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ABSTRACT 
An interactive boundary layer modelling methodology for aerodynamic flows 

Author:  L. Smith 

Supervisor:   Prof J.P. Meyer 

Co-supervisors: Dr O.F. Oxtoby 

Dr A.G. Malan 

Department:  Mechanical and Aeronautical Engineering 

Degree:   Masters of Engineering (Aeronautical Engineering) 

Computational fluid dynamics (CFD) simulation is a computational tool for exploring flow 

applications in science and technology. Of central importance in many flow scenarios is the 

accurate modelling of the boundary layer phenomenon. This is particularly true in the 

aerospace industry, where it is central to the prediction of drag. 

Modern CFD codes as applied to modelling aerodynamic flows have to be fast and efficient 

in order to model complex realistic geometries. When considering viscous flows, the 

boundary layer typically requires the largest part of computational resources. To simulate 

boundary layer flow with most current CFD codes, requires extremely fine mesh spacing 

normal to the wall and is consequently computationally very expensive. Boundary layer 

modelling approaches offer considerable computational cost savings.  

One boundary layer method which proved to be very accurate is the two-integral method of 

Drela (1985). Coupling the boundary layer solution to inviscid external flow, however, is a 

challenge due to the Goldstein singularity, which occurs as separation is approached.  

This research proposed to develop a new method to couple Drela‟s two-integral equations to 

a generic outer flow solver in an iterative fashion. The study introduced an auxiliary equation, 

which was solved along with the displacement thickness to overcome the Goldstein 

singularity without the need to solve the entire flow domain simultaneously. In this work, the 

incompressible Navier-Stokes equations were used for the outer flow.   

In the majority of previous studies, the boundary layer thickness was simulated using a wall 

transpiration boundary condition at the interface between viscous and inviscid flows. This 

boundary condition was inherently non-physical since it added extra mass into the system to 

simulate the effects of the boundary layer. Here, this drawback was circumvented by the use 

of a mesh movement algorithm to shift the surface of the body outward without regridding 

the entire mesh. This replaced the transpiration boundary condition.  
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The results obtained show that accurate modelling is possible for laminar incompressible 

flow. The predicted solutions obtained compare well with similarity solutions in the case of 

flat and inclined plates, and with the results of a NACA0012 airfoil produced by the validated 

XFOIL code (Drela and Youngren, 2001).  

Keywords: boundary layer, two-integral method, coupling, auxiliary velocity, displacement 

thickness, mesh movement algorithm.  
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CHAPTER 1 

INTRODUCTION 
 

1.1 Background 
Computational fluid dynamics (CFD) is concerned with the numerical solution of equations 

of fluid motion as well as the interaction of fluids and solid bodies. CFD today offers 

software that allows the accurate simulation of transonic and turbulent flows. Modern CFD 

codes are an increasingly valuable design tool in engineering, as well as a substantial research 

tool in certain sciences. Since the 1970s, CFD codes have been used in the aerospace industry 

to assist in designing and optimising aircraft and jet engine configurations and performance. 

CFD has revolutionised airfoil design and analysis by its ability to optimise airfoil shapes to 

specified requirements (Versteeg and Malalasekera, 2007). 

An important engineering aspect of many flow problems is the behaviour of the fluid near a 

solid boundary. Viscous flow moves from having completely irrotational motion away from 

the boundary up to the surface of the body where the velocity reaches zero, because of the no-

slip condition at the wall. This change occurs in a very small layer adjacent to the surface of 

the body, where normal and tangential forces exist not only between fluid layers but also 

between the fluid and the wall. The physical property of fluid responsible for these forces is 

viscosity. The layers in which viscous effects dominate are called boundary layers.  

The boundary layer has to be resolved accurately in order to predict effects such as drag or 

reversed flow leading to flow separation. The boundary layer is not only important to 
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determine appropriate shapes to minimise drag across a body and avoid separation but also to 

simulate flow through blade cascades in compressors and turbines. Drag prediction is 

important in the aerospace industry for economic reasons since it influences fuel burn costs 

(Anderson, 2007). The boundary layer solution is imperative in certain cases of separation, 

wakes and jet flows.  

These effects are usually solved using the Navier-Stokes equations. When considering 

viscous flows, the boundary layer typically requires the largest part of computational 

resources. The reason for this is that, in boundary layer flows, gradients in velocity normal to 

the boundary are a factor of Re  greater than those parallel to the boundary, where Re is the 

Reynolds number (White, 2006). Typically, Reynolds numbers in flow over an airfoil range 

up to the order of 610 . This results in the need for small mesh spacing normal to the 

boundary. The resulting fine meshes and stability limit on time-step size mean that the 

boundary layer accounts for a great deal of computational cost. In addition, the need for 

highly stretched elements on the boundary makes the process of meshing more specialised 

and time-consuming. Boundary layer approaches, on the other hand, eliminate the need to 

resolve the boundary layer.  

To describe boundary layer flow over airfoils, there are various simplifications that can be 

taken into account. The small thickness of the boundary layer prevalent in high Reynolds 

number flows at moderate angles of attack permits certain approximations within the 

boundary. First, the variation of the pressure normal to the wall is negligibly small. Second, 

the variation of velocity along the wall is much smaller than the variation of velocity normal 

to the wall. 

Various researchers have recently achieved success in modelling boundary layers in a variety 

of industrially relevant scenarios. Riziotis and Voutsinas (2008), for example, improved 

prediction of aerodynamic performance in dynamic stall conditions of airfoils. Jie and Zhou 

(2008) modeled transonic flow over complex three-dimensional aircraft configurations.  

Sekar and Laschka (2005) determined minimum flutter speed in transonic flows and Szmelter 

(2001) optimised transonic wings; Florea, Hall and Cizmas (1998) modelled cases of 

unsteady viscous separated flow through subsonic compressors and Soize (1992) modelled 

unsteady compressible flow in cascade blades at positive incidences. 
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In boundary layer modelling, flow is divided into two regions: an inviscid flow region, where 

the flow is determined from flow models such as the Euler or full potential equations, and a 

viscid region, where flow is governed by the boundary layer equations. Various viscid-

inviscid interaction techniques have been applied to find a composite solution of the 

boundary layer equations coupled to an approximation of the outer inviscid flow. Interactive 

boundary layer techniques can be extended to applications that include, multibody systems 

and fluid-structure interactions (Cebeci and Cousteix, 2005). 

The calculation of the boundary layer equations coupled to an inviscid solution offers an 

attractive alternative to solving the Reynolds-averaged Navier-Stokes equations as well as to 

the full Navier-Stokes equations. It is computationally far less expensive since it eliminates 

the need to resolve the boundary layer. 

However, a few difficulties are present with these methods. The main problem encountered 

with interactive solution techniques is the so-called „strong interaction problem‟ (Wolles and 

Hoeijmakers, 1998). Strong interactions exist in the region of the trailing edge or where flow 

separation occurs, where neither the viscous nor the inviscid flow is dominant locally. It is in 

these cases of trailing edge and separation regions that the so-called „Goldstein singularity‟ 

exists and where numerical interaction between the viscous and inviscid flow can fail or lack 

robustness (Katz and Plotkin, 2001). The interactive problem can be thoroughly analysed 

through the asymptotic triple-deck theory (Stewartson, 1974).  

One way to overcome the Goldstein singularity is to solve the viscous and inviscid flow 

regions simultaneously (Drela, 1985). However, this is computationally expensive and 

effectively limits one to using a potential flow scheme for the inviscid flow solution. Other 

existing interactive methods include the semi-inverse method of Le Balleur (1983) and the 

quasi-simultaneous method of Veldman (1981). 

Another important aspect when coupling the viscous and inviscid flow regions is that the 

inviscid solution needs to be informed of the boundary layer displacement. This is usually 

achieved by using a transpiration condition at the interface between the two flow regions 

(Cebeci and Cousteix, 2005). The wall transpiration condition is a non-physical condition 

where a fictitious velocity is induced into the boundary layer to simulate the effect of the 

boundary layer.  

 
 
 



 

4 

 

1.2   Objectives  
The objective of this study is to develop a method of solving boundary layer flow coupled to 

inviscid outer flow, which counters the difficulties described above. In order to achieve this, 

the researcher aims to combine the following constituents: 

 an interactive solution technique to achieve computational efficiency and scaling for 

large problem sizes, as well as modularity of inviscid and boundary layer solvers; 

 the use of a physical mass-conserving boundary condition, instead of the transpiration 

velocity condition;  

 a coupling algorithm which circumvents the Goldstein singularity without the need for 

a monolithic simultaneous solution; 

The algorithm developed will be used with an existing computational fluid dynamics solver 

to compute the influence of the boundary layer on the outer flow. The ultimate objective of 

this study is to present a robust solver capable of accurately modelling the boundary layer 

flow at a fraction of the computational cost of traditional CFD methods. 

1.3   Structure of this dissertation 
Chapter 2 gives a detailed description of how the boundary layer theory concept and the 

interactive boundary layer theory are modelled. This chapter also refers to the coupling 

between viscous and inviscid flow, with possible anomalies that should be considered. 

 

Chapter 3 discusses the governing equations starting from the inviscid flow outside the 

boundary, to the different flow solutions for the boundary layer. The two-integral method of 

Drela (1985) is completely explained as well as the different parameters that are added to 

couple the viscous and inviscid flow with this method.  

 

Chapter 4 details the complete solution procedure. The mesh movement and discretisation of 

the governing equations are discussed, as well as the procedure that the solver follows to 

calculate the boundary layer and move the mesh. 

 

Chapter 5 gives verification and validation of the results obtained. First, the results of the 

approximations to the similarity solution without coupling the viscous and inviscid flow are 

considered, then with coupling and mesh movement. 
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Chapter 6 summarises and concludes the results. Recommendations for future work and 

improvements are made. 
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CHAPTER 2 

BOUDARY LAYER MODELLING METHODS 

 

The concept of the boundary layer originated with Ludwig Prandtl in 1904, who reasoned 

from experimental evidence that for sufficiently large Reynolds numbers, a thin region exists 

near the wall where viscous effects are at least as important as inertial effects, no matter how 

small the viscosity of the fluid might be. Prandtl‟s great achievement was to show the 

practical importance the viscous part of the flow had on the flow solution, and which, up to 

that point, had been neglected to simplify the Navier-Stokes equations. Prandtl deduced that a 

reduced form of the governing equations could be employed under certain conditions. From 

this, he derived the celebrated boundary layer equations, which hold under the following two 

conditions: 

1. The viscous layer must be thin relative to the characteristic streamwise dimension of the 

object immersed in the flow, δ/L ≪1, where L is the characteristic length of the wall and δ 

is the distance away from the wall at which velocity attains its free-stream value.  

2. The largest viscous term must be the same approximate magnitude as any inertia term. 

Note that when the boundary layer is thinner, the smaller the viscosity, or more generally, the 

higher the Reynolds number. 

 

 
 
 



 

7 

 

          

Figure 1: The boundary layer concept  

The boundary layer concept supposes that fluid flow can be divided into two unequally large 

regions. As seen in Figure 1, in the bulk of the flow region, viscosity can be neglected; this 

region is called the inviscid outer flow. The second region is the very thin boundary layer at 

the wall where viscosity must be taken into account (Schlichting and Gersten, 2000). The 

methods which were used to model these two regions, as well as the coupling between them 

are discussed in the following section. 

2.1  Viscous region 
Prandtl showed that the Navier-Stokes equations can be simplified for application in thin 

boundary layers. By non-dimensionalising the equations and comparing the order of 

magnitude of the various terms, he showed that several terms can be neglected.  In Section 

3.4, these terms will be mathematically shown as well as the simplification effects on the 

Navier-Stokes equations to obtain the boundary layer equations. Since friction plays an 

important role in the boundary layer, the friction terms in the equation cannot be neglected.  

The resulting two-dimensional incompressible laminar boundary layer equations can be 

solved either numerically or with similarity solutions. Numerical solution can either 

incorporate the differential method, which solves the partial differential equations or the 

integral method which solves the ordinary differentials that are already integrated in the x2-

direction (normal to the boundary). Further discussion of the mathematical formulation of 

Prandtl‟s reasoning is given in Section 3.4. 

2.1.1 Similarity solutions 

Blasius in 1908, was the first to use Prandtl‟s boundary layer equations to treat flow along a 

thin flat plate. Based on the premise that local velocity profiles all have the same 

dimensionless shape along a plate, he introduced a new independent variable, called the 
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similarity variable. Using this variable he solved the continuity and momentum equations by 

transforming the two partial differential equations into a single ordinary differential equation.  

This method was further developed by Hiemenz and Howarth (Schlichting and Gersten, 

2000). Hiemenz extended the solution to include stagnation point flow. Howarth extended the 

Blasius series to unsymmetrical by using a power series expansion. A disadvantage of the 

Blasius series is that it cannot solve past the singularity that occurs at the point of separation, 

where the wall shear stress tends to zero. This singularity was characterised by Goldstein 

(1947). 

Falkner and Skan (1931) extended the similarity solution by Blasius to the case where the 

velocity distribution of the inviscid flow is a power law, m
xU 1 . This solution illustrates 

both favourable and adverse pressure gradients for flow over a wedge. The Falkner-Skan 

family of similarity solutions provides different velocity profile solutions for various values 

of β where
1

2




m

m . The Falkner-Skan solution includes the Blasius solution (β = m = 0) as 

well as the extension of Hiemenz (Schlichting and Gersten, 2000) for the stagnation point (β 

= m = 1). It also includes the point of flow separation described by β = -0.199. Figure 2 

illustrates the β angle. 

        

Figure 2: Falkner-Skan wedges 

The different solutions of Falkner-Skan were numerically examined by Hartree and are called 

Hartree profiles. Hartree and Stewartson also revealed the nonuniqueness of the negative 

values of m (Tani, 1977). Stewartson (1974) pointed that for negative β values, -0.199 ≤  β ≤  

0, backflow occurs since there are at least two solutions for any given β. For values  β ≤ -

0.199 multiple solutions exist for any given wall gradient, giving a family of separating 

profiles calculated by Libby and Liu (White, 2006). 
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The numerical investigations of Hartree, Leigh and Terrill show that integration cannot be 

carried out past the separation point, further demonstrating the existence of the singularity 

(White, 2006). Further, all of the above work is typically limited to non-curved surfaces. In 

the case of airfoils, for example, numerical solution is to be sought. 

2.1.2   Numerical solutions of the boundary layer equations 

Integral methods 

In practical applications, an approximate solution of the boundary layer equations is usually 

sufficient. Integral methods provide such an approximation. Von Karman and Pohlhausen 

(Katz and Plotkin, 2001) were the first to introduce the integral method. Von Karman 

proposed the momentum integral equation, obtained by integrating the momentum equation 

across the boundary layer. The remaining independent variables, therefore, are parallel to the 

wall.  Pohlhausen applied this method to several cases using a fourth-order polynomial for 

the velocity distribution to develop a set of solutions including the effect of the pressure 

gradient inside the boundary layer.  

In retarded flow regions, the approximation of Pohlhausen has less satisfactory results, for 

which Thwaites (Katz and Plotkin, 2001) suggested a different approximation from 

integrating the momentum integral equation. This method improves the original idea of 

Holstein and Bohlen (Katz and Plotkin, 2001), rewriting the momentum integral equation in 

terms of a better parameter. Thwaites looked at the entire collection of known analytical and 

experimental results to see if they could be fit by a set of averaged one-parameter functions. 

An integral formulation of the boundary layer equations is used when coupling viscous-

inviscid interactive flows. This is discussed in Section 2.3. Although the boundary layer 

equations are simpler to solve than the complete Navier-Stokes equations, they are still non-

linear and thus pose some numerical difficulties. Special care is needed in regions where 

singularities occur, such as in the neighbourhood of the trailing edge and separation regions. 

Differential methods 

There are several numerical methods for solving the boundary layer equations in differential 

form. The Crank-Nicolson (Burden and Faires, 2005) and Keller box methods (Hirsch, 2001) 

are the most convenient ones. Of the two, the Keller box method has significant advantages 

over the other for two-dimensional boundary layer flows. Neither of these methods were 
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specifically designed to solve the boundary but were found to have the appropriate qualities 

to do so accurately. 

The box scheme, which is an implicit method with second-order accuracy, involves 

transforming the momentum equation. Instead of it being a second-order partial differential 

equation, it transforms into two first-order partial differential equations. This allows all the 

derivatives in the boundary layer equations to be approximated by simple centred differences 

(Keller, 1978) and two-point averages, using only values at the corners of the box. The box 

scheme is a flexible numerical method and can solve cases in inverse flow as well as in 

separation.  

The use of differential methods is similar to solving the full Navier-Stokes equations in the 

sense that they also require small grid spacing normal to the boundary to maintain 

computational accuracy. In comparison with the integral methods, they are more general and 

accurate but computationally more expensive (Cebeci and Cousteix, 2005). 

2.1.3 Strong interaction and flow separation 

Similarity solutions (Falkner-Skan) and approximate solutions using an integral version of 

the boundary layer momentum equation were discussed in the previous two sections. It was 

briefly mentioned that Goldstein (1947) analytically showed that a singularity is present at 

the trailing edge and that the boundary layer could not be integrated into the wake. The 

source of this difficulty is the discontinuity in the boundary condition at the trailing edge 

where shear stress approaches zero. Goldstein also pointed out that the pressure distribution 

around the separation point must satisfy conditions associated with the existence of reverse 

flow downstream of separation. 

The trailing edge is a stagnant point in the inviscid flow. The solution shows a steep decrease 

in surface speed as the trailing edge is approached, which corresponds to the sharp increase in 

pressure. The strong adverse pressure gradient in the neighbourhood of the trailing edge will 

lead to flow separation upstream of the edge. It appears that even in cases of flow without 

separation (attached flow), the boundary layer equations cannot be integrated beyond a 

trailing edge (Katz and Plotkin, 2001).  

Goldstein (1947) derived a solution for the development of the near wake close to the trailing 

edge of a finite flat plate. However, this solution did not provide details in the neighbourhood 

of the trailing edge. Stewartson (1968) and Messiter (1970) independently derived a local 
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solution that provided the bridge between the Blasius solution upstream of the trailing edge 

and the Goldstein near-wake solution downstream of the edge. Originally, this singularity 

was thought to mean that Prandtl‟s boundary layer equations were invalid at these points, 

however, Brown and Stewartson (1969) showed that a regular solution of the boundary layer 

equations is possible in the vicinity of the singularity, if the pressure and outer flow velocity 

are not prescribed in advance. 

In the vicinity of these singularities, the boundary layer interacts strongly with the outer flow. 

The structure of the flow field changes in these cases. Instead of the usual division between 

inviscid flow and the boundary layer flow, there exists a three-layer hierarchical structure 

referred to as „triple-deck theory‟ or asymptotic interaction theory (Stewartson, 1974). The  

boundary layer here is divided into two further layers. The triple-deck theory replaces 

Prandtl‟s theory near singular points. This analytical solution provides the displacement 

interaction by an asymptotic matching of flows in three layers starting at the plate. 

The methods of Thwaites and Pohlhausen, mentioned earlier, tie the local profile shape to the 

local pressure gradient, making these one-equation integral methods unsuitable for flows with 

strong interaction. The two-integral method developed by Drela (1985) eliminates this direct 

link between profile shape and pressure gradient, improving the one-integral methods by 

achieving treatment of strong interactive flow. However, the equations are still singular at 

separation if an out-of-boundary layer velocity is specified. Interactive methods to 

circumvent this are discussed in Section 2.3. 

2.2   Out-of-boundary region (inviscid) 
Inviscid flow is characterised by the fact that there exist only normal pressure forces, but no 

tangential shear forces between the adjacent layers of flow. Inviscid flow exists away from 

the wall: this does not, however, mean that there is no viscosity in these regions – it merely 

means that the effects of viscosity are negligible. These effects are small because the velocity 

gradient is small and this then makes the viscous forces 2

2

2

x
u


  negligible compared with 

the inertial forces, which are of the order of  
L

U e

2

, where L is the characteristic length of the 

wall.  
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2.2.1   Summary of numerical approaches for inviscid flow equations 

Navier-Stokes equations 

The full system of the time-dependent Navier-Stokes equations provides the most general 

description of  inviscid flow regions, but at the greatest computational expense.  

Euler equations 

The Euler equations describe the most general simplified version of the Navier-Stokes 

equations, where all the shear stress and heat conduction terms are neglected. Prandtl‟s 

boundary analysis shows that this is a valid approximation for flows at high Reynolds 

numbers outside viscous regions, which develop near solid surfaces. This is because 

convective effects essentially dominate flow here (Hirsch, 1995). 

 

Euler codes are well established and can be enhanced by coupling to boundary layer 

solutions. Szmelter (2001) uses an inviscid-viscid coupling with Euler flow to optimise 

aerodynamic wings in viscous flow. It was also used by Jie and Zhou (2007) to determine 

transonic flow over complex three-dimensional aircraft configurations. 

Potential flow model 

The simplest inviscid approximation is that of the full potential model developed by Laplace 

and Green (Hirsch, 1995). The basic assumption of the existence of a potential inviscid flow 

is the condition of irrotationality, which is the condition of vanishing vorticity vector. The 

potential flow model can accurately predict viscous regions when coupled to the boundary 

layer equations, using an interactive approach. This model is useful for subsonic, low 

transonic and fully supersonic regimes, but outside this range, the Euler equations are 

advocated for the computation of inviscid flows. 

 

Interactive approaches using the full potential flow model are those of Veldman (1981), Drela 

(1985), Wolles and Hoeijmakers (1998), Sekar and Laschka (2005) and Riziotis and 

Voutsinas (2008) to name a few. Each of these researchers used the full-potential inviscid 

formulation coupled to a boundary layer (viscous) formulation to evaluate various 

aerodynamic flow aspects, for example, viscous flow around an airfoil with separation, 

dynamic stall and transonic dips of airfoils. 
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2.3  Viscid-inviscid coupling 
The so-called „viscid-inviscid interaction technique‟ has been applied to find an approximate 

solution of the Navier-Stokes equations by solving a boundary layer model coupled to an 

inviscid model.  

Weak interaction 

In design, it is common to obtain the pressure distribution about aerodynamic bodies from an 

inviscid flow solution. The inviscid flow solution then provides the edge velocity distribution 

needed as a boundary condition for solving the boundary layer equation to obtain the viscous 

drag on the body. The interaction between the two models is accomplished using the 

following procedure (Wolles and Hoeijmakers, 1998): 

1. The displacement thickness is obtained by the boundary layer equations and is set as the 

boundary condition of the inviscid flow. 

2. The displacement that the boundary layer causes induces a reaction on the outer flow, 

which then changes correspondingly.  

3. This change then has a reaction on the boundary layer again; therefore, there is an 

interaction between the boundary layer and the outer flow.   

4. The viscous-inviscid interaction procedure continues iteratively until the change is 

relatively small. In practice, however, convergence is obtained by severe under-relaxation 

of the changes from one iterative cycle to another (Tannehill et al., 1997). 

Strong interaction 

It was stated in Section 2.1 that for the limiting regions of separation and in the 

neighbourhood of the trailing edge, the boundary layer assumptions remain valid only if 

pressure and external velocity are not specified. In these regions, the flow exhibits strong 

interaction, and the weak interaction method described above will not converge. Instead, the 

boundary layer must be solved in inverse mode, meaning external velocity is not specified, by 

coupling the viscous and inviscid flows more tightly. 

The inverse method was first developed by Catherall and Mangler (1966), who were the first 

to integrate the boundary layer equations through a separation point. In their method, the 

displacement thickness is prescribed as a boundary condition at the boundary layer edge as a 

function along the surface to solve the pressure field. Using this technique, they could 

integrate the boundary layer equations without encountering any numerical difficulties.  
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One problem associated with the inverse technique is the lack of prior knowledge of the 

displacement thickness. This value must be obtained from solving the overall interactive 

method between the inviscid and boundary layer flow. Interactive approaches are therefore 

useful with separating flow where points of separation from the boundary occur. The next 

section discusses methods used to overcome this difficulty. 

2.3.1   Interactive boundary layer modelling techniques 

To avoid singularities for a viscid-inviscid interaction method, the correct treatment of the 

interaction rather than an adaptation of the boundary layer model itself is required. There are 

three basic approaches to solve the viscid-inviscid interaction problem. 

In the quasi-simultaneous method of Veldman (1981), an interactive law, which models outer 

flow, is solved simultaneously with the boundary layer equations. In this approach, the 

external velocity and displacement thickness are treated as unknown quantities. While the 

interactive law is only a simplified model for the outer flow, the true solution can then be 

obtained through iterative refinement. The blowing velocity or transpiration velocity is then 

used to simulate the boundary layer in this region. 

The quasi-simultaneous method was designed using properties of the triple-deck structure. It 

overcomes the Goldstein singularity by instantaneously informing the boundary layer of the 

effect the changes in the boundary layer have on the inviscid solver. The interactive law is 

then solved simultaneously with the boundary layer equations. Veldman (2009) analyses the 

properties this interactive law ideally has. Coenen (2001) and Cebeci and Cousteix (2005) 

employ the quasi-simultaneous method to model flow over two- and three-dimensional airfoil 

and wing flows. 

Secondly, semi-inverse methods were developed by Carter (1979) and Le Balleur (1983), 

where coupling between inner and outer flow is achieved through a relaxation formula which 

successively updates the displacement thickness distribution. In this method, the boundary 

layer is solved in reverse, i.e. for a given displacement thickness, the velocity distribution at 

the edge of the boundary layer, is computed. By then comparing this computed velocity with 

the target distribution imposed by the inviscid flow, a relaxation formula is used to obtain 

new estimates for the displacement thickness (Cebeci, 1999; Lagree, 2009).  
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The interactive solver of Szmelter (2001) uses the semi-inverse method of Le Balleur (1983) 

to improve numerical stability. Jie and Zhou (2007) also used the semi-inverse method but 

with a different relaxation formula by Carter (Veldman, 2009). 

The fully simultaneous method of Drela and Giles (1987b), eliminates this sequential solution 

of equations. Instead of solving the viscid and inviscid flow using an approximate interactive 

law, the entire non-linear equation set is solved simultaneously as a coupled system using a 

global Newton method. Drela developed the XFOIL code (Drela and Youngren, 2001) to 

solve the interactive flow. This package has been thoroughly verified and validated for 

different practical airfoil problems. The results obtained in this dissertation will be compared 

with results obtained from the XFOIL 6.9 package. 

Wolles and Hoeijmakers (1998), Sekar and Laschka (2005), Riziotis and Voutsinas (2008) 

are some of the authors to have used the interactive method of Drela (1985).  The fully 

simultaneous method is more robust than the iterative methods. However, the quasi-

simultaneous method is simpler to implement and computationally less expensive. Also, the 

quasi-simultaneous method has been shown to outperform the semi-inverse method in terms 

of convergence speed (Lock and Williams, 1987). In this study, therefore, the methodology 

which is proposed to overcome the singularity is based on the quasi-simultaneous philosophy. 

That is, the approach taken is to solve an additional velocity equation along with the 

displacement thickness, which while circumventing the singularity avoids the need to solve 

the entire inviscid flow domain simultaneously. 

2.3.2   Boundary conditions 

The boundary condition describing the displacement effect contains the information required 

by the inviscid solver. This information is passed from the viscous solver to the inviscid 

solver by one of two boundary conditions proposed by Lighthill (1958), namely the 

transpiration velocity condition or the “solid” displacement surface condition. Both these 

conditions require the real flow in the inviscid region to be replaced by an equivalent 

fictitious inviscid flow to incorporate the viscous effects. It is done in such a manner that the 

velocity components at the edge of the boundary layer are equal in both cases (Cebeci, 1999).  
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Figure 3: Equivalent fictitious flow, (a) “solid” displacement, (b) transpiration velocity condition 

The transpiration condition of non-zero normal velocity at the surface, is based on the 

concept that the displacement surface can be formed by distributing a blowing or suction 

velocity on the body surface. The strength of the blowing or suction velocity 
bU ,2

 is 

determined from the boundary layer solutions according to  

 *

,1

1

,2 eb U
dx

d
U   

where x1 is the surface distance along the body and δ*
 is the boundary displacement 

thickness. The variation of 
bU ,2
 on the body surface simulates the viscous effects in the 

potential flow solution (Cebeci and Cousteix, 2005). A graphical representation can be seen 

in Figure 3(b). 

The “solid” displacement boundary condition displaces the inviscid flow by a distance equal 

to the displacement thickness δ*
 formed by the boundary layer effects. The displacement 

distance away from the surface represents the deficiency of mass with the boundary layer 

(Cebeci and Cousteix, 2005). Figure 3(a) shows a graphical interpretation of this boundary 

condition.  

Historically, the transpiration model has been preferred. One reason cited for the use of the 

transpiration condition is that the displacement model involves regridding the inviscid flow 

field, making it computationally expensive. However, moving the mesh will have the same 

effect without the necessity of regridding the inviscid flow field. Among the researchers who 

used the transpiration condition are Veldman (1981), Szmelter (2001), Jie and Zhou (2007) 

and Riziotis and Voutsinas (2008).  
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Wolles and Hoeijmakers (1998) developed a unique way to discretise the transpiration 

velocity boundary condition, based on Hermite polynomial-interpolations, in their coupling 

of the viscid-inviscid flow scheme to overcome numerical instabilities. 

The displacement method has only been used in a few cases to model separation bubbles by 

Gleyzes et al. (1985) and by Hafez et al. (1991) who modeled flow using a finite element 

interactive method.  To the author‟s knowledge, a displacement method by moving the mesh 

has not been used in research until now. 

The mesh movement algorithm used in this study is considered more physically realistic 

since it avoids the addition of spurious mass into the system by the fictitious transpiration 

velocity. It also avoids the complexity of calculating the effective blowing velocity necessary 

to simulate the boundary layer. While it does add extra complexity in the need for a mesh 

movement algorithm, many CFD solvers have this functionality built in anyway. 
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CHAPTER 3 

MATHEMATICAL MODELLING 

 

3.1    Introduction 
As seen in Chapter 2, finding exact solutions for the Navier-Stokes equations is generally 

extremely difficult. The difficulty of solving the Navier-Stokes equations numerically 

increases as the Reynolds number increases. However, in limiting cases of high Reynolds 

numbers, where non-linear inertial terms vanish in a natural way, the Navier-Stokes equations 

are considerably simplified. However, this limiting solution does not satisfy the no-slip 

boundary condition at the surface. Therefore, to satisfy this condition, viscosity has to be 

taken into account (Schlichting and Gersten, 2000).  

Even though the boundary layer equations are considerably simpler and computationally less 

expensive compared with the Navier-Stokes equations, their non-linearity still makes them 

difficult to solve and causes methods such as super-positioning, which works well to solve 

inviscid, incompressible, potential flow, to fail. Therefore the boundary lay will be solved 

with the boundary layer equations and the out-of-boundary flow will be solved with the 

inviscid Euler equations. 

3.2    Conservation equations 
The fundamentals of fluid mechanics are described by the three conservation equations for 

mass, momentum and energy. There are certain assumptions made about the fluid in order to 

formulate these equations. The fluid is considered as a continuum, which means the smallest 
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volume element δV is still homogeneous. This, in turn, means that the dimensions of δV are 

still very large when compared to the average distance between the molecules in the fluid. 

The fluid is also assumed to be a Newtonian fluid, which means that a linear relationship 

exists between the stress tensor and the rate of deformation tensor. 

The resulting equations are: 

Continuity 
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Conservation of energy (First law of thermodynamics) 
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The conservation laws for the three basic flow quantities, ρ, ρu and ρh are referred to as the 

Navier-Stokes equations. These fundamentals may be used to calculate all flow properties 

and characteristics over any object. They are also the core of the boundary layer equations. 

3.3 Governing equations for inviscid (out-of-boundary layer) 

flows 
With the inviscid flow approximation, the continuity equation [3.1] remains unchanged. 

Neglecting viscosity, the Navier-Stokes equations reduce to the time-dependent Euler 

equations: 
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For a steady flow with no body forces, the Euler equations are reduced to: 
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These equations are compressible and can be reduced to represent steady incompressible flow 

when the density ρ is constant. Some of the terms within the momentum equation will be 

neglected to simplify the boundary layer equations further for steady incompressible two-

dimensional laminar flow. The steady condition means that the flow is not dependent on time 
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and the incompressibility conditions mean that density and viscosity are constant. Under 

these assumptions, the continuity equation reduces to: 
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     [3.6]  

Here, u1 and u2 are the streamwise and normal velocity components, respectively. These 

equations may be solved as described in Chapter 4. 

3.4    Governing equations for boundary layer flow  
The boundary layer equations are a reduced form of the Navier-Stokes equations. Two length 

scales are introduced near the wall, L, parallel to the wall, representing the length of the body 

and δ, normal to the wall, representing the boundary layer thickness. The reduction occurs 

based on the premise that the length scale δ is much smaller than L: δ  L.  

It has already been stated that the higher the Reynolds number, the thinner the boundary 

layer, i.e. that boundary layer thickness will decrease with decrease in viscosity. The 

boundary layer thickness is proportional to the square root of the kinematic viscosity, νδ~ . 

Using this relation with the free-stream velocity U  and characteristic length of the body L, 

the dimensionally correct representation is obtained: 
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The relationship shown in equation [3.7] shows that the larger the Reynolds number 

becomes, the smaller the boundary layer thickness as compared with the characteristic length 

of the body. 

When considering flow over a flat plate (with plate normal in x2-direction), the Navier-Stokes 

equation in the x1-direction is further reduced by noting that the second derivative of the 

velocity component in the streamwise direction, 
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corresponding derivative transverse to the main flow direction, 
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The momentum equation then reduces to: 
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   for the x1-direction.  [3.8] 

Typically to high Reynolds number flows, buoyancy effects within the flow do not contribute 

to the acceleration of the flow in the x2-direction. The pressure gradient in the x2-direction is 

 
 
 



 

21 

 

then nearly zero, being only affected by these terms. For this reason, in the boundary layer 

equations, the transverse pressure gradient is negligible, following as equation [3.9] (White, 

2006): 
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p
    for the x2-direction.  [3.9] 

Prandtl showed that pressure must be treated as a known variable in the boundary layer 

analysis with  1xp  assumed to be imposed on the boundary layer from an inviscid outer flow 

analysis. That is, the free--stream outside the boundary layer,  1xUU ee  , where x1 is the 

coordinate parallel to the wall, is related to  1xp  by Bernoulli‟s theorem for incompressible 

flow (White, 2006). 

Equation [3.9] states that pressure across the boundary, normal to the surface, is constant. It is 

for this reason that the pressure is taken to be the inviscid pressure evaluated on the surface. 

Application of the momentum equation [3.8] on the outer edge of the boundary is represented 

as 
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This equation can be substituted into equation [3.8], resulting in the pressure no longer being 

unknown. 

The following initial conditions apply to the boundary layer theory: 
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where   denotes the shear stress in the x1-direction: 
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The equations are subject to the boundary conditions: 

      1,111 0, xuxu w   Wall motion   [3.13] 

   1,212 0, xuxu w   Mass flux   [3.14] 

    11,211 , xUxxxu ee       [3.15] 

Here, u1,w(x1) simulates wall motion, u2,w(x1) simulates a mass flux (blowing) into the 

boundary layer,  ex ,2  denotes the „edge‟ of the boundary layer and Ue(x1) is the free-stream 

velocity.   
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This set of equations can be solved exactly using similarity solutions, however, this is only 

possible for simple geometries. Otherwise the equations have to be solved numerically using 

the integral method for more complex flow problems. The numerical scheme that will be 

developed for this study will, however, be tested against the similarity solutions for the flat, 

inclined plates and a generated XFOIL solution for a NACA0012 airfoil.  

3.5    Integral methods 
The integral solution of the boundary layer solutions is attributed to Von Karman. The 

momentum integral method is a second method used to approximate the boundary layer 

problem. Although it is an approximation solution, it does not depend on the similarity 

assumption and it allows for significant changes in the shape of the boundary layer velocity 

profile. Consequently, this method can be extended to any flow regime with complex 

geometries and includes effects such as transition and separation (Katz and Plotkin, 2001). 

The integral solution serves many engineering applications where it is not necessary to know 

details of flow variables inside the boundary layer. For example, in the case of design 

analysis, only the wall shear stress is needed to calculate the drag force on the surface and the 

displacement thickness to allow for coupling with outer flow. 

For a derivation of the integral momentum equation, consider Prandtl‟s boundary layer 

equations [3.7] and [3.8]. Integrating equation [3.8] with respect to x2, from the wall, x2 = 0, 

up to the boundary thickness, x2 = δ, transforms the equation into an ordinary differential 

equation, known as the Von Karman integral momentum equation. 
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Keeping in mind that x2 = δ in the boundary layer and that  
2

1

x
u



can be neglected as stated 

before to obtain equation [3.8], and using the continuity equation to replace the derivatives of 

u2 with those of u1, the equation [3.16] is reduced to: 
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where 
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u   which is the wall shear stress. 
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This equation is further simplified by eliminating the pressure term 
 1

1

dx

dp
  as per equation 

[3.10]. Then using the momentum equations outside the boundary layer and rearranging the 

terms, the following is obtained: 
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where the nomenclature is as defined previously. 

3.5.1 Two-equation integral boundary layer equations 

There are two very important requirements when formulating the two-equation integral 

boundary layer equations. First, the type of viscous formulation employed in design analysis 

has to have the capability of representing flow accurately within separation regions. 

Secondly, the laminar and turbulent formulations must be compatible. It was with these 

requirements in mind that the two-equation integral formulation based on dissipation closure 

was developed for both laminar and turbulent flows (Drela and Giles, 1987a).  

Drela and Giles substituted equations for momentum and displacement thickness into the 

momentum integral equation [3.18] to obtain the momentum integral equation in terms of 

momentum and displacement thickness. This method is referred to as the „two-integral 

method‟. These equations can also be solved by using a variety of numerical schemes to 

obtain approximations of the real solution. 

The momentum and displacement thicknesses θ and * , and the skin friction coefficient Cf 

are defined as follows: 
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where η denotes the similarity variable 
21

Re
xx  . 

Substituting these equations into equation [3.18], an ordinary differential equation is 

obtained, which contains two-integral quantities: momentum thickness and boundary layer 
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thickness. Using the shape factor H, the friction coefficient Cf and Me as the edge Mach 

number, a dimensionless version of the integral momentum equation is obtained: 
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where       

 *

H     [3.23]  

If equation [3.9] is first multiplied by u and then integrated, the kinetic energy integral 

equation results: 
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The kinetic energy and density thicknesses * and ** , and dissipation coefficient CD, are 

defined by: 
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These equations contain three different shape parameters: the shape parameter H, the energy 

thickness shape parameter *
H , which eliminates the direct link between the H and the local 

external velocity Ue, and the density thickness shape factor **
H .  

They are defined as follows: 


 *

H   

 *

* H    

 **

** H  [3.28a-c] 

Using these shape parameter definitions and subtracting equation [3.22] from equation [3.24], 

the momentum and kinetic energy equations can be written as: 
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The two-integral equations [3.29] and [3.30] contain three unknowns, * , θ and Cf , and 

cannot be solved without additional information. The necessary information is obtained from 

 
 
 



 

25 

 

an assumed velocity profile family, a function of the Falkner-Skan solution. In principle, this 

profile defines the entire boundary layer velocity field Ue =  211 , xxu , which has the same 

form anywhere along the boundary layer.  

Different integral boundary layer methods make different choices for the local boundary layer 

thickness and the shape of the local velocity profile. Examples of these methods are that of 

Pohlhausen and that proposed by Thwaites, however, these are both one-integral systems 

(Katz and Plotkin, 2001). Drela suggested a different set of closure equations when using the 

two-integral boundary layer method (Drela, 1985), which is discussed next.  

3.5.2 Laminar closure equations 

The integral boundary layer equations [3.29] and [3.30] are valid for both laminar and 

turbulent boundary layers, as well as for free wakes. The fundamental difficulty with these 

equations is that they contain more than two independent variables. Consequently, some 

assumptions about the additional unknowns are to be made to obtain a solution.  

 

The two dependent variables are defined as momentum and displacement thickness, θ and *

. Ue and Me relate to inviscid flow and therefore do not represent additional unknowns. The 

undefined variables that remain are Cf, CD, 
*

H  and **
H . The following functional 

dependencies are assumed (Drela and Giles, 1987a).  
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Hk is the kinematic shape parameter defined with density taken as constant across the 

boundary layer and solely depends on the velocity profile. Hk was developed as an empirical 

expression by Whitfield in terms of the conventional shape parameter and edge Mach number 

as follows: 
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This expression assumes adiabatic flow and non-unity Prandtl number of air. It is accurate up 

to Me = 3 and used for both laminar and turbulent flows (Drela, 1985). This equation 

simplifies to HH k  for incompressible flow. 

 

To define the shape factor correlations, the velocity profiles of the Falkner-Skan solution 

were used to carry out the numerical integration of the four length scales [3.19, 20] and [3.25, 

26] to obtain analytical expressions of [3.28a-c]. This was done in order to reduce 

computational cost associated with integration of the length scales at each x1 location 

(Whitfield, 1978). For laminar flow, Drela used a finite differencing method to solve the 

Falkner-Skan equations with prescribed shape parameter to obtain the following curve fits, 

referred to as „laminar closure equations‟. 

 

First, the energy thickness shape parameter equations and visual interpretation of the 

relationship are shown in Figure 4. 
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                          Figure 4: Laminar closure relationship for the energy thickness shape parameter 

Next, the skin friction coefficient as shown is represented by Figure 5. 
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    Figure 5: Laminar closure relationship for the skin friction coefficient 

 

Last, the dissipation coefficient as shown below is given in Figure 6: 
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     Figure 6: Laminar closure relationship for the dissipation coefficient 

The density thickness **
H  is derived by Whitfield and is defined as follows: 
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This shape parameter is negligible for low subsonic flows and has only a small effect on 

transonic flows (Drela, 1985). It is important to note the function shape of the closure 
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equations [3.32 – 3.34]. They are smooth without discontinuities, which means numerically, 

these functions will not cause any computational instabilities. 

 

The level of accuracy of these correlations is a consequence of the fact that almost any 

laminar velocity profile is very similar to the Falkner-Skan profile. This is true for measured 

as well as computed solutions. This makes the empirical equations [3.32 – 3.34] very 

accurate for all flows, especially in the incompressible case.  

 

The integral boundary layer equations, after being simplified to two-dimensional steady 

incompressible laminar flow are: 
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For the purpose of this work, these equations will be discretised and solved by using 

Newton‟s method, after which they will be connected to a solver which solves the inviscid 

flow in the outer flow region. 

 

3.5.3 Goldstein singularity 

The laminar closure equations reach a singularity at the point where Hk reaches 4, which is 

where the function [3.32] reaches a minimum (Figure 4). This is referred to as the „Goldstein 

singularity‟ at a boundary layer separation point. The vanishing derivative of *
H causes a 

singularity in equation [3.33], which can only be avoided if Ue adjusts to cause the rest of the 

equation to tend to zero as well. Therefore, any boundary layer method with a prescribed Ue 

that reaches separation will fail at this point. 

 

This problem can be circumvented by solving the inviscid flow and boundary layer 

simultaneously. Alternatively, elimination of this problem can be accomplished by allowing 

the boundary layer to modify the inviscid flow solver it is interacting with by modifying Ue 

via the displacement thickness. This process creates a negative feedback effect, which can 

eliminate the singularity. 
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This can be achieved by assuming the boundary layer is growing on the wall of a two-

dimensional channel, which has a fixed specified total volume flow rate 


V and a varying 

specific height h(x1) (Drela, 2010). 

 

The velocity can be written as 
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allowing the derivation of a differential equation for Ue:     
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Here, h(x1), the specific channel height, is calculated from the specified velocity by 
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Where  1

*
xestimate  is an estimated displacement thickness and Ue,spec is the velocity obtained 

from the inviscid solution. 

 

It is unavoidable that the final Ue will differ slightly from Ue,spec, although setting  1

*
xestimate  

to the Blasius solution velocity distribution rather than zero can decrease this difference. 

Also, although 


V  is an arbitrary value, it plays a role in the accuracy versus stability trade-

off. The greater the value of 


V , the closer Ue will be to Ue,spec, but if it is set too high, the 

Goldstein singularity is approached once again. 

 

Equation [3.39] becomes an additional equation to solve with equations [3.36] and [3.37]. 

This allows the simultaneous solution of displacement thickness and velocity, circumventing 

the singularity, while avoiding the need to solve the entire inviscid flow domain 

simultaneously. 

 

3.6    Chapter summary 

In this chapter, the general governing equations of fluid flow were presented. These equations 

were used to derive the two-integral method of Drela (1985). Closure equations were derived 

numerically from the similarity solutions of the Falkner-Skan equations and were discussed. 

The velocity equations to overcome the Goldstein singularity that exists at the trailing edge 
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were also presented here. The solution procedure of the two-integral method will be 

discussed in Chapter 4. 
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CHAPTER 4 

SOLUTION PROCEDURE 

 

4.1     Introduction 
The inviscid flow Euler and continuity equations [3.5 – 3.6] are solved in a two-dimensional 

domain, while the boundary layer equations are solved on a one-dimensional grid. The 

boundary layer equations involve coupled non-linear ordinary differential equations, which 

were set up in Chapter 3 as: 
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where h is obtained as per [3.40]. 

Numerically solving the boundary layer equations as discussed in Chapter 3 is done as 

follows: 

 The differencing method is selected as Crank-Nicolson for its second-order accuracy 

and numerical stability.  

 A solution method for the system of ordinary differential equations is selected to 

iteratively solve the set of non-linear equations (boundary layer equations). The 
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problem is treated as an initial value problem, solved point by point using Newton‟s 

method. 

 The boundary layer solution is coupled with the inviscid flow solver using a mesh 

movement algorithm. An under-relaxation parameter is used to ensure convergence.  

 The Goldstein singularity, which exists when 4H  , is overcome by solving an 

additional velocity equation suggested by Drela (2010). 

 The laminar wake, which is beyond the scope of this study, is treated with an 

approximation function to simulate this region. 

From equations [4.1 – 4.3], it is evident that the boundary layer equations are only solved in 

the x1-direction. This is because, to obtain the Von Karman integral equations, the equations 

are integrated in the x2-direction, leaving them dependent on x1 only. 

For the inviscid flow, a two-dimensional domain of x1 and x2 is used to solve the complete 

inviscid flow field. The one-dimensional mesh obtained to solve the boundary layer equations 

is determined by the intersection between the inviscid flow mesh and the wall. 

4.2     Discretisation of the integral boundary layer equations 
The approximate solution for the boundary equations here is obtained by solving them as an 

initial value problem rather than simultaneously solving the whole complex system in one 

step. Starting at a given initial value, approximations are obtained for the displacement 

thickness *  and momentum thickness θ. The initial starting value is obtained from the 

similarity solution of Blasius for a flat plate.  

There are two differential equations for the laminar incompressible flow that have to be 

discretised, namely the momentum equation [4.1] and the shape parameter equation [4.2]. A 

third velocity equation [4.3] is also discretised. The independent variables are * , θ and Ue.  

Stepping through space by an amount 1x , the other points in the domain are solved using the 

implicit Crank-Nicolson differencing method, with a non-linear equation solver such as 

Newton‟s method. The Crank-Nicolson scheme is unconditionally stable while being second-

order accurate, therefore, there are no restriction on the step size and hence no restriction on 

the mesh. The discretised form of the momentum equation is: 
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where Cf = Cf(Hk,Re) as given by [3.33] and the subscript m refers to a value halfway 

between i and i – 1, for example, 12
1

2
1

 iim  . 

The shape parameter equation is discretised as: 
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where Cf = Cf(Hk,Re) as given by [3.33], CD = CD(Hk,Re) as given by [3.34].  * HHk
 

and H
**

 = 0 since it is incompressible attached flow. 

Finally, the velocity equation, included to overcome the Goldstein singularity near the trailing 

edge, is discretised as: 
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where h is the channel height as defined in equation [3.40]. 

4.3    The Newton method 
The Newton method is a well-established algorithm for solving non-linear scalar or vector 

equations. It is fast to converge, if the initial approximation is close to the solution. Equations 

[4.4 – 4.6] are solved as an initial value problem using a point-by-point local Newton method, 

contrary to the method by Drela (1985), which uses a global Newton method to solve 

simultaneously for all the points as well as the potential inviscid flow. Solving the equations 

in this manner is much less computationally expensive since it does not solve the whole 

monolithic system with each iteration. With the Newton method in this work, the exact 

Jacobian matrix is determined at each iteration, by analytical differentiation of all the 

governing discrete boundary layer equations [4.4 – 4.6].  

The advantage of analytically determining the Jacobian matrix is that it avoids discretisation 

errors, which can slow down or even stall convergence. It also saves computational effort 

since the equations to be solved need only be evaluated once per iteration rather than for 

every combination of equation and unknown, which is at least nine times in this case. This 

produces a quadratic convergence rate, provided that a sufficiently accurate initial value is 
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known and the Jacobian inverse exists. The integral form of the boundary layer equations is 

used to minimise the number of additional variables and hence the computation time.  

4.3.1   The algorithm for Newton‟s method for non-linear systems 

To approximate the solution of a non-linear system of n unknowns, F(x) = 0, is given an 

initial approximation of x, the following procedure is used: 

At each step, the nn system    xFyxJ   is solved for y, where     








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j

i
ji x

xf
xJ ,

 for 

ni 1  and nj 1 .  Then x is set to x = x + y until y is sufficiently small, which then 

gives x as the solution to the non-linear system. 

The functional iteration procedure evolves from selecting  0
x  and generating 

         1111   kkkk
xFxJxx  for k = 1, 2, …, n. 

4.3.2   The linear system 

In the present application, the vector function F referred to includes only the boundary layer 

equations. These equations will be solved in the form of a linear system    xFyxJ   using 

Gaussian elimination with partial pivoting (Burden and Faires, 2005). Gaussian elimination 

with partial pivoting helps to reduce round-off errors, since it will demand that some rows 

should interchange to ensure the pivot element is not zero. In larger systems, it is very 

difficult to predict in advance when round-off errors can occur. 

4.3.3   The Jacobian 

The Jacobian is defined as: 
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where 1f , 2f  and 3f   are defined in equations [4.4 – 4.6]. 

The values in the Jacobian are as follows: 
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The terms within the Jacobian depend on the shape parameter correlations [3.32 – 3.34], for 

Cf, CD and *
H . These derivatives were obtained analytically to ensure robustness and 

efficiency of the overall system. The latter differs from other work. 
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4.3.4   Initial condition  

The local Newton method solved point by point needs an appropriate initial value to 

converge. In addition, an initial value is needed for the Crank-Nicolson method and the 

logical choice of zero cannot be used since 
fC and DC  are singular there.  

The initial value for displacement thickness * and momentum thickness   are set according 

to the similarity solution of Blasius (Drela, 1985). These are: 

eU

x1* 7208.1
      [4.16] 

eU

x1664.0
      [4.17] 

The initial values obtained from this function are a sufficiently close approximation to solve 

most boundary layer solutions (Drela, 1985).  The value of 1x  is set at the smallest value 

possible to ensure convergence, while eU  is set to the velocity at the first point. 

The initial value for eU  is set at 
speceU , , which is obtained from the inviscid solver. The 

velocity function [4.3] is not used away from the singularity; instead eU  is set equal to 
speceU ,

for 5.2H after which the velocity equation [4.3] is used to solve for eU . 

4.4     Inviscid flow solver 
The flow solver is based on the Artificial-Compressibility Characteristic-Based split (CBS-

AC) scheme (Nithiarasu, 2003; Malan, Lewis and Nithiarasu, 2002; Malan and Lewis, 2011), 

which is based on the original Chorin split and has similarities with other projection schemes 

widely employed in incompressible flow calculation. Discretisation along characteristics and 

a pressure-Poisson equation ensure a stable scheme. It can solve both compressible and 

incompressible flows using a unified approach.  

The scheme essentially contains three steps. In the first step, the intermediate velocity field is 

established. In the second step, the pressure is obtained from a projected continuity equation. 

Finally, the intermediate velocities are corrected to get the final velocity values. Any 

additional scalar equation, such as temperature and concentration, can be added as a fourth 

step. 
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The three steps of the CBS-AC algorithm can be written as: 

Step 1: Intermediate momentum 
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Where  ni

n

i tUU  , nn
ttt  1  and 

~
 indicates an intermediate quantity. Further, t and n 

respectively denote pseudo-solution time and iteration number. The higher-order term is due 

to time discretisation using the characteristic concept and serves to stabilise the convective 

term. Viscous terms are included although they are negligible for inviscid flow and the flow 

solver is not required to resolve the boundary layer.  

Step 2: Density or pressure 
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Step 3: Momentum correction 
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Where 15.0 1   and 10 2  . For the explicit scheme, 02   is employed (Nithiarasu, 

2003). Due to the artificial compressibility formulation, a finite value of c
2
 may be used. 

4.4.1    Mesh generation 

Before a numerical solution for a physical process can be obtained, a grid must be 

constructed. The physical domain is covered with a mesh to identify discrete volumes or 

elements where conservation laws can be applied. A well-constructed mesh greatly improves 

the quality of the solution (Tannehill et al., 1997). Generation of grids can be either 

structured or unstructured. 

In the case of the boundary layer, cell spacing normal to the wall must be very fine 

(proportional to Re ) in order to capture the sharp gradients in this direction. The use of a 

structured scheme allows a cell shape that is elongated in the flow direction. Alternatively, 
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the use of unstructured grids, for example, triangles in a two-dimensional problem, requires a 

higher cell density in the boundary layer since the cells need to be as nearly equilateral as 

possible to avoid grid-induced errors in the solution (Tannehill et al., 1997). 

These are typical mesh generation problems when solving the viscous effects with the 

Navier-Stokes equations. However, these problems can be avoided by using boundary layer 

modelling, since it does not require mesh generation at all in the boundary layer. 

4.5 Mesh moving algorithm 
The mesh movement routine is a simple interpolation function  

  21 1  rr      [4.21] 
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In this case, δ is the displacement of the grid point from its original position, 1d  and 2d  are 

the closest distances from that point to the two closest boundaries and 1  and 2  are the 

displacements of those two boundary points. This might seem like a crude approach but it is 

sufficient for small displacements in aerodynamic applications and is selected for its 

negligible computational cost. 

4.6 Coupling and interaction method 
The interaction method between the solver and the different routines to calculate the 

boundary and move the mesh happens as follows: 

First, the CFD solver lets the flow solution converge to a point where the residual is less than 

the specified tolerance divided by some factor, for example, 2. This factor is simply intended 

to prevent an excessive number of mesh movements as convergence is approached, since 

every time the mesh is moved, the residual increases slightly. Therefore, it is desirable to 

decrease the residual more than necessary to ensure that even after the mesh is moved, the 

system is still converged to the required tolerance. 

Second, the solver uses the boundary layer thickness obtained from the boundary layer 

solution to move boundary node i as follows: 
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Where 
)(n

ix  and 
)1( n

ix  are the new and previous displacements of node i from its original 

position, 
* is the computed boundary layer thickness, n is a unit vector normal to the 

boundary and   is an under-relaxation coefficient. 

Coupling of the inviscid and viscous flow requires an under-relaxation parameter   to ensure 

stability of the numerical system. Essentially, the under-relaxation parameter only moves the 

wall coordinates a fraction of the whole movement that is needed to move to the new position 

specified by the boundary layer solver. It is a number between zero and one. If it is too close 

to one, stability is sacrificed, whereas when it is close to zero, the system is very stable but 

takes longer to converge. Ideally, the under-relaxation parameter is set as close to one as 

possible without having numerical instabilities. 

Following the mesh movement step, the mesh is repreprocessed and the residual is calculated 

again. If this residual is less than the convergence tolerance, the program will give the 

resulting output, otherwise it restarts from the beginning, repeating the process. 

Preprocessing of a mesh for a finite volume method means calculating the volumes and edge 

coefficients of dual cells. When the mesh is moved, this information changes and must be 

recalculated. The boundary condition required for the inviscid solver at a solid wall is the 

specification of the surface streamline position. This is equal to the displacement thickness δ*
 

calculated by the boundary layer routine. 

4.7   Laminar wake singularity 
The velocity equation [4.3] (the discrete version of equation [3.47]) involves the fictitious 

„channel height‟ h calculated as per equation [3.40]. As stated at the end of Section 3.5.3, the 

selection of a smaller value of 


V  in equation [3.40] is more effective at removing the 

singularity, but leads to computed velocities which differ markedly from the specified values, 

and hence an inaccurate solution of the displacement thickness. Larger values of 


V give more 

accurate solutions, but less robustness against the Goldstein singularity. 

In practice, it was found that an unacceptable amount of accuracy had to be sacrificed in 

order for the iterative process to be robust in all situations. For example, the early cycles of 

computing the boundary layer around the airfoil, where the initially imposed velocity 

distribution is the inviscid solution with a large adverse pressure gradient near the trailing 

edge, are particularly problematic. 
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To solve this unacceptable loss of accuracy, the function 
*
estimate is set to the previously 

computed 
* at each iteration (being set to zero, initially). 


V can then be set to a small value 

to ensure robust solution, while at convergence, the velocities computed from equation [4.3] 

approach the imposed values and so no accuracy is sacrificed. The 


V selected is 0.005 m
3
.s

-1
.   

It was found that for this iterative process to converge, it had to be „frozen‟ at some stage. To 

achieve this, the maximum percentage change in 
*  over the entire boundary layer is 

monitored and when it falls below a set threshold, here set to 0.2 %, 
*
estimate  is no longer 

updated. 

To accommodate the wake behind an airfoil, a function was scaled to an estimate of the 

expected wake function. This was necessary since calculation of the boundary into the wake 

was not considered in this study. The function fitted was: 

  )1(2.3

1

* 110
 xA

wake x     [4.24] 

where A is selected so that    11 **  wake . The trailing edge is at x1 = 1. 

The function uses the last point before the end of the airfoil and scales the rest of the 

displacement thickness values moving into the wake accordingly. Since this does not 

accurately portray the shape of the wake, the approximation function [4.24] will cause a 

sacrifice of accuracy in the displacement thickness results through and beyond the trailing 

edge into the wake. Accurate representation of the wake requires implementation of different 

correlations (Katz and Plotkin, 2001), but otherwise is essentially the same as the process 

followed for the boundary layer. 

4.8 Implementation into the code 

The boundary layer code is C++ based, since this coding language is computationally 

expedient and   widely used. C++ has a few advantageous characteristics compared with 

other programming languages. Three of these are applicable; its capabilities of speed, 

modular programming and its compatibility with C codes. Modular programming refers to 

the capability of compiling different source code files separately and then linking them 

together. This also allows the code to be linked to other languages.  
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This approach to solve the boundary layer as a modular system, implies that it can be 

integrated into any flow solver. It does not have to solve the inviscid flow together with the 

boundary layer as one monolithic system. Also, the inviscid flow solver needs no knowledge 

or extra parameters to understand or compute a fictitious transpiration velocity boundary 

condition.  

The only input the boundary layer code requires from the inviscid solver is the coordinates of 

the nodes as well as the velocities at those nodes. It then calculates the displacement 

thickness, auxiliary velocity and momentum thickness. The displacement thickness is then 

returned to the inviscid code and used to calculate the new node point to which the mesh has 

to move before the whole process starts again. 

4.9 Chapter summary 
This chapter discussed the procedure followed to solve the boundary layer flow and the 

interaction with the outer inviscid flow. The discretisation of the governing equations was 

described as well as the interactive procedure by which it is coupled to the inviscid flow 

solver. A local Newton method is used to solve the boundary layer flow, point by point, by 

obtaining information about the velocity outside the boundary. The mesh is then moved to the 

calculated boundary thickness and the process is repeated until convergence is reached. The 

boundary condition at the edge of the boundary thickness is set to a slip condition. An under-

relaxation parameter ensures stability in the coupling condition. An additional velocity 

equation adjusts the mesh movement to avoid the Goldstein singularity, which is encountered 

before the trailing edge. 

Chapter 5 follows with the results and discussion of the computational performance. 
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CHAPTER 5 

VERIFICATION AND VALIDATION 

 

5.1     Introduction 
Numerical error in the calculations in numerical fluid dynamics codes should be estimated 

and then considered to make sure the solution is an accurate representation of reality. First, 

the concepts of verification and validation are defined. Verification is „solving the equations 

right‟, which means checking for errors introduced by discretisation and coding errors. 

Validation is „solving the right equations‟, meaning checking for modelling errors (Roache, 

1997). First, the code is compared with analytical similarity solutions of the Blasius and 

Falkner-Skan equations without inviscid interaction with the solver. After this has been 

proven to be accurate, the code is combined with the inviscid solver for further verification. 

For this purpose, incompressible viscous flow is modelled over a NACA0012 airfoil, and the 

results compared with those generated by the „XFOIL‟ code (Drela and Youngren, 2001).  

5.2  Results without inviscid (outer) flow interaction   

5.2.1   Steady incompressible laminar flow over a flat plate 

The first test case involved obtaining the Blasius solution of flow over a flat plate. For this 

purpose, the external velocity was set constant at 1 m.s
-1

. The kinematic viscosity used in 

these test cases was 110
-5

 m
2
.s

-1
 with Reynolds numbers going up to 410

5
. A grid 

independence study was performed to assess the order of accuracy. For this purpose, four 

meshes were employed, with mesh spacing (Δx1) varying from 0.267 to 0.01.  
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Figure 7: Comparison between the Blasius solution and the numerical solution ( 05.0

1
x ) 

The average error between the Blasius similarity solution and the two-integral solution was 

calculated using equation [5.1].  

nError
n

i

similarityicomputedisimilarityi 







 

1

*

,

*

,

*

,    [5.1] 

where n is the number of grid points. The solution achieved on the second-coarsest mesh is 

compared with the analytical solution in Figure 7, with the errors for all cases given in Table 

1. 

 Grid spacing ( 1x ) Average error (%) 

Case 1 0.267 42.46% 

Case 2 0.05 2.06% 

Case 3 0.0267 0.55% 

Case 4 0.01 0.083% 

Table 1: Comparison between different mesh sizes for a flat plate 

Figures 8 shows the convergence rate of the approximation to the exact Blasius solution when 

solved with different grid spacings. The Crank-Nicolson scheme has a quadratic convergence 

rate, which is evident by the slope value of about 2. 
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Figure 8: Convergence rate for the Blasius solution using different grid spacings with the dashed 

line depicting formal second-order accuracy. 

5.2.2   Incompressible laminar flow over an inclined plate 

The aforementioned testcase was next extended to a plate at incidence to the flow, with the 

free-stream velocity remaining 1 m.s
-1

. Exact solutions were obtained by solving the Falkner-

Skan equation. The displacement thickness evolution for various angles of attack is depicted 

in Figure 9. As in the case with the flat plate, different mesh sizes were tested and a finer 

mesh spacing was found to give more accurate results. Table 2 shows the grid convergence of 

two of the angled plate results, where 
2


 is the angle of the plates from the horizontal (see 

Figure 2 in Section 2.1). The results demonstrate that the quadratic convergence of the Crank-

Nicolson method has again been realised.  

 Step size ( 1x ) Error (%) 

β = 0.3 0.05 2.47% 

 0.02 0.35% 

 0.01 0.082% 

β = 0.4 0.05 2.11% 

 0.02 0.23% 

 0.01 0.065% 

      Table 2: Comparison between different mesh sizes for angled plates 
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Figure 9 shows the calculated displacement thickness for various plate angles. The numerical 

and similarity solutions all agree to plotting accuracy. 

 

           Figure 9: Displacement thicknesses of flow over an inclined plate for various angles of attack 

5.3       Results when interacting with inviscid outer flow 

5.3.1      Incompressible laminar flow over a flat plate 

Having successfully validated the boundary layer modelling technology, viscous-inviscid 

interaction problems were considered next. The first problem was again the laminar flow over 

a flat plate at zero incidence. A structured mesh was employed as depicted in Figure 10.  The 

boundary condition at the leading edge of the flat plate was set to a fixed inflow velocity 

parallel to the plate. The boundary condition at the trailing edge was set to an outflow 

condition whereby velocity is extrapolated from inside the flow domain while pressure was 

unconstrained. The boundary condition at the top of the domain was set to the fixed free-

stream velocity. 
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   Figure 10: Flat plate showing structured mesh  

     Figure 11: Close-up of mesh movement for flat plate flow in Figure 11, magnified 200 times in x2-direction 

The predicted magnified boundary layer displacement mesh is depicted in Figure 11. The 

structured mesh consists of 5 226 nodes with Δx1 = 0.02 m and the solver converged to a 

solution with an error percentage of 0.2 % (Equation [5.1]). The percentage error is less than 

the uncoupled case where the error was approximately 0.55% for a similar step size. The 

solver was found to be stable and robust, with only two tuneable parameters to be set: the 

under-relaxation parameter α (see equation [4.23]), which affects the iterations between the 

inviscid and boundary layer solver, and the CFL number of the inviscid solver. In this case, α 

was set to 0.7, and the CFL number was set to 0.9. The solver was run on eight Intel Xeon 

CPUs of 2.33 GHz each and required 30.3 seconds to converge.  

5.3.2   Incompressible laminar flow over an inclined plate 

Three different inclined plates were used to further test the interaction of the solver with the 

boundary layer code. The angles were selected by choosing a few β values, which correlated 

with an angle of attack range that resulted in positive pressure gradients, i.e. no flow 
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separation. β values of 0.2, 0.3 and 0.4 were selected which give 18˚, 27˚ and 36˚ 

respectively. Unstructured meshes were employed consisting of 2 355 (Δx1 = 0.0625 m), 

2190 (Δx1 = 0.02 m) and 1426 (Δx1 = 0.02 m) nodes, respectively. The unstructured mesh for 

the 36˚ test case is shown in Figure 13. 

 

To obtain a meaningful solution, velocity was to be prescribed at the outer boundary. As 

there is no clear difference between in- and outflow regions, the analytical velocity was 

imposed across the entire outer boundary (with pressure being solved for). The final 

numerical solution for the displacement thickness from the two-integral method was tested 

against the similarity solution of Falkner-Skan to verify the results obtained. This is shown in 

Figure 12 , indicating that an accurate solution was obtained. 

 

           Figure 12: Comparison between the two-integral solution and the Falkner-Skan similarity solution
 

Table 3 shows the statistics for the iterations needed to converge to a coupled solution as well 

as the accuracy and the under-relaxation parameter used. The error was calculated as before 

using equation [5.1]. The accuracies achieved are similar to those of the pure boundary layer 

modelling case previously, demonstrating the accuracy of the developed viscous-inviscid 

interaction methodology. 
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β Coupled 

iterations 

required 

Under-relaxation 

parameter 

Error [%] (Viscous-inviscid 

interaction method compared with 

Falkner-Skan solution) 

0.2 16 0.5 0.7 % 

0.3 16 0.5 0.9 % 

0.4 18 0.5 1.2 % 

   Table 3: Numerical statistics surrounding convergence as shown in Figure 12. 

Pressure and velocity results are shown for the cases of an angle of 36º in Figure 13. The 

results for the other angles are similar. The solver converged to a stable solution within 14.9 

seconds. The under-relaxation coefficient α was set to 0.5 for the angled plate cases, with the 

CFL number still set to 0.9. The velocity distribution is shown in Figure 14 using velocity 

vectors. Figure 15 shows the magnified movement of the mesh along the slope of the domain. 

  

Figure 13: Pressure contours and unstructured mesh (β=0.4). Pressure values are in Pa 
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         Figure 14: Velocity distribution in m.s

-1
 for the entire flow field (β=0.4) 

    
                        Figure 15: Mesh movement on the β=0.4 slope mesh, magnified 30 times 

5.3.3    Incompressible laminar flow over a NACA0012 airfoil 

As a concluding example, the flow over a symmetrical airfoil (NACA0012) at zero angle of 

attack and Re = 10 000 (laminar) was calculated. Results obtained are compared with 

simulations of the same airfoil from XFOIL 6.9, a code developed by Drela and Youngren 

(2001), to assess accuracy of the boundary layer code. In XFOIL, a two-equation integral 

boundary layer formulation describes the boundary layer and wake. It is strongly interacted 

with the incompressible potential flow via the surface transpiration model.  The system is 
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then solved using a full-Newton method, solving the whole flow field simultaneously (Drela 

and Youngren, 2001), which differs from the method developed in this work. Further noting 

that XFOIL is today a widely used commercial package, its results serve as meaningful 

validation. 

An unstructured computational mesh consisting of 12 064 nodes was employed (as shown in 

Figure 20). The boundary conditions were set to slip velocity all around the domain. The 

solver converged to a stable solution with an under-relaxation parameter of 0.1 and 

converging to a solution within 72 viscous-inviscid iterations in 165 seconds using eight Intel 

Xeon CPUs of 2.33 GHz each. The inviscid solver CFL number was maintained at 0.9. 

Figure 16 shows the solution of the displacement thickness at different stages of convergence. 

A slight inaccuracy in the vicinity of the trailing edge is evident, where the maximum 

disparity between the codes of 13.2% occurs. The line name „intermediate‟ refers to a point in 

convergence where there is a 10% difference between eU  and 
speceU ,

  (velocity obtained from 

the inviscid solution).  The velocity equation [4.3] suggested overcomes the Goldstein 

singularity existing at the point of shear stress vanishing but a proper solution of the wake 

would be required to ensure accurate calculation of the displacement thickness into the wake, 

whereas in this work, a wake function was used to simulate the displacement thickness across 

the trailing edge into the wake, as described in Section 4.7. The average difference in 

predicted displacement thickness between the developed technology and that of XFOIL using 

equation [5.1], is 3.95%. Figure 17 shows the velocity solution for the flow over the 

NACA0012 airfoil. Both boundary layer thickness and boundary layer momentum thickness 

(δ*
 and θ) grow towards the trailing edge and then slowly decrease in the near wake. Figure 

18 depicts the shape factor (H) during different stages of convergence. The shape factor 

begins at a value slightly lower than the Blasius value (H = 2.59) and grows gradually 

towards the trailing edge. Recall that the singularity occurs at H = 4. 
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Figure 16: Comparison of the displacement thickness at different stages of convergence for the NACA0012 

airfoil 

 

       Figure 17: Comparison of velocity distribution for the NACA0012 airfoil 
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             Figure 18: Shape factor at different stages of convergence 

 

   Figure 19: Skin friction coefficient at different stages of convergence 
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Figure 20: Comparison between the velocity specified and the velocity obtained from the boundary layer   

solution, after first iteration (top), intermediate (middle) and converged (bottom)  
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Figure 21: Mesh and velocity contours around a NACA0012 airfoil. Viscous-inviscid flow (top) and 

inviscid flow   (bottom). Velocity distribution in m.s
-1 

Figure 19 depicts the friction coefficient (Cf) as calculated by equation [3.33] at different 

stages of convergence, compared with the XFOIL values for a NACA0012 airfoil. The 

friction coefficient is important since this dimensionless parameter relates to the friction drag 

found in the boundary layer. The smaller the friction drag, the more economical the fuel-
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usage of the aircraft. The Cf values converge to the XFOIL solution with an overall error of 

4.7% and a maximum discrepancy of 7.7% to present an accurate value to use for estimating 

the overall effects of the drag. Figure 20 shows the velocity that is computed by the auxiliary 

boundary layer equation [4.3] (in order to avoid the Goldstein singularity) compared with the 

velocity specified from the inviscid solver. It is compared at the different stages of 

convergence, showing that the two velocities converge.  

Figure 21 shows the unstructured mesh with velocity contours around the NACA0012 airfoil 

for both the viscous-inviscid and only inviscid flow cases. The viscous-inviscid case also 

shows the mesh movement depicted by the light grey area around the airfoil. The velocity 

contours change significantly when the boundary layer solver is coupled to the inviscid flow 

solver. Figure 22 presents a magnification of the velocity distribution around the leading edge 

of the airfoil. The coupled solver is very robust when solving the stagnation point present at 

the leading edge. 

 

Figure 22: Magnification of the flow across the leading edge of a NACA0012 airfoil. Velocity 

distribution in m.s
-1

 

Figure 23 displays the mesh movement around the airfoil compared with the boundary layer 

thickness predicted by XFOIL 6.9 to an accuracy of 3.95%. It is evident that as the solver 

reaches the trailing edge and into the wake, the accuracy decreases. This is due to the 

assumed wake function (see Section 4.7).  
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Figure 23: Mesh movement around the NACA0012 airfoil 

5.4 Chapter summary 
In this chapter, the accuracy and robustness of the developed modelling technology were 

evaluated. For this purpose, two classes of test cases were considered: one with only the 

boundary layer solver and the other with the viscous-inviscid coupling between the boundary 

layer solver and an existing inviscid solver. In both cases, the solvers proved to be robust and 

stable and only tuneable for the sake of convergence by the under-relaxation parameter and 

the CFL number. The boundary layer cases consisted of flow of a flat plate as well as flow 

over an inclined plate at different angles of attack. The developed boundary layer modelling 

scheme was proved second-order accurate. With regards to the second class of test cases, the 

above problems were again considered, in addition to the flow over a NACA0012 airfoil. 

Results for the latter were compared with those of the XFOIL program. In all cases, the 

developed solver was demonstrated to be robust and accurate. 
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CHAPTER 6 

CONCLUSIONS 

 

6.1    Summary and discussion 
CFD codes are an important tool to visualise and predict flow phenomena. An important 

engineering aspect of many flow problems is the behaviour of the fluid near a solid boundary. 

Viscous flow moves from having completely irrotational motion away from the boundary up 

to the surface of the body where the velocity reaches zero, because of the no-slip condition at 

the wall. The result is viscous drag. Generally, these effects are solved using the Navier-

Stokes equations. However, to simulate boundary layer flow with most current CFD codes 

requires extremely fine mesh spacing normal to the wall and is consequently computationally 

very expensive. The boundary layer is not only important to determine appropriate shapes to 

minimise drag across a body and thereby save fuel costs or to avoid separation but also to 

simulate flow through blade cascades in compressors and turbines.  

In the light of the above, for the purpose of this work, the flow domain is effectively divided 

into two regions: the outer (inviscid) flow region and the boundary layer (viscous) region at 

the surface. A novel viscous-inviscid modelling technology was developed, whereby the 

viscous region was described by boundary layer equations while the outer region was solved 

via an incompressible flow solver. 

 

In the case of the viscous boundary layer region, the two-integral method of Drela (1985),was 

used,  obtaining the momentum integral equation in terms of momentum and displacement 

thickness, to solve flow in the boundary layer and predict the displacement thickness. Drela‟s 
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method is able to solve limited cases of separation and forms the basis of most boundary 

layer methods used by other researchers such as Wolles and Hoeijmakers (1998), Sekar and 

Laschka (2005) and Riziotis and Voutsinas (2008). The boundary layer equations were then 

discretised using the Crank-Nicolson differencing scheme (second-order implicit scheme) to 

ensure stability. The Crank-Nicolson scheme is unconditionally stable and is an implicit 

difference method, which has the advantage that the spacing of the grid lines is not limited by 

stability constraints. These equations were solved point by point as an initial value problem 

by a local Newton method, since this method is relatively fast to converge, if the initial 

approximation is close to the solution.  

 

The laminar closure equations reach a singularity at the point where Hk reaches 4, which is 

referred to as the „Goldstein singularity‟ at a boundary layer separation point. One way, in 

which the problem can be avoided is by solving the inviscid flow and boundary layer 

simultaneously, however, this is computationally expensive. In this work, the problem was 

eliminated by allowing the boundary layer to modify the inviscid flow solver it was 

interacting with by modifying Ue via the displacement thickness. The process creates a 

negative feedback effect, which eliminates the singularity. This is achieved by assuming that 

the boundary layer is growing on the wall of a two-dimensional channel and solving for the 

velocity by using an estimated displacement thickness that is updated continuously until the 

percentage change between the previous and latest displacement thickness falls below a 

threshold value (here taken as 0.2 %). 

For the purpose of viscous-inviscid coupling, a new and novel method is proposed in this 

work. It is designed to be both robust and computationally as cost-effective as the quasi-

simultaneous method, without requiring the selection of an interactive law. It is also 

advantageous since prior information about the displacement thickness is not needed and the 

complete flow field can be solved without solving a monolithic system. This is achieved by 

moving the inviscid mesh at each iteration to reflect the boundary layer displacement. The 

solution procedure is as follows: the flow solver converges to a solution where the residual is 

less than the specified tolerance. The solver then uses the boundary layer thickness obtained 

from the boundary layer solution to move the mesh to the outer edge of the boundary where a 

slip boundary condition is imposed. The mesh is re-preprocessed and the flow is calculated 

again until the residual is less than the convergence tolerance after the movement of the 

mesh. 
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The developed modelling technology is thoroughly validated in terms of accuracy and 

robustness via application to a number of test cases. Two classes of test cases were 

considered: one with only the boundary layer solver and the other with the viscous-inviscid 

coupling between the boundary layer solver and an existing inviscid solver. The first class of 

boundary layer cases consisted of flow of a flat plate as well as flow over an inclined plate at 

different angles of attack. The second class of test cases involved the same problems, in 

addition to the flow over a NACA0012 airfoil (results for the latter were compared with those 

of the XFOIL program). The developed boundary layer modelling scheme was proved 

second-order accurate. In both cases, the solvers proved to be robust and stable and only 

tuneable for the sake of convergence by the under-relaxation parameter and the CFL number. 

6.2     Future suggestions 
The methodology developed can be extended in a straightforward manner to treat practical 

airfoil design problems with transition to turbulent flows and even mild flow separation. The 

following recommendations for further work are made to expand the range of problems that 

the interaction method can solve and increase accuracy: 

 Expand the two-integral method to solve flow in the turbulent regime by adding the 

additional parameters and equations given in the work of Drela (1985). 

 Expand the two-integral method to solve the transition regime, by adding an 

amplification variable to the laminar viscous equation. 

 Solve the wake with the proper closure equations suggested by Drela (1985) to obtain a 

more accurate solution for the boundary layer displacement past the trailing edge.    

 The inviscid solver is a separate module in this study, which has the potential to be 

extended to compressible flow as well. Extending to a compressible outer flow solver 

would allow transonic flow regimes to be modeled as well. This differs from Drela‟s 

method (1985) which simultaneously solves the viscous flow linked with a more 

limited potential flow model.  
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