFO-FKNN
for folds 1, 3, 5, and 7 in the 10-fold CV, respectively. As
shown, all four 	tness curves of CBFO converged into a
global optimum in fewer than 20 iterations. �e 	tness
curves gradually improved from iterations 1 through 20 but
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Figure 2: Convergence curves of unimodal functions.
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Table 12: �e calculated p-values from the functions (F8-F13) for the CBFO versus other optimizers.

Problem PSOBFO BFO FA FPA BA DA PSO

F8 1.73E-06 1.73E-06 1.73E-06 1.92E-06 1.73E-06 1.73E-06 1.92E-06

F9 1.73E-06 6.89E-05 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F10 1.73E-06 4.90E-04 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F11 1 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F12 3.52E-06 5.79E-05 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F13 1.73E-06 1.92E-06 3.61E-03 1.73E-06 1.73E-06 1.73E-06 1.73E-06

Figure 3: Convergence curves of multimodal functions.

exhibited no signi	cant improvements a�er iteration 20.
�e 	tness curves ceased a�er 50 iterations (the maximum
number of iterations). �e error rates of the 	tness curves
decreased rapidly at the beginning of the evolutionary process
and continued to decrease slowly a�er a certain number of
iterations. During the latter part of the evolutionary process,
the 	tness curves remained stable until the stopping criteria,

the maximum number of iterations, were satis	ed. �us, the
proposed CBFO-FKNN model e
ciently converged toward
the global optima.

To validate the e�ectiveness of the proposed method,
the CBFO-FKNN model was compared to 	ve other meta-
heuristic algorithms-based FKNN models as well as three
other advanced machine learning approaches including
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Figure 4: Convergence curves based on 	xed-dimension multimodal functions.

Table 13: �e calculated p-values from the functions (F14-F23) for the CBFO versus other optimizers.

Problem PSOBFO BFO FA FPA BA DA PSO

F14 6.34E-06 6.98E-06 5.22E-06 3.18E-06 2.22E-04 1.73E-06 1.06E-04

F15 3.88E-06 8.31E-04 1.73E-06 1.24E-05 1.92E-06 4.29E-06 1.92E-06

F16 2.35E-06 7.50E-01 1.73E-06 1.73E-06 1.73E-06 1.97E-05 1.73E-06

F17 1.92E-06 3.60E-01 1.73E-06 1.73E-06 1.73E-06 2.60E-06 1.73E-06

F18 2.35E-06 8.45E-01 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F19 1.92E-06 8.22E-02 1.73E-06 1.73E-06 1.73E-06 8.19E-05 1.73E-06

F20 3.41E-05 8.94E-04 6.44E-01 2.60E-06 1.73E-06 3.82E-01 1.73E-06

F21 1.73E-06 2.13E-06 4.99E-03 1.73E-06 8.22E-03 7.04E-01 6.34E-06

F22 3.88E-06 2.60E-06 1.64E-05 1.73E-06 1.85E-02 1.85E-01 8.92E-05

F23 1.24E-05 2.60E-05 1.73E-06 1.73E-06 1.96E-02 4.05E-01 1.02E-05
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Table 14: Detailed results of CBFO-FKNN with di�erent values of C(i) on the two datasets.

C(i)
Oxford dataset Istanbul dataset

ACC AUC Sen Spec ACC AUC Sen Spec

0.05
0.9542 0.9417 0.9666 0.9167 0.8230 0.6180 0.9694 0.2667

(0.0370) (0.0774) (0.0356) (0.1620) (0.0636) (0.1150) (0.0413) (0.2108)

0.1
0.9697 0.9781 0.9687 0.9875 0.8054 0.5946 0.9559 0.2333

(0.0351) (0.0253) (0.0432) (0.0395) (0.0414) (0.0746) (0.0297) (0.1405)

0.15
0.9489 0.9479 0.9358 0.9600 0.8155 0.6074 0.9648 0.2500

(0.0629) (0.0609) (0.1158) (0.0843) (0.0669) (0.1204) (0.0450) (0.2257)

0.2
0.9589 0.9466 0.9600 0.9333 0.8368 0.6512 0.9691 0.3333

(0.0469) (0.0860) (0.0555) (0.1610) (0.0283) (0.0698) (0.0360) (0.1571)

0.25
0.9587 0.9459 0.9669 0.9250 0.8257 0.6385 0.9603 0.3167

(0.0536) (0.0901) (0.0459) (0.1687) (0.0770) (0.1560) (0.0328) (0.2987)

0.3
0.9639 0.9689 0.9670 0.9708 0.8090 0.6165 0.9478 0.2833

(0.0352) (0.0308) (0.0454) (0.0623) (0.0439) (0.1112) (0.0534) (0.2491)

(a) (b)

(c) (d)

Figure 5: Learning curves of CBFO for fold 2 (a), fold 4 (b), fold 6 (c), and fold 8 (d) during the training stage.
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Table 15: Detailed classi	cation results of CBFO-FKNN on the Oxford dataset.

Fold CBFO-FKNN

No. ACC AUC Sen Spec � �
1 0.9474 0.9667 0.9333 1.0000 1 1.77

2 1.0000 1.0000 1.0000 1.0000 1 2.94

3 0.9500 0.9688 0.9375 1.0000 1 3.92

4 0.9500 0.9375 1.0000 0.8750 1 6.89

5 0.9500 0.9667 0.9333 1.0000 1 9.33

6 0.9000 0.9412 0.8824 1.0000 1 7.26

7 1.0000 1.0000 1.0000 1.0000 1 9.21

8 1.0000 1.0000 1.0000 1.0000 1 7.61

9 1.0000 1.0000 1.0000 1.0000 1 8.95

10 1.0000 1.0000 1.0000 1.0000 1 7.25

Mean 0.9697 0.9781 0.9687 0.9875 1 6.51

Table 16: Detailed classi	cation results of CBFO-FKNN on the
Istanbul dataset.

Fold CBFO-FKNN

No. ACC AUC Sen Spec � �
1 0.8571 0.7273 0.9545 0.5000 3 4.80

2 0.8276 0.5833 1.0000 0.1667 3 3.70

3 0.8276 0.7065 0.9130 0.5000 3 7.30

4 0.8276 0.5833 1.0000 0.1667 3 4.16

5 0.8966 0.7500 1.0000 0.5000 3 9.40

6 0.7931 0.6232 0.9130 0.3333 3 2.50

7 0.8621 0.7283 0.9565 0.5000 3 9.70

8 0.8276 0.5833 1.0000 0.1667 3 4.30

9 0.8276 0.5833 1.0000 0.1667 3 8.20

10 0.8214 0.6439 0.9545 0.3333 3 7.04

Mean 0.8368 0.6513 0.9692 0.3333 3 6.11

Figure 6: Comparison results obtained on theOxford dataset by the
nine methods.

SVM, KELM, and SVM with local learning-based feature
selection (LOGO-SVM). As shown in Figure 6, the CBFO-
FKNN method performed better than other competitors
in terms of ACC, AUC, and sensitivity on the Oxford

Figure 7: Comparison results obtained on the Istanbul dataset by
the nine methods.

dataset. We can see that the CBFO-FKNN method yields
the highest average ACC value of 96.97%, followed by
PSO-FKNN, LOGO-SVM, KELM, SVM, FOA-FKNN, FA-
FKNN, and BFO-FKNN. GA-FKNN has got the worst
result among the all methods. On the AUC metric, OBF-
FKNN obtained similar results with FA-FKNN, followed by
FOA-FKNN, GA-FKNN, PSO-FKNN, BFO-FKNN, KELM,
and LOGO-SVM, and SVM has got the worst result. On
the sensitivity metric, CBFO-FKNN has achieved obvi-
ous advantages, LOGO-FKNN ranked second, followed by
KELM, SVM, PSO-FKNN, FOA-FKNN, FA-FKNN, and GA-
FKNN. BFO-FKNN has got the worst performance. On
the speci	city metric, FA-FKNN achieved the maximum
results, GA-FKNN and FOA-FKNN have achieved similar
results, which ranked second, followed by BFO-FKNN, PSO-
FKNN, CBFO-FKNN, and SVM. KELM and LOGO-SVM
have obtained similar results, both of which got the worst
performance. Regarding the Istanbul dataset, CBFO-FKNN
produced the highest result with the ACC of 83.68%, while
the LOGO-SVM and PSO-FKNN method yields the second
best average ACC value as shown in Figure 7, followed by



Computational and Mathematical Methods in Medicine 19

(a) (b)

(c) (d)

Figure 8: Training accuracy surfaces of SVM and KELM via the grid search method on the Oxford dataset. (a) Fold 2 for SVM. (b) Fold 4
for SVM on the data. (c) Fold 6 for KELM on the data. (d) Fold 8 for SVM on the data.

KELM, SVM, FOA-FKNN, FA-FKNN, BFO-FKNN, andGA-
FKNN. FromFigures 6 and 7, we can also 	nd that theCBFO-
FKNN can yield a smaller or comparative standard deviation
than the other counterparts in terms of the four performance
metrics on the both datasets. Additionally, we can 	nd that
the SVM with local learning-based feature selection can
improve the performance of the two datasets. It indicates that
there are some irrelevant features or redundant features in
these two datasets. It should be noted that the LOGOmethod
was used for feature selection, all the features were ranked
by the LOGO, then all the feature subsets were evaluated
incrementally, and 	nally the feature subset achieved the best
accuracy was chosen as the one in the experiment.

According to the results, the superior performance of the
proposed CBFO-FKNN indicates that the proposed method
was the most robust tool for detection of PD among the
nine methods. �e main reason may lie in that the OBL
mechanism greatly improves the diversity of the population
and increases the probability of BFO escaping from the local
optimum. �us, it gets more chances to 	nd the optimal
neighborhood size and fuzzy strength values by the CBFO,
which aided the FKNN classi	er inmore e
ciently achieving
the maximum classi	cation performance. Figure 8 displays
the surface of training classi	cation accuracies achieved by
the SVM and KELMmethods for several folds of the training
data via the grid search strategy on the Oxford dataset.
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Table 17: �e confusion matrix obtained by CBFO-FKNN via 10-
fold CV for each group.

Male Predicted PD Predicted health

Actual PD 97 3

Actual health 2 16

Female Predicted PD Predicted health

Actual PD 44 3

Actual health 2 28

Old Predicted PD Predicted health

Actual PD 87 4

Actual health 0 18

Young Predicted PD Predicted health

Actual PD 56 0

Actual health 0 30

�rough the experimental process, we can 	nd the original
BFO is more prone to over	tting; this paper introduces
chaotic initialization, enriches the diversity of the initial
population, and improves the convergence speed of the
population as well; in addition, this paper also introduced
Gaussian mutation strategy for enhancing the ability of the
algorithm to jump out of local optimum, so as to alleviate
the over	tting problem of FKNN in the process of classi	-
cation.

We have also investigated whether the diagnosis was
a�ected by age and gender. Herein, we have taken the Oxford
dataset for example. �e dataset was divided by the age
(old or young) and gender (male or female), respectively.
Regarding the age, we have chosen the mean age of 65.8 years
as the dividing point. �e samples in the old group are more
than 65.8, and the samples in the young group are less than
65.8. �erefore, we can obtain four groups of data including
male group, female group, old group, and young group. �e
classi	cation results of the four groups in terms of confusion
matrix are displayed in Table 17. As shown, we can 	nd that
either in the male group or in the female group 3 PD samples
were wrongly classi	ed as healthy ones, and 2 healthy samples
were misjudged as PD ones. It indicates that the gender has
little impact on the diagnostic results. In the old group, we
can 	nd that 4 PD samples were wrongly identi	ed as healthy
ones. However, none of the samples were misjudged in the
young group. It suggests that the speech samples in the old
group are much easier to be wrongly predicted than those in
the young group.

To further investigate the impact of gender and age on the
diagnosis results. We have further divided the samples into
male group and female group on the premise of young and
old age and old group and young group on the premise of
male and female, respectively. So we can obtain 8 groups as
shown in Table 18, and the detailed classi	cation results are
displayed in terms of confusionmatrix. As shown,we can 	nd
that the probability of the sample being misclassi	ed is closer
in the old group and young group on the premise of male and
female. It can be also observed that there was no sample being
wrongly predicted in male and female groups on the premise

of young persons, while there was one sample being wrongly
predicted in male and female groups on the premise of old
persons, respectively. We can arrive at the conclusion that
the presbyphonic may play a confounding role in the female
and male dysphonic set, and the results of diagnosis were less
a�ected by gender.

�e classi	cation accuracies of other methods applied to
the diagnosis of PD are presented for comparison in Table 19.
As shown, the proposed CBFO-FKNN method achieved
relatively high classi	cation accuracy and, therefore, it could
be used as an e�ective diagnostic tool.

6. Conclusions and Future Work

In this study, we have proposed a novel evolutionary instance-
based approach based on a chaotic BFO and applied it to
di�erentiating the PD from the healthy people. In the pro-
posedmethodology, the chaos theory enhanced BFO strategy
was used to automatically determine the two key parameters,
thereby utilizing the FKNN to its fullest potential.�e results
suggested that the proposed CBFO-FKNN approach outper-
formed 	ve other FKNN models based on nature-inspired
methods and three commonly used advancedmachine learn-
ing methods including SVM, LOGO-SVM, and KELM, in
terms of various performance metrics. In addition, the simu-
lation results indicated that the proposedCBFO-FKNNcould
be used as an e
cient computer-aided diagnostic tool for
clinical decision-making.�rough the experimental analysis,
we can arrive at the conclusion that the presbyphonic may
play a confounding role in the female and male dysphonic
set, and the results of diagnosis were less a�ected by gender.
Additionally, the speech samples in the old group are much
easier to be wrongly predicted than those in the young
group.

In future studies, the proposed method will be imple-
mented in a distributed environment in order to further
boost its PD diagnostic e
cacy. Additionally, implementing
the feature selection using CBFO strategy to further boost
the performance of the proposed method is another future
work. Finally, due to the small vocal datasets of PD, we will
generalize the proposed method to much larger datasets in
the future.
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Table 18: �e confusion matrix obtained by CBFO-FKNN for each group with precondition.

Old

Male Predicted PD Predicted health

Actual PD 62 1

Actual health 0 6

Female Predicted PD Predicted health

Actual PD 27 1

Actual health 0 12

Young

Male Predicted PD Predicted health

Actual PD 37 0

Actual health 0 12

Female Predicted PD Predicted health

Actual PD 19 0

Actual health 0 18

Male

Old Predicted PD Predicted health

Actual PD 61 2

Actual health 0 6

Young Predicted PD Predicted health

Actual PD 35 2

Actual health 0 12

Female

Old Predicted PD Predicted health

Actual PD 27 1

Actual health 0 12

Young Predicted PD Predicted health

Actual PD 19 0

Actual health 0 18

Table 19: Comparison of the classi	cation accuracies of various methods.

Study Method Accuracy (%)

Little et al. (2009) Pre-selection 	lter + Exhaustive search + SVM 91.4(bootstrap with 50 replicates)

Shahbaba et al. (2009) Dirichlet process mixtures 87.7(5-fold CV)

Das (2010) ANN 92. (hold-out)

Sakar et al. (2010) Mutual information based feature selection + SVM 92.75(bootstrap with 50 replicates)

Psorakis et al. (2010) Improved mRVMs 89.47(10-fold CV)

Guo et al. (2010) GP-EM 93.1(10-fold CV)

Ozci� et al. (2011) CFS-RF 87.1(10-fold CV)

Li et al. (2011) Fuzzy-based non-linear transformation + SVM 93.47(hold-out)

Luukka (2011) Fuzzy entropy measures + Similarity classi	er 85.03(hold-out)

Spadoto et al. (2011)
Particle swarm optimization + OPF 73.53(hold-out)

Harmony search + OPF 84.01(hold-out)

Gravitational search algorithm + OPF 84.01(hold-out)

AStröm et al. (2011) Parallel NN 91.20(hold-out)

Chen et al.(2013) PCA-FKNN 96.07(10-fold CV)

Babu et al. (2013)
projection based learning for meta-cognitive radial

basis function network (PBL-McRBFN)
99.35% (hold-out)

Hariharan et al. (2014)
integration of feature weighting method, feature

selection method and classi	ers
100%(10-fold CV)

Cai et al. (2017)
support vector machine (SVM) based on bacterial

foraging optimization (BFO)
97.42%(10-fold CV)

�is Study CBFO-FKNN 97.89%(10-fold CV)
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[39] İ. Cantürk and F. Karabiber, “A Machine Learning System for
theDiagnosis of Parkinson’sDisease fromSpeech Signals and Its
Application to Multiple Speech Signal Types,” Arabian Journal
for Science and Engineering, vol. 41, no. 12, pp. 5049–5059, 2016.
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