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Abstract: The Internet of Things (IoT) is being used to create new applications for smart cities. Waste
management is one issue that requires various IoT components for assistance, such as RFIDs and
sensors. An efficient and innovative waste collection system is required to minimize investment,
operational, and expenditure costs. In this paper, the novel idea is to develop an intelligent waste
management model for smart cities using a hybrid genetic algorithm (GA)–fuzzy inference engine.
The system can read, collect, and process information intelligently using a fuzzy inference engine
that decides dynamically how to manage a waste collection. The aim of this model is to enhance
its correctness and robustness, primarily, in addition to reducing errors that arise due to working
conditions. GA is used for optimization to determine the best combination of rules for the fuzzy
inference system (FIS). A Mamdani model is used to estimate waste management. The proposed
model uses sensors to collect vital information, and FIS is trained using fuzzy logic to determine the
probability that the smart bin is nearly full. The primary issue with the traditional genetic algorithm
is that during the execution of the algorithm, there is a possibility of essential gene loss. The essential
gene loss refers to information relevant to location, details regarding waste filling parameters, etc.,
which may lead to efficiency or accuracy loss. This problem is overcome by integrating fuzzy logic
with a genetic algorithm to identify crucial genes by preserving the FIS interpretability. Our system
uses cost-effective, small-size sensors and ensures this solution is reproducible. The Proteus simulator
is used for experiments, and satisfactory results are obtained. Overall accuracy, precision, and recall of
95.44%, 96.68%, and 93.96% are obtained in the proposed model. Classification of recyclable items is
also performed, and accuracy is determined for every item, resulting in the minimization of resource
waste. The cost of manual interpretation is minimized in the intelligent smart waste management
system in comparison to the traditional approach, as shown in the experiments.

Keywords: accuracy; fuzzy inference system; genetic algorithm; performance; precision; sensor

1. Introduction

IoT is emerging as a promising field for devices to deliver innovative services to users
through communication and exchange of information. Different domains are deploying IoT,
including environmental monitoring [1] at home [2], health care [3], traffic management [4],
entity tracking [5], and smart home technology [6] that uses sensors with Wi-Fi [7]. Waste
management, through Radio Frequency Identification (RFID) technology [8], is analyzed
by many researchers in the aspect of knowledge management [9], used in real time [10],
and also in managing solid waste [11] and medical waste [12].

In our highly urban society, cities are the major locations of both resource consumption
and garbage production [13]. The rise of technological and industry developments causes
a significant hazardous waste management issue, demanding a for society scientific and
structured smart waste disposal system using the IoT. The circular economy (CE) can
minimize energy and consumption only if resource utilization is improved and recycled
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materials are substituted for prime resources. Poor waste collection approaches can result
in various negative factors for society. The design and development of a sustainable waste
management system (WMS) can provide insights into environmental issues [14]. IoT is
the key pillar of a sustainable smart city. Therefore, the fundamental idea is to provide
real-time data interchange, focusing on problems of waste management. In addition, it is
also very important to decide whether the waste is recyclable or not and which bins should
be emptied at a certain time. Efficient IoT infrastructure is required in smart cities (SC) to
analyze waste awareness [15]. An IoT-facilitated smart city is a promising choice.

Ruiz et al. [16] applied deep learning and computer vision techniques to detect waste
automatically. Finally, they compared different convolutional neural network (CNN) archi-
tectures such as inception, visual geometry group (VGG), and residual networks (ResNet)
to classify the types of garbage. Researchers have been analyzing [17] waste management
for over a century, and they have been trying out waste utilization analysis for over forty
years. Our primary environmental concern is ineffective solid waste management, which
is incompatible with rapid technological advancement. Hence, an intelligent IoT garbage
monitoring system is to be developed for smarter and cleaner cities. With the use of the
intelligent garbage box, the waste can be easily disposed of through proper segregation of
waste materials. This process reduces time and effort and preserves the worker’s dignity.
This effort is in tandem with the Indian Swacch Bharat Mission [18] and can be deployed
all across the country.

Efficient IoT infrastructure is required in smart cities (SC) to analyze waste awareness [15].
An IoT-facilitated smart city is a promising choice. In this paper, an intelligent garbage
disposal system is developed for SCs in a growing nation, likely India. However, the
adoption of IoT implementation has some barriers in terms of design and optimization
at the technical level. Various multi-attribute decision-making (MADM) approaches are
examined in the literature to make real-world decisions. In this paper, an integration of GA
with FIS is proposed for effective smart city waste management (SCWM). The idea behind
the innovation of the proposed GA-FIS is to ensure that the important genes are preserved,
which will be helpful to promote the vital genes in forthcoming generations and thereby
enhance chromosome fitness.

The system is coined “intelligent”, as it was created using a smart GA–fuzzy reinforcer
for waste detection and image classification of garbage. This work plays an important
role in building smart and environment-friendly cities. By appropriately deploying this
model, it helps to identify and recycle waste, segregate the carcinogenic waste, and destroy
it, which greatly helps in building a hygienic green environment and thereby improving
the circular economy of the nation.

In the past few years, FIS has been employed in various subjects, which are expressed
in terms of “IF-THEN” rules based on expertise [19]. A set of fuzzy rules is developed with
appropriate membership functions to determine the necessary input–output pairs. FIS is
also known as fuzzy rule-based systems, fuzzy models, fuzzy associative memories (FAM),
or fuzzy controllers. An FIS consists of five functional blocks, as shown in Figure 1. The
details are given below:

• A rule base containing a number of fuzzy if–then rules;
• A database that determines the membership functions of the fuzzy sets used in the

fuzzy rules;
• A decision-making unit that calculates the inference operations on the rules;
• A fuzzy interference that converts the inputs into degrees of match with semantic values;
• A defuzzification interference that converts the fuzzy results of inference into a

specific output.

The steps of fuzzy reasoning performed by FIS are as follows:

• Compare the input variables with the membership functions to determine the mem-
bership values of each semantic label. This is called “fuzzification”.

• Combine the membership values to determine the strength (weight) of every rule.
• Obtain the consequent (either crisp or fuzzy) of each rule based on the firing strength.
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• Aggregate the qualified consequences to produce a crisp output. This is called defuzzification.
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Figure 1. Functional blocks of FIS.

GA is utilized for the optimization of fuzzy systems [20]. The methodology of GA is
detailed in Section 3.2. Figure 2 shows the flowchart of the overall study of the proposed
model. The system utilizes load cells on the Arduino box, which automatically detect the
stress values of any garbage placed on the panel on top of the Arduino box. This stress
value determines the amount of waste that has been dumped on the system. In addition,
the Smart Arduino Board panel opens a compartment below to store the waste in a garbage
bin. This compartment will also detect if the waste is exceeding the garbage bin limits using
ultrasonic sensors that measure whether the amount of garbage has reached its maximum.
In case there is an overflow, the system will alert the client on the tracking webpage, and
it will incorporate a cloud service to send alerts so that the garbage bins can be cleared
out immediately.
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The contributions of this research work are given below:

• A novel method for combining two technologies, namely IoT and fuzzy inference
systems, to produce an ideal waste management solution.

• Bio and non-bio waste image classification using a fuzzy inference system.
• Long-range IoT waste monitoring using an Android application in real time.

The paper is summarized as follows. The literature of various IoT-based waste man-
agement solutions is discussed in Section 2. Section 3 details the proposed architecture and
a detailed description of GA-FIS. Section 4 shows the experimental analysis. The paper is
completed in Section 5.

2. Literature Review

There are different solutions proposed for existing problems in waste management.
A few solutions are described below. The growth of information and communications
technology (ICT) and its implementation in smart cities is inevitable. It provides diversified
solutions to the existing scenarios with respect to smart cities and the IoT. Salehi-Amiri
et al. [14] implemented an effective waste management system using vehicle routing in a
two-level approach. The threshold parameter is set at level 1 using real-time data from the
IoT devices. The waste in the bins is transferred at level 2, maximizing the recovery value
and minimizing the visual pollution. A threshold value of around 70 to 75% provides the
best solution. Wang et al. [21] used IoT devices to monitor garbage production and waste
conditions, with a CNN classifier together with cloud computing methods, and the best
results for waste collection were obtained. The waste is divided into six subcategories. The
MobileNetV3 had a minimum running time of 261.7 ms and an accuracy of 94.26%.

Marques et al. [22] proposed a multi-level IoT infrastructure for waste management in
smart cities. The architecture was built using three protocols: the Constrained Application
Protocol (CoAP), the Hyper Text Transfer Protocol Secure (HTTPS), and the Message Queu-
ing Telemetry Transport (MQTT). The MQTT protocol surpasses HTTP and is considered
the best protocol, as it provides the maximum throughput with a feasible implementation
in the smart city. The infrastructure is capable of managing 3902 bins simultaneously. Bano
et al. [23] implemented the smart bin mechanism (SBM) by using the three R concepts,
namely reduce, reuse, and recycle, along with the artificial Internet of Things (AIoT). The
live data about the bin are collected, significantly reducing the time and energy spent. In
addition, the labor cost is also minimized. Fuzzy logic is utilized for decision making. IoT,
in conjunction with smart waste management systems, drastically reduces waste generation.
Several sensors are used in order to collect the real-time data needed for collecting waste.
Mishra et al. [24] significantly reduced the waste and the danger of infectious diseases in
their proposed model. The uncertainty problems are resolved using fermionic fuzzy sets
(FFS). It made a significant impact on the decision-making process and improved accuracy
in complex environments. Mishra et al. [24] investigated smart waste management at mul-
tiple layers using FFSs combined with the Archimedean copula operator, where operations
are used. Younesi et al. [25] discuss the various methods and the need for real-time data on
waste management. Sensors and RFID tags are used to accomplish this. It also provides an
overview of the technologies and solutions.

Kumar et al. [26] proposed a method for clearing garbage by generating an alarm at
the municipal office once the basket is filled. This method was successfully implemented
by making use of the Arduino UNO board and the sensor. After emptying, the in-charge
person confirms that the task is over through an RFID tag. IoT and RFID were embedded
to simplify this process. The microcontroller sends an alert message to the urban offices to
monitor the workers involved in this cleaning process.

Shaikh et al. [27] discovered an effective system to check the level of waste, which is
implemented using sensors, and the monitoring screen helps to display the output in the
office. The level of trash is detected by a float level sensor installed internally in the bin.
The load sensor is mounted at the bottom of the dust bin and continuously monitors the
weight of the garbage inside. By interpolating artificial neural networks, Abdoli et al. [28]
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discovered a replacement method for predicting long-term wastes. A comparison between
multivariate regression and artificial neural network (ANN) was performed. Statistical
datasets of 10 years of generated solid waste from 2000–2010 for the town of Mashhad were
analyzed. The best input variables were selected by comparing various environmental
and socioeconomic factors. Based on the performance criteria of the ANN structures, the
result was chosen. Therefore, the multilayer perception approach gives better results when
compared to the existing method.

Nabavi-Pelesaraei et al. [29] proposed waste management solutions for Tehran Munic-
ipal Office, Iran, by assessing the energy flow using ANN. Recycling wastes provided an
entry point for energy challenges. Authors used the Levenberg–Marquardt (LM) training
algorithm and 5-7-7-11 topology for predicting recycled items, which therefore influence
environmental emissions. They achieved better performance with accuracy, which ranges
between 0.92 and 0.978. Shu et al. [30] analyzed the solid waste ignition in Taiwan using a
multilayer perceptron for the dry and wet wastes, and the heating value was low, which
is the crucial parameter for incinerator capacity. Adamovic et al. [31] developed a model
for producing energy from the solid waste collected in European and Balkan countries.
Sensitivity analyses and correlation techniques were used to enhance their model.

Bircanoglu et al. [32] proposed a method for sustaining the economy through waste
recycling, and they discovered the most efficient method using deep convolutional neural
networks. The major disadvantage of such systems is slow prediction. Therefore, to
enhance the performance of the projection, dense block skip connections were modified.
In a layered network, the number of parameters was reduced to 3 million out of 7 million
using the RecycleNet model. By incorporating advanced decision support techniques into
smart cities, the authors [33] implemented a useful waste disposal model.For providing
the evidence to the authorities as well as monitoring the process periodically, surveillance
cameras were incorporated into this model.

Solid wastes such as unused electronic and electric equipment are identified as an
essential aspect of e-waste disposal because they contain toxic chemicals. In Malaysia,
they successfully developed a smart system to collect household waste electronics [34].
Aleyadeh et al. [35] proposed two modules: the first module helps to monitor the volume
of waste, and the second module implements dynamic scheduling of vehicles.

The authors [36] categorized the waste as hazardous waste, recyclable waste, and
compostable waste. Different CNN-based classifier techniques such asDenseNet-121, VGG-
16, MobileNet V2, and ResNet-50 for 9200 were applied and attained a maximum accuracy
of 94.86% from the ResNet-50 classifier [36]. Frost et al. [37] presented a technique to classify
the wastes after eating food by using the image classification model so that they can be
disposed of in separate containers. A CompostNet model was deployed, which was a CNN
for image classification. This application sorts the food waste according to biodegradable,
recyclable, and non-biodegradable wastes and therefore can be a potential game-changer
in implementing proper food disposal techniques. The limitations of computational cost
and in-field application were also considered, and hence AlexNet was deployed.

Zhou et al. [38] developed a classification model by integrating three pre-trained CNN
models together for incredible accuracy. Chu et al. [39] developed a multilayer hybrid deep
learning system that efficiently disposes of unwanted objects scattered by the public in
open space. CNN and MLP are used for extracting and consolidating the features to classify
waste as recyclable or not. The cameras in the open spaces then detect the garbage, identify
the type and disposal procedure, and alert the authorities accordingly to maintain a clean
environment. Lanorte et al. [40] mapped and estimated the amount of agricultural plastic
waste by using satellite images to capture the images. The areas that are pollution-free
are differentiated from the ones that have plastic pollution using support vector machines
(SVMs). Zhang et al. [41] implemented an automatic waste disposer based on the principle
of Mie scattering. This method analyses the light intensity of particles under various
climatic conditions and adjusts the system accordingly.
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Xiao et al. [42] implemented a near-infrared hyper spectral method for classifying
and extracting the types of waste. The authors used the Pythagorean Wavelet Transform
to obtain the details of the waste particles. Random Forest was used to extract the key
features for identifying generated waste. This technique improves waste management at
construction sites. The method aims to enhance the utilization rate, improve the efficiency
of processing, and minimize processing costs. Rahmad et al. [43] utilized ultrasonic sensors
along with weight sensors to obtain the weight and size of waste particles and classify them
into four categories: paper, glass, plastic, and metal. Supasan et al. [44] deployed robots
to manage waste efficiently. The authors implemented a smart robot that detects waste
and segregates it. An image processing unit allows the robot to detect the garbage lying
around. In addition, sensors detect distance, weight, and other physical properties. An
image dataset [45] consisting of various kinds of biomedical waste from humans, animals,
labs, and hospitals is generated. The images are preprocessed using the median filtering
technique for noise reduction. To categorize the cotton, plastics, and liquids, they applied
the relevance vector machine. Thus, efficient monitoring and segregation of all biomedical
wastes are performed to prevent any potential harm from such sources. In another study,
an analysis of medical waste [46] in Uttarakhand hospitals is performed using multiple
linear regressions for classification. Sohag et al. [47] proposed an automated lid along with
an identification system and a communication mechanism to dynamically supervise the
level of dustbins in urban areas with the help of sensors and Zigbee [48]. The data are
transmitted over the adhoc network. Memon et al. [49] used ultrasonic sensors and WeMos,
which helped monitor the garbage and produce accurate results.

Authors have proposed optimal resource allocation integrated with intelligent techniques [50]
suitable for IoT [51] in recent years. In the IoT, a whale optimization approach (WOA) is used
to reduce communication costs and optimize resource allocation [51].A comparison of the
proposed model with existing approaches shows that there is a high capability to solve the
resource allocation issue in the cloud. A hybrid fuzzy approach is used [52] to effectively
support the decision-making process for validating the risk factors in a software project.
In comparison with the existing techniques, the proposed framework indicates that this
approach achieves better project performance.

Hussain et al. [53] developed a waste management and prediction and tested using
a traditional K-Nearest Neighbor (KNN) and non-traditional Long Short Term Memory
for creating alert messages and forecasting amount of pollutant air carbon monoxide (CO)
contained in the air. The accuracy of modified LSTM and traditional LSTM are 90% and
88% respectively, to determine the future concentration of gas content in the air.

Table 1 summarizes the literature on smart garbage disposal systems in recent years.
Table 2 summarizes the related works based on efficient resource allocation for IoT. Due to
the disadvantages of the existing approaches, an integrated approach is proposed for an
efficient smart garbage disposal system.

Table 1. Literature of smart garbage disposal systems.

Security
Mechanism

Heterogeneous
Technologies

and
Communication

Hardware
Platform and

Operating
System

Cloud
Service

Provides

Data Analytic
Techniques Sensor Type Models Used Waste Type

Real-time
surveillance
system [22]

Present Wireless
sensors Present

Stored in the
cloud and sent

to
wastepick-up

trucks

capacity sensor

Advanced
Decision
Support

System (DSS)

Plastics, glass,
paper, and

organics

Not present
[23]

Programmable
Logic

Controller
S7-300

PLCand
SIMATIC
Manager

Not present

Data processed
from one
sensor to
another

weight, IR, and
ultrasonic

sensor

Convolutional
neural

networks
(CNN)

Household
e-waste such as
laptops, mobile

phones,
chargers, and

metals
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Table 1. Cont.

Security
Mechanism

Heterogeneous
Technologies

and
Communication

Hardware
Platform and

Operating
System

Cloud
Service

Provides

Data Analytic
Techniques Sensor Type Models Used Waste Type

Not Present
[25]

Multiple
sensors Arduino Not present

Data processed
from one
sensor to
another

RFID CNN-based
classifiers

General waste,
compostable

waste,
recyclable
waste, and
hazardous

waste

Real-time
surveillance
system [26]

Multiple
sensors

PIC
microcontroller Present Processed

through server Nil
CompostNet
deep learning

Classifier

Compostable,
paper,

cardboard,
trash, plastic,

glass, and
metal

Not present
[27]

Microcontroller
and MQ4
sensors

Arduino
Regular server

present; no
cloud server

Sending from
bin to server

using wireless
sensors

Nil

Novel transfer
learning based
on ELM with

weighted least
square

Image
classification

Not present
[30]

The user of
WSNs

Ultrasonic
Ranging
Module

(HC-SR04)

Not present

Data processed
in SQL server

and
analyzed

through AI
algorithms

temperature
sensor

Customized
algorithm

Metal and
non-metal

Not present
[31]

Useof WSNs;
multiple
sensors

Wireless
sensors

Server present;
partial cloud
technology

Data processed
in server and

analyzed
through

algorithms

Nil

Random forest
+ extreme
learning
machine

(RF + ELM)

Wood, plastics,
bricks,

concrete,
rubber, and
black bricks

Not present
[32]

IR proximity
sensor and

WSNs

Wireless
sensors and

flap to
segregate

Not specified;
only

segregation
Not specified

Weight and
ultrasonic

sensor

Customized
waste detection

algorithm

Paper, glass,
plastic, and

metal

Not present
[33]

Multiple
sensors

Wireless
sensors

Not present;
only base

station present
Not specified Sonar sensor

Customized
object

detection
algorithm

Solid wastes
such as

polythene,
glass, and food

Not present
[34]

Use of WSNs;
multiple
sensors

Micro
controllers Not present

Data processed
from one
sensor to
another

IR sensor
Multiple linear
regression and

ANN

Yellow, blue,
and red waste

Table 2. Summary of Existing Works.

Approach Advantages Disadvantages

Consensus-based technique [54] Easy implementation Not recommended for large-scale problems
Resource allocation using asymptotic shaped

value scheme [55] Deterministic approach High complexity

Traditional genetic algorithm [56] Efficient for huge-scale problems Optimal solution difficult to obtain
K-means clustering and search economics

approach [57] Better solutions are obtained in the first generation Time consuming

Fuzzy-based job categorization [58] Priority for resources is considered Not applicable for every environment

3. Proposed Model
3.1. Internal Components

The components in the IoT smart garbage disposal system are a Bolt Wi-Fi module, a
load cell, a servo motor, the HX-711 interface, an Arduino, an ultrasonic sensor, a bread-
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board, and junction cables. The ultrasonic sensor is placed on the inner lid toward the
direction of solid waste. The live data are sent to the microcontroller for further processing
and are sent to a web page via the Bolt Wi-Fi module. The module also automatically sends
e-mails and alert texts to the client, stating that the trash is overflowing. The distance is
measured using the ultrasonic sensor, which is integrated with the lid that indicates the
trash can’s size. Thema the Arduino Uno is the system’s central component, containing
Arduino’s latest microcontroller, for easier processing of data sent by sensors and further
transmission to a Bluetooth or Wi-Fi module for further processing or display. The fuzzy
inference system with GA for optimization is integrated with the microcontroller.

The load cell is a critical sensitivity module. It is a carefully designed metal structure
that is loaded with precise locations in the system known as injury gauges, which are made
up of smaller components. In this paper, Wheatstone bridge load cells are deployed, and
these load cells have four balanced resistors with predetermined excitation voltages. If any
resistor detects a change in value, it generates a voltage using Ohm’s Law. The HX711 load
cell amplifier interface, which is an electronic scale module, converts the measured changes
in resistance, and it is a 24-bit analogue to digital converter. The Arduino is connected to
the 5 kg load cell interface using the HX711 module. The change in resistance is used to
measure the weight of a garbage object after calibration. The servo motor is controlled by
the Arduino and requires more power for mechanical output. The small service motors
are directly connected to the Arduino to control the shaft position accurately. The position
of the shaft is precisely controlled using motors to obtain accurate results, and the swing
action of the bin is adjusted according to the weight of garbage. A sensor on the trash
determines the depth of the garbage in the total bin. When the level of waste is at its
maximum, the managers in the office are alerted so that the staff can take the necessary
steps to empty the garbage bin.

The inclusion of a fuzzy inference with GA implementation on the Arduino Board
is used to detect trash levels, weight, and so on. The GA rules are incorporated into the
system design by downloading those rules onto the Arduino Board. This helps in the
hardware setup for improvised decision making in the identification and segregation of
waste. In addition, the Arduino Board is trained using fuzzy rules that can detect the level
of waste and types such as plastic bottles, glass, etc. This technique can also help to identify
the areas that need more awareness regarding sanitation and, in turn, locate which regions
are the worst offenders in terms of poor sanitation and garbage maintenance. This effort
can help clean up the environment in an efficient manner. Cloud middleware collects data
from sensors, aggregates them, cleans them (i.e., discards or infers missing values), and
sends them to an engine that is implemented in Open IoT. A fuzzy inference engine with
GA is used for forecasting waste levels and to learn the selection of the daily waste bins
based on historical data. The two primary components of the system are as follows:

• Waste monitoring system: The waste monitoring system consists of an ultrasonic
sensor. The sensor measures the proportion of the bin that is filled with waste. A
Wi-Fi module is used to send information that can track the level of waste in the smart
garbage bin so that overflow is prevented and smooth service is obtained.

• Waste segregation system: The segregation system uses the load cell and the servo motor.

The high-level and detailed workings of the proposed model are shown in Figures 3 and 4,
respectively. The object falls on the midsection inside the bin, and the impact weight is read
by the load cell upon contact. The subsequent weights are also read until the reading of the
object weight is constant. A set of 30 continuous weight readings were measured in the
previous step. The readings are split into two sets: the first set is the impact and rebound
readings of the object. These are variable readings as the object rebounds upon impact.
The highest reading value is obtained from this set. The second set is obtained when the
object has a stable set of readings. The average of this set is determined and divided by
the highest reading value of the first set. If the ratio of the two is greater than a threshold,
the servo motor will be turned 90 degrees, or else 270 degrees, from its origin point. This
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helps calibrate the waste segregation system and accurately read all the weight values of
the waste products placed on top of the smart garbage board.
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The garbage is placed in the smart bin, which the load cell picks up, determines the
weight of the trash, and then segregates it. The ultrasonic sensor keeps track of the garbage
level. If the bin level is more than half full, the information is sent to the cloud for alert
generation, which allows the client to empty the bin. This work is still made smarter by
the use of technology in terms of garbage collection, segregation, and indication to the
concerned authorities (municipal authorities are referred to as clients). Furthermore, at the
administrator’s end, this system provides a control to provide a warning signal when the
garbage reaches 60, 70, 80, or 90 percent of the trash box, avoiding sanitary issues. This
implementation enables the smooth and uninterrupted service of the smart container. Only
authorized users can login to and utilize the system. Hence, cloud computing provides
functional reliability for the city’s infrastructure with regard to security.

Smart systems can analyze a problem and make decisions, such as alerting the appro-
priate client to perform waste collection in the appropriate city location, which is a key
concept, developed in the proposed system for effective problem solving. Figure 5 shows
the proposed image classification model.



Appl. Sci. 2023, 13, 3943 10 of 29
Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 31 
 

 

Figure 5. Proposed image classification model. 

3.2. Methodology of Genetic Algorithm–Fuzzy Inference System (GA-FIS) 

This technique is adopted to solve the waste management problem. The idea behind 

this technique is to ensure that essential genes are preserved, thereby promoting the vital 

genes in consecutive generations and improving chromosome fitness. In this approach, 

GA builds an ideal combination of rules and serves as an optimization tool. If the training 

data are insufficient, the fuzzy system employs expert knowledge. FIS provides the op-

tion to employ expert and hidden expertise simultaneously. The combination of GA and 

FIS is intended to improve functionality by integrating expert knowledge in the form of 

membership functions and fuzzy rules. The entire pseudo code is given in Appendix A 

Algorithm A1. The task for each block is given below. 

The methodology of GA is given below: 

• Seed Block 

This block will generate the chromosomes, and they will be copied to the parent 

pool. After copying, the parent chromosome will be executed. The binary-coded chro-

mosome representation is utilized here. 

A. Evaluator Block 

The fitness of the parent population is determined. The total load at each time slot 

will be calculated, and the cost will be calculated for each chromosome. 

B. Parent Selector 

The selection operator plays a significant role in choosing the chromosomes for the 

mating pool, and it also controls the crossover and mutation processes. The selection 

procedure has several distinctions based on raw fitness. The only disadvantage of this 

method is that it produces the greatest number of fitness chromosomes. Hence, to over-

come this, scaled fitness is employed in this algorithm. Spaced markers are placed 

Figure 5. Proposed image classification model.

3.2. Methodology of Genetic Algorithm–Fuzzy Inference System (GA-FIS)

This technique is adopted to solve the waste management problem. The idea behind
this technique is to ensure that essential genes are preserved, thereby promoting the vital
genes in consecutive generations and improving chromosome fitness. In this approach,
GA builds an ideal combination of rules and serves as an optimization tool. If the training
data are insufficient, the fuzzy system employs expert knowledge. FIS provides the option
to employ expert and hidden expertise simultaneously. The combination of GA and
FIS is intended to improve functionality by integrating expert knowledge in the form of
membership functions and fuzzy rules. The entire pseudo code is given in Appendix A
Algorithm A1. The task for each block is given below.

The methodology of GA is given below:

• Seed Block

This block will generate the chromosomes, and they will be copied to the parent pool.
After copying, the parent chromosome will be executed. The binary-coded chromosome
representation is utilized here.

A. Evaluator Block

The fitness of the parent population is determined. The total load at each time slot will
be calculated, and the cost will be calculated for each chromosome.

B. Parent Selector

The selection operator plays a significant role in choosing the chromosomes for the
mating pool, and it also controls the crossover and mutation processes. The selection
procedure has several distinctions based on raw fitness. The only disadvantage of this
method is that it produces the greatest number of fitness chromosomes. Hence, to overcome
this, scaled fitness is employed in this algorithm. Spaced markers are placed equally on the
scale to select the respective chromosomes. The selected chromosomes are then transferred
to the mating pool.
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C. Evolutionary Operators

New offspring chromosomes are generated by merging the chromosomes in the mat-
ing pool. The primary operators are crossover and mutation. The crossover operator
produces the new offspring chromosome, and the mutation operator performs the gene
modification. Different mutation and crossover operators are selected based on the chro-
mosome representation.

D. Fuzzy Inference System

Fuzzy logic helps to identify the crucial genes among the available chromosomes.
Hence, to determine the useful gene in the offspring population, fuzzy logic is incorporated
in this block. A trapezoidal member function (MF) maps every element in the input space
into a membership value called membership degree. Thus, it is expressed as a collection of
four points (a, b, c, d) given in the below equation:

µ(y) =


0, y ≤ a, d ≤ y
y−a
b−a , a ≤ y ≤ b
1, b ≤ y ≤ c

d−y
d−c , c ≤ y ≤ d

 (1)

In Equation (1), the Y coordinates of four edges of the underlying MF are (a < b < c < d).
FIS contains the if–then rules to encode conditional propositions. The different fuzzy rules
developed in our system are as follows:

If smart_bin_distance_sensor < 0.2 THEN;
Bin is empty;
Else if smart_bin_distance_ sensor > 0.2 AND smart_bin_distance_sensor < 0.6 THEN;
Bin is partial_full;
Else;
Bin is Full.

A Mamdani FIS is implemented in our proposed system. In this model, the conse-
quences of the rules are represented using fuzzy sets. The mechanism is described below:

A. Real inputs: The numerical data are observed as GA characteristics. The inputs are
non-fuzzy values.

B. Fuzzify inputs: All fuzzy statements are resolved to a membership degree in the range
of 0 to 1.

C. Fuzzy rules: The if–then rule statements are utilized as given below:
D. Ri: If (in1 is A1i) and . . . (inm is Ami)then (out1 is B1i) and . . . and (outn is Bni).
E. Fuzzy operator applied to multi antecedents: If the antecedent has multiple fragments,

antecedent is resolved to a single value between 0 and 1 is performed by fuzzy logic.
F. Applying implication technique: The degree of support is used for the entire rule to

determine the output fuzzy set shape. The entire fuzzy set is assigned to the output.
G. Aggregation: The fuzzy set Br for every rule is aggregated as a single output fuzzy

set B0.
H. Defuzzification: The defuzzification input is a fuzzy setµ which is the aggregate

output fuzzy set, and the output is a single value y*. The centroid method is utilized
for defuzzification.

A defuzzification process given in Equation (2) is used to extract the output as follows:

y∗ = de f uzz(B0) =

∫
y yn. ∑n

r=1 µBr(y)dy∫
y ∑n

r=1 µBr(y)dy
(2)

Defuzzified rate is the directly acceptable value of GA parameters, for example:
Output#1 is tournament selection power;
Output#2 is bit-mutation probability;
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y1* = 2 represents selection of binary tournament;
y2* = 0.03 characterizes 3% mutation probability.
A test function is deployed with the integration of cosine modulation to result in local

minima. The function is highly continuous and multimodal. Achieving a global minimum
standardization to a zero value of the objective function facilitates minimization. The
function is given below:

f1

(→
x
)
= A.n+

n

∑
i=1

(
x2

i − A. cos(2π.xi)
)

,
→
x ∈ [−5.12, 5.12]; min f1(

→
x) =

0, n . . . dimensionality, A = 10
(3)

After defuzzification, the coefficient of the below equation is used to determine the
final solid waste segregation represented in Equation (3).

Totalwaste =
m

∑
i=1

aixi +
n

∑
j=1

biyyij (4)

where ai represents the population of a specific area, i; xi is the daily waste production
value per person in the area i; and bij is the total area of activity j in the area i as determined
by the defuzzification process. In addition, m specifies the distinct regions, and n represents
the activities in every region. The estimates (xi and yij coefficients) are used to construct the
waste production and determine predictions for further analysis. Thus, waste products can
be estimated to enhance waste management and planning.

The approach introduces two FIS inputs, namely, fuzzy-rule-based singleton values
and FIS.

The first input specifies the distance between the global average and an individual,
who is represented in Equation (4).

Disi =

√√√√ N

∑
d=1

(
xd

i − GBd
)2 (5)

where the distance among the global best and ith individual is given by Disi, the dimension
dth of ith individual is specified as xi

d, and the GBd denotes the dth dimension of GB. An
error of diversity (Errdiv) which is the other input is given below:

Errdiv = Dg − Dgoal,g (6)

The inputs are updated before applying the FIS in the proposed method because
the magnitude order varies for these inputs while the evolutionary technique is being
performed. The equations are represented in (6) and (7) below:

Disstd,i =

{
0, i f Dismax − Dismin = 0,

Disi−Dismin
Dismax−Dismin

, others
(7)

where the Disstd,i specifies the standardized Disi, the Dismax is the highest value of Disi,
and Dismin is the lowest Disi value.

Errdiv,std =


1, if Errdiv

Dgoal,g
≥ 1, Dgoal,g 6= 0

0, if Dgoal,g = 0
−1, if Errdiv

Dgoal,g
≤ −1, Dgoal,g 6= 0

Errdiv
Dgoal,g

, others

(8)

where the standardized error is given by Errdiv,std, the range is 0 to 1 for Disstd,i, and
the error after adjustment is −1 to 1. Algorithm 1 and Figure 5 depict trapezoidal input
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membership functions. Three fuzzy sets are utilized for the first input, and the second
input requires five fuzzy sets. Table 3 represents the singleton fuzzy rule base.

Table 3. The fuzzy rule base.

Errdiv,std

Diststd,j
Close Medium Far

Positive High 0.7 0.8 0.9
Positive Low 0.5 0.6 0.7

Fit 0 0 0
Negative High 0.3 0.4 0.5
Negative Low 0.1 0.2 0.3

Algorithm 1. Pseudocode of GA–fuzzy inference system.

Begin
// Initialize the parameters
Initialize the size_population, size_archive, size_elite, size_pool_mating, generation_max,
Probability_mutation, probablity_crossover, pool_offspring, pool_mating, pool_gene;
Initialize the utilisations_set, slots_total, utilizations_no, slots_total, utilisations_power,
price_electricity;
For i = 1 to size_ population

For each appliance j in the appliances_set
For t = 1 to slots_totalsj,
Allocate timeslot to the utilisation j within realistic time slots

End For
End For

End For
Initialize the following: Iteration = 1, generation_current = 1;
For generation_current = 1 to generation_max
For each chromosome i in the pool_parent

For t = 1 to slots_total
Determine the total load at time interval‘t’

End For
End For
Find the best chromosomes
Copy the best chromosomes into the pool_offspring
Update the current generation counter as generation_current = generation_current+1;
Return chromosome fitness value in the pool_parent

Goto GA Block // Given in Appendix A
If generation_current equals generation_max then
Terminate the execution cycle
Output optimal chromosome
Else
Goto Parent Selection Block // Given in Appendix A
Continue with the execution cycle
End if

• Reinforcer

Essential genes are selected and inserted into the offspring population. This selection
will preserve and update the crucial genes in the successive chromosome population.

Each generation computes the population diversity. Then, the Errdiv,std and Diststd,j
are calculated. The GA-FIS is calculated from the variation between existing variety, and
the diversity goal then selects xbase.

3.3. Methodology for Image Classification

The major steps involved in the image classification approach are given as follows:

• Pre-processing.
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• Feature selection.
• Classification.

Initially, the images are gathered from the camera placed in the waste bin. Then, a filter
is applied for image enhancement. Afterwards, from every image, features are collected.
The selected features are sent to optimize fuzzy inference system (OFIS).

• Image preprocessing: Images are captured from the waste bin. Then, the images are
enhanced by sending them to the pre-processing unit, and the image is divided into
an R, G, and B setup. The green band has more data in comparison to other colors, so
the noise is reduced by deploying the green (G) band.

• Feature selection: The color attributes and the texture are selected from the image. In
this approach, from every image five features are extracted, namely the mean, standard
deviation, area, perimeter, and eccentricity.

• Mean (F1): The image with high brightness represents a higher mean, and the
dark image represents a decreased mean value. The mean is calculated as given
in Equation (9):

Fj =
1
N

N

∑
i=1

Qji (9)

• Standard deviation (F2): SD is the term used to represent square root of the variance.
Low variance is obtained if the contrast is less, and high variance results for a high-
contrast image. It is calculated as given in Equation (10):

F2 =

√√√√( 1
N

N

∑
I=1

(Qji − Fj)
2

)
(10)

• Area (F3): A particular region is extracted from the complete image. A scalar value
which represents the number of pixels in a specific area is determined.

Y = {FIS1, FIS2, . . . , FISd} (11)

where FISd specifies the optimal FIS system in dth dimension.

• Perimeter (F4): The distance around the region boundary of the input image.
• Eccentricity (F5): The separation proportion among oval foci and the significant

pivot length.
• Optimized FIS (OFIS) for waste categorization: The waste images are categorized as

recyclable and non-recyclable by OFIS. The fuzzy system consists of two major stages,
which are described below:

• Fuzzification: Input features of F1, F2, F3, F4, and F5 are transformed into fuzzy
attributes. The membership function (MF) is calculated for every fuzzy variable. For
every feature, fuzzy variables are categorized as low (L), medium (M), and high (H).
Thus, finally, fuzzy variables are classified as recyclable and non-recyclable.

• Defuzzification (Z): Table 4 shows the sample fuzzy rules. The FIS rule system updates
the membership function’s input and output parameters. It is essential for optimal
consolidation of the MF parameters.

3.4. Risk Assessment

A risk assessment is performed in the proposed method to check for environmental
hazards such as air pollution, soil contamination, and water contamination. These
catastrophic effects due to poor waste management are eliminated in the proposed
system, as there is an IoT component integrated with AI. In medium and large-
sized cities, the number of containers is in the range of hundreds or even thousands;
therefore, a distributed approach to the proposed system can be implemented for
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every zone in the city. The proposed system treats each container as a different entity,
which can change daily. As the previous fill levels of the containers are available,
the AI system forecasts future fill levels based on historical data. This data will be
useful in determining which containers must be collected during the next shift. The
prediction of generations is very complex, because we need to model the behavior of
the population which deposits its waste in a particular container. These developed
models have the ability to resolve difficult risk assessment problems.

Table 4. Fuzzy rule samples.

Rule No. F1 F2 F3 F4 F5 Output

1 H M H H L Recyclable
2 L H M L H Non-recyclable
3 H L L L M Non-recyclable
4 M L H M H Recyclable
5 L M L H M Recyclable
6 H H L L M Non-recyclable
7 L L M H L Recyclable

. . . . . . . . . . . . . . . . . . . . .
N H M L H H Non-Recyclable

The fuzzy rules are configured to indicate the waste level as well as the type of waste
for segregation. They also provide information about the type of waste in this bin, such as
whether it is reusable, recyclable, organic, or electronic waste.

Risks can be determined as a result of the numerical value that measures the exposure
to each risk level (defuzzification). It is similar to the ranking according to fact level and the
exposure risk is high. Fuzzy logic models contain information about the exposure to risk or
other factors that can have a huge impact. The risk-hedging cost can be considered an extra
output variable in the fuzzy model. The risks of waste management using the proposed
model in an emergency are dependent on various factors, such as waste management instal-
lation and operational and maintenance practices (OM). Predictive failure assessment and
deterioration modeling for waste management are important because they can help waste
management managers optimize future inspection plans while also avoiding unpredictable
events that can endanger communities.

The complexity of the problem can be derived from the number of restrictions that
can be applied to the model. Thus, the more restrictions applied to the model, the more
realistic the solution obtained. In this paper, the company establishes that all the containers
with fill estimation greater than 80% have to be collected. The constraints are enumerated
as follows:

Containers.

• Variable container count.
• Different locations.
• Adjustable unloading time.

4. Results
4.1. Experimental Analysis

The first step is to prepare all information for the model, such as zone attributes, depot
attributes, vehicle attributes, and distance for every zone. In this approach, a solution is
represented by a string of numbers containing a permutation of ‘m’ depots represented
by the set {1, 2, 3, . . . , m}, n potential customers represented by the set {m+1, m+2, . . . ,
m+n}, and Ndummy Zeros to separate routes. Suppose we have two candidate depots and
twelve zones in a city, as shown in Table 5. The distance for each node is calculated using
the distance matrix API developed by Google based on latitude and longitude of each
node. The chromosomes are the initial candidates for our proposed approach. For every
chromosome, we insert a depot to serve the various zones according to the maximum
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waste picked up by the vehicle. A shortest distance allocation approach is implemented
to determine which depot to serve the zone. A dummy zero is used in the solution to
represent the separate route for each vehicle. For example, in chromosome-1, zones 5 and
14 will be served by depot 1 instead of depot 2 due to the shortest distance from the node.
Thus, it is possible to minimize the total distance of each route. The solution representation
for chromosome-1 is shown in Figure 6.

Table 5. An example of depot and zone attributes.

Depot Zones

Depot No. Depot Capacity Latitude Longitude Zone No. Demand
(Waste Volume) Latitude Longitude

1 1200 −6.85 107.59 3 39.49 −6.88 107.58
2 1200 −6.93 107.61 4 45.39 −6.88 107.57

5 14 −6.86 107.58
6 16 −6.87 107.60
7 4.5 −6.86 107.60
8 9.08 −6.92 107.62
9 27.37 −6.91 107.62
10 1.78 −6.91 107.60
11 31.93 −6.91 107.61
12 4 −6.91 107.60
13 33.39 −6.92 107.65
14 43.56 −6.92 107.64
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The next step is the selection process. The proposed work implements tournament
selection for choosing the best candidates from the current generation in GA. These selected
candidates are passed on to the next generation. After choosing the individuals using
tournament selection, a new generation is created by combining parent solutions to result in
a new solution in GA. We apply a new type of crossover named partially matched crossover
(PMX) [59,60] to generate new offspring. This type of crossover is widely used, and the
illustration is shown in Figure 7. According to Figure 7, PMX starts by selecting parents from
the previous selection approach. In this example, we choose chromosome-7 as parent-1,
which has the minimal fitness value. Parent-2 is generated from parent-1 by modifying
the order in parent-1. The first step chooses a random segment(substrings) and copies it
from parent to child. In this step, the substrings are exchanged among parents and node
duplication is checked for in the strings. As there are mapping references, the duplicate
nodes are replicated with another node by performing the mapping relationship. The
remaining offspring can be filled similarly with the parents. The next step after crossover is
the mutation operation. The mutation process is performed to increase the probability of
avoiding local solutions in GA. The mutation operator alerts one or multiple genes in the
children’s solutions once the crossover is completed. GA improves the population using
the operators until the end condition. The output of GA is used as the initial solution for
the FIS approach.
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Table 6 specifies the experimental settings of the proposed GA-FIS parameters, namely
population size (PS), dimension (N), crossover rate, and mutant factor. The analysis from
the experimental results is that there is consistency through 10, 30, and 50 dimensions.
Figures 8 and 9 show the membership functions for the values of close, medium, and far
with regard to input distance and error. Each of the color lines represent different range of
membership function. For example, in Figure 9, the blue color signifies the range from 0
to 0.4 input resulting in a maximum membership, to which it can be categorized as close.
The red color signifies the range of medium values between 0.2 to 0.8 input resulting in a
maximum membership and green color signifies far value range from 0.6 to 1 input which
can result in a maximum membership function.

Table 6. Experimental settings of the proposed GA-FIS.

Parameter Values

Population size (PS) 48
Independent iterations 50

Dimensions (N) 10/30/50
Crossover rate 0.6

Mutant factor (F) 0.6
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The proposed GA-FIS is analyzed with different diversity curves for various gener-
ations, namely, 10, 30, and 50, respectively. The diversity curves of multiple dimensions
are compared, as shown in Figures 10–12, respectively. In all these figures, the blue line
represents the diversity results for the traditional GA and the red line represents the diver-
sity results for the proposed GA-FIS. Thus, it expresses that the control diversity technique
is useful and independent of the dimensions. It is inferred from the figures that the indi-
viduals of GA-FIS begin to converge because of the depreciation of diversity. The GA-FIS
expands the diversity level if the value is below the goal. Therefore, if a variety is handled
appropriately, the proposed approach results in superior performance.
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Figure 13 shows that the hardware component of the monitoring system is shown in
working condition. It is inferred from Figure 14 that the monitoring system successfully
manages to detect the distance between the bottom side of the lid of the bin and the garbage
level of the container.
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Figure 15 illustrates the successful build-up of code in our waste segregation system.
Once initialized, the garbage is placed on top of the smart bin. Figure 16 shows that
when metal objects are placed as waste on the smart bin, the servo motors rotate properly
and segregate the waste, with the values being 32 g for the metal ball considered for
demonstration. Figure 17 shows the waste segregation system displaying an alert “Trash
can is full” on the webpage. Therefore, the bin has to be cleaned. Figure 18 shows the alert
message “Trash is empty”, and the user can resume operations.
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A fuzzy inference system with GA is integrated for image classification. This clas-
sification distinguishes between recyclable and non-recyclable garbage waste. Figure 19
illustrates the different kinds of waste that have been appropriately marked and recognized
by the classifier.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 23 of 31 
 

 

Figure 19. Classification of all the waste particles. 

Table 7 shows the experimental analysis of waste in a smart bin at various levels. 

The sensor placed in the inner side of the lid measures the distance of the trash in the 

container to determine whether it is empty or full. An alert is generated when the bin is 

nearly full, i.e., 2 cm from the distance of the inner lid to the container. 

Table 7. Experimental analysis of waste in smart bin. 

S. No. Distance from Inner Lid Condition 

1 14 cm Empty 

2 7 cm Halffull 

3 2 cm  Nearlyfull 

Table 8 shows the proposed model’s performance on various states of the smart bin, 

such as empty, partial, and full. Overall accuracy, precision, and recall of 95.44%, 96.68%, 

and 93.96% are obtained when combining the results of all classes. Table 9 shows the 

confusion matrix of the proposed model. The ability to identify paper, metal, and plastic 

is significantly higher in comparison to cardboard and glass. This is due to specific pixels 

containing white spots that were unnoticed during the prediction of the final result. 

Table 8. Performance metrics of the proposed model on the various states of the smart bin. 

Classes Accuracy Precision Recall 

Empty 95.93 97.56 96.70 

Partial 92.31 92.75 90 

Full 98.09 99.73 99.19 

Overall 95.44 96.68 93.96 

Table 9. Confusion matrix of different waste element segregation using proposed model. 

Class Paper Metal Plastic Cardboard Glass Total Correct % 

Paper 166 0 0 0 0 166 100 

Metal 0 130 0 0 0 130 100 

Plastic 0 0 140 10 0 150 93.33 

Cardboard 0 0 0 146 22 168 86.9 

Glass 0 0 2 18 149 169 88.16 

Total 166 130 142 164 171 773  

Correct % 100 100 98.59 89.02 87.1  94.92 

Figure 19. Classification of all the waste particles.

Table 7 shows the experimental analysis of waste in a smart bin at various levels. The
sensor placed in the inner side of the lid measures the distance of the trash in the container
to determine whether it is empty or full. An alert is generated when the bin is nearly full,
i.e., 2 cm from the distance of the inner lid to the container.

Table 7. Experimental analysis of waste in smart bin.

S. No. Distance from Inner Lid Condition

1 14 cm Empty
2 7 cm Halffull
3 2 cm Nearlyfull
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Table 8 shows the proposed model’s performance on various states of the smart bin,
such as empty, partial, and full. Overall accuracy, precision, and recall of 95.44%, 96.68%,
and 93.96% are obtained when combining the results of all classes. Table 9 shows the
confusion matrix of the proposed model. The ability to identify paper, metal, and plastic
is significantly higher in comparison to cardboard and glass. This is due to specific pixels
containing white spots that were unnoticed during the prediction of the final result.

Table 8. Performance metrics of the proposed model on the various states of the smart bin.

Classes Accuracy Precision Recall

Empty 95.93 97.56 96.70
Partial 92.31 92.75 90

Full 98.09 99.73 99.19
Overall 95.44 96.68 93.96

Table 9. Confusion matrix of different waste element segregation using proposed model.

Class Paper Metal Plastic Cardboard Glass Total Correct %

Paper 166 0 0 0 0 166 100
Metal 0 130 0 0 0 130 100
Plastic 0 0 140 10 0 150 93.33

Cardboard 0 0 0 146 22 168 86.9
Glass 0 0 2 18 149 169 88.16
Total 166 130 142 164 171 773

Correct % 100 100 98.59 89.02 87.1 94.92

4.2. Discussion

The comparison of least cost obtained by the GA-FIS with GA for the four different
sets of smart bin loads is shown in Figure 20. The efficiency of GA-FIS over GA is measured
in terms of percentage of cost lessened concerning four smart bin loads.
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It is evident from Figures 21–24 that GA-FIS has significant cost benefits because of
the better fitness evolution for each of the smart loads one to four.



Appl. Sci. 2023, 13, 3943 23 of 29

Appl. Sci. 2023, 13, x FOR PEER REVIEW 24 of 31 
 

4.2. Discussion 

The comparison of least cost obtained by the GA-FIS with GA for the four different 

sets of smart bin loads is shown in Figure 20. The efficiency of GA-FIS over GA is meas-

ured in terms of percentage of cost lessened concerning four smart bin loads. 

 

Figure 20. Performance analysis of GA-FIS with GA. 

It is evident from Figures 21–24 that GA-FIS has significant cost benefits because of 

the better fitness evolution for each of the smart loads one to four. 

 

Figure 21. Fitness evolution graphs of GA_FIS and GA for smart load 1. 

0

10

20

30

40

50

60

70

80

90

100

L1 L2 L3 L4

C
o

st

Smart Bin Loads

GA-FIS

GA

Figure 21. Fitness evolution graphs of GA_FIS and GA for smart load 1.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 25 of 31 
 

 

Figure 22. Fitness evolution graphs of GA_FIS and GA for smart load 2. 

 

Figure 23. Fitness evolution graphs of GA_FIS and GA for smart load 3. 

 

Figure 24. Fitness evolution graphs of GA_FIS and GA for smart load 4. 

Table 10 shows the proposed GA-FIS model for waste management categorizing the 

various waste materials under recyclable and others. This improves the efficiency of our 

proposed approach.  

0

20

40

60

80

100

120

0 20 40 60

C
o

st
(c

e
n

ts
)

Iterations

GA

GA_FIS

0

20

40

60

80

100

0 20 40 60

C
o

st
(c

e
n

ts
)

Iterations

GA

GA_FIS

0

20

40

60

80

100

120

0 20 40 60

C
o

st
(c

e
n

ts
)

Iterations

GA

GA_FIS

Figure 22. Fitness evolution graphs of GA_FIS and GA for smart load 2.
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Figure 24. Fitness evolution graphs of GA_FIS and GA for smart load 4.

Table 10 shows the proposed GA-FIS model for waste management categorizing the
various waste materials under recyclable and others. This improves the efficiency of our
proposed approach.

Table 10. Categorization of waste materials using the proposed GA-FIS.

Category Set Element Number

Paper Books 5
Cups 5
Boxes 4

General bottles 6
Recyclable Plastic Shampoo bottles 4

Pen 1
Watch 1
Cans 7
Key 1

Metal Scissor 1
Beer cap 1

Glass Bottle 4
Sum 4 12 40

Apple 1
Banana 1

Fruit/vegetable Carrot 1
Cabbage 1

Others Rose 1
Others 1

Egg 1
Kitchen waste Lunch box 1

Trash bag 1
others Bowl 1

Sum 3 10 10

Figure 25 illustrates the accuracy results of various recyclable items in percentage. It is
inferred that most of the items are classified successfully in the proposed system. However,
a few items are incorrectly classified, such as soft plastic cups, long boxes, and small boxes,
with accuracy rates of 80, 90, and 90 percent, respectively. The reason for the low accuracy
is that the minimal weight is not counted by the weight sensor; however, when the item is
placed, the pressure weight is recorded.
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Table 11 shows the proposed model compared with existing smart garbage systems
that have deployed machine learning classifiers and deep learning techniques as docu-
mented in the literature. It is inferred that the intelligent GA-FIS model is superior in
terms of accuracy, precision, and recall, as the integration of GA with FIS results in optimal
accuracy by determining the best chromosomes for prediction. The GA-FIS learning and
prediction times were 3 and 10 s, respectively, while those times were 223 and 345 s for
the GA. Therefore, in the proposed work GA-FIS performs better, as it is widely suited for
dynamic environments.

Table 11. Comparison of the proposed model with existing smart garbage systems.

Techniques Accuracy Precision Recall

CNN+MLP [39] 91.6 97.1 92.3
CNN [39] 87.7 88.6 96.8

Naïve Bayes [53] 86.5 88.2 88.2
MLP [53] 86.8 88.3 87.2
KNN [53] 88.1 89 89

Proposed GA-FIS Model 95.44 96.68 93.96

5. Conclusions

This paper proposes an intelligent smart waste disposal system using GA-FIS. The
system not only calculates whether the smart bin is full but also notifies the concerned
people about the clearance of garbage from the bins. A Mamdani FIS is used for predicting
the probability of waste to determine whether the smart bin is nearly full. The accuracy of
the proposed model is 95.44%, as the integration of GA with FIS results in better fitness
evolution. The derived metrics precision and recall are 96.68 and 93.96, respectively. The
GA-FIS component is used to select the best rule for optimal decisionmaking and is also
used for image classification of different types of waste. This system is mainly designed for
outdoor use with cost-effective sensors. Categorizations of recyclable and non-recyclable
items are performed to minimize resource waste. Performance analysis on other smart
bin loads is conducted to compare traditional GA with the proposed GA-FIS, and it is
evident that better fitness evolution results in reduced costs. The proposed algorithm
performs better for a variety of reasons, ranging from waste collection, segregation, and
reuse to waste recycling, as it truly improves the nation’s circular economy and also helps
to improve the nation’s environmental and, as a result, sanitary conditions. A comparative
analysis is performed with existing machine learning and deep hybrid models to show that
the proposed model achieves superior accuracy, precision, and recall.
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Appendix A

Algorithm A1. Pseudocode of GA block.

//block for parent selection
Determine the fitness aggregate
Place the chromosomes based on the fitness aggregate on the fitness scale
Loop
Place the indication on the fitness scale; Pick the chromosome on the fitness scale
Position the chromosome on the pool_mating
Until the pool_mating is full
Randomly create pair among chromosome in the pool_mating
For each pair of chromosomes [i, j] in the pool_mating
For each utilization,
Create a Uniform random number u €[0, 1]
If (u > 0.5)
Duplicate the genes from chromosome i for applicationkand place the selected genes into
offspring_1
Duplicate the genes from chromosome j for applicationkand place the selected genes into
offspring_2
Else
Replica the genes from chromosome j for applicationkand fill those genes into offspring_1
Replica the genes from chromosome i for applicationkand fill those genes into offspring_2
End if

End For
End For
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Algorithm A2. Pseudocode of GA block continued.

Randomly apply the mutation operation in the pool_offspring based on the probability of
mutation
For each utilisation i

For each chromosome j in the pool_offspring
Get the chromosome fitness for ‘j’ and the utilisation cost ‘i’
Trigger the rules after fuzzification of input values
Calculate the utilization ‘i’ usefulness in
chromosome j based on the rules
Defuzzify the output value

End for
Calculate the usefulness of utilization i over all the chromosome in pool_offspring and store
End for
For each utilization i
Determine the usefulness for the utilization i using IFIS

End for
Identify the most useful genes over all the chromosomes in the pool_offspring
Store the current most useful genes as new_genes along with their usefulness
Update the genes usefulness in the gene_pool
Update the gene_pool with the most useful genes found over the new_genes and the existing
gene_pool, along their usefulness
Mask all the genes of each appliance in all chromosome of the offspring_pool
For each gene pattern i in the pool_gene
Randomly select chromosome j in the pool_offspring, with bits masked for the gene pattern i
Insert the gene pattern i from the pool_gene into the chromosome j
Reveal the respective bits of chromosome j in the pool_offspring
End for
End
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