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Abstract

Background: In S. cerevisiae the β-1,4-linked N-acetylglucosamine polymer, chitin, is synthesized

by a family of 3 specialized but interacting chitin synthases encoded by CHS1, CHS2 and CHS3.

Chs2p makes chitin in the primary septum, while Chs3p makes chitin in the lateral cell wall and in

the bud neck, and can partially compensate for the lack of Chs2p. Chs3p requires a pathway of

Bni4p, Chs4p, Chs5p, Chs6p and Chs7p for its localization and activity. Chs1p is thought to have a

septum repair function after cell separation. To further explore interactions in the chitin synthase

family and to find processes buffering chitin synthesis, we compiled a genetic interaction network

of genes showing synthetic interactions with CHS1, CHS3 and genes involved in Chs3p localization

and function and made a phenotypic analysis of their mutants.

Results: Using deletion mutants in CHS1, CHS3, CHS4, CHS5, CHS6, CHS7 and BNI4 in a synthetic

genetic array analysis we assembled a network of 316 interactions among 163 genes. The

interaction network with CHS3, CHS4, CHS5, CHS6, CHS7 or BNI4 forms a dense neighborhood,

with many genes functioning in cell wall assembly or polarized secretion. Chitin levels were altered

in 54 of the mutants in individually deleted genes, indicating a functional relationship between them

and chitin synthesis. 32 of these mutants triggered the chitin stress response, with elevated chitin

levels and a dependence on CHS3. A large fraction of the CHS1-interaction set was distinct from

that of the CHS3 network, indicating broad roles for Chs1p in buffering both Chs2p function and

more global cell wall robustness.

Conclusion: Based on their interaction patterns and chitin levels we group interacting mutants

into functional categories. Genes interacting with CHS3 are involved in the amelioration of cell wall

defects and in septum or bud neck chitin synthesis, and we newly assign a number of genes to these

functions. Our genetic analysis of genes not interacting with CHS3 indicate expanded roles for

Chs4p, Chs5p and Chs6p in secretory protein trafficking and of Bni4p in bud neck organization.
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Background
In vegetatively growing cells of Saccharomyces cerevisiae,
chitin, a linear polymer of β-1,4-linked N-acetylglu-
cosamine (GlcNAc) residues, is selectively concentrated at
the bud neck and is also found as a minor component of
the mature lateral cell wall. Chitin is also the main constit-
uent of the primary septum, a structure that separates
mother and daughter cells (for reviews, see [1-3]).

Polymerization of UDP-GlcNAc to chitin is catalyzed by a
family of three membrane-associated chitin synthases
(CS) with specialized activities. CSIII, encoded by CHS3,
is responsible for synthesis of the chitin ring at the bud
neck and for chitin in the lateral wall. CSII synthesizes the
chitin of the primary septum, and is encoded by CHS2, a
gene that is essential in many strain backgrounds [4]. CSI,
encoded by CHS1, is localized to the plasma membrane
and to chitosome vesicles [5] and mutants are hypersensi-
tive to the chitin synthase inhibitor, polyoxyin D, and
under acid conditions can form small aberrant buds that
are prone to lysis [6]. Disruption of the chitinase gene
CTS1 required for cell separation suppresses the chs1 lysis
phenotype, leading to the suggestion that Chs1p is
involved in chitin repair at cytokinesis [7].

The precise deposition of chitin is achieved through spa-
tial and temporal controls on each chitin synthase which
determine their localization and activity. CSII is expressed
in a cell cycle-dependent manner, and is transported to
the bud neck through the secretory pathway, and subse-
quently degraded in the vacuole [8,9]. CSI and III are
transported to a specialized endosome-derived compart-
ment, the chitosome, from which they are mobilized by
regulated secretion to the plasma membrane [5,8,10]. The
localization and trafficking of Chs3p require BNI4, CHS4/
SKT5, CHS5, CHS6 and CHS7. Chs7p is required for exit
of Chs3p from the endoplasmic reticulum [11], while
Chs5p and Chs6p are involved in transport of Chs3p from
the chitosome to the plasma membrane [12,13]. Chs3p
forms a complex with Chs4p/Skt5p, a protein required for
Chs3p activity during vegetative growth, and Bni4p local-
izes this complex to the septin ring at the bud neck [14].

Although accounting for only 1–2% of the wild type cell
wall under vegetative growth, chitin can contribute up to
20% of the cell wall under the conditions of cell wall stress
found in cell wall mutants or on drug exposure [3].
Indeed, in response to cell wall stress Chs3p activity is up-
regulated leading to an increased synthesis of chitin,
which can be essential for survival. For instance, CHS3 is
essential for maintaining the cell integrity of several cell
wall mutants, such as fks1 or gas1 [15-17]. Similarly,
defective primary septum synthesis can be compensated
for by Chs3p-dependent formation of a remedial septum,

resulting in a synthetic lethal interaction between CHS2
and CHS3 [4].

To further explore the relationship between chitin synthe-
sis and other pathways, we assemble a network of 316
synthetic interactions of 163 genes with genes involved in
the regulation of chitin synthesis. The relationship of
these genes with chitin synthesis was analyzed by measur-
ing the chitin content of the 156 viable deletion mutants
and by testing for Calcofluor white sensitivity phenotypes
of the 116 deletion mutants in non-essential genes of the
CSIII network.

Results
A network of genetic interactions with genes involved in 

chitin synthase function

To identify genes buffering defects in chitin synthesis, we
searched for genes engaged in synthetic interactions with
BNI4, CHS1, CHS3, CHS4, CHS5, CHS6 or CHS7 using
the SGA methodology [18,19]. Our results identified 163
genes involved in 316 synthetic interactions that form a
network in which BNI4, CHS1, CHS3, CHS4, CHS5, CHS6
and CHS7 are connected to 22, 57, 63, 47, 71, 25 and 31
genes, respectively (Table 2). Genes interacting with BNI4,
CHS3, CHS4, CHS5, CHS6 or CHS7 tend to be multiply
connected, while those interacting with CHS1 form a
more distinct subnetwork (Figure 1A). Indeed, just 17 of
the 57 CHS1 interacting genes show an additional interac-
tion with at least another query gene (Figure 1B). In con-
trast, 67/123 genes interacting with BNI4 or CHS3-7 are
multiply connected (Figure 1B, green oval), and 55 of
those show an interaction with either BNI4 or CHS3-7
(Figure 1B, red oval) resulting in a densely connected
CSIII network.

The CSIII network

The 123 genes engaged in the 259 interactions of the CSIII
network were grouped by function (Figure 2A, outer pie).
Some genes show multiple connections, with 55 of these
accounting for almost 75% of the interactions. Among
this group, 44 genes (Figure 2B) interact with CHS3 and at
least one other query gene, reflecting the central role of
CHS3 in the network. These 44 genes, involved in 166
interactions, are significantly more connected to the query
genes than the remaining 11 multiply connected genes,
which have 25 interactions (p < 0.01). Thus, this set of 44
genes defines a core group of multiply interacting genes.
In addition, the "core" genes account for 57 of 74 syn-
thetic lethal interactions of the CSIII network [19], high-
lighting their importance for survival when the CSIII
pathway is defective. Grouping "core" genes by functional
categories (Figure 2A, inner pie) revealed enrichment for
certain functions relative to the overall CSIII network. For
example, cell wall assembly and secretory pathway polar-
ization/vesicular transport contain 18% and 43% of
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Table 2: Synthetic interactions with BNI4, CHS1, CHS3, CHS4, CHS5, CHS6 and CHS7.

Functional category Gene Interacting partners

Cell wall maintenance BCK1 BNI4, CHS1, CHS3, CHS4, CHS5, CHS7

FKS1, SLT2, SMI1 BNI4, CHS3, CHS4, CHS5, CHS6, CHS7

YPL261C CHS1

ECM21 CHS1, CHS5

CHS2 CHS3

SWI4 CHS3, CHS4, CHS5

CCW12, GAS1, YLR111W CHS3, CHS4, CHS5, CHS7

TUS1 CHS4, CHS5, CHS7

DAN3, PAT1 CHS5

Cell polarity & vesicular transport NBP2, RGD1, SHS1, SPA2 BNI4

EDE1, MYO2, RVS167, VRP1 BNI4, CHS3, CHS4, CHS5, CHS7

ARC40, ARP2 BNI4, CHS3, CHS4, CHS5, CHS6, CHS7

BNI1 BNI4, CHS3, CHS4, CHS7

RVS161 BNI4, CHS5

CYK3 BNI4, CHS7

BUD20, VPS5, VPS17, VPS29, VPS35 CHS1

HBT1 CHS1, CHS3

ARC18 CHS1, CHS3, CHS4, CHS5, CHS6

EMP24 CHS1, CHS3

BEM4, PEA2 CHS1, CHS5

CDC3, CDC11, IES6, SRV2, VAM7 CHS3

CDC12 CHS3, CHS4

FAB1 CHS3, CHS4, CHS5

CLA4 CHS3, CHS4, CHS5, CHS6, CHS7

SAC6, SLA1, TPM1 CHS3, CHS4, CHS5, CHS7

YLR338W CHS3, CHS4, CHS6

SHE4, SMY1 CHS3, CHS4, CHS7

VPS24, VPS67 CHS3, CHS5

AST1, LST4, YPK1 CHS4

SEC22 CHS4, CHS5

AOR1, HSE1, VPS21 CHS5

Suspected role in cell polarity & vesicular transport YPL066W BNI4

ILM1 BNI4, CHS3, CHS4, CHS6

SPF1 CHS1, CHS4

YGL081W CHS1, CHS5

YBR077C CHS3

GUP1 CHS3, CHS4, CHS5, CHS6

OPI3 CHS3, CHS4, CHS7

LSM6 CHS5

IST3 CHS6

Protein modification VAN1 BNI4, CHS3, CHS4, CHS5, CHS6, CHS7

YGL110C CHS1

ANP1, BTS1, MNN2, MNN9 CHS3

MNN10 CHS3, CHS4, CHS5, CHS6, CHS7

UBI4 CHS3, CHS5, CHS6

UBP13 CHS4

BRE1 CHS5

UFD4 CHS5

MNN11 CHS5, CHS6

LAS21 CHS6

Ribosomal function/cell size LGE1 CHS1, CHS3, CHS5

RPL20B CHS3

RPS8A CHS3, CHS4, CHS5

ASC1 CHS3, CHS5

RSA1 CHS4

RPL14A CHS5

Cell cycle CLN2 CHS1

CDC26, DOC1 CHS3

YNL171C CHS3, CHS5
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"core" genes, respectively, whereas these functional cate-
gories represent 10% and 33% of genes in the CSIII net-
work, respectively. In contrast, the category
"mitochondrial function" is under-represented in the
"core" group when compared to the CSIII network (Figure
2A). Thus, analysis of the "core" of highly connected
genes indicates that cell wall assembly and polarization of
the secretory apparatus are central processes buffering
defects in the CSIII pathway.

CHS1 interaction set

Some 57 genes show synthetic interactions with CHS1
(Figure 1A and Table 2), and while a number of these are
embedded in the CSIII network, most interact only with
CHS1, indicative of a distinct functional role for Chs1p
that is analyzed further in the Discussion.

Chitin content in mutants of interacting genes

To investigate the relationship between the interacting
genes and chitin synthesis, the chitin content of the 156
deletion mutants in non-essential genes of the CSIII net-

work and the CHS1 interacting genes was measured (see
Additional file 2). To focus on the biologically meaning-
ful changes in chitin level, a set of mutants with margin-
ally altered chitin content were excluded from our analysis
despite their having statistical significance. Thus, 51 and 3
mutants with levels above 20 and below 12 nmole Glc-
NAc/mg dry weight, respectively are discussed below as
having altered chitin content. To integrate synthetic inter-
action and chitin determination data, each node of the
interaction network was colored according to the chitin
level of its deletion mutant (Figure 1A). Four groups of
genes emerged from this analysis.

Group 1 has 33 mutants with an altered chitin level and a
requirement for Chs3p function for optimal growth (Fig-
ure 3A). All but one of the group 1 mutants have elevated
chitin levels, indicating that they trigger the chitin stress
response. Nine of these genes are involved in the synthesis
of cell wall components such as β-glucan and
mannoprotein. Half of the group 1 genes (17/33) are
required for polarization of the actin cytoskeleton or have

CLB3, CTK2 CHS5

Mitochondrial function MDM38, NUC1, UTH1, YME1 CHS1

YFR045W CHS1, CHS5

MST1, TOM37 CHS3

YTA12 CHS3, CHS4

ATP17 CHS4

RPO41 CHS4, CHS6, CHS7

COQ2, COX11, LAT1, MDM12, PET8, SHE9 CHS5

Carbohydrate and lipid metabolism DEP1, ELO1, HXT8, IPK1, PDA1, PDC1, PFK2, 
PHO5, PKR1, RPE1, TYR1, YDR248C

CHS1

Other functions BRE5 BNI4, CHS3, CHS4

IXR1 BNI4, CHS5

CNB1, HAP2, HIT1, PEX22, PMP3, PRM3, 
SKI2, WHI2

CHS1

RPA34 CHS1, CHS3, CHS4, CHS5, CHS7

FPS1 CHS1, CHS4, CHS5

GRS1, LEA1, MRE11 CHS1, CHS5

CSF1 CHS3, CHS4, CHS5

PRE9 CHS3, CHS5, CHS7

MUM2 CHS3, CHS6

UME6 CHS4, CHS6

DOT1, PDE2, PEX14, SWI3 CHS5

IRA2 CHS5, CHS6

NUP133 CHS5, CHS6, CHS7

MSN5 CHS6

PEX6 CHS7

Unknown function YBR209W, YDR314C, YEL033W, YIL110W, 
YMR003W, YNL179C, YOR322C, YPR053C

CHS1

YDL206W CHS1, CHS5

YDL032W CHS3

YDL033C CHS3, CHS5

YGL152C CHS5

YNL235C CHS6

YIL121W CHS7

Table 2: Synthetic interactions with BNI4, CHS1, CHS3, CHS4, CHS5, CHS6 and CHS7. (Continued)
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a function in vesicular transport through retrograde trans-
port in the endosomal pathway. The majority of the group
1 genes belong to the CSIII network "core", with just 7
genes interacting uniquely with CHS3 (ANP1, BTS1,
DOC1, MNN2, MNN9, RPL20B and YBR077C). Thus, the

deletion mutants of group 1 genes are highly sensitive to
CSIII pathway perturbation.

Group 2 is composed of 19 and 2 mutants with an
increased and a decreased chitin level, respectively, but
whose optimal growth does not require CHS3 (Figure
3B). A large fraction of group 2 genes (16/21, 76%) inter-
act with CHS5 and/or CHS6 (Table 2). Group 2 mutants
are affected in secretion or mitochondrial functions and
in the regulation of transcription and translation. The ele-
vated synthesis of chitin in 19 of the group 2 mutants is
probably triggered as a non-specific stress response to the
mutation, but unlike group 1, it does not serve to buffer
against the deleterious effects of the mutation. For exam-
ple, a set of 14 group 2 mutants interacting with CHS5 or
CHS6 have elevated chitin levels. In these cases, the stress
activated chitin response reflects a broader Chs5p- and/or
Chs6p-dependent activation that is required for cell wall
buffering in these mutants (see Discussion).

The third group of 16 mutants have a wild type chitin con-
tent and a synthetic interaction with CHS3 (Figure 4A).
These mutants are defective in ubiquitin processing/cell
cycle progression, membrane biogenesis and polarized
secretion.

Finally, group 4 contains deletion mutants in 57 genes
with a wild type chitin level and a synthetic interaction
with any CHS gene other than CHS3 (Figure 4B). Sixteen
of these genes are connected to CHS5, suggesting a broad,
and Chs3p-independent, role for Chs5p in their buffering.

Calcofluor white phenotypes of the CSIII network mutants

Calcofluor white is a toxic compound which binds prima-
rily to chitin in yeast, and mutants with cell surface defects
frequently show altered sensitivity to it [20-23]. For exam-
ple, a chs3 null mutant and mutants with a defective CSIII
pathway show Calcofluor resistance because they make
low levels of cell wall chitin [23]. We thus searched for
synergistic interactions between Calcofluor white and the
deletion of each gene found in the CSIII network. Mutant
strains were spotted on solid medium containing 10 µg/
ml or 50 µg/ml Calcofluor white, and scored for
sensitivity relative to the wild type. In all, 59% of mutants
exhibited an altered Calcofluor sensitivity, with 65 and 4
mutants showing hypersensitivity and resistance, respec-
tively (Figure 3 and 4, and see Additional file 2). As seen
in Figure 3, a high fraction of mutants with an altered chi-
tin content also showed an altered sensitivity to Cal-
cofluor. Indeed, 80% (39/49) and 67% (2/3) of mutants
with increased and decreased chitin levels, respectively,
were hypersensitive and resistant to Calcofluor, respec-
tively. More specifically, 97% of group 1 mutants had a
Calcofluor phenotype, revealing the critical role of Chs3p-
synthesized chitin in Calcofluor sensitivity. However,

A network of genetic interactions with BNI4, CHS1, CHS3, CHS4, CHS5, CHS6 and CHS7Figure 1
A network of genetic interactions with BNI4, CHS1, 
CHS3, CHS4, CHS5, CHS6 and CHS7. (A) Global view of 
the network. Synthetic interactions with any query gene (dia-
monds) are depicted as edges joining these to nodes (circles). 
Nodes whose deletion mutant have a decreased, wild type 
and increased chitin content are colored in green, gray and 
red, respectively. For the decreased (green) and increased 
(red) chitin contents, color intensity is proportional to the 
magnitude of the change. (B) Venn diagram of the CHS1 
interaction set with the CSIII network. The number of genes 
interacting with CHS1 or with any of the CSIII query genes is 
indicated. The numbers in parentheses indicate the number 
of interactions for multiply connected genes. Genes showing 
2 or more interactions are grouped in green or red ovals, 
respectively.
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Analysis of the CSIII networkFigure 2
Analysis of the CSIII network. (A) Grouping genes of the CSIII network in functional categories. Genes belonging to the 
"core" group (CHS3 plus at least one other) are underlined. The proportions of the functional categories in the CSIII network 
and in the "core" group are represented in the outer and the inner pies, respectively. (B) Interactions among the "core" group. 
Color coding for nodes is as in (A).
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Calcofluor toxicity does not correlate strictly with the chi-
tin level or the requirement for Chs3p function. Indeed,
10 mutants with wild type Calcofluor sensitivity have an
altered chitin content (Figure 3, gray bars). This set is
almost entirely composed of group 2 mutants (Figure 3B),
with the optimal growth of 9 of these mutants not requir-
ing CHS3. In addition, 17 mutants with an altered Cal-

cofluor sensitivity have a wild type chitin level (Figure 4,
bold and open characters): 8 and 9 of those mutants fall
in groups 3 and 4, respectively. The 8 group 3 mutants
require Chs3p function but do not trigger the chitin stress
response, indicative of a requirement for an additional
Chs3p function distinct from lateral wall chitin synthesis,
such as remedial septum or bud neck chitin synthesis (see

Grouping deletion mutants with an altered chitin content according to their interaction patternFigure 3
Grouping deletion mutants with an altered chitin content according to their interaction pattern. (A) Chitin lev-
els, expressed in nmole GlcNAc/mg dry weight, in wild type, group 1 and query mutants. (B) Chitin levels in wild type and 
group 2 mutants. Note the different scales in (A) and (B). Hypersensitivity, resistance, wild type and not determined sensitivity 
to Calcofluor are indicated by black, open, gray and hatched bars, respectively.
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Discussion). The 9 group 4 mutants require integrity of
the CSIII pathway but not an increase of chitin level
through Chs3p. This subgroup indicates that components
of the CSIII pathway function in other cellular processes.
Finally, a set of 26 mutants are wild type for both Cal-
cofluor sensitivity and chitin level. Nineteen of them are
not connected to CHS3, reflecting chitin-independent
functional requirements for CHS4, CHS5, CHS6, CHS7
and BNI4.

Synthetic interactions with SHC1

The SHC1 gene product is 43% identical to Chs4p. While
Chs4p functions in Chs3p activation during vegetative
growth, the known role of Shc1p is restricted to sporula-
tion [24]. However, overexpression of Shc1p during
vegetative growth can compensate for the lack of Chs4p,
and reciprocally, overexpression of Chs4p during sporula-

tion partially complements the shc1∆ mutant phenotype
[24]. Although Chs4p and Shc1p show structural and
functional relatedness they are not an essential redundant
pair since the chs4 shc1 double mutant has no synthetic
growth defect. We searched for genes required for the opti-
mal vegetative growth of the shc1∆ mutant and found 6
synthetic interactions. In addition, we added the previ-
ously reported synthetic interaction between PHO85 and
SHC1 [25] to this list. FAB1 and DEP1 are part of the CSIII
network and CHS1-interacting set, respectively. The
remaining 5 genes (BUD16, DBF2, HOP2, PHO85 and
SPT8) interact uniquely with SHC1. The pho85 null
mutant was not further analyzed due to its very poor
growth. The amount of chitin produced in the 4 remain-
ing mutants was measured and found to be similar to the
wild type (see Additional file 2). Genes compensating for
a SHC1 deletion form a distinct group from those

Grouping deletion mutants with wild type chitin content according to their interaction patternFigure 4
Grouping deletion mutants with wild type chitin content according to their interaction pattern. (A) and (B) 
group 3 and 4 mutants, respectively. Hypersensitivity, resistance, wild type and not determined sensitivity to Calcofluor are 
indicated by bold, open, gray and underlined characters, respectively.
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buffering a CHS4 deletion (Figure 5), and their genetic
interactions with SHC1 appear to be independent of a chi-
tin defect. Thus, our synthetic interaction data indicate
that SHC1 has evolved new functions that are not shared
with CHS4 and which extend the role of Shc1p beyond
sporulation to mitotic growth.

Discussion
We globally analyzed a network of 259 interactions
among 123 genes required for optimal growth of BNI4,
CHS3, CHS4, CHS5, CHS6 or CHS7 deletion mutants.
The query genes are highly interconnected, reflecting com-
mon requirements in the bni4 and chs3-7 null mutants.
This network centers on CHS3 function, with CHS3 shar-
ing most of its interactions with the other query genes.

Grouping CHS3-interacting genes by functional 

requirement for Chs3p

The genetic interactions observed with CHS3 can be
sorted by Chs3p function, which includes synthesis of chi-
tin in the lateral wall, in the remedial septum and at the
bud neck.

Lateral wall chitin, the chitin stress response

The Chs3p-dependent synthesis of wall chitin is dramati-
cally stimulated upon cell wall stress, through a stress
response pathway involving activation of the chitosome
and stimulation of the cell integrity pathway [10,15-17].
Mutants with cell wall defects activate this stress pathway
and our synthetic analysis indicates that many of them
require Chs3p function (Figure 6). Our work indicates

Comparative synthetic interaction patterns of CHS4 and SHC1Figure 5
Comparative synthetic interaction patterns of CHS4 and SHC1. Synthetic interactions with CHS4 or SHC1 are 
depicted as connections between these nodes and their respective partners (black and gray nodes, respectively).
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Functional integration of CHS1- and CHS3-interaction setsFigure 6
Functional integration of CHS1- and CHS3-interaction sets. CHS1- and CHS3-interacting genes were grouped accord-
ing to their effects on chitin synthesis. The Venn diagram shows the distinct and overlapping sets for each functional category.
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that the extent of this stress response is far greater than
previously realized: just 6 of the 26 mutants in this group
were previously known to have an altered chitin content.
Among such new mutants involved in triggering the chitin
stress response are the cell wall protein encoding gene
CCW12, and the actin-based polarity genes BNI1, CLA4,
SAC6, SHE4, SLA1 and VRP1. Actin patches are crucial for
the proper targeting of cell wall synthesis components
[26], and their perturbation activates a chitin stress
response. Other mutants include CSF1, GUP1 and ILM1
that have growth defects on non-fermentable carbon
sources and the putative vacuolar protein encoding
YBR077C.

Glucosamine-driven chitin synthesis

Chs3p has an additional role in the synthesis of chitin
upon glucosamine addition [27]. The basis for this proc-
ess is uncertain, but probably relies on metabolic flux
changes and appears to be independent of the classic chi-
tin stress response [27]. Deletion of genes compensating
for defects in this glucosamine-response pathway may
interact synthetically with CHS3 and genes of the CSIII
pathway (Figure 6). Candidate genes are MST1, TOM37
and YTA12, involved in mitochondrial function, a process
known to be down-regulated by glucosamine exposure:
their deletion may lead to metabolic imbalance compen-
sated for by an increased chitin synthesis.

Insight into Chs2p function

Chs2p is responsible for synthesis of the primary septum
but a detailed understanding of how this is achieved
remains incomplete. Analysis of CHS3 synthetic interac-
tions can give insight into Chs2p function as, in its
absence, Chs3p can partially compensate by forming a
"remedial septum" [28]. We reasoned that a set of syn-
thetic interactions with CHS3 could occur through pertur-
bation of CHS2 function, leading to the need for CHS3. A
group of genes affecting cell cycle progression likely have
an impact on septation in this way. For example, mutants
in CDC26, DOC1 or YNL171C (which is an apc1 allele)
show a delay in exit from mitosis and mutants in ASC1,
IES6, LGE1, RPL20B, RPS8A or VAM7 exhibit altered cell
size, a phenotype frequently reflecting defects in cell-cycle
checkpoints [29,30]. Deletion of any of these genes can
uncouple cell-cycle progression and septation, resulting in
defective synthesis of the primary septum by Chs2p. The
synthetic interactions between these genes and CHS3
likely result from a failure to fully synthesize both the pri-
mary septum (as a consequence of a defect in cell-cycle
progression) and a remedial septum (Figure 6). Perti-
nently and consistent with our data, Ufano et al. [31]
show that deletion of SWM1, encoding a subunit of the
anaphase promoting complex, also leads to an increase of
Chs3p-catalyzed chitin deposition.

Chs2p has a cryptic in vitro activity that can be detected
only after treatment of a cell extract with trypsin. This sug-
gests that Chs2p may also be produced as a zymogen in
vivo and be activated by posttranslational modification
[32]. Although proteomic analysis reveals the existence of
ubiquitinated and phosphorylated forms of Chs2p
[33,34], the effect of these modifications on Chs2p activ-
ity is unknown. Mutants with defects in Chs2p activation
or turnover may exhibit a low Chs2p activity and depend
on a compensatory Chs3p activity. Of the CHS3 interact-
ing genes, the serine/threonine protein kinases Bck1p and
Slt2p are candidates for Chs2p activation, while the poly-
ubiquitin gene UBI4, the ubiquitin protease Bre5p and the
proteasome subunit Pre9p may be required for Chs2p
turnover (Figure 6).

Chitin at the bud neck

Chs3p synthesizes a chitin ring that marks the incipient
bud site. Defects in secretion or polarization of the secre-
tory apparatus may lead to abnormal bud neck assembly
and/or septation. For example, the genes EDE1, EMP24,
FAB1, HBT1, OPI3, RVS167, SMY1, TPM1, VPS24, VPS67
or YBR077C are required for polarization of the secretory
pathway, indicating that transport and proper localization
of protein(s) to the bud neck are essential for growth of
mutants with low CSIII activity. Thus, we identify these
genes as candidates for involvement in Chs2p localization
and in bud neck integrity (Figure 6).

Functions of Bni4p, Chs4p and Chs5p beyond chitin 

synthesis

The existence of synthetic interactions with BNI4, CHS4,
CHS5 or CHS6 not shared with CHS3 uncovers functions
of these genes that are unrelated to Chs3p transport or
activity.

Bni4p

Five genes interact uniquely with BNI4, indicating that
Bni4p has functions distinct from anchoring Chs3p to the
septin ring. Among these, NBP2, RGD1, SHS1 and SPA2
are required for regulation of cytoskeleton organization at
the bud neck by the cell integrity pathway. Further, BNI4
shows a unique interaction with YPL066W, which
together with the bud neck localization of Ypl066p [35]
implicates this gene in bud development. Our data and
the finding that localization of Crh2p at the bud neck
requires Bni4p [36] indicate that Bni4p has a broad role in
bud neck organization.

Chs4p

Of the 7 unique CHS4 interacting genes, 4 are required for
trafficking of membrane proteins. Ast1p and Lst4p are
required for Golgi to plasma membrane transport of the
H+-ATPase Pma1p and the amino-acid permease Gap1p,
respectively [37,38]. Spf1p, a putative calcium pump of
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the endoplasmic reticulum, may also play a role in the
translocation of transmembrane proteins [39]. Ypk1p, a
serine/threonine protein kinase required for full
induction of the PKC1-SLT2 cell integrity pathway under
stress condition, is also required for endocytosis [40].
Absence of these genes combined with a CHS4 deletion
likely leads to defects in targeting membrane proteins to
the septin ring, with resultant synthetic growth
phenotypes.

Chs5p and Chs6p

Chs5p and Chs6p are late-Golgi localized proteins
involved in targeting Chs3p to sites of polarized growth
[12] and to the plasma membrane [13]. Our results for
CHS5 and CHS6, showing a strong web of synthetic inter-
actions with CSIII network "core" genes, reflect these
roles. Whereas little is known about a Chs6p function
besides Chs3p trafficking, Chs5p is also involved in the
selective polarization of other surface proteins, such as
Fus1p [41] and, at least partially, Crh2p [36]. CHS5 and
CHS6 show a large number of CHS3-independent interac-
tions (39/71 and 9/25, respectively), suggesting multiple
additional roles for Chs5p and Chs6p in protein targeting.
Interestingly, a number of these interacting mutants have
elevated chitin levels and fall into group 2. For example,
the mutants ira2 and pde2 are synthetic with CHS5 and
CHS6 and CHS5, respectively and make 76% and 35%
more chitin than the wild type, respectively (Figure 3B).
These mutants constitutively elevate the Ras/cAMP path-
way and pde2 mutants are known to affect cell wall integ-
rity and to cause slight changes in glucan and chitin levels
[42,43]. Our work suggests that the chitin elevation
involves increased activity of the Chs5p and Chs6p chito-
some pathway. However, the key buffering component in
this cAMP response is not chitin, but must be some other
component of the activated chitosome pathway, since nei-
ther ira2 nor pde2 show a synthetic interaction with CHS3.
Thus here, the stress activated chitin response is a gratui-
tous consequence of a broader Chs5p- and/or Chs6p-
dependent activation that is required for cell wall buffer-
ing in these mutants.

Regarding the known role of Chs5p in specialized late-
Golgi trafficking; several of the CHS5-interacting genes
have products that likely work in conjunction or in paral-
lel with Chs5p. These include AOR1, BEM4, HSE1, LSM6,
PEA2, RVS161, SEC22 and VPS21. A new candidate is
YGL081W that interacts with CHS5, and whose product
has been found in a complex containing Cop1p, required
for Golgi retrograde transport [44].

CHS5 interacts uniquely with 6 genes involved in mito-
chondrial function (COQ2, COX11, LAT1, MDM12, PET8
and SHE9) some of which show elevated chitin levels.
These mitochondrial proteins may play indirect roles in

late-Golgi trafficking; for example, the secretory apparatus
and mitochondria exchange lipids [45], and a defect in
mitochondrial function may impact on secretory func-
tion. Alternatively, in the absence of CHS5, mitochondria
may be poorly transferred to daughter cell with their effi-
cient functioning being essential for optimal growth.

Finally, some 9 genes show an interaction with both
CHS5 and CHS1 (Figure 1A), indicating some common
requirement for these genes. One provocative possibility
for this interactional signature is that Chs5p is involved in
the targeting of Chs1p.

Analysis of synthetic interactions with CHS1

Although it was the first fungal chitin gene identified, the
role of Chs1p has remained unclear. Cell lysis phenotypes
of chs1 mutants have led to the view that Chs1p is an "aux-
iliary" enzyme implicated in the repair of chitinase-medi-
ated cell wall damage associated with cell separation [7].
How such damage is sensed or how the repair process is
activated remains unclear. The line between repair and
redundant synthesis with Chs2p may be an arbitrary one,
and a direct role for Chs1p involvement in septal chitin
synthesis on growth in acidic minimal media where cell
lysis is more pronounced, also explains the phenotype
(see [46] for a discussion). The lysis phenotypes associ-
ated with CHS1 deletion also show strain variability. For
example, a strain with a recessive suppressor in an unchar-
acterized gene SCS1 shows no lysis phenotype, indicating
the involvement of other genes [7].

Our synthetic approach allows a broad survey of possible
CHS1 function. However, CHS1 is part of a family and a
synthetic analysis of a gene family can be complicated
[47]. Specialized roles for CHS1, CHS2 and CHS3 are
likely ancient, predating the genome duplication of S. cer-
evisiae [48,49], since all three genes are present in Ashbya
gossypii, a related fungus that did not undergo the S. cere-
visiae duplication event. Our finding that the majority of
the CHS1 interactions are both distinct from the CSIII net-
work and do not trigger the chitin stress response (Figure
1A) indicates distinct function. CHS1 and CHS3 mutants
do not synthetically interact under our test conditions, so
the synthetic effects of CHS1 mutants are not caused by a
buffering of CHS3 function. Consistent with this, the
CHS1 deletion does not activate the chitin stress response,
as chitin levels in the chs1∆ mutant are close to wild type
[6], see Figure 3A). One possible cause of synthetic effects
of CHS1 mutants is through genes that buffer Chs2p func-
tion. A number of unique interactors with CHS1 are
involved in bud morphogenesis (BEM4, BUD20, PEA2),
and in protein recycling through the endocytic pathway
(VPS5, VPS17, VPS29 and VPS35), all could be required
for Chs2p function (Figure 6). This hypothesis, supported
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by the genetic evidence presented here, will require fur-
ther testing.

In our data we also find interactions with mutants in a
number of genes that are singly prone to lysis or show
phenotypes consistent with osmotic imbalance (ARC18,
BCK1, CNB1, FPS1, and WHI2). CHS1 also shows syn-
thetic interactions with YEL033W and YNL179C, that
overlap with and are alleles of YEL034W/HYP2 and
YNL180C/RHO5, genes that play a role in balancing cell
integrity [50,51], and with YOR322C which has a role in
signaling through the cell integrity pathway [52]. In addi-
tion the absence of Chs1p is buffered by the presence of
16 genes (BCK1, BEM4, CNB1, ECM21, FPS1, GRS1,
HBT1, HIT1, NUC1, PDA1, PFK2, SPF1, TYR1, YGL081C,
YGL110C and YPL261C) that show synthetic interactions
with the FKS1, GAS1 or SMI1 genes involved in β-1, 3-glu-
can synthesis [19]. These results provide strong independ-
ent support for a function of Chs1p in buffering cell wall
robustness through regulated chitin synthesis, and iden-
tify many candidates that may participate in the modula-
tion of Chs2p function.

As mentioned above, yeast cells are more dependent on
Chs1p to prevent lysis and allow growth on synthetic min-
imal media [6,53]. The basis for this increased depend-
ence is unknown, though there are data indicating that the
partitioning of Chs1p activity between the plasma mem-
brane and the chitosome is somewhat more pronounced
toward the plasma membrane in minimal medium [54].
Interestingly, a number of unique CHS1 interactors are
involved in metabolism and nutrient utilization (Figure
6), providing functional clues to this aspect of Chs1p
function.

Conclusions
Our synthetic network analysis reveals a deep interac-
tional complexity underlying chitin biology. The CHS3-

core network is informative in identifying components
involved in all aspects of regulated chitin deposition. The
chitin stress response that adds chitin to lateral cell walls
is now shown to be triggered very broadly by cell wall and
actin-based polarity defects and to play a key role in cell
wall buffering. The CHS3 core-network also offers insight
into Chs2p function by identifying proteins implicated in
bud neck localization, and in the cell cycle coordination
of septum formation with mitotic exit. Genes involved in
secretory trafficking of Chs3p (CHS4, CHS5, CHS6 and
BNI4) show many CHS3-independent interactions and
these greatly expand the range of trafficking functions for
these genes, especially for the heavily interacting CHS5. In
contrast to its currently assigned minor auxiliary role,
CHS1 shows an extensive web of genetic interactions,
most of which are distinct from the CSIII network and
which do not trigger the chitin stress response. One set of
these identifies components of endocytosis, budding and
cell morphology, which may be required for Chs2p func-
tion. A second set of 25 interacting genes show that Chs1p
is intimately involved in buffering yeast cell wall robust-
ness during vegetative growth.

Methods
Strains, media and drugs

Haploid deletion mutants (Table 1) are available from the
deletion project consortium. These strains were arrayed
on sixteen 768-format plates using a colony picker [18].
Starting strains for the SGA analysis (Table 1) were con-
structed as described in Tong et al. [19]. Arrays were prop-
agated at 30°C on standard YEPD (10 g/l yeast extract, 20
g/l bacto-peptone, 20 g/l glucose) or YEPD supplemented
with 200 µg/ml G-418 (Invitrogen, Carlsbad, CA). When
required, strains were grown on standard SD medium (6.7
g/l yeast nitrogen base, 20 g/l glucose) supplemented with
appropriate amino acids [55]. Nourseothricin (ClonNat)
was purchased from Werner Bioagent (Jena, Germany).

Table 1: Strains used in this study.

Strain Genotype Reference

BY4741 MATa his3∆ leu2∆ met15∆ ura3∆ [60]

BY4742 MATα his3∆ leu2∆ lys2∆ ura3∆ [60]

BY4743 MATa/α his3∆ /his3∆ leu2∆ /leu2∆ met15∆ /MET15 lys2∆ /LYS2 ura3∆ /ura3∆ [60]

∆arrayORF MATa orf∆::KanMX4 his3∆ leu2∆ met15∆ ura3∆ [61]

HAB1122 As Y3656 chs3∆::NatMX4 [19]

SBY4 As Y3084 chs1∆:: NatMX4 [19]

SBY5 As Y3084 chs5∆:: NatMX4 [19]

SBY6 As Y3084 chs7∆:: NatMX4 [19]

SBY30 As Y3084 chs4∆:: NatMX4 [19]

SBY70 As Y3084 shc1∆::NatMX4 This work

SBY105 As Y3656 chs6∆:: NatMX4 [19]

Y3084 MATα mfα1∆ ::MFα 1pr-LEU2 can1∆ ::MFA1pr-HIS3 his3∆ leu2∆ lys2∆ ura3∆ [18]

Y3638 As Y3084 bni4∆:: NatMX4 [19]

Y3656 MATα can1∆ ::MFA1pr-HIS3-MFα 1pr-LEU2 his3∆ leu2∆ lys2∆ ura3∆ [19]
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Screening for synthetic lethal/sick interactions and data 

refinement

Synthetic genetic array analysis (SGA) was used to identify
genes required for the optimal growth of strains deleted
for BNI4, CHS1, CHS3-7 or SHC1, as described [18,19].
From three SGA screens for each "query" gene, ~1,800
potential interactions were identified and 333 synthetic
interactions confirmed by random spore or tetrad analysis
as described previously [19]. Briefly, spores were germi-
nated into liquid haploid selection medium [SD-His/Arg
+ canavanine] in a 96-well format. The germinated MATa
spore progeny were serially diluted in sterile water and 2
µl for each dilution was spotted onto medium selecting
for the query-gene mutation [SD-His/Arg + canavanine/
Nourseothricin], the interacting gene mutation [SD-His/
Arg + canavanine/G-418], and both the query-gene and
interacting gene mutations [SD-His/Arg + canavanine/
Nourseothricin/G-418] then incubated at 30°C for ~2
days. Cell growth under the three conditions was com-
pared and double mutants were scored as synthetic sick
(SS), synthetic lethal (SL) or no interaction (No) [19]. For
tetrad analysis, dissections were performed on solid
complete SD medium and growth of individual spores
was scored after 4 days incubation at 30°C. Plates were
then replicated on YEPD + G-418 or Nourseothricin to
identify tetrad type. Growth of double mutants was com-
pared to that of single mutants from tetratype tetrads and
then scored as "SS", "SL "or "No". Ten of the 22 previously
reported synthetic lethal interactions with CHS3-7 or
SHC1 [4,15,25,56,57] were found by the SGA procedure.
Of the remaining, 9 engaged genes whose mutant is
absent from our deletion collection (CDC3,CDC11,
CDC12 and CHS2) or genes whose deletion leads to sys-
tematic growth defects in our conditions (ANP1, MNN9,
PHO85 and SRV2) and these genes were used in our net-
work analysis. No synthetic interaction between GAS1
and CHS4 or CHS7 was found by the SGA. These discrep-
ancies with other's data [56] reflect differences in strain
background. These two synthetic interactions were
included in our analysis. An additional set of 57 interac-
tions were analyzed further by random spore or tetrad
analysis [19]. Of these, 30 synthetic interactions were con-
firmed, with the 27 remainder discarded (see Additional
file 1). It is important to note that this additional set of
tested interactions was not random and was strongly
biased toward dubious interactions: for example, a group
of 11 interactions with genes closely linked to CHS1 or a
set of 16 non-reciprocal interactions (that is gene A found
in screen for genes interacting with gene B and gene B not
found in the set of genes interacting with gene A).

Chitin assay

Stationary phase cultures were diluted 1:100 into 3 ml of
YEPD and grown again for 22-24 h at 30°C. Cells from
1.5 ml culture were colleted by centrifugation (20,000 × g,

2 min). Pellets were then frozen at -20°C until used for
alkali-extraction. Dry weights were determined after a 2
day incubation at 37°C. Cell pellets were resuspended in
1 ml 6% KOH and heated at 80°C for 90 min with occa-
sional mixing. Alkaline insoluble material was pelletted
(20,000 × g, 20 min), neutralized with phosphate-buff-
ered saline for 10–20 min with occasional mixing. After
centrifugation (20,000 × g, 20 min), 200 µl of McIlvaine's
Buffer (0.2 M Na2HPO4/0.1 M citric acid, pH 6.0) was
added to pellets. Extracts were then stored at -20°C until
processed for chitin measurements. Samples were thawed
and subjected to two digestions with 4 µl of purified Strep-
tomyces plicatus chitinase-63 (4 µg/ul in PBS) at 37°C for
36–40 h and then for 20–24 h. The amounts of chitin
were then determined by using the modified Morgan-
Elson procedure as described previously [27]. The levels of
chitin, expressed as GlcNAc concentration, were then nor-
malized to the dry weight of the sample. Of the 84
mutants whose chitin levels differed significantly from
wild type (p < 0.01 in a Student's t-test, see Additional file
2), 54 with larger changes were further considered (see
text).

Calcofluor white sensitivity/resistance

Sensitivity to Calcofluor white was assessed using a mod-
ified version of the method described by Ram et al. [21].
Cells were grown overnight, and then diluted to an optical
density of OD600 nm = 0.5. Five µl of this suspension, as
well as 1:10, 1:100, and 1:1000 dilutions of this suspen-
sion, were spotted on SD plates (buffered to pH 6.2 with
10 mM MES) containing 10 µg/ml or 50 µg/ml Calcofluor
white (Fluorescent Brightener 28, Sigma), and control
plates. Plates were incubated at 30°C for 48 hours, photo-
graphed, and then rechecked after 72 hours. A literature
search indicated that the phenotype we found agreed with
that previously reported for 29 mutants (22 interacting
mutants + 7 query mutants). In 4 cases however (ARC18,
PDE2, PEX6 and SPF1), we found a wild type sensitivity
for mutants that had previously shown altered Calcofluor
white sensitivity [22,42,58,59]. These discrepancies may
be due to differences in Calcofluor white concentration or
to allelic or strain variation.
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