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Abstract

This paper proposes an inter-frame dynamic double threshold (IF-DDT) spectrum sensing algorithm in order to

improve the sensing performance based on energy detection (ED) in cognitive radios (CRs). Based on both the activity

model of the primary user (PU) and the sensing mechanism of the secondary user (SU), the proposed algorithm

exploits the relationship between two adjacent sensing frames and designs dynamic double thresholds for each

sensing frame to enhance spectrum sensing performance when the received energy cannot give a reliable local

decision. The detection probability and false alarm probability of the proposed sensing scheme are analyzed, and an

algorithm for searching the optimal dynamic double thresholds is derived with very low complexity according to the

Neyman-Pearson (NP) test criterion. Theoretical analysis and simulation results show that the proposed algorithm

outperforms the ED algorithm.
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1 Introduction
Nowadays, wireless communications have been experi-

encing an increasing tension of the frequency resource

which, however, is far from fully utilized under the static

spectrum assignment policy [1]. Cognitive radio (CR)

technology provides a promising solution to the conflict

by allowing the second user (SU) to opportunistically

access the licensed spectrum band when it is temporarily

not occupied by the primary user (PU) [2].

Spectrum sensing is a critical aspect of CR systems

that aims to identify the working state of the PU (i.e.,

ON or OFF, indicating whether the licensed spectrum

is occupied or not, respectively) before allowing the SU

temporarily access the channel without causing harmful

interference to the PU. Typically, the SU operates spec-

trum sensing frame by frame, and each frame is divided

into two parts: the sensing duration and the data duration

[3–5]. The SU detects whether the licensed spectrum is

accessed within the sensing duration, and then transmits
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data within the data duration if the sensing result is OFF

(which identifies that the PU’s state is OFF); otherwise, the

SU keeps silent.

The accuracy of spectrum sensing is measured by two

probabilities: the false alarm probability (denoted as Pf )

and the detection probability (denoted as Pd). The false

alarm probability is defined as the probability that the PU’s

state is identified as ON when its real state is OFF, while

the detection probability is defined as the probability that

the PU’s state is identified as ON when its real state is also

ON. Clearly, a low false alarm probability improves the

efficiency of the unused spectrum, whereas a high detec-

tion probability reduces the resulting interference in the

licensed users [4, 6].

A number of spectrum sensing methods have been pro-

posed for CR systems, such as energy detection (ED),

cyclostationarity feature detection, second-order statis-

tics detection, matched-filtering detection, compressive

sensing detection [7, 8], and multiple antenna detection

[9]. The energy detection has been preferred due to its

feasible applicability and low implementation complex-

ity. The cyclostationarity feature detection differentiates

noise from PU signals by exploiting the cyclostationar-

ity features of the received signals. However, it has high
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computational complexity and requires the knowledge of

the cyclic frequencies which is difficult to be obtained.

The second-order statistics-based detection is subject

to the modulations of primary signals. The matched-

filtering detection is the optimum method only when

perfect information about the waveforms of the PU is

given. The compressive sensing detection makes use of

the sparse structure of primary signals. The multiple

antenna detection effectively overcomes the noise uncer-

tainty and improves the detection performance based on

the spatial correlation in the multi-antenna receiver. Nev-

ertheless, it requires the SU equipped with multi-antenna

receivers.

In order to avoid error detection caused by dramatic

energy decrease, the average signal power of several past

sensing frames is used in [10] for the ED schemes. How-

ever, conventional ED-based spectrum sensing schemes

usually employ only a single fixed threshold. When the

received energy of the SU nears the threshold, the deci-

sion for the PU’s state is subject to a high probability

of misjudgment, thus yielding a loss in sensing perfor-

mance. In order to alleviate this problem, the double-

threshold energy detection method is discussed in [11].

This method can decrease the interference of the SU to

the PU. However, how to set the two thresholds and deal

with the received energy falling between the two thresh-

olds are not discussed. Double-threshold energy detection

method is also discussed in cooperative spectrum sens-

ing environment [12]. In this method, each SU sends

its observed energy to the fusion center (FC) when the

energy falls between the two thresholds; otherwise, the

SU sends its decision results. The final decision is made

based on the soft combination of the received energy and

hard combination of the received decision results in the

FC. Therefore, the performance improvements of coop-

erative spectrum sensing schemes are obtained at the

cost of extra control messages and increased computation

complexities [13].

An alternative way of improving the ED schemes is

to take into account the PU’s activity model during the

sensing process. A model of two-state Markov chain is

used as an adequate mean accurately describing spec-

trum occupancy in the time domain in [14–17]. On the

one hand, the durations of the PU’s states (ON and OFF)

are respectively exponentially distributed [18, 19]. On the

other hand, the frame length of the SU is much shorter

than both the average durations of the PU’s ON and

OFF states [20, 21], which implies that the PU’s activi-

ties over successive sensing frames are not independent,

especially between adjacent frames. Furthermore, the PU

stays at the same state with a high probability during

the whole sensing frame [22]. These properties can be

exploited to improve the sensing performance of the

ED schemes.

In [22], the received energy sequence over successive

sensing frames is modeled as a continuous hiddenMarkov

chain, and the final decision is made according to the

combined observations from all previous sensing frames.

However, this scheme needs to perform simultaneously

spectrum sensing and data transmission and hence suffers

from implementation difficulties due to self-interference

[23]. In [24] and [25], the PU activity is modeled as a

Markov chain, and the final decision is also based on

history observations but using different combining rules

from that of [22]. However, in the schemes in [24] and [25],

each sensing frame is further divided intomany short slots

for either dynamic spectrum sensing or data transmis-

sion. This frequent sensing-transmitting alternating strat-

egy may cause synchronization difficulty on the receiving

terminal.

In this paper, using a two-state Markov chain model of

the PU’s activity, an inter-frame dynamic double threshold

(IF-DDT) ED scheme is proposed. Firstly, the relation-

ship between two adjacent sensing frames is analyzed, and

the IF-DDT scheme for each sensing frame is designed

based on dynamic double thresholds. Then, according to

the Neyman-Pearson (NP) test criterion, an optimization

problem is formulated to acquire the optimal dynamic

double thresholds which maximize the detection proba-

bility while maintaining a maximum tolerable false alarm

probability. Finally, the optimization problem is trans-

formed into an easily solvable problem and an algorithm

for searching the optimal dynamic double thresholds are

derived with very low complexity. Theoretical analysis and

computer simulations show that the proposed IF-DDT

scheme can achieve performance improvement due to

dynamic double thresholds even when the received energy

cannot give a reliable local decision. Compared to ref-

erence [11], theoretical analysis and the implementation

method are provided for the proposed double-threshold

energy detection scheme.

The remainder of this paper is organized as follows. In

Section 2, the system model is presented. In Section 3,

the IF-DDT scheme is proposed, and the optimal dynamic

double thresholds are derived. Section 4 evaluates the pro-

posed scheme for spectrum sensing through simulations.

Finally, Section 5 concludes the paper.

2 Systemmodel
We consider a CR system with one PU, one SU, and a sin-

gle channel licensed to the PU. The PU operates between

ON and OFF states alternately, while the SU executes

spectrum sensing to the licensed channel and oppor-

tunistically transmits data in a frame-wise manner. In the

sequel, the PU’s ON and OFF states are represented by

integers “1” and “0,” respectively. The systemmodel is pre-

sented in Fig. 1 , which shows the PU’s activity model and

the SU’s sensing mechanism.
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Fig. 1 The PU’s activity and the SU’s sensing mechanism

2.1 The PU’s activity model and the SU’s sensing

mechanism

Let T1 and T0 denote the durations that the PU stays

respectively in ON and OFF states as shown in Fig. 1. It

is well accepted that the durations are exponentially dis-

tributed with expectationsT1 = α andT0 = β [25]. The

PU’s average activity period is defined asTPU = T1 + T0,

and the PU’s traffic load is defined as ηPU = T1/TPU.

We assume that the SU allocates each frame k with a

dynamic length TFk , consisting of fixed sensing duration

τ and varying data transmission duration TFk − τ for k =
1, 2, . . .. Furthermore, we assume that the lengths satisfy

the conditions that τ ≪ TFk ,TFk ≪ T1, and TFk ≪ T0.

Let zk ∈ {0, 1} denote the real state of the PU within the

sensing duration of any specific frame k at the SU. On the

above assumptions, it is clear that there is a high probabil-

ity that zk remains unchanged within a whole frame and

that zk is closely related to the past state zk−1 with respect

to the preceding frame k − 1 for k > 1 [18, 20, 26].

The PU’s activity can bemodeled as a two-state discrete-

time Markov chain with the stationary distribution

P{zk = 0} =
α

α + β
, P{zk = 1} =

β

α + β
, (1)

and the transition matrix

Pk−1 =
[

p00,k−1 p01,k−1

p10,k−1 p11,k−1

]

=
1

α + β

[

α + βe−(α+β)TFk−1 β − βe−(α+β)TFk−1

α − αe−(α+β)TFk−1 β + αe−(α+β)TFk−1

]

(2)

where pij,k − 1 � P{zk = j|zk−1 = i} denotes the

state transition probability over two adjacent frames

k − 1 and k for i, j ∈ {0, 1}; it is easy to identify that

pi0,k − 1 + pi1,k − 1 = 1 for i = 0, 1.

Although the frame length TFk varies with k, it holds

that (α + β)TFk − 1 ≪ 1 on the above assumptions.

It follows in general that p00,k − 1 > p01,k − 1 and

p11,k − 1 > p10,k − 1. This states an inertia property of

the PU activity that zk is more likely to remain the same

as zk − 1 between any two adjacent frames k − 1 and k.

In the CR system model, the SU is assumed to have full

knowledge of parameters α and β [20, 22, 25].

2.2 Statistics for ED

We consider the additive white Gaussian noise (AWGN)

for the licensed channel. Let N denote the number of sig-

nal samples of the SU. For the frame k, the nth baseband

signal sample is expressed as

xk(n) =
{

wk(n), zk = 0

sk(n) + wk(n), zk = 1
(3)

where n = 1, 2, . . . ,N ; wk(n) denotes the inde-

pendent and identically distributed (i.i.d.) AWGN sam-

ples with zero-mean and normalized unit variance; and

sk(n) denotes the PU’s signal samples with constant

transmit power. Hence, the average received signal-to-

noise ratio (SNR) per sample at the SU is expressed as

γ = E
(

|sk(n)|2
)

.

As the test statistic of spectrum sensing, the received

energy in frame k is given by

Uk =
N
∑

n=1

|xk(n)|2 (4)

Then, the test statistic Uk follows the chi-square distri-

bution with N degrees of freedom. By the central limit

theorem, if the sample length N is large enough (N ≫ 1),

Uk approximately follows the Gaussian distributions

Uk =
{

N(N , 2N), zk = 0

N(N(1 + γ ), 2N(1 + 2γ )), zk = 1
(5)

where N(µ, σ 2) is the notation of the Gaussian distribu-

tion with mean µ and variance σ 2.

2.3 The conventional ED rule

In most conventional ED schemes, the PU’s real states

are assumed independent during different frames. Let dk
denote the sensing result of the PU’s real state zk in frame
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k. The decision rule is expressed as a simple comparison

between the received energy UK and a threshold λED,k as

follows

dk =
{

1, Uk ≥ λED,k
0, Uk < λED,k

(6)

The false alarm probability PEDf ,k and the detection prob-

ability PEDd,k are obtained as [19]

PEDf ,k � P{dk = 1|zk = 0} = Q

(

λED,k − N
√
2N

)

(7)

PEDd,k � P{dk = 1|zk = 1} = Q

(

λED,k − N(1 + γ )
√
2N(1 + 2γ )

)

(8)

where γ is the average received SNR and

Q(x) =
1

√
2π

∫ ∞

x
e−

t2

2 dt

In conventional ED schemes, it is usual to preset a fixed

threshold λED,k = λED for all k. Thus, the probabil-

ity measures PEDf ,k and PEDd,k are independent of k. It has

been shown that the single fixed threshold scheme yields a

high probability of erroneous decision when the received

energy Uk nears the threshold λED,k [11].

3 The IF-DDT scheme
In this section, we propose an IF-DDT spectrum sens-

ing scheme by exploiting the inertia property of the PU’s

activity described in Section 2.1. Following the presenta-

tion of the decision rule, we formulate an optimization

problem to acquire the optimal dynamic double thresh-

olds. Furthermore, we finally transform the optimiza-

tion problem into an easily solvable problem and derive

the optimal dynamic double thresholds with very low

complexity.

3.1 The decision rule using IF-DDT

To improve the probability of correct decision in the

ED schemes, we consider double dynamic thresholds, by

which we may elaborate the received energies into three

decision ranges in order to exploit the inertia property

of the PU’s activity. The decision rule using IF-DDT is

expressed as follows

dk =

⎧

⎨

⎩

1, Uk ≥ λ1,k
0, Uk < λ0,k
dk−1, otherwise

(9)

where λ1,k and λ0,k represent the double dynamic thresh-

olds for frame k at the SU, and λ0,k � λ1,k .

For k = 1, the two thresholds should be identically

initialized as λ0,1 = λ1,1 . For k > 1, if the received

energy Uk lies in the open range (λ0,k , λ1,k), the sensing

result dk for frame k retains the same as the sensing result

dk − 1 for the preceding frame k − 1.

It is easy to show that the Markov chain for the PU’s

activity is reversible according to the steady-state distribu-

tion in Eq. (1), the transition matrix in Eq. (2), and hence

the detailed balance equation [24, 27]

P{zk−1 = i, zk = j} = P{zk = i, zk−1 = j}

Define the reverse transition probability as

p∗
ij,k � P{zk−1 = j|zk = i} (10)

where i, j ∈ {0, 1}. Then, p∗
ij,k = pij,k − 1 is derived.

According to the decision rule using IF-DDT in Eq. (9),

the probabilities Pf ,k and Pd,k are obtained as follows (see

Appendix 1)

Pf ,k = Q

(

λ0,k − N
√
2N

)

P0,k + Q

(

λ1,k − N
√
2N

)

(1 − P0,k)

(11)

Pd,k = Q

(

λ0,k − N(1 + γ )
√
2N(1 + 2γ )

)

P1,k

+ Q

(

λ1,k − N(1 + γ )
√
2N(1 + 2γ )

)

(1 − P1,k)

(12)

where

P0,k � P{dk−1 = 1|zk = 0} = Pf ,k−1p
∗
00,k + Pd,k−1p

∗
01,k

(13)

P1,k � P{dk−1 = 1|zk = 1} = Pf ,k−1p
∗
10,k + Pd,k−1p

∗
11,k

(14)

For ease of understanding the IF-DDT scheme, Fig. 2

shows the definitions for multiple events and associated

probabilistic measures on the reversible Markov chain.

3.2 Derivation of thresholds

To derive the double thresholds, there exists two hypoth-

esis testing criterions: the Neyman-Pearson (NP) test [8]

and the Bayesian test [28]. We consider only the NP

test criterion, which aims at maximizing Pd,k with the

constraint Pf ,k ≤ Pf ,target, or alternatively minimizing

Pf ,k with the constraint Pd,k ≥ Pd,target , where Pf ,target
and Pd,target represent the tolerable maximum false alarm

probability and minimum detection probability, respec-

tively.

For any sensing frame k > 1, the probabilities P0,k
and P1,k are considered constant since p

∗
ij,k are determined

by Eq. (2), and Pf ,k − 1 and Pd,k − 1 are obtained at frame

k − 1. Thus, by Eqs. (11) and (12), it is clear that Pf ,k
and Pd,k are strictly decreasing with λ0,k and λ1,k , respec-

tively. According to the NP test criterion, the search for
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Fig. 2 Probabilities and transitions associated with multiple events in the reversible Markov chain model

the optimal thresholds λ∗
0,k and λ∗

1,k with respect to each

frame k is formulated as the optimization problem below

max
λ0,k ,λ1,k

Pd,k(λ0,k , λ1,k)

s.t. λ1,k ≥ λ0,k ≥ 0

Pf ,k(λ0,k , λ1,k) ≤ Pf ,target (15)

where Pd,k and Pf ,k are written as bivariate functions of

thresholds.

Theorem 1 Pd,k reaches the maximum value P∗
d,k only

when Pf ,k = Pf ,target , i.e., the optimization problem in

Eq. (15) can be rewritten as (proved in Appendix 2)

max
λ0,k ,λ1,k

Pd,k(λ0,k , λ1,k)

s.t. λ1,k ≥ λ0,k ≥ 0

Pf ,k(λ0,k , λ1,k) = Pf ,target (16)

Based on the second constraint in Eq. (16), we define the

Lagrange function

f (λ0,k , λ1,k , c) = Pd,k(λ0,k , λ1,k)

+ c
(

Pf ,target − Pf ,k(λ0,k , λ1,k)
) (17)

where c is the Lagrange multiplier.

Taking the first-order partial derivative of Eq. (17) with

respect to λ0,k and λ1,k , respectively

∂f (λ0,k , λ1,k , c)

∂λ0,k
= 0,

∂f (λ0,k , λ1,k , c)

∂λ1,k
= 0 (18)

then
⎧

⎪

⎨

⎪

⎩

1√
1+2γ

e
(λ0,k−N)2

4N −
[λ0,k−N(1+γ )]2

4N(1+2γ ) = c
P0,k
P1,k

1√
1+2γ

e
(λ1,k−N)2

4N −
[λ1,k−N(1+γ )]2

4N(1+2γ ) = c
1−P0,k
1−P1,k

(19)

Eliminating c in Eq. (19) by simplemanipulations, we get

(λ1,k − a)2 − (λ0,k − a)2 = b (20)

where

a =
N

2
, b =

2N(1 + 2γ )

γ
ln

P1,k(1 − P0,k)

P0,k(1 − P1,k)
(21)

Then, recalling the second constraint in Eq. (16), we

obtain

Q

(

λ0,k − N
√
2N

)

P0,k + Q

(

λ1,k − N
√
2N

)

(1 − P0,k) = Pf ,target

(22)

So we convert the optimization problem in Eq. (16) into

a nonlinear programming problem consisting of Eqs. (20)

and (22).

Clearly, the existence of the solution to the optimization

problem depends upon the system parameters, including

the sample length N , the average SNR value γ , the frame

lengths TFk , the expectation of ON and OFF state period

T1, T0, and the target false alarm probability Pf ,target.

On the other hand, the solution to the nonlinear pro-

gramming problem cannot be expressed in a closed form.

Therefore, in order to facilitate a heuristic approach for

the solution, we derive the range for the above nonlinear

programming problem firstly.

Notice that the function Q(x) is a strictly decreasing

function. Under the initial constraint that λ1,k ≥ λ0,k ≥ 0

and the basic probability property that 0 < P0,k , 1− P0,k <

1, we can derive a necessary condition on the threshold

λ0,k below

min

[

Pf ,target

P0,k
,Q

(

−
√

N

2

)]

≥ Q

(

λ0,k − N
√
2N

)

≥ Pf ,target

(23)

Thus, the range of λ0,k is
[

λ∗
0,k , λ

∗
]

,it is given by

λ∗
0,k �

√
2NQ−1

{

min

[

Pf ,target

P0,k
,Q

(

−
√

N

2

)]}

+ N

(24)

λ∗ �
√
2NQ−1(Pf ,target) + N (25)
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With incorporating the range of λ0,k , we obtain a neces-

sary condition on the threshold λ1,k as follows

Pf ,target ≥ Q

(

λ1,k − N
√
2N

)

≥
Pf ,target − Q

(

λ∗
0,k−N
√
2N

)

P0,k

1 − P0,k

(26)

and the range
[

λ∗, λ∗
1,k

]

of λ1,k is given by

λ∗
1,k �

√
2NQ−1

⎛

⎜

⎝

Pf ,target − Q

(

λ∗
0,k−N
√
2N

)

P0,k

1 − P0,k

⎞

⎟

⎠
+ N

(27)

In practice, it is easy to show that λ∗ > a since

Pf ,target < 0.5 and Q−1(Pf ,target) > 0. By analysing

Eq. (20) and Eq. (24), we can obtain the relationship of λ∗
1,k ,

λ∗
0,k , and a as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

λ∗
0,k = 0, λ∗

1,k < +∞ Pf ,target
P0,k

≥ Q

(

−
√

N
2

)

0 < λ∗
0,k ≤ a, λ∗

1,k → +∞ Q

(

− 1
2

√

N
2

)

≤ Pf ,target
P0,k

< Q

(

−
√

N
2

)

λ∗
0,k > a, λ∗

1,k → +∞ Pf ,target
P0,k

< Q

(

− 1
2

√

N
2

)

(28)

Combined with the range of λ0,k and λ1,k in three

cases in Eqs.(28), (20), and (21) can be further demon-

strated in the two-dimension Cartesian coordinate system

as showed in Fig. 3. When
Pf ,target
P0,k

≥ Q

(

−
√

N
2

)

, Eqs. (20)

and (21) are demonstrated in Fig. 3a; whenQ

(

− 1
2

√

N
2

)

≤

Pf ,target
P0,k

< Q

(

−
√

N
2

)

, Eqs. (20) and (21) are demonstrated

in Fig. 3b; and when
Pf ,target
P0,k

< Q

(

− 1
2

√

N
2

)

, Eqs. (20) and

(21) are demonstrated in Fig. 3c.

3.3 Solution analysis

Based on Eqs. (20) and (21), λ1,k can respectively be seen

as the functions of λ0,k within the range obtained above.

First, g1
(

λ0,k
)

and g2
(

λ0,k
)

are defined respectively as

g1
(

λ0,k
)

�
√
2NQ−1

⎛

⎝

Pf ,target − Q

(

λ0,k−N√
2N

)

P0,k

1 − P0,k

⎞

⎠+ N

(29)

g2
(

λ0,k
)

�

√

(

λ0,k − a
)2 + b + a (30)

And g
(

λ0,k
)

is further defined as

g
(

λ0,k
)

� g1
(

λ0,k
)

− g2
(

λ0,k
)

(31)

Obviously, the zero point of g
(

λ0,k
)

is the solution of

λ0,k to the nonlinear programming problem in Eqs. (20)

and (21) meanwhile.

The first-order differential function of g
(

λ0,k
)

is then

deduced as

g′ (λ0,k
)

� g′
1

(

λ0,k
)

− g′
2

(

λ0,k
)

= −
P0,k

1 − P0,k
e

1
4N

[

(λ1,k−N)2−(N−λ0,k)
2
]

−
λ0,k − a

λ1,k − a

(32)

where λ1,k =
√
2NQ−1

(

Pf ,target−Q

(

λ0,k−N
√
2N

)

P0,k

1−P0,k

)

+ N .

Together with Eq. (28), the negativity of g′ (λ0,k
)

in the

range of three cases in Eq. (28) is proved as follows.

(1)
Pf ,target
P0,k

< Q

(

− 1
2

√

N
2

)

. It can be easily obtained that

λ0,k−a
λ1,k−a > 0, and thus, we can get g′ (λ0,k

)

< 0 .

(2)
Pf ,target
P0,k

≥ Q

(

− 1
2

√

N
2

)

.

(i) λ0,k ∈ (a, λ∗) . Similar to (1), it can be obtained

that g′ (λ0,k
)

< 0 .

a b c

Fig. 3 a–c Analysis of the solution to the nonlinear programming problem
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(ii) λ0,k ∈ (λ∗
0,k , a), Eq. (20) can be transformed into

[

1 −
1

2
er f c

(

N − λ0,k

2
√
N

)]

P0,k (33)

+
1

2
er f c

(

λ1,k − N

2
√
N

)

(1 − P0,k) = Pf ,target

where er f c(x) = 2Q(
√
2x).

With λ0,k < a, it can be deduced that

N − λ0,k

2
√
N

>
N − a

2
√
N

=
√
N

4
(34)

and

λ1,k − N

2
√
N

=
1

√
2
Q−1

⎛

⎝

Pf ,target − Q
(

λ0,k−N√
2N

)

P0,k

1 − P0,k

⎞

⎠

>
1

√
2
Q−1

⎛

⎝

Pf ,target − Q

(

−
√
N

2
√
2

)

P0,k

1 − P0,k

⎞

⎠

>
1

√
2
Q−1

⎛

⎝

P0,k − Q

(

−
√
N

2
√
2

)

P0,k

1 − P0,k

⎞

⎠

>
1

√
2
Q−1

(

1 − Q

(

−
√
N

2
√
2

))

=
√
N

4
(35)

Notice that in Eq. (35), P0,k > Pf ,target since Pd,k − 1 >

Pf ,target must hold to ensure a valid detection and

Pf ,k − 1 = Pf ,target in Eq. (13). With γ ≪ 1 and N ≫ 1,

the approximation er f c(x) ≈ 1√
πx

e−x2 can be taken in

Eq. (33), and thus, we can get

P0,k

1 − P0,k
e

1
4N

[

(λ1,k−N)2−(N−λ0,k)
2
]

=
N − λ0,k

λ1,k − N
+

P0,k − Pf ,target

1 − P0,k

√

π

N
(N − λ0,k)e

1
4N (λ1,k−N)2

(36)

By taking Eq. (36) into Eq. (32), it can be proved that

g′(λ0,k) < 0 when λ0,k ∈
(

λ∗
0,k , a

)

; the nonlinear pro-

gramming problem is then transformed into a problem

of searching for the zero point of a strictly decreasing

function, which can be easily solved by the dichotomy or

Newton’s method. It should be noticed that no zero point

exists when g
(

λ∗
0,k

)

< 0 since g (λ∗) < 0.

4 Simulation results
In this section, numerical results are presented to evaluate

the effectiveness of the IF-DDT sensing scheme. The pro-

posed algorithm is tested under various average activity

periods and traffic loads of the PU.

4.1 Simulation setup

Firstly, the thresholds of the IF-DDT scheme are simu-

lated. Secondly, the actual false alarm of the new algorithm

is provided to examine the correctness of the thresh-

olds. Thirdly, the performance of the IF-DDT algorithm

is quantified in different average PU active periods and

PU traffic loads, respectively. Finally, the total error prob-

ability of the IF-DDT scheme is provided to verify the

detection performance.

In the simulations, the sample lengthN is set to be 1000,

the sensing frame length TFk is set to be 10 ms according

to the IEEE 802.22 standard, and a Markov chain with 106

frames is randomly generated to model the PU state vary-

ing in each simulation. The detection performance of the

proposed IF-DDT scheme is compared with that of the

ED scheme and the double-threshold (DT) energy scheme

in [11].

4.2 Numerical results

Figure 4 verifies the double thresholds of the IF-DDT

algorithm changing with the frame index k. Figure 4a,

b is plotted at low and high SNR, respectively. In both

of the subfigures, T0 = T1 = 200 ms is set. In

addition, the gray areas in the subfigures denote that the

real state of the PU is ON; otherwise, it is OFF. When

the received energy locates between the double thresh-

olds and correctly detected under the IF-DDT scheme, the

corresponding point is marked with a circle.

From Fig. 4a, b, we can see that the double thresholds

quickly converge to stable values and actually keep invari-

ant. It means that the calculation for the thresholds of

the subsequent sensing frames can be saved as long as

the system parameters remain unchanged. Furthermore,

the marked points show that in lots of frames where the

received energy cannot give a reliable local decision, the

conventional ED algorithm seem powerless but our algo-

rithm tends tomake the right judgment. It is also indicated

that the gap between the double thresholds is smaller

when the SNR is high.

Figure 5 tests the actual false alarm probability of the

ED scheme, IF-DDT scheme, and DT scheme versus SNR

when Pf ,target = 0.01, 0.05, 0.1, respectively. Other sim-

ulation settings are T0 = T1 = 200 ms. As shown

in the figure, the actual false alarm probability of the DT

scheme is slightly higher than the target false alarm proba-

bility, but the actual false alarm probability of the IF-DDT
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a

b

Fig. 4 Thresholds of the IF-DDT sensing scheme. a Thresholds for T̄0 = T̄1 = 200 ms and SNR = − 14 dB. Thresholds of the IF-DDT sensing

scheme. b Thresholds for T̄0 = T̄1 = 200 ms and SNR = − 8 dB

scheme and ED scheme is always equal to the target false

alarm probability. In other words, the dynamic double

thresholds derived fromEq. (15) ensure that the constraint

on false alarm probability is met.

Figure 6 shows the detection probability versus SNR

with different PU active periods. The average PU active

parameters are set to be T0 = T1 = 100, 200, 500 ms,

respectively. As shown in Fig. 6, the IF-DDT algorithm

shows superior performance to the conventional ED and

Fig. 5 False alarm probability testing for T0 = T1 = 200 ms

DT scheme even when the average period of the PU is

short. For example, at the SNR of −10 dB, the detection

probability of the IF-DDT algorithm reaches 0.92 when

T0 = T1 = 100 ms, comparing with PEDd = 0.81

for the ED scheme and PDTd = 0.84 for the DT scheme.

Fig. 6 Pd versus SNR for Pf ,target = 0.1 and ηPU = 0.5
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This improvement benefits from the dynamic double-

threshold strategy, with which the detector tends to make

the correct judgment when the received energy is not reli-

able enough. What is more, when the PU actives with

longer period and thus becomes more inertial, the IF-

DDT algorithm gains higher detection probability which

depicts that the PU active period has much impact on the

performance of the new sensing scheme. In addition, it

is clearly shown that the simulation results well coincide

with the theoretical analysis in all cases.

Figure 7 tests the performance of the IF-DDT scheme

when the PU’s traffic load varies. And as expected, the new

scheme gains obvious performance improvement com-

pared with the convention ED and DT schemes. It is also

verified that when the PU’s average activity period is fixed,

the detection probability of the proposed algorithm does

not vary much with the PU’s traffic load. For example, at

the SNR of−12 dB, the detection probability is 0.78, which

is slightly higher by 0.03 and 0.06, respectively, than that

in the other cases. The difference is even slighter in higher

SNR region.

It is important to investigate the detector’s capability on

timely and correctly identifying the spectrum hole when

the spectrum is not occupied by the PU and vacating

the spectrum when the PU starts to occupy the autho-

rized spectrum. Therefore, to compare the performance in

terms of both the detection probability and the false alarm

probability, we define an erroneous decision probability Pe
as follows:

Pe = POFFPf + PON(1 − Pd) (37)

Figure 8 shows Pe among IF-DDT scheme, ED scheme,

and DT scheme versus SNR. The simulation environment

is the same as that in Fig. 6. The figure shows that IF-

DDT scheme provide the lowest Pe among these schemes.

In addition, the Pe of the IF-DDT scheme decreases as

the average period of the PU becomes longer. This is due

to the fact that when the average period increases, the

PU’s state between contiguous frames tends to be more

inertial, and then, the decision rule in Eq. (9) is more reli-

able; therefore, the decision based on the energy falling

between the two thresholds is more reasonable. Further-

more, the performance of ED and DT schemes are much

worse than those of the IF-DDT scheme.

Figures 6, 7, and 8 reveal:

1. IF-DDT sensing scheme outperforms the

conventional ED scheme and DT scheme

2. The proposed method is more robust to the PU’s

activity period and traffic load.

5 Conclusions
In this paper, the PU’s activity model and the SU’s sens-

ing mechanism are utilized and an inter-frame-based

dynamic double-threshold spectrum sensing scheme,

which exploits the relationship of two adjacent sensing

frames, is proposed to enhance energy detection perfor-

mance. When the received energy cannot give a reliable

local decision to distinguish the ON and OFF states of the

PU, the detector retains the previous sensing result. The

detection probability and false alarm probability of the

proposed sensing scheme are analyzed, and the optimal

Fig. 7 Pd versus SNR for Pf ,target = 0.1 and TPU = 400 ms
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Fig. 8 Pe versus SNR for Pf ,target = 0.1 and ηPU = 0.5

double thresholds are derived with very low complex-

ity according to the Neyman-Pearson (NP) test criterion.

This sensing scheme is simple but shown to outperform

the ED algorithm from both theoretical analysis and sim-

ulation results.

In this paper, our algorithm is based on energy detec-

tion. However, it can be extended to other traditional

spectrum sensing method, such as coherent detection and

feature detection, where the PU’s activity model and the

SU’s sensing mechanism have not been exploited. The

same way can be followed to obtain the corresponding

dynamic double thresholds and the detection probability

together with the false alarm probability.

Appendix 1: Derivation of Eqs. (12) and (13)
According to the definition for Pf ,k and the decision rule

given by Eq. (9),

Pf ,k � P {dk = 1|zk = 0}

= P
{

Uk ≥ λ1,k |zk = 0
}

+ P
{

λ0,k < Uk < λ1,k , dk−1 = 1|zk = 0
}

= P
{

Uk ≥ λ1,k |zk = 0
}

+ P
{

λ0,k < Uk < λ1,k |zk = 0
}

P
{

dk−1 = 1|zk = 0
}

= Q

(

λ1,k − N
√
2N

)

+
[

Q

(

λ0,k − N
√
2N

)

− Q

(

λ1,k − N
√
2N

)]

P0,k

(38)

where

P0,k � P
{

dk−1 = 1|zk = 0
}

= P
{

dk−1 = 1, zk−1 = 0|zk = 0
}

+P
{

dk−1 = 1, zk−1 = 1|zk = 0
}

= P
{

dk−1 = 1|zk−1 = 0
}

P
{

zk−1 = 0|zk = 0
}

+P
{

dk−1 = 1|zk−1 = 1
}

P
{

zk−1 = 1|zk = 0
}

= Pf ,k−1p
∗
00,k + Pd,k−1p

∗
01,k (39)

Similarly, the detection probability Pd,k can be derived

as

Pd,k � P {dk = 1|zk = 1}

= P
{

Uk ≥ λ1,k |zk = 1
}

+ P
{

λ0,k < Uk < λ1,k , dk−1 = 1|zk = 1
}

= P
{

Uk ≥ λ1,k |zk = 1
}

+ P
{

λ0,k < Uk < λ1,k |zk = 1
}

P
{

dk−1 = 1|zk = 1
}

= Q

(

λ1,k − N(1 + γ )
√
2N(1 + 2γ )

)

+
[

Q

(

λ0,k − N(1 + γ )
√
2N(1 + 2γ )

)

− Q

(

λ1,k − N(1 + γ )
√
2N(1 + 2γ )

)]

P1,k

(40)

and

P1,k � P
{

dk−1 = 1|zk = 1
}

= Pf ,k−1p
∗
10,k+Pd,k−1p

∗
11,k

(41)

Appendix 2: Proof of Theorem 1
Consider first k > 1 . In Eqs. (10) and (11), P0,k and P1,k
can be viewed as constants in the open range (0, 1) . Thus,

the probabilities Pf ,k and Pd,k are both strictly decreasing

functions of λ0,k and λ1,k , respectively.

Assume that
(

λ′
0,k , λ

′
1,k

)

is the optimal solution to

Eq. (16) such that λ′
0,k < λ′

1,k , Pf ,k

(

λ′
0,k , λ

′
1,k

)

< Pf ,target,

and Pd,k

(

λ′
0,k , λ

′
1,k

)

= P∗
d,k , where P∗

d,k is the maximum

value for Pd,k . Then, there must exist a smaller value

λ∗
0,k < λ′

0,k such that

Pf ,k
(

λ′
0,k , λ

′
1,k

)

< Pf ,k
(

λ∗
0,k , λ

′
1,k

)

= Pf ,target (42)

Pd,k
(

λ′
0,k , λ

′
1,k

)

= P∗
d,k < Pd,k

(

λ∗
0,k , λ

′
1,k

)

(43)

which contradicts the assumption of the maximum value

P∗
d,k .

On the other hand, if λ′
0,k < λ′

1,k , we may also

reduce λ′
1,k to λ∗

1,k ∈[ λ′
0,k , λ

′
1,k) with λ′

0,k given, such that

Pf ,k

(

λ′
0,k , λ

∗
1,k

)

= Pf ,target , followed by Pd,k

(

λ∗
1,k , λ

′
0,k

)

>

P∗
d,k .

In the special case k = 1 , the probabilities Pf ,1 and Pd,1
become strictly decreasing functions of λ1 as described

underneath Eq. (9). Similarly, it can be proved that Pd,1
reaches P∗

d,1 only when Pf ,1 = Pf ,target using a proper

threshold λ∗
1.

Therefore, it is concluded that Pd,k reaches the maxi-

mum value P∗
d,k only when Pf ,k = Pf ,target with pair

thresholds
(

λ∗
0,k , λ

∗
1,k

)

for all k > 1.
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Appendix 3: Proof of Eq. (23)
The proof is composed of two steps:

Firstly,
Pf ,target
P0,k

≥ Q

(

λ0,k−N√
2N

)

can be derived from

Eq. (20). From
λ0,k−N√

2N
= −

√

N
2 + λ0,k√

2N
≥ −

√

N
2 and the

monotonic decreasing property of Q function, we obtain

Q

(

−
√

N
2

)

≥ Q

(

λ0,k−N√
2N

)

.

Therefore min

[

Pf ,target
P0,k

,Q

(

−
√

N
2

)]

≥ Q

(

λ0,k−N√
2N

)

.

Secondly, from λ0,k ≤ λ1,k , we have
λ0,k−N√

2N
≤ λ1,k−N√

2N
,

then Q

(

λ0,k−N√
2N

)

≥ Q

(

λ0,k−N√
2N

)

.

On the one hand, Q
(

λ0,k−N√
2N

)

P0,k + Q
(

λ0,k−N√
2N

)

(1 −

P0,k) = Q

(

λ0,k−N√
2N

)

. On the other hand,Q
(

λ0,k−N√
2N

)

P0,k +

Q
(

λ0,k−N√
2N

)

(1−P0,k) ≥ Q
(

λ0,k−N√
2N

)

P0,k+Q
(

λ1,k−N√
2N

)

(1−

P0,k) = Pf ,target. Therefore, Q
(

λ0,k−N√
2N

)

≥ Pf ,target.

Acknowledgements

The authors would gratefully acknowledge the grants from the National

Natural Science Foundation of China (61571250), the Natural Science

Foundation of Ningbo City of China (2015 A610121), and the Natural Science

Foundation of Fujian Province of China (2014J01243) and the K. C. Wong

Magna Fund in Ningbo University.

Authors’ contributions

PL, YH, and CF conceived and designed the study. CF and PL performed the

simulation experiments. CF and PL wrote the paper. YH, YL, MJ, and GW

reviewed and edited the manuscript. All authors read and approved the final

manuscript.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Author details
1College of Information Science and Engineering, Ningbo University, Ningbo,

China. 2School of Information Science and Engineering, National Huaqiao

University, Xiamen, China.

Received: 30 November 2016 Accepted: 3 June 2017

References

1. G Staple, K Werbach, The end of spectrum scarcity. IEEE Spectrum. 41(3),

48–52 (2004)

2. JI Mitola, GQ Maguire, Cognitive radio: making software radios more

personal. IEEE Pers Commun. 6(4), 13–18 (1999)

3. Y Pei, AT Hoang, Y-C Liang, in Proc. IEEE Int. Symp. Personal, Indoor and

Mobile Radio Commun. (PIMRC 2007). Sensing-throughput tradeoff in

cognitive radio networks: how frequently should spectrum sensing be

carried out?, (2007), pp. 1–5

4. S Stotas, A Nallanathan, 2012, On the throughput and spectrum sensing

enhancement of opportunistic spectrum access cognitive radio networks.

Wireless Commun. IEEE Trans. 11(1), 97–107

5. J Zhang, et al, Sensing-energy efficiency tradeoff for cognitive radio

networks. Iet Commun. 8(18), 3414–3423 (2014)

6. IEEE Standard for Information Technology Telecommunications and

information exchange between systems Wireless Regional Area Networks

(WRAN) Specific requirements, Part 22: Cognitive Wireless RAN Medium

Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and

Procedures for Operation in the TV Bands. IEEE std. 802.22a-2014

7. T Yücek, H Arslan, A survey of spectrum sensing algorithms for cognitive

radio applications. IEEE Commun. Surv. Tutorials. 11(1), 116–130 (2009)

8. Axell, Erik, et al, Spectrum sensing for cognitive radio:state-of-the-art and

recent advances. IEEE Signal Process. Mag. 29(3), 101–116 (2012)

9. A Taherpour, M Nasiri-Kenari, S Gazor, Multiple antenna spectrum sensing

in cognitive radios. IEEE Trans. Wireless Commun. 9(2), 814–823 (2010)

10. M López-Benítez, F Casadevall, Improved energy detection spectrum

sensing for cognitive radio. Iet Commun. 6(8), 785–796 (2012)

11. J Wu, T Luo, G Yue, in Proc. IEEE 1st Int. Conf. Information Science and

Engineering. An energy detection algorithm based on double-threshold in

cognitive radio systems, (2009), pp. 493–496

12. SQ Liu, BJ Hu, XY Wang, Hierarchical cooperative spectrum sensing based

on double thresholds energy detection. IEEE Communications Letters.

16(7), 1096–1099 (2012)

13. H Rifà-Pous, MJ Blasco, C Garrigues, Review of robust cooperative

spectrum sensing techniques for cognitive radio networks. Wireless

Personal Commun. 67(2), 175–198 (2012)

14. Y Saleem, MH Rehmani, Primary radio user activity models for cognitive

radio networks: a survey. J. Netw. Comput. Appl. 43(1), 1–16 (2014)

15. SA Bayhan, Z Fatih, A Markovian approach for best-fit channel selection in

cognitive radio networks. Ad Hoc Netw. 12(1), 165–177 (2014)

16. DJ Lee, WY Yeo, Channel availability analysis of spectrum handoff in

cognitive radio networks. IEEE Commun. Lett. 19(3), 435–438 (2015)

17. M López-Benítez, F Casadevall, Empirical time-dimension model of

spectrum use based on a discrete-time Markov chain with deterministic

and stochastic duty cycle models. Veh. Technol. IEEE Trans. 60(6),

2519–2533 (2011)

18. S Geirhofer, L Tong, BM Sadler, Cognitive medium access: constraining

interference based on experimental models. Selected Areas Commun. IEEE

J. 26(1), 95–105 (2008)

19. MH Rehmani, et al, SURF: A distributed channel selection strategy for data

dissemination in multi-hop cognitive radio networks. Comput. Commun.

36(10), 1172–1185 (2013)

20. N Moayeri, H Guo, in Proc. IEEE Symp. on New Frontiers in Dynamic

Spectrum. How often and how long should a cognitive radio sense the

spectrum, (2010), pp. 1–10

21. Xing, Xiaoshuang, et al, Optimal spectrum sensing interval in cognitive

radio networks. IEEE Trans. Parallel Distributed Syst. 25(9), 2408–2417 (2014)

22. K Haghighi, EG Strm, E Agrell, On optimum causal cognitive spectrum

reutilization strategy. IEEE J. Selected Areas Commun. 30(10), 1911–1921

(2012)

23. J Heo, et al, Simultaneous sensing and transmission in cognitive radio.

IEEE Trans. Wireless Commun. 13(4), 1948–1959 (2014)

24. KW Choi, E Hossain, Opportunistic access to spectrum holes between

packet bursts: a learning-based approach. IEEE Trans. Wireless Commun.

10(8), 2497–2509 (2011)

25. K Haghighi, EG Strom, E Agrell, Sensing or transmission: causal cognitive

radio strategies with censorship. IEEE Trans. Wireless Commun. 13(6),

3031–3041 (2014)

26. Xu, You, et al, Joint sensing period and transmission time optimization for

energy-constrained cognitive radios. EURASIP J. Wireless Commun. Netw.

2010(1), 1–16 (2009)

27. PJ Green, Reversible jump Markov chain Monte Carlo computation and

Bayesian model determination. Biometrika. 82(4), 711–732 (1995)

28. Y Zeng, et al, A review on spectrum sensing for cognitive radio: challenges

and solutions. EURASIP J. Adv. Signal Process. 2010(1), 1–15 (2010)


	Abstract
	Keywords

	Introduction
	System model
	The PU's activity model and the SU's sensing mechanism
	Statistics for ED
	The conventional ED rule

	The IF-DDT scheme
	The decision rule using IF-DDT
	Derivation of thresholds
	Solution analysis

	Simulation results
	Simulation setup
	Numerical results

	Conclusions
	Appendix 1: Derivation of Eqs. (12) and (13)
	Appendix 2: Proof of Theorem 1
	Appendix 3: Proof of Eq. (23)
	Acknowledgements
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

