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ABSTRACT Electric Vehicles’ Controller Area Network (CAN) bus serves as a legacy protocol for

in-vehicle network communication. Simplicity, robustness, and suitability for real-time systems are the

salient features of CAN bus. Unfortunately, the CAN bus protocol is vulnerable to various cyberattacks

due to the lack of a message authentication mechanism in the protocol itself, paving the way for attackers to

penetrate the network. This paper proposes a new effective anomaly detection model based on a modified

one-class support vector machine in the CAN traffic. The proposed model makes use of an improved

algorithm, known as the modified bat algorithm, to find the most accurate structure in the offline training.

To evaluate the effectiveness of the proposed method, CAN traffic is logged from an unmodified licensed

electric vehicle in normal operation to generate a dataset for eachmessage ID and a corresponding occurrence

frequency without any attacks. In addition, to measure the performance and superiority of the proposed

method compared to the other two famous CAN bus anomaly detection algorithms such as Isolation Forest

and classical one-class support vector machine, we provided Receiver Operating Characteristic (ROC) for

each method to quantify the correctly classified windows in the test sets containing attacks. Experimental

results indicate that the proposed method achieved the highest rate of True Positive Rate (TPR) and lowest

False Positive Rate (FPR) for anomaly detection compared to the other two algorithms. Moreover, in order to

show that the proposed method can be applied to other datasets, we used two recent popular public datasets

in the scope of CAN bus traffic anomaly detection. Benchmarking with more CAN bus traffic datasets proves

the independency of the proposed method from the meaning of each message ID and data field that make

the model adaptable with different CAN datasets.

INDEX TERMS Electric vehicles, controller area network (CANBus), anomaly detection, one-class support

vector machine, optimization algorithm.

I. INTRODUCTION

Modern electric vehicles are composed of many hard-

ware modules, known as Electronic Control Units (ECUs),

which are controlled by sophisticated software components.

The associate editor coordinating the review of this article and approving
it for publication was Hao Luo.

ECUs read data measured by a range of sensors and perform

relevant processing for various purposes, such as pedestrian

detection, path planning, auto-parking, and collision avoid-

ance. They also control the actuators in a vehicle [1]. The

values of the sensors and actuators are transmitted over the

in-vehicle network protocol to other ECUs, leading to the cre-

ation of a highly complex network of hardware and software
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sub-modules. There are several in-vehicle network protocols,

namely CAN, CAN Flexible Data-Rate (CAN FD), Local

Interconnect Network (LIN), FlexRay, and Media Oriented

Systems Transport (MOST). Among all of the aforemen-

tioned protocols, CAN Bus is the most well-known and

widely used protocol in the automotive industry and is consid-

ered the de-facto standard for vehicular networks. In addition,

the CAN bus has been applied to more than just automotive

networks, finding a range of applications in other industries,

such as aerospace, agriculture, medical devices, and even in

some home and commercial appliances [1].

Although there are other protocols with more security

features available, e.g. Ethernet, they cannot entirely replace

the CAN bus for in-vehicle network communication due

to the following reasons: 1) The CAN bus is designed to

be perfectly applicable for hard real-time environments and

guarantees deterministic communication with minimal time

latency. 2) In the CAN bus protocol, there is a method of

prioritization where lower priority messages do not interfere

with higher priority messages. For instance, a message trans-

ferringmore critical function, such as engine control or airbag

control, has more priority than a message for door or climate

control. 3) The CAN bus protocol is used in all modern

vehicles as the backbone of in-vehicle network communica-

tion; replacing this protocol entirely with another protocols

requires re-designing the whole vehicle network architecture

and a tremendous amount of changes in vehicle software,

which runs based on the CAN protocol. Therefore, other

protocols will not entirely replace the role and application of

the CAN bus but rather augment the CAN bus.

During the invention of the CAN bus protocol by Robert

Bosch GmbH [2], vehicles were considered an isolated envi-

ronment that did not have communication with the outside

environment. Therefore, by design, the CAN bus suffers from

a lack of authentication and security features, including data

encryption and message authentication. This paves the way

for adversaries to penetrate a network and launch malicious

activities more easily than when other protocols, like the

Transmission Control Protocol/Internet Protocol (TCP/IP),

are used. For instance, given the lack of an effective message

authentication method, attackers can compromise an ECU by

injecting malicious messages and replay attacks. Fortunately,

with the advancement of data-mining techniques, this type of

attack has been addressed by researchers [3]–[7] in such a

way that any anomalous communication traffic activities can

be detected and ignored.

Recently, modern vehicles are not only considered a

closed-loop system, but they also have several types of com-

munication with the outside world. Attackers can penetrate

and inject malicious messages into the CAN traffic via differ-

ent internal and external interfaces, such as through physical

access to the OBD-II port (an on-board diagnostics system

that monitors emissions, mileage, speed, and other data about

the car) in the vehicle, short-range wireless access, e.g. Blue-

tooth, long-range wireless access, e.g. Wi-Fi, a telematics

control unit (TCU), and cellular radio. For instance, with

the embrace of over-the-air (OTA) updates, ECUs can be re-

programmed remotely, which may provide more comfort and

convenience to the vehicle owner and dealerships. However,

these interfaces have also introduced more remote attack

surfaces that can help attackers to compromise an ECU using

a malicious message.

In general, anomaly detection refers to the problem of

finding patterns in a dataset which do not follow the expected

defined behavior [7]. Anomaly detection is considered an

important topic, which has been studied within various

research domains. In the CAN bus protocol, anomaly detec-

tion is the process of monitoring communication traffic

among ECUs and identifying any abnormal behavior in

traffic using machine learning (ML) algorithms. Nowadays,

ML techniques have gained the attention of researchers in the

cybersecurity community. One popular usage of ML tech-

niques is designing intrusion detection systems (IDS) for a

wide range of applications, namely outlier detection, novelty

detection models, and antivirus/malware detection [8]–[10].

In particular, anomaly detection in automotive networks has

also attracted the attention of researchers in this area, which

is elaborated on in the Related Work section.

Automakers are aiming to develop fully-autonomous vehi-

cles in the near future, a consequence of which is the intro-

duction of more attack surfaces. Since data is not encrypted

in the CAN bus protocol, attackers can launch replay attacks

and inject malicious messages into a network (i.e. perform an

intrusion-based attack) by performing a reverse-engineering

procedure to interpret each CAN packet. To achieve this

goal, attackers should send messages with very high fre-

quency to beat the arbitration mechanism (explained further

in section III) used on all messages on the bus. That said,

this message injection procedure will create some anomalous

behavior in the communication traffic, which can be detected

by developing an anomaly detection method in the CAN bus

protocol. In the world of desktop computers, the risk of attack

and the securing of communication protocols have already

received a huge amount of attention in recent years; however,

considering the same standard measures in order to provide

strong protection for vehicular networks is impractical and

almost infeasible due to the complexities of embedded sys-

tems and the reality of a real-time environment with limited

resources in terms of its processing unit and memory. There-

fore, a different approach is required to detect anomalous

behavior in a vehicular network. In this paper, we propose

a prediction model that can detect anomalous traffic in a

vehicular network protocol (here we consider the CAN bus

protocol). The application of our anomaly detection method

for vehicular network traffic is illustrated in Fig 1.

II. RELATED WORK

Anomaly detection in automotive network communication

has been addressed by a growing number of researchers,

which reflects the fact that this topic has been considered

as one of the most critical issues to governments, indus-

try, and academia. Different studies show the CAN bus’s
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FIGURE 1. Application of anomaly detection model for vehicular network
traffic.

vulnerabilities and weaknesses in terms of security fea-

tures [11]. A number of these studies are presented in this

section.

Wang and Sawhney [12] proposed a security framework for

vehicular systems (VeCure), which can fundamentally solve

the message authentication issue of the CAN bus. Their pro-

posed method creates 2000 additional clock cycles compared

to a system without this message authentication technique

(equivalent to 50 microseconds running on a 40 MHz pro-

cessor).

The authors of [13] proposed an intrusion detection system

by recording the traffic of in-vehicle network communication

(CAN bus). The basis of their proposed method is that there

are specific ranges of randomness happening at the commu-

nication level of the in-vehicle network, which can be utilized

by an information-theoretic measure, e.g. entropy.

Kang et al. [14] proposed an Intrusion Detection

System (IDS) using Deep Neural Network (DNN).

Probability-based feature vectors, which are extracted from

the CAN bus messages, are utilized to train the DNN param-

eters. Statistical properties of each class will discriminate

between normal and attack message in a given CAN bus

packet.

Theissler [15] introduced an anomaly detection approach

capable of detecting faults of known and unknown types

without requiring the setting of expert parameters. An ensem-

ble classifier, which consists of a two-class and a one-class

classifier, is employed for univariate and multivariate

anomalies.

Narayanan et al. [16] presented a Hidden Markov model

(HMM), a stochastic model that follows theMarkov property,

to detect anomalous states of real data collected from a vehi-

cle during operation. The underlying assumption when using

an HMM is that the movement of the vehicle is a sequence of

events in which each one is dependent on the previous event,

like in Markov’s processes.

Cho et al. [17] proposed a clock skew-based framework for

ECU fingerprinting and used it for the development of Clock-

based Intrusion Detection System (CIDS). The proposed

clock-based fingerprinting method [17] exploited a clock

characteristic that exists in all digital systems: ‘‘a tiny timing

error known as clock skew.’’ The clock skew identification

exploits the uniqueness of clock skew and clock offset, which

is used to identify a given ECU based on clock attributes of

the sending ECU.

The authors of [18], however, found that there are

potential vulnerabilities present in the CIDS by design,

including parameter dependence on message periodicity and

non-linearity of the clock skewness. They proposed an attack,

called a clock-spoofing attack, which can easily be used to

bypass the CIDS by replicating the clock parameters, hence

challenging their assumed uniqueness.

Taylor et al. [19] proposed an intrusion detection system

based on a long short-term memory (LSTM) recurrent neural

network for CAN bus traffic. The neural network is trained to

predict the next packet data values, and its errors are utilized

as a signal for anomaly detection in a sequence.

Other solutions to CAN bus anomaly detection are

proposed by researchers in [20]–[22] which are based on

regression learning to estimate certain parameters by using

correlated/redundant data among a group of sensors for a

given in-vehicle network attack. For example, by pressing

the accelerator pedal, the engine pump rotates faster; hence,

the RPM value and vehicle speed will increase. When an

attacker tries to manipulate these values, the existing balance

of either the negative or positive correlation across that sensor

group may deviate from the valid range.

Another approach automatically classifies fields in CAN

messages. The authors of [5] developed a greedy algo-

rithm to split the messages into fields and measure valid

ranges based on previous data. The authors also designed a

semantically-aware anomaly detection system for CAN bus

traffic, but it was not evaluated with any attack scenarios.

Marchetti and Stabili [23] proposed an anomaly detec-

tion algorithm to identify anomalies in a sequence of CAN

messages by using a transition matrix defined based on a

reiterative CAN ID pattern sequence. The authors of [24]

introduced a signature-basedmethod tomodel both legitimate

ECUs and the behavior of known attack signatures. Their

method could detect intrusions in real-time, but it sometimes

failed to detect an attack if it missed the first packets of the

attack broadcast.

The authors of [25]–[27] presented an analysis of CAN

broadcasts and subsequent testing of statistical methods to

detect timing changes in the CAN traffic that were indicative

of some of the predicted attacks.

The authors of [28] proposed a method for anomaly

detection based on packets’ time statistics analysis and a

one-class support vector machine (OCSVM) in CAN traffic.

Their method uses a flow-based anomaly detection approach,

including a packet identifier, the total number of packets,

and the time of occurrence. To the best of our knowledge,

this is the only research work that considers OCSVM for

anomaly detection in CAN traffic; however, this study lacks

deep analysis of the kernel function type (linear or nonlinear)

and optimal training of an OCSVM facing highly nonlinear

data.

Based on the above discussions, this paper aims to pro-

pose a novel and effective anomaly detection model to avoid
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cyberattacks on a vehicle’s CAN bus. The proposed model

is constructed based on a modified one-class support vec-

tor machine (OCSVM) to provide the highest security and

accuracy. In a one-class SVM, the support vector model is

trained on data that has only one class, which is referred to as

the ‘‘normal’’ class. It emphasizes the properties of normal

cases and from these properties can predict which examples

are unlike the normal examples [29]. This is extremely prac-

tical for anomaly detection because the scarcity of training

examples is what defines anomalies. Due to the high com-

plexity and nonlinearity of the CAN bus datasets, a new

meta-heuristic optimization algorithm, called Modified Bat

Algorithm (MBA), is proposed to reduce the false positive

rate and improve the overall hit rate of anomalous message

detection. The high accuracy and satisfactory performance

of the proposed model is examined using experimental data

gathered from an unmodified licensed vehicle. Furthermore,

in order to prove the proposed method’s independence from a

specific car model, we performed the proposed method with

two other famous datasets in the area of CAN bus anomaly

detection. To the best of our knowledge, this is the first

time that the proposed MBA optimization algorithm has been

applied in an OCSVM as an anomaly detection model for a

CAN bus.

The contributions of this work are summarized as follows:

1. Proposing an intelligent anomaly detection model

based on advancedmachine learning for reinforcing the

in-vehicle network communication CAN bus protocol.

2. Developing a new modified one-class support vector

machine based on bat algorithm. The proposed bat

algorithm would adjust the anomaly detection model

parameters optimally for maximizing the efficiency

and performance of the model against cyberattacks.

3. Introducing an effective two-stage modification

approach for bat algorithm to increase population diver-

sity when avoiding the premature convergence. The

proposed modification method is constructed based

on the crossover and mutation operators borrowed

from genetic algorithm and will help the algorithm

to look for the optimal solution in the entire search

space.

The rest of this paper is organized as follows: 1) section

III explains the CAN bus protocol and its requirements.

Section IV explains the proposed improved anomaly detec-

tion model based on OCSVM and MBA. Section V provides

the simulation results using the experimental dataset. Finally,

the main conclusions are provided in Section VI.

III. CAN BUS PROTOCOL – AN OVERVIEW

To meet real-time systems’ deadline requirements, each mes-

sage in the CAN bus protocol has been assigned a unique

identifier (ID) frame, which is utilized to define the message

priority and is also used by every ECU in the car to iden-

tify whether the incoming message should be processed or

ignored [2]. The lower the message identification value, the

FIGURE 2. CAN bus arbitration technique.

higher priority it has to gain bus access. This prioritization

feature has solved the bus access conflict such that if two

nodeswant to send data simultaneously, whichever ECUhas a

lower ID value will publish its message first, due to its higher

priority. This technique is also known as message arbitra-

tion [2]. Fig. 2 depicts a situation in which three nodes (first

node: 11001011111 in binary, second node: 110011111111 in

binary, and third node: 110010110010 in binary) try to trans-

mit a message simultaneously. In order to prevent bus col-

lision, the node with the lowest ID (in this case the third

node) will transmit its information. Attackers can exploit this

feature by sending a malicious message with the lowest ID at

a very high frequency to create a condition in which a mali-

cious message always wins the arbitration and does not allow

other messages to be transmitted (Denial-of-Service attack).

In the proposed method, this type of attack can be detected

as the system learns the normal traffic behavior on the bus,

allowing abnormal traffic behavior (e.g. sending the same

message with high frequency) to be detected. The message

data payload holds different values generated bymultiple sen-

sors and is managed by a particular ECU and encoded based

on the database container (DBC) file specification. A DBC is

a database file with a vehicle manufacturer proprietary format

that holds the specifications of all the ECUs, CAN messages,

signals, message IDs, message frequency, and data payload

for a particular vehicle configuration [30].

IV. PROPOSED ANOMALY DETECTION MODEL AND

FORMULATION

A. PROPOSED CAN BUS ANOMALY DETECTION METHOD

The underlying idea behind the proposed method is to estab-

lish amodel based on normal CAN bus traffic, which contains

recurring patterns in the message IDs that are transmitted.

From the analysis of several traces taken from a car, some

recurring message ID patterns have been identified from the

logged traces, which means every message ID is followed by

a particular recurring message ID subset. Hence, we devel-

oped a model to identify these patterns in normal traffic

and any deviation from them can be considered as malicious

activities, which the proposed method can detect as anoma-

lous behavior. The proposed method consists of two main

phases: the training phase and the testing and/or evaluation

phase. During the training phase, the normal behavior of

the CAN bus traffic is logged from an unmodified licensed

VOLUME 7, 2019 127583
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FIGURE 3. Block diagram of the proposed CAN bus anomaly detection method.

vehicle under normal operation to generate all the possible

transitions between consecutive IDs without any attacks.

Then, the model developed in the training phase can be

employed as a reference to detect anomalous behaviors in the

CAN traffic launched by an attacker.

A conceptual illustration of the proposed anomaly detec-

tion model is provided in Fig. 3. According to this figure,

there are two paths for the training and testing phases (solid

and dotted arrows, respectively). During the training phase,

the CAN bus traffic is captured and each CAN message ID

is extracted from the traffic and imported into the one-class

SVM training algorithm. Within the one-class SVM training

phase, the kernel type and function should be determined and

their parameters (σ and C) should be optimally tuned (this

process will be explained in the next section). To this end,

a modified bat algorithm (flowchart is presented in Fig. 4)

is applied as a meta-heuristic optimization algorithm to tune

these parameters and feed them into the one-class SVM train-

ing algorithm to reach a better more matching hyperplane,

as well as the optimal support vectors. Having completed the

training phase, any CAN message in the traffic log can be

classified as containing an abnormality or not by the proposed

model.

It should be noted that although there is some litera-

ture that has considered different features, the authors have

considered all possible features, including the sequence of

frames, time, and frequency of occurrence, in the initial

analysis. Through an appropriate feature selection procedure,

it was seen that only frequency and frame ID suffice for a

proper and reliable anomaly detection model. In other words,

considering other features did not add any improvement to

the classification model and only increased the anomaly

detection model’s complexity, simultaneously increasing the

risk of over-complexity issues. In this study, a fuzzy-

based feature selection method [35] is applied to select

only the most informative features for developing a pow-

erful and appropriate anomaly detection model in our case

study.

FIGURE 4. Modified bat algorithm flowchart.

B. ONE-CLASS SUPPORT VECTOR MACHINE (OCSVM)

One Class Support Vector Machine (OCSVM) is a classi-

fication algorithm that estimates the minimal subsets in an

input space that contain a predefined fraction of the data.

Consider a given dataset, which is designated as the normal

dataset. OCSVM solves (1) to make the optimal classification

as follows [29]:

min
w,ρ

1

2
‖w‖ 2 +

1

υN

N
∑

i=1

ξi − ρ

s.t. w.8(xi) ≥ ρ − ξi

ξi ≥ 0 (1)
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where N is the number of data points and ξ = [ξ1, . . . , ξn] is

the set of slack variables for the data points that allows a given

data point to be located outside of the decision boundary.

Here,υ ∈ (0, 1] is a trade-off parameter that represents an

upper bound on the fraction of outliers and a lower bound

on the fraction of support vectors. The parameters ρ and w

define the decision boundary. Decision boundary function

f (x) is defined in (2), where x is a target and f returns

+1 when a given data point falls within the normal CAN

traffic; otherwise, f (x) returns −1 for abnormality [29].

f (x) = w · 8(x) − ρ (2)

where x ∈ RM and 8 is a feature map. The inner product

8(xi) · 8(xz) is considered as the kernel function, which is

represented by K, e.g. K (xi, xz) = 8(xi) · 8(xz). This paper

considers a radial basis function (rbf) kernel as K (xi, xz) =

e−
∥

∥ xi−xz‖
2/2σ 2+C . Here C is a constant and σ is the width

of radial basis function (rbf). When σ and C are selected

properly, the rbf kernel can approximate the most suitable

kernel function. Hence, these two parameters play a major

role in the performance of the kernel and should be chosen

carefully. To this end, we applied the bat algorithm with a

proposed two-step modification, which resulted in a powerful

meta-heuristic optimization algorithm, to find the optimal

values for σ and C . In order to solve the optimization prob-

lem, a Lagrange equation is formulated as follows (Eq. 1):

L(w, ξ, ρ, α, β) =
1

2
‖w‖ 2 +

1

υN

N
∑

i=1

ξi − ρ

−

N
∑

i=1

αi(w.8(xi) − ρ + ξi) −

N
∑

i=1

βiξi

(3)

The partial derivatives for the above equation w.r.t. w, ξ , and

ρ are set to zero. Hence, w and α can be defined as follows:

w =

N
∑

i=1

αi8(xi) (4)

αi =
1

υN
− βi

N
∑

i=1

αi = 1 (5)

Having substituted (4) and (5) into the Lagrangian equation

in (3), its dual form can be defined as:

min
α

αTHα

s.t. 0 ≤ αi ≤
1

υN

N
∑

i=1

αi = 1 (6)

where α = (α1, α2, . . . , αN ) is the vector form of the

Lagrange multipliers of the constraints and H is the kernel

matrix for the training set, H (i, z) = K (xi, xz). Any points

that have αi greater than zero are called support vectors. H as

the kernel matrix is as follows:

Hij = K (xi, xj) = 8(xi).8(xj) (7)

After solving the optimization problem in (6) to attain α, ρ

can be defined as:

ρ =
1

ns

ns
∑

i=1

N
∑

j=1

αjK (xi, xj)α (8)

where ns is expressed as the number of support vectors that

fulfill the criteria of ξi = 0 and where 0 < αi < 1/υN .

C. MODIFIED BAT ALGORITHM (MBA)

As explained in the previous section, the one-class SVM is

a powerful method for CAN bus traffic anomaly detection.

Nevertheless, the performance of this model depends on its

adjusting parameters, including the kernel function, and set-

ting values σ and C . In order to adjust these parameters glob-

ally, this paper proposes making use of an effective optimiza-

tion algorithm based on the modified bat algorithm (MBA).

Bat Algorithm (BA) is a meta-heuristic optimization algo-

rithm inspired by the echolocation process used by bats for

detecting prey. Each batXj sends a loud signal into the air with

the emission rate, frequency, and loudness of rkj , fj, and A
k
j ,

respectively. By listening to the echolocation sound, the bat

can update its velocity and position relative to its food (prey).

Similar to othermeta-heuristic algorithms, an initial bat popu-

lation is generated. Through the echolocation process, the bat

with the best position (most optimal fitness function) is stored

as Xg and the rest of population is updated using the following

equation:

Vj,k+1 = Vj,k + fj
(

Xg − Xj,k
)

∀j ∈ �bat

Xj,k+1 = Xj,k + Vj,k+1 ∀j ∈ �bat

fj = fmin + θ1 (fmax − fmin) ∀j ∈ �bat (9)

where Vj,k+1 is the velocity of jth bat in (k + 1)th iteration,

�bat is the set of bats, fmin /max is the min/max values of

the bat signal frequency, and θ1 is a random value in the

range (0,1]. The mechanism behind BA represents a global

search in the problem search space. On top of this global

search, BA is equipped with local search capability, look-

ing for the optimal solution in the neighborhood of each

bat.

To this end, a random value η is generated in the range

(0,1]. If η is bigger than the pulse emission raterm,k , the bat

position is updated as follows:

Xj,k+1 = Xj,k + εAj,k (10)

where ε ∈ [−1, 1]. In the case where η is smaller than rn,

a new solution Xnewj is generated randomly. The new solution

is considered subject to the below two criteria:

[η < Aj]&[f (Xnewj ) < f (Xbest )] (11)
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The loudness and rate of each bat signal is updated after each

iteration, as follows:

Aj,k+1 = λAj,k

rj,k+1 = r0j
[

1 − exp (−γ k)
]

(12)

where λ and γ are two constant parameters. In each iteration,

the above steps are repeated until the algorithm converges.

While BA has shown great performance in the face of non-

linear, non-convex and multi-modal optimization problems,

in some situations it may find itself trapped in local optima

or face premature convergence. In the literature, there are

some modified versions of BA proposed. In [34], the authors

proposed a special modification method for BA to provide a

balance between the exploration and exploitation capabilities

of the algorithm. From a technical point of view, while the

BA’s exploration feature helps produce a better global search,

its exploitation feature offers better focus on local searches.

In this case, the authors tried to improve the exploration

mechanism of the algorithm by modifying the equation of the

pulse emission rate and the loudness of the bats.

On the other hand, the modification method proposed in

this paper is constructed based on two quite different and

powerful approaches: 1) a new modification method based

on the mutation and crossover operators to increase the bat

population diversity. This not only avoids possible prema-

ture convergence but also will absolutely improve the global

search ability of the BA. 2) A new math-based modification

method to increase the convergence rate of the BA. The best

bat in each iteration tries to improve the positions of other

bats via (16). This is made possible by first evaluating the

mean of the bat population and then trying to improve each

bat’s position according to its distance from the best bat.

These two newly introduced modification methods are quite

powerful and compatible with the high nonlinearity existing

in the CAN bus dataset in this paper.We explain them inmore

detail below.

With regard to the first modification, in each iteration k and

for each bat j, three dissimilar bats z1, z2 and z3 are chosen

from the population, such that z1 6= z2 6= z3 6= j. Using these

random solutions, a new mutated bat is generated as follows:

Xmut = Xz1,k + θ1 × (Xz2,k − Xz3,k )

Xmut = [xmut,1, xmut,2, . . . , xmut,N ] (13)

where N equals the number of control variables and xmut,v
represents the vth element in bat vector Xmut . Using (11) and

the crossover operator, two new test bats are generated as

follows:

x test1j1,v =

{

xmut,v if θ1 ≤ θ2

xg,v otherwise
(14)

X test2j2 = θ3 × Xmut + θ4 × (Xg − Xmut ) (15)

where θ1, L, θ4 are random values in the range of (0,1]. The

best solution among Xnewj1 , Xnewj2 and Xj will replace Xj.

The second modification method is constructed based on

the idea that the bats should try to move their positions

toward the best current bat,Xg. Therefore, first themean value

of the bat population is evaluated column-wise as AD. Now,

the position of the ith bat is updated as follows:

X test3 = Xj + θ5(Xg − φFAD) (16)

where θ5 is a random value in [0,1] and φF is a random integer

equal to 1 or 2, representing the moving acceleration rate. The

flowchart of the modified bat algorithm is shown in Fig. 4.

Moreover, the intelligent fuzzy-based feature selection

which is proposed by authors in [35] is applied to extract the

most effective features for the anomaly detection model [35].

V. RESULTS AND DISCUSSION

This section provides simulation results based on practical

data gathered from a licensed unmodified vehicle and also

two other public CAN bus traffic dataset to examine the accu-

racy of the proposed model. The dataset, with its original for-

mat, is a collection of text files containing comma separated

values (csv) with a timestamp, message ID, and data field. For

performance evaluation, random partitioning is performed to

divide the dataset into three sets, namely training, validation,

and testing. 70% of the dataset is assigned to the training

model, 10% to the validation to avoid any overfitting in the

training, and the remaining 20% is assigned to the testing

phase, which is sliced up into the normal traffic log and a sim-

ulated attacked traffic log. It should be noted that even though

the CAN bus protocol specification is openly documented,

the meaning of each message ID, the corresponding data

field, and the expected broadcast frequency are not available

to the researchers due to the proprietary nature of the dataset

for different car manufacturers. However, the independency

of the proposedmethod from themeaning of eachmessage ID

and data field make the model adaptable with different CAN

datasets during the training of the OCSVM. In order to prove

the superiority of the proposed method compared to other

anomaly detection algorithms for CAN traffic, we bench-

marked the proposed MBA-OCSVM with famous anomaly

detection algorithms including Isolation Forest and classical

one-class SVM. Isolation forests was introduced in [36] as

a powerful classification algorithm for real datasets. This

method is based on the assumption that it is easier to isolate

anomalies from the rest of the observations than to construct

a model describing normal behavior. To isolate an observa-

tion, it recursively partitions the data set randomly until the

observation is the only data point in a partition. Recursive

partitioning can be represented by a tree structure. A forest

of random trees can collectively give a measure of normality

for an observation. Three datasets are gathered from differ-

ent sources to evaluate the effectiveness and performance

of proposed method. One of the sources is an unmodified

licensed electric vehicle in normal operation where CAN

traffic was logged by the VN1630A device via the ODB-II

port existing in the vehicle. Furthermore, in order to prove

the independence of the proposed method from a specific car

model, we gathered additional CAN traffic traces from two

more available datasets. One CAN dataset is available on the

127586 VOLUME 7, 2019



O. Avatefipour et al.: Intelligent Secured Framework for Cyberattack Detection in Electric Vehicles’ CAN Bus Using Machine Learning

FIGURE 5. Observed frequency, support vectors, and decision boundaries for selected CAN identifier.

website of the Crash Reconstruction Research Consortium of

the University of Tulsa [37]. This dataset was recorded from

a Dodge RAM Pickup. They used a Dearborn Group (DG)

Gryphon S3 [38] to record the data and export it to a .csv

file using DG Technologies Hercules software [39]. The data

was recorded under normal driving conditions. The car drove

away from a normal residential driveway and pulled up on

the street. After three right hand turns, the car was backed

up into a parking space. The other available CAN traffic

dataset is utilized from [40]. This dataset was constructed

by logging CAN traffic via the OBD-II port from a real

vehicle while message injection attacks were performing,

e.g. Denial of Service (DoS) Attack in which messages

of ‘0x000’ CAN ID were injected in a short cycle. The

dataset includes 2,369,868 attack free states CAN message

and 656,579 messages where DoS attacked was launched.

The proposed anomaly detection algorithm was implemented

in MATLAB 2018b software on a computer with a Core

i7 processor 4GHz and 4GB RAM with 100 iterations for

OCSVM training. To evaluate the effectiveness of the pro-

posed anomaly detectionmethod, we simulated a condition in

which an attacker tries to send a message that is not expected

to be sent. For this purpose, we replicated an attack scenario

by increasing the frequency of an exemplary message ID in

the CAN traffic (here 3F0). During the normal operation of

the vehicle, the cycle time of ID 3F0 is 100 ms, which means

that this message is triggered in the traffic every 100 ms. For

this attack, we intentionally doubled the frequency of this

message and sent another message every 100 ms. Since all

nodes share a single bus, increasing occupancy of the bus

can produce latencies of other messages and cause threats

regarding availability with no response to driver’s commands.

From the CAN traffic captured during the normal driving,

we observed that each message occurrence has its own fre-

quency pattern in the traffic, an observation that is leveraged

during the training phase of the proposed method. Any devia-

tion from the pre-defined message occurrence frequency can

then be detected by this method. Table 1 shows some of

the message IDs and their corresponding frequency during

10minutes of driving for one of themain dataset that we used.

The same attack simulation scenarios such as DoS attack was

TABLE 1. Can identifier and frequencies.

developed for the other datasets that are employed in this

study.

As shown in the above table, eachCAN identifier possesses

its own occurrence frequency. Before beginning the training

phase of the proposed method, data preprocessing (here data

numericalization) is required to store the data in the correct

structural format for analysis, such that CAN identifiers are

transformed into decimal indicators while maintaining the

same frequency. Additionally, in order to avoid a very large

range between the maximum and minimum values of the

dataset, attributes are normalized through attribute rescaling.

Having completed the data preprocessing steps, each CAN

identifier and its corresponding frequency is imported into

the proposed method as an input parameter, and then the

MOCSVM training phase will start. Fig. 5 presents the

observed frequency, support vectors, and decision boundaries

for selected CAN identifiers, shown in Table 1.

A. PERFORMANCE EVALUATION OF MODIFIED BAT

ALGORITHM

In order to assess the performance of the proposed MBA,

the convergence characteristic of this algorithm is provided
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FIGURE 6. Convergence characteristics of the MBA, BA, PSO and GA in the
training process.

in Fig. 6. To have a better comparison, the convergence char-

acteristics obtained by other well-known algorithms, such

as Particle Swarm Optimization (PSO) [31], Genetic Algo-

rithm (GA) [32], and original BA [33] are plotted, simultane-

ously. The setting parameters of the GA, PSO, BA and MBA

algorithms are determined as follows: for the PSO algorithm,

the initial number of particles in the swarm equals 40 and

the maximum number of iterations is 100. Also, the social

parameters and inertia weight factor are set to 1.5 and 0.8,

respectively. For the GA, the crossover and mutation proba-

bility values are set to 0.7 and 0.08, respectively. The initial

population size equals 60 individuals with 100 iterations. For

the BA andMBA algorithms, the initial size of the population

is 25, the termination criterion is to reach 100 iterations,

λ = γ = 0.2 and ε = 0.5. According to Fig. 6, the proposed

MBA not only converged first but could reach a more optimal

solution, which was not found by the other algorithms. This

figure also shows the high search ability and convergence

characteristics of the MBA, making it an appropriate tool for

use in our case. Therefore, the simulation results provided in

the remainder of this paper are all evaluated using MBA as

the optimization tool.

B. PERFORMANCE EVALUATION OF PROPOSED

MBA-OCSVM

Comparing the proposed MOCSVM results {outlier, inlier}

with the real-world observation labels {anomaly, normality}

is an essential task for performance evaluation of an anomaly

detection method. A confusion matrix is used for perfor-

mance evaluation, which represents the four possible out-

comes when we compare the actual data point labels given by

an expert to the corresponding data point results generated by

a given classification algorithm. In this case, the four possible

outcomes include: hit (Hi), false alarm (FA), miss (Mi), and

correct reject (CR). If a given data point in the training data

with normal CAN traffic is labeled as an anomaly and the

outlier-detection algorithm classifies that data point as an

outlier as well, the outcomewill be a ‘‘hit.’’ In addition, if both

normal CAN traffic and the anomaly detection algorithm

agree with each other about an inlier data point, the result

will be ‘‘correct reject.’’ The other two possible confusion

FIGURE 7. Confusion matrix showing the four possible outcomes.

matrix outcomes (‘‘miss’’ and ‘‘false alarm’’) are the results

of disagreement between the expert (i.e. normal CAN traffic)

and the anomaly detection algorithm. If a given data point

is considered an outlier but the anomaly detection algorithm

detects that point as normal, it will be labeled as a miss.

Similarly, if a given data point in the CAN traffic is presented

as a normal (inlier) data point but the anomaly detection algo-

rithm wrongly classifies it as an anomalous (outlier) point,

the result is considered a ‘‘false alarm’’. The computed outlier

scores are converted to the classification outcomes {outlier,

inlier} using the threshold defined by the expert, which can

be compared to the data point labels {anomaly, normality},

resulting in the aforementioned outcomes. Fig. 7 represents

the four areas of the confusion matrix’s outcomes, namely

hit, miss, false alarm, and correct reject, graphically.

As is observed fromFig. 8, if an attacker tries tomanipulate

the occurrence frequency of a given CAN message, the pro-

posed algorithm can detect that behavior as an anomalous

situation and discard it. Usually, an attacker tries to double

the message frequencies to win the arbitration scenario so

they can publish their data on the bus. This behavior falls

into the hit area in Fig. 6, where the compromised message

frequency is higher than the maximum valid frequency for a

given message in the normal CAN traffic. The four confusion

matrix outcomes have four associated performance rates,

as follows:

Hit Rate =
|Hi|

|CA|
(17)

False Alarm Rate =
|FA|

|CN |
(18)

Miss Rate =
|Mi|

|CA|
(19)

Correct Reject Rate =
|CR|

|CN |
(20)

To compare the performance of the different algorithms we

need a way to quantify the correctly classified windows in

the test sets containing attacks. Precision, recall (true positive

rate), and specificity are the three famous evaluation indices

to measure the reliability of the anomaly detection system in

CAN traffic. Precision is defined as ratio of marked anomaly

streaming data that is a true anomaly. Recall is the propor-

tion of ratio of identified anomaly CAN data to the actual
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FIGURE 8. Hit, miss, correct reject, and false alarm area for a given CAN bus message.

FIGURE 9. ROC performance curve for proposed MOCSVM, Isolation Forest, and classic SVM.
Dataset#1: CAN Bus traffic from unmodified licensed vehicle under normal operation - Dataset#2: CAN Bus traffic dataset from Dodge RAM Pickup track
(Crash Reconstruction Research Consortium of the University of Tulsa) – Dataset#3: Available online CAN Bus traffic dataset [40].

anomaly data. Also, specificity is the fraction of the total

number of anomalies that the algorithm recognizes as the real

normal behavior. The recall value close to 1.0 represents the

higher performance of the anomaly detection model. We can

measure different detection models by Receiver Operating

Characteristic (ROC). ROC is a diagram of the relationship

between hit rate (recall) and false alarm rate (1-specificity).

The ROC curve should approach the top-left corner as close

as possible with a steep slope, as this would indicate a high

number of detected anomalies, i.e. a high hit rate, with a

low number of false positives, i.e. a low false alarm rate.

To draw this diagram, it is important to understand how an

anomaly detection algorithm determines which label, e.g.

normal or anomalous, to give to an observation. This is done

by calculating a so called decision score. The decision score is

a measure of how normal, or how anomalous, an observation

is. The algorithm sets a threshold and all observations with

a decision score on one side of the threshold are labelled

as normal behavior and all observations with a decision

score on the other side are labelled as anomaly. There is a

trade-off between the hit rate (recall) and false alarm rate

(1-specificity), for which the expert can determine a threshold

value. Choosing the optimal value of the threshold depends

on the application and the cost of misclassification. In this

study, the MOCSVM is employed as an optimization algo-

rithm to find the optimal value of the thresholds to minimize

the number of false alarms while maximizing the hit rate.

Fig. 9 shows the ROC for three different datasets which

have been used for CAN anomaly detection. In addition,

Table 2 summarizes the four aforementioned performance

rates for conventional one-class SVM, Isolation Forest, and

proposed modified one-class SVM based on MBA.

As it is shown in Fig. 9, the proposed MBA-OCSVM is the

one that achieved the highest hit rate (True Positive Rate) and

lowest false alarm rate (False Positive Rate) in the ROC curve

compared to the Isolation Forest and classical OCSVM. The

kernel that is used in the proposed method has the biggest

impact on anomaly detection performance and has been opti-

mized by the proposed modified bat algorithm (MBA) as a

powerful optimization algorithm which resulted in achieving

higher hit rate and lower false alarm rate compared to the

other two algorithms. According to the results of Table 2,

the proposed method achieves the highest hit rate and correct

reject in all three different datasets, compared to those of the

other two methods shown here. This high hit rate shows that

the proposed method has adequate capability to recognize
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TABLE 2. Confusion matrix for OCSVM, isolation forest AND MBA-OCSVM.

legitimate messages as normal messages in the traffic. In a

similar way, the high correct reject rate shows that malicious

messages can be recognized as anomalous behavior in the

traffic. In addition, in the proposedmethod, there is an accept-

able drop in the false alarm rate compared to in the other two

methods, respectively. This reduction shows the very low per-

centage of legitimate messages that are incorrectly identified

as anomalous by the proposed method. It should be noted

that the low false alarm rate of the proposed method mostly

exists in frequencies far from the original message frequency.

Since it is quite rare for the original message frequencies

to reach the overlapping area of abnormality and normality,

the proposed method will not affect the performance of the

normal CAN bus traffic behavior. Please note that we have

simulated a wide range of message hacking with frequen-

cies ranging from 200% to the very small range of a 1%

increase/decrease. Therefore, our model is assessed with a

varied range of message frequencies to check its true capabil-

ity as an anomaly detection model. While accurate anomaly

detection when dealing with frequencies very close to the

real vehicle frequency may be hard to achieve, our model

could show good performance with regard to its high hit and

correct reject indices. On the other hand, since most practical

message flooding starts from high frequencies (generally the

hacker does not know the exact frequency of the target mes-

sage frame), the capability of the proposed model needs to be

assessed at high frequency ranges, such as 150% to 200% of

the actual message frequency. Furthermore, in order to prove

the independence of the proposed method from a specific

car model, we gathered additional CAN traffic traces from

two other unmodified licensed vehicles. Fig. 10 shows the

benchmark results of the proposed MBA-OCSVM anomaly

detection model for three different datasets. As shown in Fig.

10, the proposed anomaly detection method is independent

from the different message IDs contained in each DBC for

each vehicle model and achieves a high hit rate and correct

reject rate.

C. COMPUTATIONAL TIME EVALUATION

To evaluate the suitability of the proposed method in real-

time systems, the computational time required for each

FIGURE 10. Benchmarking of three different datasets for the proposed
MBA-OCSVM anomaly detection method.

major function is calculated. It is worth noting that all CAN

messages, corresponding signals, message ID, message fre-

quencies, and data payload for each message is defined in

a proprietary database (DBC) file by each car manufacturer.

This DBC file is defined during the manufacturing phase and

might be changed in very rare circumstances after produc-

tion. Therefore, since the construction of DBC file is not

changing in real-time, the training phase of the proposed

method can be performed offline to save computational

time and memory in real-time environment. As a result,

only detection/classification part of the algorithm with the

optimal parameters of the detection model should be run

online in the ECUs. This approach of offline training is

widely applied in the industry for other Advanced Driver

Assistance Systems (ADAS) features such as pedestrian

detection, tracking, parking slot classification, etc. where

the model requires computational time more than real-time

standards for training. Our proposed method consists of

the following major components which mainly affect the

computational overhead compared to the other functions:

FEATURE_EXTRACTION, MBA_OCSVM_TRAINING,

and ANOMALY_DETECTION. The first two functions are

performed as offline basis and ANOMALY_DETECTION

part will be run online. All simulations are implemented in

the MATLAB software which is run on a Core i7 processor,

4GHz and 4GB RAM. FEATURE_EXTRACTION takes

15 ms time to select the most useful features and extract

them from CAN traffic log. MBA_OCSVM_TRAINING is

the function that requires the longest computational time

in the proposed method because calculating the optimal

parameters for OCSVM classifier by modified bat optimiza-

tion method is also included in this function. The computa-

tional burden required for MBA_OCSVM_TRAINING and

ANOMALY_DETECTION functions for classical OCSVM,

Isolation Forest, and proposed MBA-OCSVM are calculated

separately which are summarized in Table 3. The com-

putational times for ANOMALY_DETECTION should be

minimized because our model needs the CAN traffic to be

analyzed in real time.
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TABLE 3. Computational time for major functions.

According to ISO-11898, CAN protocol supports baud

rates from 40 Kbit/s to 1 Mbit/s. Among them, the 500 Kbit/s

CAN network (known as high speed CAN) is the most typi-

cally used baud rate in automotive industry. To ensure that no

message gets lost, the CAN bus load should not be occupied

100%. Hence, in-vehicle CAN networks maintain their bus

load no more than 60% [41]. Considering a high speed CAN

bus with 500Kbit/s and 60% bus occupancy, it is realized that

each message is publishing every 2ms by measuring the aver-

age time interval between two consecutive CAN messages in

the logged traffic. Therefore, the ANOMALY_DETECTION

function needs to take less than 2ms to identify the state of

a given message whether it is anomalous or normal. As it

can be seen from Table 3, the computational time required

by the proposed anomaly detection model in the online case

is around 1 ms, which guarantees the applicable aspect of

the proposed model for real cases. Given the fact that recent

ECUs that are deployed for ADAS features can support

multi-thread processing to boost the computational perfor-

mance, computational time for each message to be analyzed

by ANOMALY_DETECTION function can still be much

less negligible and readily implemented in the recent ADAS

ECUs.

VI. CONCLUSION

This article proposed an effective anomaly detection model

for CAN bus traffic. The proposed method, a modified one-

class SVM, was constructed based on a new meta-heuristic

optimization algorithm called the Modified Bat Algo-

rithm (MBA), which helps prevent the algorithm from

becoming trapped in local optima and avoids pre-mature con-

vergence. The proposed MOCSVM method is used to detect

malicious cyberattack behaviors in CAN traffic. The under-

lying idea behind the proposed method is to establish a model

based on the normal CAN bus traffic, which contains recur-

ring patterns in message IDs that are transmitted in a given

normal traffic. To this end, any deviation from the normal traf-

fic, e.g. increased message occurrence frequency or message

flooding, can be detected by the MBA-OCSVM algorithm

as an outlier. In order to demonstrate the high performance

of the proposed model, three methods, namely conventional

one-class SVM, Isolation Forest, and MBA-OCSVM have

been compared. The experimental results show that the pro-

posed method achieved the highest hit rate and lowest miss

rate compared to other anomaly detection methods. From a

cyber-resilience point of view, the proposed model can pro-

vide a highly secure and accurate model to prevent vehicles

from being harmed by attackers. Last but not least, the pro-

posed MBA could show high search ability and convergence

characteristics, making it a good algorithm for optimization

applications.
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