
■ We describe an intelligent personal assistant
that has been developed to aid a busy knowl-
edge worker in managing time commitments
and performing tasks. The design of the system
was motivated by the complementary objec-
tives of (1) relieving the user of routine tasks,
thus allowing her to focus on tasks that critical-
ly require human problem-solving skills, and (2)
intervening in situations where cognitive over-
load leads to oversights or mistakes by the user.
The system draws on a diverse set of AI tech-
nologies that are linked within a Belief-Desire-
Intention (BDI) agent system. Although the sys-
tem provides a number of automated functions,
the overall framework is highly user centric in
its support for human needs, responsiveness to
human inputs, and adaptivity to user working
style and preferences. 

Atypical knowledge worker must juggle a
broad range of tasks and responsibilities.
While doing so, she must maintain

awareness of deadlines and resources, as well as
tracking current activities and new informa-
tion that could affect her objectives and pro-
ductivity. Much of her work will require coor-
dination and collaboration with a broad range
of people, both within and outside of her im-
mediate organization. As organizations seek to
improve cost effectiveness and efficiency,
workloads for many knowledge workers are in-
creasing. Furthermore, workers are being inun-
dated with vastly increased volumes of infor-
mation that must be filtered and absorbed. The
net result is high levels of cognitive overload in
the workplace (Kirsh 2000).

This article describes a system, called the

Project Execution Assistant (PExA), that has
been developed to improve the productivity
and effectiveness of a knowledge worker by
aiding her in organizing and performing tasks.
From a functional perspective, PExA focuses on
two key areas: time management and task
management. Time management refers to the
process of helping a user manage actual and
potential temporal commitments. Time man-
agement critically involves meeting or ap-
pointment scheduling but further includes re-
minder generation and workload balancing.
Task management involves the planning, exe-
cution, and oversight of tasks. Such tasks may
be personal in that they originate with the user,
or they may derive from responsibilities associ-
ated with a project. 

PExA has been designed to aid the user with
tasks along a spectrum of complexity. Some of
PExA’s value derives from its ability to relieve
the user of responsibility for frequently occur-
ring, routine tasks (for example, meeting
scheduling, expense reimbursement). PExA can
also assist the user with tasks that are larger in
scope and less precisely defined (for example,
arranging a client visit). 

PExA incorporates a significant body of so-
phisticated AI technologies for knowledge rep-
resentation, reasoning (probabilistic and sym-
bolic), planning, plan execution, agent
coordination, adjustable autonomy, explana-
tion, and learning. These technologies are in-
tegrated into a tightly coupled framework,
drawing on a shared ontology and an agent ar-
chitecture. This linkage has enabled a number
of important capabilities within the system, in-
cluding dynamic procedure learning, integrat-
ed task and calendar management, and real-
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time execution monitoring and prediction. 
PExA has been developed as a key compo-

nent of the CALO (Cognitive Agent that Learns
and Organizes) project, a large-scale effort to
build an adaptive cognitive assistant situated in
an office environment.1 Complementing
PExA’s capabilities for time and task manage-
ment in CALO are a meeting assistant and an in-
formation assistant. The meeting assistant is de-
signed to enhance a user’s participation in a
meeting through mechanisms that track the
topics that are discussed, the participants’ po-
sitions, and resultant decisions. The informa-
tion assistant provides tools to organize infor-
mation within the user’s desktop environment
in order to support more efficient access and
improved decision making (Cheyer, Park, and
Giuli 2005). 

The version of PExA described in this article
was delivered to the CALO project in 2006. Al-
though only midway through the five-year
project, PExA already provides a significant
body of functional capabilities (task perform-
ance, time management, execution monitor-
ing, team coordination) and qualities (advis-
ability, explainability, adaptability) that are
important for an intelligent personal assistant.
A version of PExA will be deployed for daily use
within the research team later this year.

This article is organized as follows. We begin
by presenting the model of assistance underly-
ing PExA. Next, we describe both the overall
PExA system and its core components for time
and task management. After that, we present a
use case that highlights select system function-
ality. We conclude with a discussion of issues
for mixed-initiative systems, related work, and
future technical directions. 

Model of Assistance
Different styles of assistive technology suit dif-
ferent applications, depending on the types of
problem to be addressed and the balance of ex-
pertise and knowledge between the user and
the system. In situations where human prob-
lem-solving skills are weak or compromised in
some way, an assistant can provide value by
watching over the user’s shoulder and inter-
vening to provide guidance when the user
reaches impasses or makes mistake. Systems de-
signed to aid people with cognitive disabilities
such as memory decline fall into this category
(Pollack 2005). When human cognitive skills
are an essential part of problem solving, a more
appropriate design is to have an assistant re-
lieve the user of routine tasks to enable her to
focus on strategic decision making. Mixed-ini-
tiative planning technologies such as MAPGEN

(Bresina et al. 2005) and PASSAT (Myers et al.
2003) provide examples of this type of assistant
in the way that they support a human in mak-
ing strategic planning decisions by aiding with
the management of constraints and require-
ments. In situations where there is a distribu-
tion of problem-solving skills between the user
and the system, a collaborative assistant would
work in conjunction with its user to complete
a shared task (Allen, Blaylock, and Ferguson
2002; Rich and Sidner 1998). 

The demands of a busy office environment
can often lead to situations where performance
degrades as a result of information or task over-
load (Kirsh 2000). Typically, the user possesses
the necessary problem-solving skills to perform
her job effectively but simply has too many
things to do and too much information to
track in the time available. Motivated by the
objective of reducing user workload, we chose
to adopt a delegative model of interaction be-
tween the user and the system (Myers and
Yorke-Smith 2005). Within this model, the user
decides what needs to be done and which tasks
she feels comfortable allocating to the system.
PExA works on behalf of its user by executing
tasks that have been assigned to it, thus paral-
leling how a user might assign tasks to a well-
trained human assistant. The system operates
in a fairly autonomous manner within bounds
set by the user but interacts to solicit necessary
information and to confirm important deci-
sions.

Delegation is the primary interaction style
within the system, but other forms of interac-
tion can be incorporated as well. PExA current-
ly includes several forms of proactive assistance
in which it initiates communication with the
user to inform her of problems, to provide re-
minders of user commitments, and to provide
feedback on user requests. This proactive be-
havior is motivated primarily by information
overload: in many situations, the system may
have a better awareness than the user of re-
quirements, commitments, or current state,
and so can provide value by drawing on this
knowledge within a given problem-solving
context. Although not present within PExA
currently, incorporation of a collaboration ca-
pability would be useful to address tasks that
require the user and system to work together to
solve problems. 

Within the delegative interactions model,
several desiderata were identified in order for
the technology to be both useful and usable by
a busy knowledge worker.

Directable: Although the assistant should be ca-
pable of operating in an autonomous manner,
it must accept explicit directions from the user
on what to do (or not) and how to do it. 
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Personalizable: The assistant should learn a
model of the user’s preferences and adapt its be-
havior accordingly. 

Teachable: It should be easy for the user to com-
municate new or modified problem-solving
knowledge to the assistant over time.

Transparent: The assistant should be able to
communicate succinctly what it is doing and
why, in order to provide the user with insight as
to the status and strategy of its actions. 

System Overview
Figure 1 depicts the PExA architecture. Each
PExA is associated with a single user but inter-
acts with the PExAs of other users to exchange
information and coordinate on tasks. 

The heart of the system consists of the com-
ponents for task and time management. These
two elements are unified through the use of a
common agent framework (the SPARK system,
described below) and a shared ontology. Addi-
tional components within the system provide
complementary capabilities for execution
monitoring and prediction, procedure learn-
ing, task explanation, and team coordination.
The different components within an individual
PExA interact through an asynchronous mes-
saging scheme to exchange data, queries, and
requests to perform tasks (Cheyer and Martin
2001), resulting in a distributed and modular
environment that simplified overall system de-
velopment. 

PExA’s knowledge is distributed throughout
the system. Key knowledge sources include a
taxonomy of general office concepts, the user’s
personal calendar, an e-mail server, a model of
user preferences, and a current situation mod-
el. The CALO Query Manager provides a uni-
fied interface to this knowledge through an in-
tegrated collection of reasoning and retrieval
facilities (Ambite et al. 2006). 

Task requests can originate with either the
user or another PExA agent. These requests are
processed by the Task Manager, which may re-
spond to them directly or delegate them to ap-
propriate modules within the system.

Although PExA will be deployed for opera-
tional use in the near future, it operates cur-
rently within a realistic but partially simulated
office environment. Some effectors cause real
actions to occur (for example, calendar modifi-
cations, sending of e-mail, information re-
trieval from the web), but others are necessari-
ly simulated (for example, purchasing and
conference registration actions). 

Task Management
The role of the Task Manager is to organize, fil-

ter, prioritize, and oversee execution of tasks on
behalf of the user. Tasks may be posed explicit-
ly by the user or another PExA agent or adopt-
ed proactively by the Task Manager in antici-
pation of user needs. The Task Manager can
both perform tasks itself and draw on other
problem-solving entities (including the user) to
support task execution.

The Task Manager is built on top of a Belief-
Desire-Intention (BDI) agent framework called
SPARK (SRI Procedural Agent Realization Kit)
(Morley and Myers 2004). SPARK embraces a
procedural reasoning model of problem solv-
ing, in the spirit of earlier agent systems such as
PRS (Georgeff and Ingrand 1989) and RAPS
(Firby 1994). Central to SPARK’s operation is a
body of process models that encode knowledge
of how activities can be undertaken to achieve
objectives. The process models are represented
in a procedural language that is similar to the
hierarchical task network (HTN) representa-
tions used in many practical AI planning sys-
tems (Erol, Hendler, and Nau 1994). However,
the SPARK language extends standard HTN lan-
guages through its use of a rich set of task types
(for example, achievement, performance, wait-
ing) and advanced control constructs (for ex-
ample, conditionals, iteration).

The Task Manager includes a library of
process models (alternatively, plans or proce-
dures) that provide a range of capabilities in
the areas of visitor planning, meeting schedul-
ing, expense reimbursement, and communica-
tion and coordination. The processes were de-
signed primarily to automate capabilities but
include explicit interaction points where the
Task Manager solicits inputs from the user. 

Rather than blindly accept tasks from the
user, the Task Manager analyzes requests to de-
termine whether they are appropriate and fea-
sible in the context of the user’s current com-
mitments and activities (Myers and
Yorke-Smith 2005). For problematic requests,
the system can make recommendations on
how to eliminate the problems and work with
the user to implement those recommenda-
tions. This type of proactive behavior on the
part of the system can be useful in situations
where the user may have limited awareness of
the context in which tasks are to be performed
and hence may be posing requests that are un-
suitable in certain ways. For example, if the
user assigns the task of registering for a confer-
ence and the Task Manager determines that the
user lacks sufficient travel funds, the system
will notify the user and make suggestions to
address the shortfall such as applying for a de-
partmental travel grant or postponing a
planned equipment purchase. The assessment
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of the resource feasibility of a task makes use of
a capability to project necessary and sufficient
bounds on resource usage by analyzing the
space of possible hierarchical decompositions
of a task (Morley, Myers, and Yorke-Smith
2006). 

SPARK also maintains a collection of met-
alevel predicates (or metapredicates) that track
key internal state and processing steps of the
system, such as what tasks it is performing,
which procedures are being applied to those
tasks, and what decisions have been made in
the scope of executing a task. These metapred-
icates allow the system to reflect on and dy-
namically modify its behavior at run time in
order to adapt to evolving requirements; they
are also used to support explanation (discussed
further later on). 

Time Management 
Time management within PExA is focused on
aiding users in managing their temporal com-
mitments. Time management is intensely per-
sonal, with many people being reluctant to re-
linquish control over their schedules. The
PTIME component of PExA provides the user
with personalized time-management support
that is responsive to her needs and preferences
and adaptive to changing circumstances (Berry
et al. 2006a). PTIME learns its user’s preferences
through a combination of passive learning, ac-
tive learning, and advice taking. As a result, the
user can become progressively more confident
of PTIME’s ability and thus allow it to make in-
creasingly more autonomous decisions, for ex-
ample, whether to accept a meeting request,
when to schedule a meeting, how much infor-
mation to share when negotiating the time and
location of a meeting with others, and when to
issue reminders about upcoming deadlines. 

PTIME is, in effect, a single-calendar sched-
uler that interacts with PTIME components of
other PExA agents to coordinate shared calen-
dar entities. In PExA, PTIME is used in an open,
unbounded environment in which issues of
privacy, authority, cross-organizational sched-
uling, and availability of participants are more
significant than in prior work on automated
calendar management. For example, Franzin
and colleagues (2002) assume complete priva-
cy, while Payne and colleagues (2002) and Mo-
di and Veloso (2005) assume more cooperative
environments. With the exception of Modi
and Veloso (2005), most prior systems focus on
requests formulated as hard constraints and
produce only feasible scheduling options. In
contrast, PTIME treats the underlying schedul-
ing problem as a soft constraint satisfaction
problem; it makes use of individual preferences

and the context of the user’s current workload
and deadlines (that is, it does not just handle
meetings, but also “to do” items), and it may
interact with its user to find the best solution.

PTIME integrates commercial calendaring
tools and user interface technology with new
algorithms for constraint satisfaction, goal-di-
rected process management, and preference
learning. Scheduling requests are formulated in
a highly expressive language that combines
temporal and finite-domain constraints with
disjunction and preferences. This degree of ex-
pressiveness is necessary to cover many real-
world requirements, such as a preference to
meet with a member of the sales department
before noon or after 3:00 on Friday. Scheduling
is accomplished through the use of powerful
constraint-satisfaction techniques designed to
support this expressive language (Peintner and
Pollack 2004; Moffitt, Peinter, and Pollack
2005; Berry et al. 2006b).

PTIME provides support for scheduling a sin-
gle meeting, a set of related meetings, or an
agenda of events. It also supports the user in
canceling events, rescheduling events, request-
ing another person to commit to an event, and
committing to a requested event. PTIME tracks
its user’s manipulations of her calendar to
maintain schedule integrity and to alert her to
consequences of her actions in the context of
her current workload. PTIME also supports the
exchange of information (availability, commit-
ments) and requests between PExA agents. A
SPARK-based controller manages the interac-
tions between the user and the constraint rea-
soner, and interagent communication.

Execution Monitoring and Prediction
An intelligent assistant must be able to reason
about the tasks it attempts to undertake: to de-
termine whether a task is feasible and to adapt
to developments that occur during the course
of execution. Determining whether a task is
logically feasible given the user’s current com-
mitments is the responsibility of the Task Man-
ager. However, even tasks that are logically fea-
sible may be likely to fail because of uncertain
future events. Furthermore, tasks that were
likely to succeed at their initiation may become
likely to fail because of unexpected events. It is
the responsibility of the Execution Monitor
and Predictor (EMP) component of PExA to
reason about the course of a task’s execution.

The EMP uses models written in ProPL, a
probabilistic process modeling language (Pfef-
fer 2005). A ProPL model is a description of how
a process evolves, including the specification of
uncertainty over the success of subprocesses,
their results, and execution times. ProPL mod-
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els, which are derived from SPARK process mod-
els, are transformed into dynamic Bayesian net-
works in which there is a variable for every sub-
process that could possibly be executed.

The Task Manager notifies the EMP of key
events as they occur: the beginning of a sub-
task, the success or failure of a subtask, and the
results produced by a subtask. At all points in
time, the EMP maintains a probability distri-
bution over the current state of the process us-
ing particle filtering (Doucet, de Freitas, and
Gordon 2001). The Task Manager and the EMP
can interact in two ways. In on demand mode,
the Task Manager can query the EMP for the
probability that the task will succeed given the
possible current states, or the expected time to
completion. In continuous mode, the EMP runs
at all time points: when the probability of suc-
cess falls below a threshold, or it appears that
the task will not complete by its deadline, the
EMP notifies the Task Manager. 

Team Coordination
Given the team-oriented nature of office activ-
ities, an effective intelligent assistant should be
aware of other individuals and their assistants
with whom the user needs to interact and fa-
cilitate collaboration with them. PExA includes
a capability for coordinating multiple PExA
agents and their users based on the Machinet-
ta framework for team coordination (Schurr et
al. 2004). Machinetta, derived from the earlier
STEAM (Tambe 1997) and TEAMCORE (Pyna-
dath and Tambe 2003) coordination architec-
tures, enables high-level team-oriented pro-
gramming, thus avoiding the need to write
tedious low-level coordination algorithms. Ma-
chinetta is used in PExA to provide team-level
interagent communication capabilities and to
support dynamic task reallocation. 

Dynamic task reallocation involves both the
initial allocation of tasks within a team and re-
allocation in response to anticipated problems
in meeting deadlines. Machinetta employs a
distributed constraint optimization algorithm
for task allocation that draws on a model of
user capabilities (Varakantam, Maheswaran,
and Tambe 2005). Deciding when to reallocate
tasks is difficult because of uncertainty both in
observations of the user’s task performance and
in expectations of future user progress. Ma-
chinettta uses partially observable Markov de-
cision processes (POMDPs) to enable task real-
location decisions despite such observational
and transitional uncertainty. While the system
must not autonomously make a reallocation
decision in haste, it may have more current
and detailed information about task depend-
encies and deadlines than the user and must

guard against situations where the user is un-
able to respond quickly. The POMDP policy en-
ables PExA to adjust its own autonomy, asking
the user if she will complete the task on time
and reallocating the task if she cannot or if she
does not respond in a timely fashion.

POMDP policy generation is time intensive.
To meet the scalability requirements of the per-
sonal assistant domain, Machinetta employs be-
lief bounds, which exploit the structure of the
domain (e.g. transition probabilities) and prior
knowledge of initial belief distributions to prune
unreachable regions of the belief space (Varakan-
tam et al. 2005). Belief bounds can be incorpo-
rated into standard POMDP algorithms for poli-
cy generation, providing orders of magnitude
speedup without sacrificing completeness. 

Enhancing the User Experience
Layered on top of the core task and time man-
agement capabilities described in the previous
section are functionalities that address the re-
quirements of directability, personalization,
teachability, and transparency. 

Directability
Directability within PExA is grounded in a
mechanism for advisability. This mechanism al-
lows the user to express guidance as to (1) the
strategy to be used in solving a particular task
or class of tasks, and (2) the scope of the sys-
tem’s autonomy (Myers and Morley 2003). Ad-
vice is expressed in a high-level language that
gets operationalized into constraints that direct
PExA’s decision making at execution time. 

The first class of advice can be used to desig-
nate or restrict procedures to be used, as well as
to constrain how procedure parameters are in-
stantiated. For example, the guidance “Avoid
rescheduling meetings with Bill” expresses a
preference over approaches for responding to
scheduling conflicts. The directive “Get ap-
proval for purchases from Ray or Tom” restricts
the choices for instantiating parameters that
denote possible sources for approval. 

The second class of advice can be used to de-
clare conditions under which an agent must
obtain authorization from the user before per-
forming activities (for example, “Obtain per-
mission before scheduling any meetings after
5:00”). As well, it can be used to designate a
class of decisions that should be deferred to the
user. These decisions can relate to either the se-
lection of a value for parameter instantiation
(for example, “Let me choose airline flights”)
or the selection of a procedure for a task (for ex-
ample, “Consult me when deciding how to re-
spond to requests to cancel staff meetings”).
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Personalization
Given that work styles are highly personal, an
effective intelligent assistant must adapt to
the preferences and characteristics of its user.
Users may have preferences over a wide range
of functions within the system, including
how tasks are performed, how and when
meetings are scheduled, and how the system
interacts with the user. To date, the focus for
personalization in PExA has been on the on-
line, unobtrusive acquisition of user schedul-
ing preferences through machine learning
techniques. 

In response to a meeting request, PTIME
presents the user with a small number of can-
didate schedules. The user can select one from
among that set or request that the system gen-
erate additional candidates from which to
choose. The learning exploits the preference
information implicit in these user actions to
produce a preference model in the form of an
evaluation function over schedules. PTIME ini-
tially learned only general preferences over
temporal constraints (that is, preferences over
days and times) in underconstrained situations
(Gervasio et al. 2005). PTIME was extended re-
cently to learn a multicriteria evaluation func-
tion that encompasses a number of additional
factors, including meeting-specific temporal
preferences, preferences over finite-domain
constraints (for example, meeting partici-
pants), preferences over global schedule char-
acteristics (for example, fragmentation, stabil-
ity), and preferences over the scheduling
preferences of other users. This expanded set
of criteria improves PTIME’s ability to capture
the trade-offs faced by users in real-world set-
tings (Berry et al. 2006b).

PTIME employs active learning (Cohn, Atlas,
and Ladner 1992) to inform the decision of
which candidate schedules to present. In a typ-
ical active learning setting, the sole purpose is
learning; thus no restrictions are imposed on
the sets of candidate solutions presented to the
user. However, PTIME’s active learner is de-
ployed within a functional scheduling system
and thus must present reasonable solutions to
actual meeting requests. To balance the often
competing requirements of exploring the solu-
tion space to benefit learning and of present-
ing desirable solutions to satisfy the user, the
active learner uses a seeded entropy-based met-
ric to find a diverse set of desirable solutions
(Weber and Pollack 2007). 

Initial results demonstrated that this learn-
ing approach can produce an accurate prefer-
ence model for the user given a sufficient num-
ber of training examples. Informal studies have
shown, however, that users have a low toler-

ance for bad scheduling suggestions, which are
likely to occur during initial use of the system.
To address this problem, PTIME was extended
to provide a bootstrapping phase in which
users can specify general preferences as well as
certain types of trade-offs among those prefer-
ences using a specialized graphical tool. Based
on these explicitly stated preferences, PTIME
induces a multicriteria evaluation function of
the same form as the learned preference mod-
el. By combining these two functions, PTIME
can provide reasonably good solutions early on
while employing learning capabilities to refine
the initial model to account for the unstated or
evolving preferences of the user. 

Teachability
The ability to expand and modify procedure
knowledge at run time is essential for a persist-
ent problem-solving agent like PExA, which
will need to incorporate new capabilities and
adapt to changes in policy or expectations. The
complexity of the procedures invoked by the
system lies well beyond what current fully au-
tomated learning methods can synthesize. For
this reason, we have focused on supporting a
mixed-initiative model of procedure acquisi-
tion and extension. 

PExA includes a tool called Tailor (Blythe
2005a, 2005b) that can modify PExA’s process
models in response to user instructions in the
form of short sentences. Tailor can be used to
correct problems with procedure knowledge
detected at run time or to create new proce-
dures; additions or corrections can be dynami-
cally loaded into the executor, thus enabling
problem-solving behavior to adapt on the fly. 

Tailor bridges the gap between the user’s de-
scription of an intended change in behavior
and a corresponding modification to the pro-
cedural knowledge and domain ontology. This
is done through a combination of search for
potential modifications and reasoning about
their effects on PExA’s global behavior. For ex-
ample, given a user instruction “Prepay with
my credit card when the fee is less than $500,”
Tailor identifies the affected action from those
that are part of PExA’s current tasks, uses
search to find expressions corresponding to
terms like the fee and possibly omitted action
parameters or objects, simulates one or more
potential modifications to test their effect on
other parts of the plan, and presents the most
promising choices to the user for confirma-
tion. Testing has shown that users can add
new steps, modify conditions, and change step
orderings using Tailor without knowledge of
PExA’s procedure representation or precise do-
main ontology.
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Transparency
For users to embrace personal assistant soft-
ware, they need to have access to explanations
as to why decisions are made and actions tak-
en and what information and processes those
actions and decisions depend on. PExA has
been designed with this requirement in mind
and provides explanation capabilities through
its Integrated Cognitive Explanation Environ-
ment (ICEE). 

ICEE is capable of explaining a variety of ques-
tions including why PExA is currently perform-
ing a task, why the task is not yet finished, what
information PExA relies on, and how PExA will
execute something. When an explanation is re-
quested, ICEE chooses one of a number of strate-
gies to answer the question, depending upon
context and a user model. For example, one
strategy for answering the question “Why are
you doing <task>?” leverages provenance infor-
mation about the source of the task process, in-
cluding processes that have been modified
through various learning methods, and pro-
duces the explanation “I am trying to do
<high_level_task> and you instructed me to do
<task> when <condition> holds.” Other strategies
for this question include exposing preconditions
or termination conditions, revealing metainfor-
mation about task dependencies, showing task
hierarchies and abstractions, and explaining fur-

ther provenance information related to task pre-
conditions or other task knowledge.

ICEE relies on the Inference Web infrastruc-
ture for explaining distributed systems
(McGuinness and Pinheiro da Silva 2004) and
leverages the Proof Markup Language (PML)
proof interlingua (Pinheiro da Silva, McGuin-
ness, and Fikes 2005) for representing justifica-
tions. To produce the explanation, ICEE gener-
ates PML from the SPARK metapredicates
(described earlier) that track which processes
are executing, what goals they are servicing,
and what termination conditions are not met.
ICEE uses a dialogue model and Inference Web
components to present relevant information
and possible context-appropriate follow-up
questions for the user to ask. Follow-up ques-
tions might include requests for additional de-
tail, clarifying questions about an explanation
that has been provided previously, or requests
to employ an alternate strategy for answering a
previously posed question. 

Figure 2 presents a sample dialogue in which
the user has asked for the motivation for a par-
ticular task that PExA is performing (namely,
the purchase of a piece of office equipment).
Relevant follow-up questions in this case ask
why the task has not yet completed, when the
high-level task will complete, and when the
system learned the process it is executing for
the high-level task. 
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Why is Wait for approval not completed yet?

You asked me to Purchase equipment, and instructed me to Wait for approval
under certain conditions:  Always get two approvals when the purchase price
is more than $2500.

Why?

When will you finish Purchase equipment?

Okay, I have no more questions

When did you learn to do Purchase equipment in this way?

Figure 2. An Example Explanation Dialogue, with Suggested Follow-up Questions.



User Interaction
User interactions for specifying, managing,
tracking, explaining, and collaborating on
tasks are made through a unified PExA user in-
terface (UI). In this way, the diversity and com-
plexity of the underlying AI technologies are
hidden from the user. Additional specialized
interfaces are provided for viewing and modi-
fying calendar information and for procedure
modifications in Tailor, as those activities re-
quire detailed interactions that are not well
suited to a general-purpose interface.

The interface, called Towel, uses a light-
weight, peripheral display. The primary win-
dow (see figure 3, left side) summarizes the
user’s tasks and provides visual representations
of task metadata such as deadlines and priori-
ty. Towel provides a variety of mechanisms to
organize, search, prioritize and view tasks, in-
cluding tagging, property assignment, and
grouping capabilities. Associated with each
task in Towel is a rich body of information
about task provenance (source, time of cre-
ation), requirements (deadlines, priority), cur-
rent state, and relations to other tasks (seman-
tic groupings, task/subtask relations). 

Towel draws on ideas from prior systems de-
signed to support “to do” management (for ex-
ample, Bellotti et al. [2004]); however, the em-
phasis within those systems is to help the user

track and prioritize tasks that she needs to
complete. Towel goes beyond such systems
through its support for (1) the delegation of
tasks to other PExA-enabled teammates, and
(2) the dispatching of tasks for automated exe-
cution by the Task Manager. 

For task dispatching, a user can assign a task
to the Task Manager for execution by selecting
from a menu of automated capabilities. Alter-
natively, the user can define a task informally
by providing a textual description of it (for ex-
ample, “Schedule project review”); Towel will
provide the user with a list of possible tasks
that it believes it could perform to help accom-
plish this task (see the right side of figure 3).
Currently, this list is generated through simple
keyword matching on task and procedure de-
scriptions, but more sophisticated mechanisms
based on semantic matching will be employed
in the future.

The task list UI within Towel provides a sum-
mary view of tasks and access to common op-
erations for manipulating and viewing them.
Given the temporally extended nature of many
of the tasks that the Task Manager can perform
on the user’s behalf, Towel further includes a
collaboration window for supporting ongoing in-
teractions between the user and the Task Man-
ager for an individual task (figure 4). In partic-
ular, each task has an associated collaboration
window that is used solely for communication
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Figure 3. The Towel ToDo Manager User Interface.

Task list (left) and task specification (right) displays.



related to that task. An earlier design that
placed all interactions within a common win-
dow caused test users to be confused by con-
versations about multiple tasks occurring with-
in the same dialogue. The design for the
collaboration window was inspired by the user
interface of the DiamondHelp system for col-
laborative task guidance (Rich et al. 2006).

The collaboration windows also support the
use of specialized displays tied to specific func-
tions to simplify certain types of interactions.
For example, the bottom portions of the two
windows in figure 4 display specialized inter-
action frames for soliciting detailed informa-
tion about a meeting request (left side) and ex-
ploring alternative solutions (right side). The
specialized frame for entering meeting requests
supports expressive, albeit restricted, natural
language input to enable users to specify re-
quirements and preferences quickly and natu-
rally. In contrast, traditional form-based input
interfaces for calendar systems are ineffective
for communicating constructs such as con-
straints and preferences. Although the specifi-
cation of preferences such as “prefer Tuesday at
2 PM,” “Bob is optional,” and “can overlap” is
possible with dialogue form widgets, the inclu-
sion of appropriate widgets for all possible con-
straints and preferences would result in an

overly complex interface; furthermore, such in-
terfaces have been shown to elicit untrue pref-
erences (Viappiani, Faltings, and Pu 2006). In
contrast, the specialized graphical display for
exploring candidate solutions helps the user
understand the key differences among sched-
ules, refine or relax input constraints, explore
alternative solutions, and select a preferred
candidate. The warning sign seen in the right-
most schedule indicates that the constraint
that meetings not overlap had to be relaxed (as
indicated by the tool tip “overlaps with Cof-
fee”). If existing meetings must be moved
(which is not the case here), the display would
indicate whether the effort required to resched-
ule is high, medium, or low.

Use Case
We present a sample use case that highlights
key PExA capabilities. 

Scene 1: Visitor Scheduling
Helen receives an e-mail request from the
sponsor of one of her projects to visit next
Wednesday for a review. Helen asks PExA to
initiate the planning process. Her PExA starts
arranging a tentative agenda based on its
knowledge of typical requirements for such
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Figure 4. Sample Task Collaboration Window.

In this window, the user first defines a scheduling task (left side) and then explores and selects a solution (right
side).



visits. It identifies a set of project demonstra-
tions and presentations for the meeting based
on its knowledge of project activities; the
agenda also includes time for lunch, coffee
breaks, and a private meeting with Helen at
the end of the day. PExA determines various
constraints for the meeting, including dura-
tions, participants, and a range of start/end
times for each agenda item. Helen’s PExA in-
teracts with the PExAs of the other project
members to finalize the agenda (get schedules,
update their calendars).

PExA is unable to find an agenda that satis-
fies all requirements, so it presents three candi-
date solutions to Helen that relax the schedul-
ing problem in various ways. Helen indicates
that none of the solutions is satisfactory. PExA
then presents a set of strategies for simplifying
the scheduling problem (for example, drop a
presentation, shorten presentation times, ex-
tend the day, change participants). Helen sug-
gests (1) dropping one of the demonstrations
and (2) getting Dave to replace Joe. PExA pro-
duces a new set of candidate agendas based on
the recommendation and Helen selects one.
PExA distributes the agenda to the relevant
people (project members, sponsor) and assigns
tasks to members of the project team to prepare
for the visit.

Scene 2: Conference Registration
While preparations for the visit continue, He-
len asks PExA to register her for the AAAI con-
ference. PExA warns Helen that she has insuffi-
cient discretionary funds for the trip. PExA
suggests that Helen could afford the trip if she
(1) cancels her ICAPS trip, (2) postpones the
planned purchase of a laptop, or (3) applies for
a departmental travel grant. Helen asks PExA to
apply for the grant; she has high certainty that
the grant will be approved, so asks PExA to con-
tinue the registration process.

Registration requires payment of the confer-
ence fee. PExA knows several payment strate-
gies; the preferred option (based on prior ad-
vice from Helen) is for the company to prepay,
if time is available. PExA determines that there
is sufficient time and requests that procure-
ment initiate the payment. 

Time progresses but PExA does not receive
confirmation of the prepayment from procure-
ment. PExA eventually decides that the risk of
missing the prepayment deadline is too high.
PExA recommends to Helen that it perform the
prepayment directly using Helen’s credit card;
Helen agrees, so PExA makes the payment and
cancels the corporate prepayment. PExA also
initiates the expense reimbursement process
for the registration fee. 

Scene 3: Three Days before the Visit
Three days before the visit, Helen asks PExA
why she has not yet received reimbursement
for the registration fee. PExA reminds Helen
that the reimbursement process for conference
fees typically takes five working days, but the
request was submitted only three days ago.

Scene 4: Sixty Hours prior to the Visit
PExA monitors progress by the team members
on the tasks associated with the visit. It notices
that Dave is behind schedule in his demon-
stration tasks; furthermore, Dave’s calendar in-
dicates that he is heavily committed for the
next two days. PExA infers that Dave is behind
schedule and assigns one of his two demon-
stration tasks to Alice. 

Scene 5: One Day before the Visit
PExA informs Helen that the reimbursement
for the conference fee should have arrived but
has not. PExA sends e-mail to Travel Audit to
check on the situation. 

Scene 6: Visit Day
The visit is scheduled to start at 8:00 in the
morning. At 8:15, Helen receives a page from
the sponsor indicating that he will not arrive
until 10:00. Helen informs PExA of the delay.
PExA attempts to reschedule the agenda but
cannot accommodate everything. PExA works
with Helen to modify the agenda and then no-
tifies the participants of the changes. 

Scene 7: The Day after the Visit 
PExA informs Helen that her reimbursement
check is available. 

Issues for Mixed-
Initiative Assistants

The introduction to this special issue of AI Mag-
azine identifies a set of design issues for mixed-
initiative assistants. In this section, we discuss
how these issues are addressed within PExA. 

Tasking
Tasking focuses on the division of responsibili-
ty between the human and the assistant. As
noted above, PExA embodies a delegative mod-
el of assistance in which the user first deter-
mines what needs to be done and then explic-
itly assigns appropriate tasks to the system. The
system can operate in a fairly autonomous
manner but interacts with the user to obtain
necessary inputs and to validate important de-
cisions. This design enables the user to delegate
responsibility for routine or less important
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tasks to the system, thus increasing
the amount of time that the user can
dedicate to more cognitively demand-
ing activities.

Control
The raison d’être for PExA is to serve
the needs of its user. For this reason,
the system has been designed to pro-
vide the user with a high degree of
control over system behavior: the del-
egative model provides control over
what the system does, while user ad-
vice provides control over how the sys-
tem does things. Nevertheless, the sys-
tem retains a strong measure of
autonomy. Subsequent to the assign-
ment of tasks by the user, the system
and the user address their individual
responsibilities in a fairly independent
manner, initiating interactions with
the other as needed. Interactions typi-
cally focus on eliciting information
from the other party that would con-
tribute to problem solving. In addi-
tion, the user may ask questions to de-
velop an understanding of what the
system is doing and why. Similarly, the
system has the ability to take initiative
in terms of asking questions of the
user and acting proactively in areas
such as reminder generation and dy-
namic task reallocation. In this regard,
the user and the system could be char-
acterized as engaging in cooperative
problem solving, in contrast to the
collaborative problem-solving style of
Allen, Blaylock, and Ferguson (2002)
and Rich and Sidner (1998).

Awareness
Because the user and the system oper-
ate in a loosely coupled manner, it is
unnecessary for either to have full
awareness of what the other is doing.
Shared awareness is necessary only for
aspects of mutual interest. Much of
the shared awareness in the system is
grounded in the to do interface. From
the perspective of the system, the to
do interface provides a characteriza-
tion of (at least some of) what the user
wants to accomplish along with asso-
ciated priorities and deadlines. From
the perspective of the user, the to do
interface summarizes current system
actions and status. As desired, the user
can access additional information
from the system about its current and

projected activities through the expla-
nation capabilities. 

The use of activity recognition tech-
nology to determine what the user is
doing, based on her recent actions,
would be a welcome addition to PExA.
In particular, activity recognition
could be used both to identify oppor-
tunities where the system could inter-
vene to assist the user with a given task
and to improve how and when the sys-
tem interacts with the user. Several ac-
tivity recognition efforts are underway
within the CALO project; currently, we
are exploring how to capitalize on
these capabilities within PExA.

Personalization
As noted above, personalization has
been a major focus of the PExA project
in order to ensure that the technology
can be used in a way that comple-
ments individual work styles. To date,
our focus for personalization has been
on learning preferences for meeting
scheduling. One important area for fu-
ture work is to learn preferences for in-
teractions with the user. 

Evaluation
Two factors complicate the evaluation
of mixed-initiative technologies. First,
evaluation must assess the combined
performance of the human with the
system rather than the system itself,
thus introducing the need for expen-
sive and time-consuming user studies.
Second, mixed-initiative technologies
are of appeal in domains for which full
automation is not possible, typically
because of the complexities and scope
of the problems to be solved. In par-
ticular, there is often a broad range of
capabilities that would need to be as-
sessed rather than an easily isolated
piece of functionality. Furthermore,
many such complex domains lack ob-
jective standards for performance as-
sessment, as measures of result quality
tend to be highly subjective. For these
reasons, detailed evaluations of
mixed-initiative technologies are rare. 

Although we have conducted some
informal user studies of portions of the
overall system, no comprehensive
evaluation has yet been undertaken. As
we introduce PExA into daily use with-
in our research team, we intend to col-
lect data to determine which aspects of

the system work well for users, aiming
eventually for a large-scale user study
to asses the merits of the technology. 

Related Work
In recent years there has been a sig-

nificant push in both the research and
commercial communities to develop
personal assistants to manage our in-
creasingly complex, information-rich
and communication-enabled working
environments. Most work in personal
assistants has focused on narrow fields
of application or specialized users, for
example, that monitor financial mar-
kets, or assistants that specialize in air-
line reservations. CALO takes a broad
view of assistance handling routine
tasks automatically, collaborating to
enable long-running complex tasks,
and learning how to improve over
time. 

The work on intelligent assistants
most similar to PExA is the Electric
Elves project (Chalupsky et al. 2002),
which provided personal assistants for
a team of about 12 researchers. Key
functionalities included rescheduling
meetings, selecting presenters for
meetings, and ordering meals. While
Electric Elves provided an early model
of how teams of personal assistants
could be productively employed in of-
fice environments, the individual
agents were significantly limited in
the services that they provided to in-
dividual users compared to PExA, for
example, lacking capabilities of learn-
ing for personalization, detailed time
management, and explanation. 

There has been much recent work
on assistive technologies to aid people
with memory decline or other cogni-
tive disabilities in managing their dai-
ly activities (Pollack 2005, Haigh et al.
2004). Unlike PExA, these systems do
not perform tasks for the user; instead,
they monitor a person’s actions in or-
der to understand the user’s goals and
then determine reminders and infor-
mation that would be helpful to the
person in achieving those goals. 

The Lumière system (Horvitz et al.
1998) provides intelligent assistance
to software users. Lumière focuses on
understanding user goals and needs in
order to provide proactive assistance.
It does not provide the kinds of task
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delegation capabilities that lie at the
core of PExA. 

Summary
PExA constitutes an ambitious effort
to develop an intelligent personal as-
sistant that can increase the produc-
tivity of a busy knowledge worker
through its support for task and time
management. The demands of the of-
fice environment can often create sit-
uations where information and task
overload lead to reduced performance.
For these reasons, the system focuses
on performing routine tasks delegated
to it by the user to enable the user to
address more cognitively challenging
activities, while also offering proactive
assistance in situations where it has
knowledge or insights that the user
lacks. 

PExA draws on a diverse set of AI
technologies, linked together within a
BDI-based agent framework. The use
of these AI technologies enables a
number of desirable qualities for the
assistant, including personalizability,
directability, teachability, and trans-
parency of operations. Although the
system provides a number of automat-
ed functions, the overall framework is
highly user centric in its support for
human needs, responsiveness to hu-
man inputs, and adaptivity to user
working style and preferences.

One critical driver for the project is
to develop a system that will be adopt-
ed for regular use, starting with the
PExA team itself but eventually includ-
ing people outside of the project who
are attracted by the benefits that the
system provides them in managing
their online lives. Early prototypes of
the system were employed by 15 users
during a week-long evaluation that
provided useful feedback for refining
the system design. The time-manage-
ment component of the system was re-
cently deployed to a small set of users
within the research team, while the
Task Manager will be deployed over
the next few months. To support the
Task Manager deployment, various
simulated effectors within the system
are to be replaced by connections to
corporate web services (for example,
for filing expense reports or requesting
travel authorization), thus enabling

the system to perform real-world tasks
on its user’s behalf. 

During the remaining two years of
the CALO project, work on PExA will
focus on increasing the overall utility
and flexibility of the system. One key
technical thrust will be to provide ad-
ditional forms of procedure learning
to complement the learning by in-
struction framework within Tailor. In
particular, we will be incorporating in-
to PExA procedure learning capabili-
ties grounded in the methodologies of
learning by demonstration and learn-
ing by discussion. A second thrust will
be on increasing the scope of proactive
behavior of the system through the
use of reflective reasoning. Although
the current system can take initiative
for interacting with the user (for re-
minder generation, critiquing of inap-
propriate task requests, communica-
tion of important events, soliciting
user inputs), these capabilities have
been explicitly engineered into the
system. More generally, an intelligent
assistant should have the ability to de-
liberate over a general theory of its ca-
pabilities and its user’s objectives to
determine when it should take proac-
tive measures to assist the user. 
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