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Abstract

The simultaneous localisation and mapping (SLAM) algorithm has drawn increasing interests in autonomous robotic

systems. However, SLAM has not been widely explored in embedded system design spaces yet due to the limitation of

processing recourses in embedded systems. Especially when landmarks are not identifiable, the amount of computer

processing will dramatically increase due to unknown data association. In this work, we propose an intelligible SLAM

solution for an embedded processing platform to reduce computer processing time using a low-variance resampling

technique. Our prototype includes a low-cost pixy camera, a Robot kit with L298N motor board and Raspberry Pi V2.0.

Our prototype is able to recognise artificial landmarks in a real environment with an average 75% of identified

landmarks in corner detection and corridor detection with only average 1.14 W.
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1 Introduction

The simultaneous localisation and mapping (SLAM)

algorithm has been developed to meet the challenge of

building and updating a map of the surroundings in

moving mobile robots, which includes mapping robots

poses without prior knowledge of their surroundings. It

has the advantage of providing knowledge about the ro-

bots’ own pose and representation of the environment

using extensive computational resources to map robots’

surroundings and simultaneously perform localisation

[4, 5]. To enable a robot to navigate through an environ-

ment autonomously, an estimation of its position within

a reference system or map could be obtained from

sensors, such as dead-reckoning sensors, laser sensors,

radar sensor or 3D camera sensors [6], GPS (Global

Positioning System) [1, 3, 10, 19, 30]. However, those

sensors are either expensive or unsuitable for small

robots because of size, weight or power efficiency. For

example, a GPS can be used to provide the solution for

the global localisation. However, at some places, GPS is

not possible to use it, such as in caves, underwater or

places where no signal can be obtained [1].

Currently, researchers have moved into alternative af-

fordable solutions, such as ultrasonic sensors or infrared

sensors. However, those types of sensors do not provide

accurate odometry information due to the relatively low

signal-to-noise ratio in low-cost sensors compare with

expensive sensors [17]. Furthermore, most of the low-

cost sensors that were used to estimate the current

position of the mobile robot tend to accumulate errors

over time (known as statistically dependent) due to the

noise generated intrinsically in the sensors. Recently, the

SLAM community moves towards image sensors (refer

to Visual SLAM), as they are affordable and able to

provide a large amount of information compare with

other sensors such as laser range finders. In addition, it

can be applied to mobile robots that have smaller sizes,

lower weight and less power consumption [8, 24] than

industrial robots. At the same time, it presents great

challenges due to the computational resource needed for

the identification of landmarks in variable environments.

Hence, SLAM presents an emerging challenge to be imple-

mented with low-cost embedded systems, which are the

most common platform for pervasive computing products.
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In this work, we combined visual SLAM and visual

odometry algorithm on a low-cost embedded platform

to demonstrate how a mobile robot navigating using

artificial landmarks in an indoor environment. Our

proposed method can lead to fast landmark detection

with a reduced computational complexity using a low-

variance resampling, which result that the sensor data

measurement is kept outside of the main process loop

during estimating the locations of the landmark.

2 Related work

In order to implement a cheap and small SLAM system,

monocular visual SLAM solutions were invented to use

only single image sensor [24]. However, the algorithms

needed for monocular SLAM are much more complex

since depth information cannot be directly inferred from

a single frame captured from a single camera. Normally,

each frame needs to be processed, even when no rele-

vant information is provided by new frames. Further-

more, these solutions also present an accumulation error

over time due to nonlinear Kalman filter related models.

The best-known implementation of monocular SLAM

using a keyframe-based approach is PTAM [14]. The

keyframe-based technique is used to select some of the

frames with predefined features to save computational

power. In PTAM system, a parallel processing with

high-performance computing system was used for

obtaining robot’s pose and the location mapping, which

is unsuitable for low-cost and low-power embedded

systems due to power consumption issues.

Other implementations of monocular SLAM are also

based on obtaining abstract regions of an image in each

frame that are more useful for reconstruction of location

than robots navigation [7, 21, 27]. Some of the

algorithms for the detection of regions are SIFT, BRIEF,

FREAK, SURF and ORB [11]. However, all these feature

extraction approaches present the problem of data

association in SLAM [21].

Data association problem is how to decide which noisy

measurement corresponds to which feature of the map.

Noise and partial observability can make the relationship

between measurements and the model highly ambigu-

ous. This problem is further complicated by considering

the possible existence of previously unknown features in

the map and the possibility of spurious measurements.

For example, multiple measurements over time are

obtained by a sensor, it is needed to associate which

measurement belongs to a specific landmark. The

methods for the solution of data association are based

on statistical procedures such as Nearest Neighbor (NN)

[2] or Joint Compatibility Branch and Bound (JCBB)

[22, 25]. One way to solve associate measurements with

low computational complexity is using artificial landmarks

that consist the modification of environment features [26].

Several other studies tackle the problem by minimising

the ambiguity of the measurements in a mapped environ-

ment [18, 25, 29, 32]. However, in these solutions, uncer-

tainty in the measurements is taken before classifying a

landmark, which results in the incorporation on specific

characteristics of the sensor implemented.

Other studies present the imposition of physical artificial

landmarks in an environment, such as QR codes or fiducial

markers, where uncertainties of both measurements and

data association reduced [15, 23, 31, 32]. Llofriu et al. dem-

onstrated an embedded solution of SLAM using artificial

landmarks [16], such as boxes with different colours. How-

ever, due to slow measurements presented by the image

sensor, it might not have enough updates of the particle,

adding uncertainty in the location. Another drawback is

that the identification of artificial landmarks used in this

study is based on a measurement likelihood that aggregates

to the possibility of introducing wrong data association.

3 Methods and materials

Based on FastSLAM2.0 method, we develop a low-variance

resampling method with a multimodal design style based

on embedded system platforms [20]. The multimodal

FastSLAM framework has been implemented in python,

and its source code is released for public use in an online

repository (see details in Appendix 3).

3.1 Adapted FastSLAM algorithm

FastSLAM2.0 used a particle filter to model the uncer-

tainty of the robot pose [20]. It defines the posterior

SLAM as the product between the posterior of the robot

pose, and the posterior of the landmarks is conditioned

by the robot path, presented in Fig. 1. The posterior is

determined by a Dynamic Bayesian Networks (Eq. 1)

and a Rao-Blackwell particle filter [9, 12, 13]. The pos-

terior of robot path is obtained by the control vector

(ut), the data association (nt) and landmarks (zt) [20].

p xt ; θt nt ; ut ; ztjð Þ ¼ p xt nt ; ut ; ztjð Þp θt nt ;ut ; zt ; xtjð Þ

ð1Þ

As we discussed in the last section about the data asso-

ciation issues in the SLAM algorithm, we adapted a sim-

ple data association approach into three main SLAM

steps: the prediction step for calculating the current state

of particles in motion model; the partial diversity updating

step for recalculating the possibility of particles; the

resampling step for deleting probable trajectories.

In prediction step, we replaced the probability of particle

with a given id. The associations between particles and ids

are made during the landmark detection. Then each par-

ticle stores its own belief of the landmarks, represented by

a Gaussian distribution, and the distribution is updated

using a Kalman filter on each particle independently. As
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illustrated in Fig. 2, each particle information is repre-

sented with each landmark by Θn with distribution μ;Σð Þ,
characterised by a mean (μn) and covariance (Σn).

The new sample of the robot path is represented by a pro-

posal distribution given the visual measurements and con-

trol vectors. Each particle obtained a new sample is based

on a prediction using a motion model, which is described in

Eq. (2). The control vector is composed of the linear

velocity v and the angular velocity w. The pose of the robot

is represented by the components of the position in x; y

and the orientation θð Þ of the robot after a movement.

_x
_y
_θ

2

4

3

5 ¼
v sinθ
v cosθ
ω

2

4

3

5 ð2Þ

Fig. 1 Dynamic Bayesian Network for SLAM

Fig. 2 Information of landmarks contains in particles
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After obtaining the new sample of the position and a

measurement, each particle must update their beliefs about

the landmarks. This is performed using the observation

model, defined in Eq. (3). In addition, the control vector

frequency is higher than the frequency of measurement in

order to increase the diversity of the particles.

Θ ¼
r cosφ
r sinφ

� �

ð3Þ

In this work, we used an inverse model to estimate the

Jacobian on the Kalman filter of each particle. The

inverse matrix model is presented in Eq. (4). The vari-

able V represents a vector to a landmark using the mea-

sured distance, represented by the variable r.

G ¼

Vx

r

Vy

r
−Vy

r2
Vx

r2

0

B

@

1

C

A
;V ¼

Θx−x

Θy−y

� �

ð4Þ

In the resampling step, original FastSLAM2.0 is based

on a Rao-Blackwell factorisation; therefore, it is

necessary to do a resample of the particles in order to

“keep alive” the particle with higher probabilities. To

reduce computational costs, we adopted a low-variance

resample method [28]. Based on the low-variance

resample, we select the most likely particle after applying

a minimisation of the sum of the weights of the particles

with respect to a standard uniform distribution. The

adapted SLAM process using the low-variance resample

method can be found in Fig. 3.

3.2 Landmark detection

In order to represent the landmarks into a coordinate

plane in the observation model, we just measure the

distance and the angle from robot to landmark,

represented by the variable r (distance) and φ (angle). In

the monocular visual sensor scenario, we obtained a

relative distance from the camera to an object by know-

ing the dimensions of the object and calculate the

distance using the epipolar geometry.

In order to calculate the distance, we formulated a

relationship between the focal length (f ) and the dis-

tance to a landmark (r). As illustrated in Fig. 4, the

height of the landmark is represented by h_r; the height

of the landmark in the frame of the camera is repre-

sented by h_s. The relationship between the heights is

shown in Eq. (5). This equation describes the relation-

ship between the height of the object and the height of

the sensor, using the total height of the image frame

(I_h), and the height of the sensor (S_h), being these

proportional to the relationship between the focal

length and the desired distance.

Fig. 3 Pseudocode for our adapted SLAM Algorithm with low-variance resample
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r ¼ f
hr

Sh

Ih

hs
ð5Þ

Regarding the angle calculation, we assume that the

landmark is at the front of the camera, projecting a

horizontal line that forms an angle of π/2 with the object

surface, as illustrated in Fig. 4b. The camera is represented

by a three-dimensional plane xc; yc; zcð ) while the plane of

the image is represented by the two-dimensional coordin-

ate system (xl; yl ). In a similar way, when the landmark is

out of the view field of the camera, an angle between the

distance and a delta x in the plane of the image is

estimated. As a result, due to the plane is represented as a

two-dimensional space, the change in zc of the camera

plane is not relevant, representing a point in Z plane as a

projection in the plane xc; yc . Hence, no matter the height

in the Z position at which this object is detected, the

projected point keeps on the angle described.

Moreover, the changing angle can be calculated with a

geometry relationship between the delta x and the

projection of the distance. Equation (6) is presented as

calculating of the desired angle towards a landmark. This

angle could also be calculated using vectors and finding

the angle between the vectors. The ws variable, repre-

sents the delta x, while the Iw variable is the value of the

total width of the image frame. The Sw corresponds to

the width in millimetres on the CMOS sensor in the

pixy camera. The upper bound of ration is hs
ws
¼ 2:2; the

lower bound ratio is hs
ws
¼ 2:0.

φ
′ ¼ atan

wS

f

Sw

Iw

� �

;ws ¼ Δxl ð6Þ

3.3 Hardware implementation

Our proposed multi-module SLAM implementation for

mobile robotic systems in embedded systems includes

three main modules: central computing node, odometry

node and image processing node for landmark detection,

as shown in Fig. 5 (Appendix 2 and 4). Our prototype

has installed two wheel encoders for the detection of

movement, a pixy camera to detect the landmarks and a

central unit, Raspberry Pi, for the execution of the SLAM

solution. The detailed schematic design can be found in

Appendix 1. The central computing node is used to calcu-

late the current state of the particle filter and estimate the

location of landmarks. The landmark node generates a

message to represent the measurement of the distance, the

direction of the distance and an ID that associate each

landmark. As a consequence, this node has the role of de-

tecting landmarks in the environment. The odometry node

sends a message to the central node every 100 ms to up-

date the position of the robot. This message contains the

linear velocity (v) and angular velocity (ω) with 10 samples

per second. Both the linear velocity and the angular velocity

are calculated by the wheel encoders installed on the proto-

type. In addition, the central node can use that information

to reproduce a graphical representation of locations.

The prototype of this work uses the robot kit module with

an incremental encoder attached to each wheel. The robot

kit is controlled by an Arduino Uno, which has an output of

5 V and can be powered directly by the robot kit and shared

with the odometry node. The DC motors have a separate

battery bank to power the HL29N driver controlled by the

Arduino. Meanwhile, pixy camera, as one of open source

and low-cost image sensor, is used for colour detection. Pixy

camera represents the Landmark Node of the system, as it

has its own memory and processor, which uses the raw

image data for the detection of coloured blocks. The reso-

lution of the images in the pixy camera is 320 × 200 (Iw; Ih).

The artificial landmarks are detected using poles of different

colour combinations as the work presented by [16].

4 Evaluation methodology

In order to obtain empirical data from the prototype,

corner detection and corridor detection were performed

in a real-life scenario. Each experiment was repeated

three times, with the objective to assess the detection of

landmarks and obtain a location of the prototype, while

storing a map using our intelligible SLAM solution.

Due to the lack of rotational camera in our prototype,

we are unable to carry out loop-closing experiments

using our prototype. Instead, a loop-closing experiment

using our FastSLAM simulator can be viewed using the

Fig. 4 Landmark detection. a Relation of distance towards a landmark. b Relation of change in position of a camera
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online link (https://youtu.be/cOghoHYNVuA). The

corridor and corner detection experiments are used to

demonstrate the robots’ pose uncertainty and the ability

to explore unknown terrain.

4.1 Corner detection

The first experiment involved the detection of a corner

using six landmarks as shown in Fig. 6. As shown in

Fig. 6a, we demonstrated the corner detection; the line in

the figure represents the path performed by the mobile

robot. Figure 6b shows the blue curve of the average tra-

jectory of particles and the red curve of the covariance of

landmarks detected. A pattern recognition was imple-

mented to detect a combination of colours in a cylinder as

a landmark. We choose a multiple colour floor in our ex-

periments to produce noise readings for the pixy camera,

Fig. 5 (a) The project prototype using a pixy camera and a rasberry Pi 2 (connection can be found in Appendix). (b) The connections for modular design in

the prototype

Fig. 6 Corner detection experiment results. a Semi-circular path implemented to map a corner. b Simulation results
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with the purpose of evaluating how well our data associ-

ation scheme is performed. Landmarks are formed a

semi-circular path with no loop closure. In this way, it

produces an increase in the landmark’s uncertainty. As a

result, the noise produced by the floor plus the increment

in uncertainty at the trajectory, it can be detected how

well the SLAM solution discriminates the landmarks and

associates the measurements. The average processing time

for a single frame was 0.49 s. The landmarks are made of

a cylindrical shape with a diameter of 40 ± 0.05 mm and a

height of 80 ± 0.05 mm. In this first execution of experi-

ment I, only 66.6% of the landmarks located in the test

area were detected.

The performance of our prototype is limited by the

resolution of pixy camera and the low precision of L298

motor driver. Two landmarks were not detected since

the noise of the carpet had presented a greater influence

by colour combination with blue colour. Figure 7

highlighted the undetected landmark mixed with blue

colour and affected by the floor noise in a red rectangle.

The detected landmarks are represented by a white rect-

angle with an associated ID, indicated by the variable ‘s’

and an inclination angle represented by the variable ‘Φ’.

4.2 Corridor detection

In the corridor detection experiment, we used the land-

marks side by side in the trajectory of the prototype,

simulating a corridor, which serves the purpose of revi-

siting the landmarks every step and having multiple

loops for the solution of SLAM. In addition, this experi-

ment produces closeness between the landmarks viewed

from the frame of the camera. Due to a possible obstruc-

tion of detection, this experiment can evaluate how well

our data association scheme is affected. As illustrated in

Fig. 7 Landmark detection. a Single detection of landmark. b Parallel detection of landmark

Fig. 8 Corridor detection experiment results. a Prototype results. b Simulation results
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Fig. 8a, this experiment has the same setup with excep-

tion of the relocation of the landmarks. The average pro-

cessing time of each frame was 0.56 s. The separation

between the top three landmarks on the right side

and the second three landmarks on the left side is

48 ± 0.05 cm, as shown in Fig 8b.

The noise values for the solution of SLAM in the

motion model of the experiments were 3 cm for the

forward (v) motion and 2° for a turn in the movement (w)

of the prototype. Similarly, for the observation model, the

noise values were 70 mm for the distance measured and

0.027 rad for the angle in the camera frame. The distance

measurements from the camera are an approximation of

the object detected; as a consequence, these measure-

ments were not incorporated into the proposal distribu-

tion. Furthermore, due to this consequence, the filter is

overestimated in order to prevent the particle filter to

diverge. Likewise, the number of particles used also affects

the calculation of the weights assigned to the particles.

The overestimation of the distance was 1.2 metres and a

standard deviation of 2° for the angle measured. These

values tell the filter its belief about how far could be the

landmarks. In addition, in all the experiments, 100 parti-

cles were used due to the tests performed in a relatively

short distance.

4.3 System performance evaluation

Followed the experiments, we conducted in Section 4.2

and 4.1, the artificial landmarks were placed randomly

without prior knowledge. The ground truth 3D coordi-

nates of the pixy camera had been recorded and were

compared with estimated values from our SLAM solu-

tion, as shown in Table 1. Those figures show that on

these experiments our SLAM solution gives localisation

Table 1 The ground truth coordinates from pixy camera vs. estimate values from our SLAM

Coordinates Landmark Ground truth (cm) Estimated (cm)

X Y Θ X Y Θ

Corner detection L01 123.01 10.01 4.7° 116.5 11.97 5.9°

L02 118.9 55.19 24.9° 122.8 52.02 23°

L03 121.4 104.5 40.7° 124.3 115 42.8°

L05 57.88 106.5 61.5° 65.45 113.8 60.1°

L06 18.8 103.8 79.7° 23.69 97.69 76.4°

Corridor detection L01 64.63 19.95 17.2° 67.67 14.31 11.9°

L02 84.8 32.32 20.9° 79.81 34.27 23.2°

L03 93.91 47.06 26.6° 98.03 57.47 30.4°

L04 58.56 79.6 53.7° 68.75 88.92 52.3°

L05 44.68 65.06 55.5° 44.03 60.51 54°

Fig. 9 System preformation evaluation in corner detection. a The experiment using prototype for corner detection. b Experiment for corner

detection with distribution of vector magnitudes of the landmarks in the robot’s frame
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results accurate to a 5 cm. In the corner detection ex-

periments, our central axis is moved due to the recorded

path was from the path described by the left wheel in

the mobile robots, thus resulting in a skewed trajectory.

Figures 9 and 10 shows the error and variance of meas-

urement of landmark’s grand truth in both experiments.

Figures 9b and 10b presents the distribution of the land-

marks for the three repetitions in experiments on corner de-

tection and corridor detection using our SLAM solution.

The graph is composed of the magnitude of the vectors to

the landmarks. The greatest variation presented at the land-

mark is 10 cm, showing precision at mapping. As a result,

83% of the landmarks were detected, generating a map of

the exposed landmarks. Being this percentage is sufficient to

locate the prototype and differentiate the described environ-

ment. During this experiment, the average CPU usage was

26.72%. The second experiment consisting of the parallel

detection of landmarks was executed three times. The first

run is presented in Figs. 9a and 10a. The prototype detected

83.33% of the landmarks for the first run and a minimum of

66.6% of the landmark detected in the other runs.

4.4 Energy profile

The power consumed by the prototype was measured

during above experiments using Tektronix oscilloscope

with 1.14 W of total power usage in Raspberry Pi V2.0.

Figure 11 illustrated our SLAM approach used an aver-

age of 45% ARM cortex-A7 processing time. A native

implementation of FastSLAM2.0 requires O(M log(K)),

where M is the number of particles in particle filter and

K is the number of landmarks. We develop an integrated

low-variance resample method to select the most likely

particle applying a minimization of the sum of the

weights of the particles with respect to a standard uni-

form distribution. Our approach makes it significantly

faster than existing FastSLAM2.0 that reduces the

running time of our intelligible SLAM approach to

O(M log(K/N)), where N is sample intervals.

Fig. 10 System preformation evaluation in corridor detection. a The experiment using prototype for corner detection. b Experiment for corridor

detection with distribution of vector magnitudes of the landmarks in the robot’s frame

Fig. 11 History of CPU usage during execution of SLAM. a Experiment for corner detection. b Experiment for corridor detection
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5 Conclusions
Monocular visual SLAM in low-power devices presents the

challenge of obtaining location information just using a sin-

gle camera. Using motion (visual odometry) as well as pin-

hole model or epipolar geometry presents a possibility of

implementation; however, researchers have not yet explored

a simplified data association solution from the algorithm

development into low-cost and low-power embedded

system design. This work demonstrates an intelligible

implementation of FastSLAM algorithm using low-cost

and low-power “on-shelf” devices. Our prototype is able to

detect landmark with 75% of success rates and 0.53 s pro-

cessing time using Raspberry Pi V2.0. Our experiment re-

sults demonstrate that our intelligible solution, based on

low-cost image sensors to an adequate architecture and a

simplified algorithm, is suitable to design embedded sys-

tems for SLAM applications in real time conditions.

In the future, with the selection of smart sensors for

obtaining the position of the robot, such as a higher reso-

lution encoder or multiple sensor fusion approaches in

the prototype, we can improve the landmark detection ac-

curacy and explore outdoor environments. Also, we plan

to increase the accuracy of landmark detection using Deep

Learning in embedded systems, where multiple objects in

the environment can be used to train and evolved the

neural network over time.

6 Appendix 1

7 Appendix 2

8 Appendix 3

9 Appendix 4

A link to the most recent version of FastSLAM software

as well as a link to the archived version referenced in the

manuscript (https://github.com/WOLVS/VisualSLAM).
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