
An Intelligent System for Document
Retrieval in Distributed Office
Environments *

Uttam Mukhopadhyay,t Larry M. Stephens, Michael N. Huhns,:j: and
Ronald D. Bonnell

Center for Machine Intelligence, University of South Carolina,

Columbia, SC 29208

MINDS (Multiple Intelligent Node Document Servers) is a
distributed system of knowledge·based query engines
for efficiently retrieving multimedia documents in an of
fice environment of distributed workstations. By learning
document distribution patterns, as well as user interests
and preferences during system usage, it customizes
document retrievals for each user. A two-layer learning
system has been implemented for MINDS. The knowl·
edge base used by the query engine is learned at the
lower level with the help of heuristics for assigning credit
and recommending adjustments; these heuristics are in
crementally refined at the upper level.

1. Introduction

Documents are used in computerized office environ

ments to store a variety of information. This information

is often difficult to utilize, especially in large offices with

distributed workstations, because users do not have per

fect knowledge of the documents in the system or of the or

ganization for their storage. The goal of the MINDS project

is to develop a distributed system of intelligent servers that

(1) learn dynamically about document storage patterns

throughout the system, and (2) learn interests and prefer

ences of users so that searches are efficient and produce

relevant documents [1,2]. The strategy adopted for eval

uating a set of learning heuristics that are applicable to

this goal is presented. In particular, this paper describes

the heuristic evaluation testbed, distance measures for

metaknowledge, document migration heuristics, evidence

assimilation techniques, and results of a system simulation.

*This research was supported in pati by NCR Corporation.

tNew address: Computer Science Department. General Motors Re

search Laboratories. Warren, MI 48090.

~New address: Artificial Intelligence Department, Microelectronics

and Computer Technology Corporation. 9430 Research Boulevard,

Austin, TX 78759.

Received June 17. 1985; accepted August 30,1985.

© 1986by John Wiley & Sons. Inc.

2. Distributed Workstation Environment

A. Organization of Documents

Queries regarding documents are frequently based on

the contents of the documents. Automatic text-under

standing systems could conceivably process these queries

by reading the documents, but would be expensive to de

velop and use. The names of documents provide clues to

their contents, but names are not descriptive enough for

reliable processing of content-based queries, However, a

set of keywords may be used to describe document con

tents: the retrieval of documents can then be predicated

on these keywords as well as on other document attri

butes, such as author, creation date, and location. Com

plex qualifiers, which are conjunctions or disjunctions of

predicates on these attributes, may also be used. Each

document is thus represented by a surrogate containing its

attributes. The document and its surrogate are subse

quently updated or deleted as dictated by system usage.

Surrogates occupy only a fraction of the storage space re

quired by the documents, but usually contain enough in
formation for users to determine whether a document is

useful.

The presumed office environment consists of a network

of single-user workstations. Each user may query the sys

tem about his own locally-stored documents or about
those stored at other workstations. These documents are

not permanently located but may migrate to other work

stations. Multiple copies of documents are allowed, but

documents stored at one location must have unique
names.

B. The User's Perspective

In typical distributed document management systems,

document directories are either centralized or distributed,

with or without redundancy [3]. However, the directory

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE. 37(3): 123-135, 1986 CCC 0002-8231/86/030123-13$04.00

information is consistent throughout the system; informa

tion is stored redundantly only to reduce directory access

time. The algorithm for document retrieval consists of

matching predicates for retrieval with the document prop

erties stored in the directory. The documents for which the
match is successful are then retrieved from the. indicated

storage addresses. Since the directory information is con

sistent throughout the system, the response to a query is

the same without regard to the identity of the query origi
nator.

In a large system, the response to a user's query may

consist of many documents, only a few of which may be

relevant to that user. Also, the set of documents relevant

to a second user may be quite different from that to the

first, even though their queries are identical. The problem

appears to originate from a lack of specificity in formulat

ing the query. A judicious choice of predicates would ap

parently cause all the documents that are irrelevant to the

query originator to be rejected. However, this would re

quire a sophisticated query language, rich enough to allow

the expression of a user's short-term and long-term goals,

plans, and interests. A comprehensive framework for doc

ument surrogates would also be required. Formulating

queries would be extremely cumbersome and the in

creased power of the system would be offset by the addi
tional effort demanded from the user.

In the absence of any information about the user,

whether explicitly stated in the query or embedded in the

system knowledge base, a response will necessarily consist

of a superset of the sets of relevant documents described

by the query from the perspective of each user. User

transparency in a large multiple-user environment may

thus cause a query response to contain a large number of

irrelevant documents. It is our view that systems of the fu
ture need to maintain models of their users in a back

ground mode in order to make document searches more

efficient and productive without burdening the user.
MINDS is a distributed document server with some

special characteristics that allow personalized document

retrieval. Additional information, in the form of person

alized document metaknowledge, is stored at each work

station to allow the system to scan the document bases of

all system users in a best-first fashion from the viewpoint

of the query originator. MINDS maintains (at each work

station) models of both the current system state and the

local user's document preferences.

3. Query Processing

A. Workstation Interactions

The MINDS system shares tasks, knowledge, and

metaknowledge for cooperation among the workstations.

A complex query is processed by first decomposing it into

simpler subtasks, with the help of locally-stored meta

knowledge, such that the search space for a subtask is lim

ited to the documents owned by one user. Subtasks are

then transmitted to the respective workstations where they

are processed. Responses to the subqueries are trans
mitted back to the workstation that initiated the sub

queries, where the results are synthesized and ranked in

decreasing order of relevance as estimated by the meta

knowledge. If the subquery is content-based, relevant

metaknowledge is also sent to the query originator along

with the documents and surrogates constituting the re

sponse to the subquery. The transmitted metaknowledge

may be used for updating the metaknowledge of the re

ceiver in accordance with the learning strategy. Other ac

tivities, such as creating, deleting, and copying docu

ments, require cooperation among the workstations.

Again, metaknowledge may be modified as a side-effect of
these activities.

B. Metakllowledge

The relevance of a keyword to a particular document is

assumed to be either zero or one, in accordance with tradi

tional (Boolean) indexing. Further, query-term weights

are also assumed to be either zero or one. (See Bartschi [4]

or Kraft and Buell [5] for a survey of fuzzy and generalized

information retrieval techniques.) These assumptions are

made to simplify the query processing at each workstation

so that the distributed aspects of our research would be

emphasized: metaknowledge is used for finding the best

locations for the query processing to take place. Each

metaknowledge element (Fig. 1) is a four-tuple with fields

for two users, a keyword, and a certainty factor in the

closed interval [0, I]. The metaknowledge element,

(Smith, Jones, compiler, 0.8), represents the following:

Smith's past experience suggests that the possibility of finding

relevant documents on compilers among those owned by Jones is

high (8 on a scale of 10).

Formally, given U, the set of all users, and K, the set of all

keywords, the metaknowledge function, M, is the mapping

M:UXUXK-[O,l].

The metaknowledge is partitioned among the worksta

tions such that if Ui is the subset of users at workstation i,

then only the metaknowledge for Ui X U X K is stored at
that workstation.

A certainty factor [6] provides a basis for ordering the

search for documents. It reflects (I) the breadth of infor

mation at a workstation pertaining to a specific keyword,

(2) how useful documents concerning this keyword have

proven to be in the past, and (3) how recently the worksta

tion has acquired its information. The metaknowledge is

first initialized with default values of certainty factors. A

set of heuristic learning rules defines the constraints for

modifying these values during system usage.

If a user had metaknowledge for each document rather

than for each user of the system, the knowledge would be

precise. However, the disadvantages of this approach are

(I) for an average of n documents per user, the meta-

124 JOURNAL· OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-May 1986

Keyname

DOCUMENTS

ID

user-name

1

USERS

certainty-factor

Note: Most non-key attributes have been removed for clarity.

FIG. I. Entity-relationship diagram for the metaknowledge of the system.

knowledge overhead would be n times as much, and (2) for

new documents, no prediction of relevance can be made.

On the other hand, there are positive correlations among

the documents owned by a particular user, so that concep

tual-level properties may be assigned to correlated clusters
of these documents. Future additions to a cluster would

have properties similar to the cluster prototype. For exam

ple, the metaknowledge stored by Smith associating the

document base of Jones with the keyword compiler is a

conceptual-level property of Jones' document base. This

property can be exploited by Smith to facilitate document
searches and is therefore stored at Smith's workstation.

4. The Learning Testbed

A. The Learning Cycle

MINDS is being developed for operation in a wide

range of office environments. The state of an environment

at any instant of time is given by the content and configu

ration of the metaknowledge and document bases of the

system. Commands issued by users comprise the system

inputs, and retrieved documents and surrogates consti

tute the outputs. The state of the system changes as a re

sult of executing a command [7]. These system dynamics

are shown in Figure 2.

A testbed has been implemented to develop a robust

body of learning heuristics for MINDS. A strategy for this

development, outlined in Figure 3, is based on simulating

the performance of different versions of MINDS, each im

plemented with a different set of learning heuristics. Each

simulation is run on a representation of a specific office

environment, consisting of an initial database of docu

ments and their locations, the initial metaknowledge of

the users, and a command sequence representing plausible

document transactions. The performance of the set of

heuristics is measured periodically during the simulation.
This set is then tested on other simulated environments.

Based on the evaluations of each simulation, heuristics

are discarded, added, or modified; the simulations are

then repeated. Good heuristic refinement rules (meta

heuristics) expedite the search for an optimal set.

B. Domain Modeling and Knowledge Representation

The practical value of the heuristics developed in the

testbed depends on the validity of the office models used in

the simulations. An office is modeled by aggregate descrip

tors such as the number of users and the relative frequen

cies of certain commands. These descriptors are used to

generate a distributed document base, metaknowledge

for each user, and a command sequence.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-May 1986 125

x (k)

Input
(command) I I y(k).> Query ----r-------->.> Engine Output.----------. (retn eved

documents and

surrogates)

I >

.>

h(k)

Knowledge
Acquisition

Expert

Document base
and

Metaknowledge

<--'

]
.> 1.> 2.

~j: 8.

9.
10.
11.
12.
13.

Output function: y(k) = q(x(k), h(k))

State function: h(k+l) = a(x(k), h(k)

FIG. 2. Block diagram of system dynamics.

Set up heuristics
Set up data set
Start transaction

Update documents
Update metaknowledge
End transaction

If no. of transactions since last measurement

is less than limit go to 3, else continue
Make measurement

If no. of measurements for this data set is

less than limit go to 3, else continue
Evaluate measurements

If no. of data sets for this simulation is

less than limit go to 2, else continue
Evaluate and compare measurements
If performance of heuristics is not

satisfactory, go to 1, else STOP.

FIG. 3. The heuristics refinement cycle.

Although document retrievals may be based on several

types of predicates such as authorship and location, only

content-based (keyword) retrievals are considered in the

simulations since other types of retrievals do not modify

the metaknowledge. Commands which do not affect the

system state, and thus are not important for learning, are
also not simulated.

Each document is given a name and several descriptive

keywords. A READ operation with a keyword-based

predicate is a retrieval that culminates in the reading of
one or more documents from the set returned. In an actual

system, a user would then provide a relevance factor on a

[0, IJ scale for each document read. If the documents were

to be retrieved and read by another user, the relevance fac

tors would probably be different. Also, if the same user

evaluated the same documents in terms of some other key

word, the relevance factors would probably be different.

In the simulations, the contents of each document are not

stored, only the relevance factor it would be accorded by

each user in terms of each descriptive keyword.

If documents are distributed uniformly such that there

is no preferred sequence of workstations to search, the

metaknowledge will not prove helpful. However, instead

of employing an exhaustive search strategy, people in of

fices (computerized or otherwise) always seem to rely on

past experiences to order their searches in a best-first

fashion. This suggests that the distribution of knowledge
in offices is not uniform.

The correlation among the documents owned by a par

ticular user is modeled in the testbed by biasing the rele
vance factors associated with the documents. For exam

ple, if Jones' documents on compilers are biased from

Smith's viewpoint by 0.2, then the relevance factors asso

ciating Smith with compilers in documents owned by
Jones will have a uniform distribution between 0.2 and

1.0. A bias of -0.4 would cause a distribution between 0
and 0.6. The bias is mutual in that:

BIAS (Smith, Jones, compiler) =
BIAS (Jones, Smith, compiler).

A typical document base is shown in Figure 4.

Metaknowledge is stored as shown in the example of

Figure S. Each user has metaknowledge which captures

his personal view of the dispersion of relevant documents

and consists of certainty factors for all combinations of

126 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-May 1986

((user1

(doc27 (key13 (obj user1 O.O)(obj user2 O.l)(obj user3 0.3)(key7 (obj-user1 0.7)(obj-user2 0.2)(obj-user3 0.5)(key5 (obj-user1 0.7)(obj-user2 1.0)(obj-user3 0.4))(doc28 (keyO (obj-user1 0.1)(obj-user2 0.4)(obj-user3 0.3)(key11 (obj=user1 0.2)(obj=user2 0.1)(obj=user3 0.0))

(user3

(doc37 (key10 (obj user1 0.6)(obj user2 0.5)(obj user3 0.7»

(key14 (obj=user1 0.6)(obj=user2 0.3)(obj=user3 0.4»))

FIG. 4. Document base representation in the testbed.

«userl (keyO (obj userl 0.4) (obj user2 0.4) (obj used 0.4)

(key1 (obj=userl 0.9) (obj=user2 0.7) (obj=user3 0.7)

(key9 (obj_user1 0.2) (obj_user2 0.2) (obj_user3 0.5»)

(user3 (keyO (obj_user1 0.1) (obj_user2 0.6) (obj_user3 0.4»

(key9 (obj_user1 0.9) (obj_user2 0.0) (obj_user3 0.4»))

FIG. S. Metaknowledge representation in the testbed.

Heuristic I. (also applicable for the DELETE part of
MOVE)

IF

THEN

Heuristic 2.

IF

THEN

good place to search for documents on compilers in the fu

ture. In either case, Jones may assume that Smith will con

tinue searching other locations and acquire documents on

compilers from some other user. Consequently, Jones will

increase his belief in Smith's ability to provide documents

on compilers in the future. This increase in belief will be

modest since Smith's newly acquired knowledge on com

pilers may not be of the type relevant to Jones.

(1) Initial Set of Heuristics. Move and copy commands

do not explicitly appear in the command sequence for this

set of simulations. They do appear, however, in some of

the learning heuristics for document migration. The re

sults described in Section 4.D were generated by the fol

lowing set of heuristics:

users and keywords, including his view of his own docu

ments. A system of II users and m keywords would result in

II times 111 certainty factors in each of the II metaknowledge
sets.

Two choices were considered for initializing the meta

knowledge at the start of the experiment. The first, an un

biased assignment of certainty factors (say 0.5), would re

sult in ties for determining the best locations to search; if

the conflict-resolution strategy is to choose the first loca

tion to appear in the list, then the system would tend to

learn about users placed at the top of the list earlier than

those placed near the end. The second initialization strat

egy would be to randomly allocate certainty factors, possi

bly with a uniform distribution, to ensure that the learn

ing progresses in an unbiased fashion. The second strategy

was adopted for the simulations reported in this paper.

C. Metakllowledge Update Heuristics

The heuristics for updating metaknowledge are based

on the paradigm of art intelligent office-worker who con

ducts an ordered search for documents based on past ex

periences in the office environment. When Smith asks

Jones for documents on compilers and Jones provides one

or more documents that are relevant to him, Smith learns

that Jones' document base is likely to continue having use

ful documents on compilers. If Jones has no documents on

compilers, or if none of the documents on compilers are

relevant to him, Smith will learn that this may not be a

Heuristic 3.

IF

AND

a document is deleted

no metaknowledge is changed

a document is created by user!

metaknowledge of user! about used regard

ing each keyword of the document is in

creased to 1.0 (the maximum relevance).

a retrieve command predicated on keyword I

is issued by user!

at least one user2 surrogate contains key
word 1

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-May 1986 127

These heuristics have also been written in first-order logic

and as OPS5 rules for implementation purposes.

(2) Assimilation of Evidence. The learning heuristics

shown above enable the metaknowledge to be changed on

THEN (a) used metaknowledge about user2 re

garding keyword 1 is increased (weight 0.1)

(b) user2 metaknowledge about used re

garding keyword 1 is increased (weight 0.1)

a retrieve command predicated on keyword 1

is issued by used

AND no user2 surrogate contains keyword 1

THEN (a) used metaknowledge about user2 re

garding keyword 1 is decreased to zero

(b) user2 metaknowledge about used re

garding keyword 1 is increased (weight 0.1)
Heuristic 5.

IF

a read command predicated on keyword 1 is

issued by used

AND document! owned by user2 contains key
wordl

AND the relevance of document! to used by way

of keyword I exceeds the move-copy threshold
AND used does not have document!

THEN (a) used copies document! from user2

(b) metaknowledge of used about used re

garding keyword I of the document is in
creased to 1.0

Heuristic 8.

IF

the basis of new evidence which typically consists of the

relevance rating of a document, the observation of a docu

ment being copied, etc. The metaknowledge updating
scheme should be able to take into account

(a) Temporal Precedence-the system is dynamic and

therefore recently acquired evidence is more indicative of

the current state of the system than evidence acquired ear

lier. Hfl is the mapping function for a downward revision

of the certainty factor (contradiction) and f2 is the map

ping function for an upward revision (confirmation), then

f2(jl(x» ;:: fl(j2(x», for all 0 ::; x ::; 1. This is illus

trated in the bottom graph of Figure 6 for linear functions

of fl andf2. The choice of linear functions is arbitrary;

any monotonically increasing function which maps a

given certainty factor into one having a greater (smaller)

value can be used for confirmation (contradiction).

(b) Reliability of Evidence-some types of evidence

are more reliable than others. If a surrogate with a desired

keyword is successfully retrieved by Jones from Smith, this

action by itself does not completely support the proposi

tion that Smith's documents on compilers are going to

prove relevant to Jones in the future, since the relevance of

this document to Jones is not known. However, if this doc

ument is read by Jones, then the relevance value assigned

by him constitutes reliable evidence. The reliability of the

source is also important for evaluating the metaknowl

edge sent by a user. When Smith offers metaknowledge to

Jones about documents on compilers, Jones will pay heed

to it only if he has found Smith to be a reliable source of

documents on compilers in the past.

(c) Degree of Support-the degree of support for a

proposition may vary. When a user is asked if the docu

ment he has read is relevant to him, his answer does not

have to be limited to "yes" or "no," but may be a value in

the range [0,1].

(d) Saturation Characteristics-when the initial cer

tainty factor for a metaknowledge element is high, addi

tional confirmatory evidence will not change (increase) it

substantially. However, if the evidence were to be contra

dictory, the change (decrease) in confidence factor would

be large. The situation is exactly reversed when the initial

certainty factor is low.

The metaknowledge updating scheme presented here
has all these features and is based on two linear functions

that map the current certainty factor to a new one (Fig. 6).

The choice of linear functions is arbitrary as discussed

previously. The first function deals with confirmatory evi

dence that causes upward revision while the second one

deals with contradictory evidence that causes downward

revision. When a surrogate with a keyword is retrieved

successfully, the revised certainty factor is given by (1-r)

* fl(x) + r * f2(x), wherefl andf2 are the functions

dealing with downward and upward revision, x is the orig

inal certainty factor, and r is the reliability of this type of

information (typically 0.1). For example, if the evidence

supports a proposition to a degree of r = 0.7, the mapping

function is the weighted average of the two original func

tions (see Fig. 7).

a read command predicated on keyword I IS

issued by used

used has copied document! from user2
the maximum relevance of document! to

user2 by way of any keyword is less than the
delete threshold

document I is deleted from the document

base of user2

AND

AND

THEN

a read command predicated on keyword 1 is

issued by used

AND no user2 document contains keyword I

THEN (a) used metaknowledge about user2 re

garding keyword I is decreased to zero

(b) user2 metaknowledge about userl re

garding keyword I is increased (weight 0.1)
Heuristic 6.

IF a read command predicated on keyword I is

issued by used

AND at least one user2 document contains key
wordl

THEN (a) used metaknowledge about user2 re

garding keyword I is changed, based on the

highest relevance of all user2 documents re

garding keyword I.

(b) user2 metaknowledge about used re

garding keyword I is increased (weight 0.1)
Heuristic 7.

IF

Heuristic 4.

IF

128 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-May 1986

Conf irmation

f2(x)

1.0

New

C.F.

0.5

o

Old C.F.

>

1.0

Contradiction

fU x)
'I

1.0

New
C.F.

0.5

o

Old C.F.

1. 00

Precedence Characteristics

0.75

New C.F.

0.50

0.25

o

>

1.0
Old C.F.

f2(fl(x»

FIG. 6. Update functions for metaknowledge certainty factor and temporal

precedence characteristics.

Mapping rule for relevance, r = 0.7

f(x) = (r * f2(x» + «l-r) * fl(x»

Confirmation

0.7 * f2(x)

1.0

0.7

New

C.F.

o

Old C.F.

1. 00

New C.F.

Contradiction

0.3 * fUx)

1.0

+New
C.F.

0.15

>

1------
>1.0

0 1.0

Old C.F.

0

o

Old C.F.

>

1.0

FIG. 7. Updating scheme for metaknowledge certainty factors.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-May 1986 129

D. Learning by Decreasing the Heuristic Distance

A heuristic function is used to compute how much the

current metaknowledge differs from the ideal metaknowl

edge for a particular system state. The actual search se

quence adopted by a user for a keyword-based search

would depend on his metaknowledge; individual docu

ment bases would be scanned in decreasing order of cer

tainty factors. These sequences are computed from the

current metaknowledge base for all search-pairs (user,

keyword).

The ideal search sequences, on the other hand, are ob
tained from the current document base. For reasons ex

plained earlier, documents in the simulated environment

are augmented with the relevance factor assignments they

would have elicited from users reading them. The best se

quences for conducting keyword-based searches are ob
tained from this information.

The two sets of search sequences are now compared. If

the two search sequences for a given search-pair are simi

lar, the distance between them is small. One measure of

disorder in a list is the number of exchanges between adja

cent list elements required by a bubble-sort procedure to
derive an ordered list. In this case the initial list is an ac

tual search sequence derived from the metaknowledge,

and the final ordered list is the ideal search sequence ob
tained from the document base. The measure of disorder

of all the search-pairs are added together in order to ob
tain the heuristic distance between the current and ideal

metaknowledge patterns.

This heuristic distance is measured at the beginning of

each simulation and after each measurement cycle of ten

transactions. For the simulation results shown in Figures

8-11, 450 transactions (commands) were executed and a

total of 46 measurements were made. Although the learn

ing heuristics for these simulations were kept unchanged,

different office models and usage patterns were employed.

The graph of the distance measurements as a function of

the number of transactions produces the learning curve

for a particular office environment and particular set of

learning heuristics. Properties of these graphs, such as

time-constants and steady-state values, are being used to

HEURISTIC DISTANCE

o \
-, -------------------------------/

50

100

150

200

C

o
M

M

A

N

D

S
300

350

400

450.
V

SIMULATION PARAMETERS

3 users

10 keywords
20 docume~ts/user (avg)

3 keywords/document (avgl
30% retrieve commands
60% read commands

5% create commands
5% delete commands

delete threshold = 0.25
move threshold = 0.75

FIG. 8. Learning (decrease in heuristic distance) as metaknowledge is accumulated while processing

document commands.

130 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-May 1986

HEURISTIC DISTANCE

0 \
I • /

50

100

150

200

C

o
M
M

A

N

D
S
300

350

400

450
V

SIMULATION PARAMETERS

3 users

10 keywords
20 documents/user (avg)

3 keywords/document (avgi
30% retrieve commands
60% read commands

5% create commands
5% delete commands

delete threshold = 0.25
move threshold = 0.95

FIG. 9. Learning (decrease in heuristic distance) as metaknowledge is accumulated while processing
document commands.

evaluate the performance of the heuristics in order to de
rive metaheuristics.

5. The Multilayered Learning System Model

Buchanan et aI. [8] have proposed a general model for

a learning system (LS) based on four functional compo

nents, a performance element, a learning element, a critic,

and an instance selector. Each component has bidirec

tional communication links to a blackboard containing

the knowledge base as well as all temporary information

used by the learning system components.

The performance element is responsible for generating

an output in response to each new stimulus. The instance

selector draws suitable training instances from the envi

ronment and presents them to the performance element.

The critic evaluates the output of the performance ele

ment in terms of a performance metric and suggests ad

justments to the learning element, which makes appropri

ate changes to the knowledge base. The LS operates within

the constraints of a world model which is the conceptual

framework of the system, containing assumptions and

methods for domain activity and domain-specific heuris

tics [9].

The world model can not be modified by the LS that

uses it, but it may be altered by a higher-level system

based on the observed performance of the LS. This system

may itself be a learning system. Incremental refinement of

the world model can thus be accomplished in a higher

level learning system (LS2) whose performance element is

the learning system at the lower level (LSl). Several well

known LSs have been characterized using this multilevel

framework [8,10].

Dietterich et al. [11] have developed a simple model for

learning systems that incorporates feedback from the per

formance element to the learning element. The included

knowledge base is not specified as a blackboard. This
model has been used to examine the factors that affect the

design of the learning element.
The MINDS two-level testbed for heuristic refinement

has been mapped into an integrated framework, combin-

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-May 1986 131

HEURISTIC DISTANCE

_\
o ~ • /r. ------------

50

100

150

200

C

a
M

M

A

N
D

S
300

350

400

450
V

SIMULATION PARAMETERS

3 users

10 keywords

20 documents/user (avg)

3 keywords/document (avg)
30% retrieve commands

60% read commands

5% create commands

5% delete commands

delete threshold = 0.10

move threshold = 0.75

FIG. 10. Learning (decrease in heuristic distance) as metaknowledge is accumulated while processing

document commands.

ing features of both of the above general models. This
framework is shown below:

The User Layer

Goal: Learn to customize document searches for indi

vidual users in a dynamic setting.

The Upper Layer (LS2, Fig. 12)

Purpose: Improve the performance of LS 1 by selecting

a good set of learning heuristics.

Environment: All command sequences, initial meta

knowledge configurations and initial document distribu

tions that comprise the training set.

Instance Selector: Chooses an interesting environment

(a combination of command sequence, metaknowledge

configuration, and document distribution) with help from
the critic.

Critic: Evaluation. Uses metaheuristics (presently sup-

plied by the authors) to analyze learning curves for LSI

with the current set of learning heuristics.

Diagnosis. Singles out heuristics that are not useful.

Therapy. Selects new heuristics to replace useless

ones or suggests modifications for existing ones. Also sug

gests interesting environments for testing a new set of
heuristics.

Learning Element: Redefines the current set of heuris

tics as recommended by the critic.

World Model: The LSI world model along with the set

of metaheuristics for updating the LSI heuristics, the

method for evaluating the performance of LSl, and the

scheme for heuristic updating.

The Lower Layer (LS1, Fig. 13)

Purpose: For each user learn a good set of confidence

factors to predict the outcomes of all keyword-based

searches of individually-owned document bases.

Environment: Set of all possible combinations of docu

ment distributions and user commands.

132 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-May 1986

o

50

100

150

200

C

o
M

M

A

N

D

S
300

350

400

450
V

HEURISTIC DISTANCE

\._----------.--/

SIMULATION PARAMETERS

3 users

10 keywords
20 documents/user (avg)

3 keywords/document (avg)
30% retrieve commands
60% read commands

5% create commands
5% delete commands

delete threshold = 0.10
move threshold = 0.95

FIG. II. Learning (decrease in heuristic distance) as metaknowledge is accumulated while processing

document commands.

Performance Element: Uses the document metaknowl

edge (set of confidence factors) to plan a document base

search sequence for a user. Also executes other commands

which may change the document distribution pattern.
Instance Selector: The next command is read from a

predefined sequence of commands. The document distri

bution pattern chosen to be part of the environment for

the execution of a command is simply the document con

figuration arrived at after execution of the last command.

Critic: Evaluation. Examines the result of searching a

target document base with the help of the learning heu
ristics.

Diagnosis. Determines that the document bases be

searched in the order that would have proved most fruitful
as determined from the results.

Therapy. Recommends increases and/or decreases

of certainty factors.

Learning Element: Adjusts the certainty factors in the

metaknowledge according to the critic's recommendation.

World Model: Representations of the document base,

knowledge base and commands, the metaknowledge up

dating scheme, and the learning heuristics for the evalua

tion of results and recommendation of therapies.

6. Conclusions and Plans

The testbed has provided a useful tool for developing

the heuristics needed for learning the document storage

patterns of individuals using distributed workstations.

Environments of this type are modeled by higher-level de

scriptions which are used to generate a document base,

metaknowledge, and a plausible transaction sequence for
each user.

Simulations are run for these environments and the re

sulting learning curves are used to identify a better set of

heuristics. A search strategy is required for rapid conver

gence to an optimal set of heuristics for a given office en

vironment. Part of the current research effort is to identify

metaheuristics that would help refine existing heuristics,
as well as discover new ones.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-May 1986 133

1010 rld Mode I

Environment

Initial

Metakno'w'ledge
Configuration

Initial

Document Base

Configuration

Command

Sequences

I Meta- 1-:>
Heuristics

CR

~\

~> ~~> I-H~~~-r~~-7~sl---»
Heuristic

Modification
Methods

CR - Critic

LE - Learning Element
PE - Performance Element

IS - Instance Selector

FIG. 12. Learning system LS2 (upper layer).

WorlaModel

Environment

--->0---> IMe~~~~~:~;dge 1--->
_____I~

I Metakno'w'ledge 1

Updating Scheme

I Lea:ni~g 1----->

Heurlstlcs

I Commands I

~B--

IDocument Basel
Configuration

CR - Critic

LE - Learning Element
PE - Performance Element

ISl - Instance Selector for commands

IS2 - Instance Selector for document base configuration

FIG. 13. Learning system LSI (lower layer).

134 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-May 1986

References

I. Bonnell. R. D.; Huhns. M. N.: Stephens, L. M.; Mukhopadhyay, U.

"MINDS: Multiplc Intelligent Node Document Servers." Proceed·

ill!?s IEEE Firsr Illremariollal COllferellce all OffIce AutrJmarioll,

December 1984. 125-136.

2. Bonnell, R. D.; Huhns, M. N.: Stephens, L. M.: Mukhopadhyay, U.

"A Distributed Expert System Approach to the Intelligent Filing

System," USCMI Techllical Reporr 84-17. Columbia, SC: Univer·

sity of South Carolina; November 1984.

3. Rothnie. J. B.; Goodman, N. "A Survey of Research and Develop·

ment in Distributed Database Management," Proceedillgs IEEE

Third IlIremarirJ//al COllferellce 011 Vel)' Large Dara Bases. 1977,

30-44.

4. Bartschi, M. "An Overview of Information Retrieval Subjects."

IEEE Computer. 18(5):67-84; 1985.

5. Kraft, D. H.; Buell, D. A. "Fuzzy Sets and Generalized Boolean

Retrieval Systems." 111I.J. Mall·Machille Studies. 19:45-56; 1983.

6. Buchanan. B. G.: Shortliffe, E. H. "Reasoning Under Uncer·

tainty." Rule·Based Expt'rt Systems. Reading. MA: Addison·

Weslcy; 1984.

7. Lenat, D. B.: Hayes·Roth, F.; Klahr, P. "Cognitivc Economy In a

Fluid Task Environment," In: R. S. Michalski, Ed., Proceedings

of the Illtematiollal Machille Leamill!? Workshop. Urbana, IL:

Univcrsity of Illinois. Dcpt. of Computer Scicnce; 1983.

8. Buchanan, B.; Mitchell, T.: Smith, R.; Johnson, Jr., C. "Models

of Learning Systems." In: J. Belzer ct aI., Eds., Ellcyclopedia of

Compurer Sciellce allli Techllology, Vol. 11. Ncw York: Marcel

Dckker: 1977:24-51.

9. Winston, P. H. "Learning Structural Dcscriptions from Exam

pies," The Psychology of Computer Vision. New York: McGraw

Hill: 1975:157-210.

10. Rcndcll, L. A. "Conceptual Knowledge Acquisition in Search,"

In: L. Bole, Ed., Kllo",ledge Based Leamillg Systems. New York:

Springer- Verlag; 1985.

11. Dietterich, T. G.: London, B.: Clarkson. K.: Dromcy. G. "learn

ing and Inductive Infercnce," In: P. R. Cohcn, E. A. Feigenbaum.

Eds .. The Halldbook of Artificial IlIIelligellce. Volume J. Los

Altos, CA: William Kaufmann. Inc.: 1982:323-511.

12. Michalski, R. S.: Carbonell, J. G.; Mitchcll, T. M., Eds. Machille

Leamillg: All Artificial Intelligence Approach. Palo Alto. CA:

Tioga Publishing Co.; 1983.

13. Dietterich, T.: Michalski, R. "Learning and Generalization of

Characteristic Descriptions: Evaluation Criteria and Comparative

Review of Selected Methods." Proc. Sixrh lilt. Joillr COl~f. Oil Arti

ficialilltelligellce, 1979,223-231.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-May 1986 135

