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Abstract

This paper suggests a preference based methodology, which incorporates an evolutionary multi-
objective optimization algorithm to lead a decision-maker to the most preferred solution of her or his
choice. The progress towards the most preferred solution is made by accepting preference based in-
formation progressively from the decision maker after every few generations of an evolutionary multi-
objective optimization algorithm. This preference information is used to model a strictly increasing
value function, which is used for the subsequent iterations of the EMO algorithm. In addition to the
development of the value function which satisfies DM’s preference information, the proposed progres-
sively interactive EMO (PI-EMO) approach utilizes the constructed value function in directing EMO
algorithm’s search to more preferred solutions. This is accomplished using a preference-based domi-
nation principle and utilizing a preference based termination criterion. Results on two to five-objective
optimization problems using the progressively interactive NSGA-II approach shows the simplicity of
the proposed approach and its future promise. A parametric study involving the algorithm’s parameters
reveals interesting insights of parameter interactions and indicates useful parameter values. A number
of extensions to this study are also suggested.

Keywords: Evolutionary multi-objective optimization algorithms, multiple criteria decision-making,
interactive multi-objective optimization algorithm, sequential quadratic programming, preference based
multi-objective optimization.

1 Introduction

In evolutionary multi-objective optimization (EMO), the target has usually been to find a set of well-
converged and well-diversified Pareto-optimal solutions [1, 2]. Once an optimization run is started, usually
no further information is taken from the decision maker (DM). In an aposteriori EMO approach, after
a set of approximate Pareto-optimal solutions has been found, a decision-making event is executed by
taking preference information from a DM to choose the most preferred solution. As discussed elsewhere
[3, 4], this is not a particularly good idea for handling a large number of objectives (practically, more
than four). Firstly, the usual domination principle allows a majority of the population members to become
non-dominated to each other, thereby not allowing much room for introducing new solutions in a finite
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population. This slows down the progress of an EMO algorithm. Secondly, the representation of a high-
dimensional Pareto-optimal front requires an exponentially large number of points, thereby requiring a
large population size in running an EMO procedure. Thirdly, the visualization of a high-dimensional front
becomes a non-trivial task for decision-making purposes.

To alleviate the above problems associated with the aposteriori EMO approach in handling a large
number of objectives, some EMO researchers have adopted a particular multiple criteria decision-making
(MCDM) approach (apriori approach) and attempted to find a crowded set of Pareto-optimal points near
the most preferred solution. The cone-domination based EMO [5, 1], biased niching based EMO [6],
reference point based EMO approaches [7, 8], the reference direction based EMO [9], the light beam
approach based EMO [10] are a few attempts in this direction. Also, Greenwood et al. [18] derived a
linear value function from a given ranking of a few alternatives and then employed an EMO algorithm
to find points which are preferred with respect to the constructed linear value function. In Greenwood’s
method, the preference information is used prior to employing the EMO algorithm, thus this qualifies as
another apriori method. For a recent survey, see [11]. These studies have clearly shown that it is difficult
for an EMO algorithm alone to find a good spread of solutions in 5 or 10-objective problems. When
solutions around a specific Pareto-optimal point (or around a region) are the target, MCDM-based EMO
approaches suggested in these studies can find satisfactory solutions. However, in these approaches, the
decision maker interacts only at the beginning of an EMO run. The decision maker provides preference
information such as one or more reference point(s), one or more reference directions, one or more light
beam specifics, etc. An EMO algorithm then targets its population to converge near the specific solutions
on the Pareto-optimal front.

The above MCDM-based EMO approaches can also be used in an iterative manner with a DM, similar
to the way suggested elsewhere [12, 13]. In an semi-interactive EMO approach, some preference infor-
mation (in terms of reference points or reference directions or others) can be obtained from the DM and
an MCDM-based EMO algorithm can be employed to find a set of preferred Pareto-optimal solutions.
Thereafter, a few representative preferred solutions can be shown to the DM and a second set of pref-
erence information in terms of new reference points or new reference directions can be obtained and a
second MCDM-based EMO run can be made. This procedure can be continued till a satisfactory solution
is found. This principle has been utilized with the reference direction [9] and light beam approaches [10]
to solve some engineering design problems.

However, the integration of preference information within an EMO algorithm can be made in a more
effective manner, as shown in a recent study [14]. Instead of keeping the DM waiting, to complete an EMO
run (either to find a complete Pareto-optimal front in the aposteriori approach or to find a preferred set of
Pareto-optimal solutions based on an MCDM principle in an apriori approach), the DM can be involved
to periodically provide preference information as the EMO iterations are underway. This will be a less
time-consuming and simultaneously more flexible approach than the previously suggested ones. In such
a progressively interactive EMO approach (PI-EMO), the DM is allowed to modify her/his preference
structure as new solutions evolve. Since the DM gets more frequent chances to provide new information,
the overall process is more DM-oriented. The DM may feel more in-charge and more involved in the
overall optimization-cum-decision-making process.

In this paper, we have suggested a simplistic framework of a PI-EMO approach based on a couple of
earlier progressive multi-criterion decision-making approaches [15, 16]. Periodically, the DM is supplied
with a handful of currently non-dominated points and is asked to rank the points from best to worst. From
hereon we refer to this instance as a ‘DM call’. Based on this preference information, an optimization
problem is formulated and solved to find a suitable value function, which optimally captures DM’s prefer-
ence information. From this iteration till the next DM call, the derived value function is utilized to drive
the EMO algorithm in major ways: (i) in determining termination of the overall procedure and (ii) in
modifying the domination principle, which directly affects EMO algorithm’s convergence and diversity-
preserving operators. The PI-EMO concept is integrated with the well-known NSGA-II algorithm [17] and
the working of the algorithm is demonstrated on three problems involving two to five objectives. A param-
eter sensitivity study is also performed to analyze their influence on the working of the overall algorithm.



Thereafter, the sensitivity of the proposed PI-NSGA-II procedure on the inconsistencies in decision-maker
responses is studied. Finally, a number of important and immediate future studies are listed and conclu-
sions are drawn.

2 Past Studies on progressively interactive EMO

There exist a plethora of studies involving aposteriori and apriori EMO approaches. Most methodologies
borrow the core decision-making idea from the MCDM literature and integrate it with an EMO algorithm.
Since the focus of this study is not on discussing the aposteriori or the apriori EMO approaches, but to
concentrate on procedures requiring more frequent involvements of a DM with an EMO algorithm, we do
not provide a review of aposteriori and apriori approaches, except to encourage the readers to look at a
recent survey [11].

Towards the methodologies involving a progressive use of preference information by involving a
decision-maker in an evolutionary multi-objective optimization framework, there are not many studies
yet. Some recent studies periodically presented to the DM one or more pairs of alternative points found
by an EMO algorithm and expected the DM to provide some preference information about the points. The
information is then used to derive a weighted value function, which is linear. Phelps and Koksalan [19]
optimized the constructed linearly weighted sum of objectives in subsequent iterations using an evolution-
ary algorithm. In their technique, if the actual value function is non-linear, the method may not be able
to find a linear approximation and may generate an infeasible solution. This creates a need to reformu-
late the optimization problem by deleting constraints one at a time. Fowler et al. [33] have developed an
interactive EMO approach based on the idea of using convex preference cones. They use such cones to
partially order the population members and further use the order as the fitness function. They have tested
their algorithm on multi-dimensional (upto 4 dimensions) knapsack problems. Jaszkiewicz [20] selected a
set of linear value functions (based on weighted sum of objectives) from a set of randomly created linear
value functions, conforming to the preference information supplied by the DM by pairwise comparisons.
EMO algorithm’s search is then continued with these selective weight vectors. Although the assumption
of linear value functions facilitates a quick and easy determination of the value function representing DM’s
preference information, linear value functions have limitations in handling non-linear problems, particu-
larly where the most preferred point lies on a non-convex part of the Pareto-optimal front. Nevertheless,
each interactive EMO idea suggested in the above-mentioned studies remains as the main hallmark of
these studies.

Branke et al. [14] implemented the GRIP [21] methodology in which the DM compares pairs of
alternatives and the preference information thus obtained is used to find all possible compatible additive
value functions (not necessarily linear). An EMO algorithm (NSGA-II) then used a preference-based
dominance relationship and a preference-based diversity preserving operator to find new solutions for the
next few generations. Their procedure recommended to make a single pair of comparison after every
few generations in order to develop the preference structure. Since this procedure generates not enough
preference information after every call of the DM, the EMO algorithm is likely to keep a wide variety
of points from across the Pareto-optimal front in the population. The authors have demonstrated their
procedure on a two-objective test problem. To obtain a narrow range of points close to the true preferred
Pareto-optimal point, they had to call the DM at every generation of the EMO algorithm. It is not clear how
the procedure will perform in higher objective problems, where dominance-based approaches are too slow
and a reasonably high level of preference information would be needed to make a fast and focused search
using an EMO algorithm. However, the use of preference information in EMO algorithm’s operations
remains a significant contribution of this study.

Korhonen, Moskowitz and Wallenius [15] suggested a progressive and interactive multi-objective op-
timization and decision-making algorithm in which the DM is presented with a set of alternatives and is
asked to make a set of binary comparisons of the alternatives. From this information, a linear program-
ming problem is solved to identify a class of value functions in which the DM’s preference information



falls. They considered three classes of value functions for further processing: (i) linear, (ii) quasi-concave
and (iii) non-quasi-concave. Based on this classification, a dominance structure is defined and either by
search or from an existing sample of alternatives, the expected probabilities of finding new and better
alternatives are determined. If there is a reasonable probability of finding better points, the algorithm is
continued, otherwise the currently judged most preferred point is reported. An extension of this study [16]
used a sampling based statistical procedure to compute expected probabilities of finding better solutions.
It is clear that the algorithm is likely to perform better if the sampling procedure is replaced by an evolu-
tionary multi-objective optimization algorithm for finding new points. After every decision-making event,
an EMO algorithm can be employed for a few generations to find a better population of points, if avail-
able. Motivated by this study and recognizing the need for a simple interactive preference-based approach
involving a DM in an EMO framework, we launch this particular study.

3 Proposed Progressively Interactive EMO (PI-EMO)

In this section, we propose a value function based interactive EMO algorithm, where an approximate
value function is generated progressively after every few generations. A standard EMO algorithm (such
as NSGA-II [17], SPEA2 [22] and others) works with a population of points in each iteration and prefers
a sparsed set of non-dominated points in a population so that the algorithm progresses towards the Pareto-
optimal front and aims at finding a representative set over the entire front. However, in our proposed ap-
proach, we are interested in utilizing DM’s preference information repeatedly as the algorithm progresses
and in directing the search on the corresponding preferred region of the Pareto-optimal front iteratively.

For this purpose, after every 7 generations of an EMO algorithm, we provide the decision-maker with
n (> 2) well-sparsed non-dominated solutions from the current set of non-dominated points and expect the
decision-maker to provide some preference information about superiority or indifference of one solution
over the other. In the ideal situation, the DM can provide a complete ranking (from best to worst) of
these solutions, but partial preference information is also allowed. With the given preference information,
we then construct a strictly increasing polynomial value function. The construction procedure involves
solving a single-objective optimization problem. Till the next 7 generations, we use the constructed value
function to direct the search for additional such preferred solutions. A termination condition is also set up
based on the expected progress, which can be made with respect to the constructed value function. In the
following, we provide a step-by-step procedure of the proposed progressively interactive EMO (PI-EMO)
methodology:

Step 1: Initialize a population Parg and set iteration counter ¢ = 0. Domination of one solution over
another is defined based on the usual definition of dominance [23] and an EMO algorithm is executed
for 7 iterations. The value of ¢ is incremented by one after each iteration.

Step 2: If (t mod 7 = 0), cluster the current non-dominated front to choose 7 widely distributed points:
otherwise, proceed to Step 5.

Step 3: Obtain decision-maker’s preferences on 7 points. Construct a value function V' (f) from this
information by solving an optimization problem (VFOP), described in Section 3.1. If no feasible
value function is found satisfying all DM’s preference information, we move to Step 5 and use the
usual domination principle in EMO operators.

Step 4: A termination check (described in Section 3.2) is performed based on the expected improvement
in solutions from the currently judged best solution based on the value function V' (f). If the expected
improvement is not significant (with respect to a parameter d,), the algorithm is terminated and the
current best solution is chosen as the final outcome.

Step 5: The parent population Par; is used to create a new offspring population Off; by using a modified
domination principle (discussed in Section 3.3) based on the current value function V' (f) and EMO
algorithm’s search operators.



Step 6: Populations Par, and Off, are used to determine a new population Par,1 using the current value
function and EMO algorithm’s diversity preserving operator. The iteration counter is incremented
as t < ¢ + 1 and the algorithm proceeds to Step 2.

The above is a generic progressively interactive PI-EMO procedure, which can be combined with any
existing EMO algorithm in Step 1 and subsequently in Steps 5 and 6. The PI-EMO algorithm expects the
user to set a value of 7, 1 and d.

In Step 2, points in the best non-dominated front are considered and the k-mean clustering algorithm
[1,22] can be used to identify n well-diversified points in the objective space. Other multi-criteria decision
making methodologies [35] of selecting points from a set of non-dominated points may also be used.

We now provide the details for the specific procedures used in this study for Steps 3 to 6.

3.1 Step 3: Decision Maker’s Preference Information and Construction of a Polynomial
Value Function

At an instance of a DM call, n points are presented to the DM. Based on an analysis, the DM is then
expected to provide some preference information. One of the usual ways of providing such information is
to make pairwise comparisons of given points and suggest one of the two scenarios: (i) a solution is more
preferred over the other or (ii) both solutions are incomparable. Based on such a preference statement, it
is expected that for some pairs (4, j) of points, the i-th point is found to be preferred over the j-th point,
thereby establishing P; > P; and for some pairs (i, j), they are incomparable (P; = F;). It is expected
that the DM is able to establish at least one pair satisfying F; = P;. Thus, at the end of DM’s preference
elicitation task, we shall have at least one point which lies in the best category and at least one point which
lies in the second-best category. In the ‘complete ranking’ situation, the DM may provide a complete
ranking of 7 solutions (say, P being the best, I being the second-best and so on till P, being the least
preferred point).

Given such preference information, the task is to construct a polynomial value function satisfying
the given preference structure. A similar task has been performed for linear utility functions elsewhere
[34, 15]. The study [15] also suggested a procedure for checking if there can exist a quasi-concave utility
function satisfying the given ranking, but no specific value function was constructed. Here, we construct a
simple mathematical value function to capture the given preference information of » points.

3.1.1 Polynomial Value Function for Two Objectives

A value function is formed based on preference information provided by the decision maker. We first
describe the procedure for two objectives and then present the procedure for the generic case. The structure
of the value function is fixed as follows:

V(fi, f2) = (fi + kifo+ 1) (fa + ko f1 + l2),
where f1, fo are the objective functions (1)
and ki1, ko,l1,lo are the value function parameters

The value function V, for two objectives shown above, is considered to be the product of two linear
functions S; : R> — Rand S5 : R> — R. The parameters ki, ko, [1 and /o are unknown and must
be determined from the preference information of 7 points supplied by the decision-maker (DM). For this
purpose, we solve the following optimization problem (VFOP):

Maximize e,
subject to V' is non-negative at every point F;,
V is strictly increasing at every point P;,
V(P;) —V(P;) > ¢, forall (4,7) pairs (2)
satisfying P; = P,
\V(P;) = V(P))| <y, forall (i,7) pairs
satisfying P; = P;.

5



The first two sets of constraints ensure that the derived value function is non-negative and strictly
increasing at all n points. The value function can always be shifted by adding a constant term to the
function and thus can also be made negative if required. Without loss of generality, we construct a value
function which assigns a positive value to all the data points. These conditions satisfy the quasi-concavity
of the value function — a desired property suggested in the economics literature [36]. This property in
fact corresponds with the convex towards the origin indifference contours. The third and fourth sets of
constraints ensure that the preference order supplied by the decision maker is maintained for respective
pairs. In order to implement the first two constraint sets, we first sketch the value function V'(f1, f2) with
the desired properties of being non-negative and strictly increasing. Figure 1 shows a pair of straight lines
represented by V' (f1, fo) = 0 at which either (or both) of the two terms .Sy or Ss is zero. However, if the
chosen points P; (1 = 1,...,n) are such that both S; and S, are non-negative at these points, the first set
of constraints will be satisfied. A generic iso-value curve for which .S,,, > 0 (for m = 1, 2) is also depicted
in the figure. Thus, the first set of constraints can be satisfied by simply considering S,,, > 0 for m = 1, 2.
To impose strictly increasing nature of the value function at the chosen points, we can use 9V/9f; > 0 for
both objectives. For the two-objective case, these two conditions yield So + k2S7 > 0 and k152 + 51 > 0.
The fourth constraint set takes into account all pairs of incomparable points. For such pairs of points, we

b (f, +k, £+ 1) +kyf +1)=c |

Figure 1: The proposed value function. Figure 2: Value function found by optimization.

would like to restrict the absolute difference between their value function values to be within a small range
(0y). To eliminate having another parameter, we may like to use ;7 = 0.1¢, such that it is at most 10% of
the maximum difference in value functions between >-class of points.

A little thought will reveal that the above optimization problem attempts to find a value function
for which the maximum difference in the value function values between the ordered pairs of points is
maximum. Considering all the expressions, we have the following optimization problem:

Maximize e,
subjectto S, (F;) >0, i=1,2,...,n, andm = 1,2,
So(P) + kaS1(Py) >0, i=1,2,...,m,
k1S2(P;) +51(FP) =20, i=1,2,...,1,
V(P;) =V (P;) > ¢, forall (4,7) pairs
satisfying P; > P;,
\V(P;) = V(P))| <y, forall (i,7) pairs
satisfying P; = P;.

3)

Figure 2 considers five (7 = 5) hypothetical points (P, = (3.5,3.7), P» = (2.6,4.0), P; = (5.9,2.2),
Py = (0.0,6.0), and P5s = (15.0,0.5)) and a complete ranking of the points (P} being best and P5 being
worst). Due to a complete ranking, we do not have the fourth constraint set. The solution to the above



optimization problem results in a value function, the contours (iso-utility curves) of which are drawn in
the figure. The value function obtained after the optimization is as follows:

V(f1, f2) = (f1 + 4.3229)(f2 + 0.9401).

The asymptotes of this value function are parallel to f; and f5 axes. It is interesting to note the preference
order and other restrictions are maintained by the obtained value function.

3.1.2 Polynomial Value Function for M Objectives

The above suggested methodology can be applied to any number of objectives. For a general M objective
problem the value function can be written as follows:

V(IE)= (hi+kafot+kefs+. o+ ko fu +h)x
(f2+karfs + koo fa+ .o+ kou—1) f1 + 12) % @)
(fm +kanfr + kaafa+ oo+ kyroa—1y fr—1 + L)

In the above formulation it should be noted that the subscripts of the objective functions change in a cyclic
manner as we move from one product term to the next. The number of parameters in the value function
is M?. The optimization problem formulation for the value function suggested above contains M2 + 1
variables. The variable ¢ is to be maximized. The second set of constraints (strictly increasing property of
V) will introduce non-linearity. To avoid this, we simplify the above constraints by restricting the strictly
increasing property of each term Sy, instead of V itself. The resulting constraints then become k;; > 0
for all ¢ and j combinations. The optimization problem (VFOP) to determine the parameters of the value
function can thus be generalized as follows:

Maximize e,

subject to S, (F;) > i=1,...,nandm=1,..., M,
kij >0, 1—1 ,M,andj=1,...,(M-1),
V(P;) - V(P )>e for all (4, j) pairs

satisfying P; = P, )

combinations satisfying ¢ < 7,
\V(P;) = V(P))| <y, forall (i,7) pairs
satisfying P; = P;.

In the above problem, the objective function and the first two constraint sets are linear, however the
third and fourth constraint sets are polynomial in terms of the problem variables. There are a total of
Mn + M(M — 1) linear constraints. However, the number of polynomial constraints depends on the
number of pairs for which the preference information is provided by the DM. For a 10-objective (M = 10)
problem having = 5 chosen points, the above problem has 101 variables, 140 linear constraints. and
at most 10 ((g)) polynomial constraints. Since majority of the constraints are linear, we suggest using a
sequential quadratic programming (SQP) algorithm to solve the above problem. The non-differentiability
of the fourth constraint set can be handled by converting each constraint (|g(x)| < dy/) into two constraints
(9(x) > —dy and g(x) < dy)). In all our problems, we did not consider the cases involving the fourth
constraint and leave such considerations for a later study.

3.2 Step 4: Termination Criterion

Once the value function V' is determined, the EMO algorithm is driven by it in the next 7 generations.
The value function V' can also be used for determining whether the overall optimization procedure should
be terminated or not. To implement the idea we identify the best and second-best points P; and P» from
the given set of 7 points based on the preference information. In the event of more than one point in each



of the top two categories (best and second-best classes) which can happen when the ‘=’-class exists, we
choose P, and P, as the points having highest value function value in each category, respectively.

The constructed value function can provide information about whether any new point P is better than
the current best solution (P;) with respect to the value function. Thus, if we perform a single-objective
search along the gradient of the value function (or VV') from P;, we expect to create better preferred
solutions than P;. We can use this principle to develop a termination criterion.

We solve the following achievement scalarizing function (ASF) problem [25] for P; = z:

Maximize (mln fZ(X) >—|— ZM 7f](x i
=1 b5, o5 (0)

subjectto x € S.

Here, S denotes the feasible decision variable space of the original problem. The second term with a
small p (= 107! is used here) prevents the solution from converging to a weak Pareto-optimal point.
Any single-objective optimization method can be used for solving the above problem and the intermediate
solutions (z(i), 1 =1,2,...)can be recorded. If at any intermediate point, the Euclidean distance between
z() from P is larger than a termination parameter dy, we stop the ASF optimization task and continue
with the EMO algorithm. In this case, we replace P; with z(*). Figure 3 depicts this scenario. On the other
hand, if at the end of the SQP run, the final SQP solution (say, z7) is not greater than d distance away
from P;, we terminate the EMO algorithm and declare z” as the final preferred solution. This situation
indicates that based on the current value function, there does not exist any solution in the search space
which will provide a significantly better solution than P;. Hence, we can terminate the optimization run.
Figure 4 shows such a situation, warranting a termination of the PI-EMO procedure.
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Figure 3: Local search, when far away from the front, finds a better point more than distance ds away from
the best point. Hence, no termination of the P-EMO.

3.3 Steps 5 and 6: Modified Domination Principle

The utility function V' can also be used to modify the domination principle in order to emphasize and
create preferred solutions.

Let us assume that the value function from the most recent decision-making interaction is V. The
value function value for the second-best member (P, defined in the previous subsection) from the set of n
points given to the DM is V5. Then, any two feasible solutions x(!) and x(?) can be compared with their
objective function values by using the following modified domination criteria:
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Figure 4: Local search terminates within distance d from the best point. Hence, the P-EMO is terminated.

1. If both solutions have a value function value less than V5, then the two points are compared based
on the usual dominance principle.

2. If both solutions have a value function value more than V5, then the two points are compared based
on the usual dominance principle.

3. If one has value function value more than V5 and the other has value function value less than V5,
then the former dominates the latter.

Figure 5 illustrates the region dominated by two points A and B. The value function contour having a
value V5 is shown by the curved line. The point A lies in the region in which the value function is smaller
than V5. The region dominated by point A is shaded. This dominated area is identical to that which
can be obtained using the usual domination principle. However, point B lies in the region in which the
value function is larger than V5. For this point, the dominated region is different from that which would be
obtained using the usual domination principle. In addition to the usual region of dominance, the dominated
region includes all points which have a smaller value function value than V5.

We now discuss the reason for choosing the baseline value function value at P (as opposed to at P)
for defining the modified dominance criterion above. While providing preference information on 7 points
given to the DM, the DM has the knowledge of 7 points. Consider the scenario in Figure 6, in which the
point z* may lie in between P and P,. If the value function at P; is considered as the baseline value
for domination, the most preferred point z* will get dominated by points like ;. In higher objective
problems, the most preferred point may lie elsewhere and considering V5 may also be too stringent. To be
more conservative, V' (/) can be considered as the baseline value in the modified domination criterion.

The above modified domination principle can be used in both steps 5 and 6 for creating the new
population Off; and for selecting the new population Par;.

Although we do not handle constrained problems in this study, the above modified domination princi-
ple can be extended for handling constraints. As defined in [17], when both solutions under consideration
for a domination check are feasible, the above domination principle can simply be used to establish domi-
nance of one over the other. However, if one point is feasible and the other is not, the feasible solution can
be declared as dominating the other. Finally, if both points are infeasible, the one having smaller overall
constraint violation may be declared as dominating the other. We defer consideration of a constrained
PI-EMO to a later study.
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Figure 5: Dominated regions of two points A and B using the modified definition.

4 PI-NSGA-II Procedure

In the PI-NSGA-II procedure, the first 7 generations are performed according to the usual NSGA-II al-
gorithm [17]. Thereafter, we modify the NSGA-II algorithm by using the modified domination principle
(discussed in Section 3.3) in the elite-preserving operator and also in the tournament selection for creating
the offspring population. We also use a different recombination operator in this study. After a child solu-
tion x© is created by the SBX (recombination) operator [26], two randomly selected population members
x( and x( are chosen and a small fraction of the difference vector is added to the child solution (similar
in principle to a differential evolution operator [27]), as follows:

x¢=x%+0.1 (X(l) — X(2)) . @)

The crowding distance operator of NSGA-II has been replaced with k-means clustering for maintaining
diversity among solutions of the same non-dominated front.

The value function optimization problem is solved using the SQP code of KNITRO software [28]. The
termination is set if the Karush-Kuhn-Tucker (KKT) error measure computed within KNITRO is less than
or equal to 1076,

For termination check (discussed in Section 3.2), we also use the SQP code of KNITRO software and
the SQP algorithm is terminated (if not terminated due to dy distance check from P; discussed earlier)
when the KKT error measure is less than or equal to 106,

5 Results

In this section, we present the results of the PI-NSGA-II procedure on two, three, and five objective
test problems. ZDT1 and DTLZ2 test problems are adapted to create maximization problems. In all
simulations, we have used the following parameter values:

1. Number of points given to the DM for preference information: 7 = 5.
2. Number of generations between two consecutive DM calls: 7 = 5.

3. Termination parameter: ds = 0.01.
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Figure 6: A scenario in which final preferred point may lie between P1 and P for a two-objective problem.

4. Crossover probability and the distribution index for the SBX operator: p. = 0.9 and n,. = 15.
5. Mutation probability: p,, = 0.
6. Population size: N = 10M, where M is the number of objectives.

In the optimization of the VFOP problem (given in equation 4), we restrict the bounds of parameters as
follows: 0 < (k1, k2) < 1000 and —1000 < (1, ) < 1000. In the next section, we perform a parametric
study with some of the above parameters. Here, we present the test problems and results obtained with the
above setting.

5.1 Two-Objective Test Problem
Problem 1 is adapted from ZDT1 and has 30 variables [29].

x1
Maximize f(x) = { 10—+/219(X) } ,
g(XO
where g(x) =1+ 4> 70, 2,
0<a; <1, fori=1,2,...,30,

@®)

The Pareto-optimal front is given by fo = 10 — +/f1 and is shown in Figure 7. The solutions are x; = 0
fori =2,3,...,30 and z; € [0, 1].

This maximization problem has a non-convex front, therefore if the decision maker is not interested in
the end points, the value function has to be non-linear. A linear value function will always lead to the end
points of the front. In our simulations, we assume a particular value function which acts as a representative
of the DM, but the information is not explicitly used in creating new solutions by the operators of the PI-
NSGA-II procedure. In such cases, the most preferred point z* can be determined from the chosen value
function beforehand, thereby enabling us to compare our obtained point with z*.

In our study, we assume the following non-linear value function (which acts as a DM in providing a
complete ranking of 7) solutions at every 7 generations):

1
(fi —0.35)2 4 (f2 — 9.6)%"

V(fi, f2) = )

11



This value function gives the most preferred solution as z* = (0.25,9.50). The contours of this value
function are shown in Figure 7. Since a DM-emulated value function is used to decide on preference of
one point to the other in pairwise comparisons, we shall have complete ranking information of all 7 points
in our study. Thus, we shall not have the fourth set of constraints in determining the value function, as
given in equation 4. In a future study, we shall consider partial preference information and its effect on the
constructed value function.

10 T T T T
98 - —
Most Preferred
96 / Point _
2 \\ -
94 F N v e /—Pareto Front |
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\  Value Function
oL Contours
| | | | |
0 02 04 0.6 0.8 1
f1

Figure 7: Contours of the chosen value function (acts as a DM) and the most preferred point corresponding
to the value function.

Table 1 presents the best, median and worst of 21 different PI-INSGA-II simulations (each starting with
a different initial population). The performance (accuracy measure) is computed based on the Euclidean
distance of each optimized point with z*. Note that this accuracy measure is different from the termination
criterion used in the PI-INSGA-II procedure. Table 2 shows minimum, median and maximum accuracy,

Table 1: Final solutions obtained by PI-NSGA-II for the modified ZDT1 problem.

z* Best | Median | Worst
f110.2500 | 0.2498 | 0.2461 | 0.2713
fo 1 9.5000 | 9.5002 | 9.5038 | 9.4791

the number of overall function evaluations, and the number of DM calls recorded in the 21 runs. The table
indicates that the proposed PI-NSGA-II procedure is able to find a solution close to the final preferred
solution. Although the overall number of function evaluations depend on the initial population, for a
30-variable problem these numbers are reasonable.

We now show the working of the PI-NSGA-II approach for a particular run, which required 14 DM
calls before termination. Figure 8 shows the value functions optimized after various DM calls. The first
DM call was made after generation 5. Five chosen points (P1 to P5 shown in shaded circles) from the non-
dominated solutions at generation 5 are shown in the figure. The best and second-best points are close to

12



Table 2: Distance of obtained solution from the most preferred solution, function evaluations, and the

number of DM calls required by the PI-NSGA-II for the modified ZDT1 problem.

Minimum | Median | Maximum
Accuracy 0.0001 0.0062 0.0197
Func. Evals. 5,408 7,372 11,809
# of DM Calls 14 19 30

each other. The strictly increasing requirement of the value function imposed in the optimization process
creates an almost linear value function as an optimum choice in this case. The corresponding parameter
values of the value function are: (k; = 998.189, ko = 0.049, [; = 369.532, and I, = 137.170). The value
functions are drawn at the second-best point. After five more generations, the DM is called to provide
preference information the second time. The corresponding value function drawn at the second-best point
is shown in the figure. Five points used for preference ranking are shown as diamonds. The figure shows
how the PI-NSGA-II procedure finds better and better points and how progressively the DM calls enable
the overall procedure to find refined value functions. Eventually, at the 14th DM call, all five solutions
come very close to z* and the algorithm terminates with the imposed ds = 0.01 condition. The optimal
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Figure 8: Evolution of value functions after suc-
cessive DM calls.

Figure 9: Value functions near the most preferred
point.

parameter values fixing the value functions at various DM calls are shown in Table 3. Although no pattern
in these parameter values is observed from one DM call to another, every value function thus obtained
is strictly increasing and maximizes the maximum difference in value function values between any two
chosen points. However, the NSGA-II algorithm with these value functions in five subsequent generations
seems to guide the best point towards the most preferred point (z*) progressively.

Figure 9 shows the value functions from the 10th DM call onwards. In this figure, the value functions
are drawn at the second-best point (shown with a diamond) and the corresponding best point is also shown
by a shaded circle. It is interesting to observe how the value functions get modified with generations
and how the modified value functions help find better non-dominated solutions progressively with the
help of modified domination and NSGA-II operators. The final point obtained by the PI-NSGA-II is
(f1, f2) = (0.251,9.499), which is very close to the most preferred point z* = (0.25,9.5) corresponding
to the optimum of the DM-emulated value function given in equation 9.
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Table 3: Optimal parameter values determining the value function and corresponding best point at various
DM calls.

DM k1 ko I lo | Pr=(f1, f2)
Call
#1 998.189 0.049 369.532 137.170 | (0.223, 2.600)
#2 999.998 19.699 114.161 359.199 | (0.078, 2.898)
#3 821.797 0.003 -15.116  770.050 | (0.260, 4.321)
#4 | 1000.000 440.133 87.366 393.896 | (0.282, 4.706)
#6 804.650 0.033 -99.871 567.481 | (0.332, 6.525)
#8 807.395 105.691 -30.880 365.454 | (0.344, 8.066)
#10 403.750 49.007 -30.667 290.960 | (0.254, 9.259)
#14 0.007 0.006 -0.308 -9.488 | (0.251, 9.499)

5.2 Three-Objective Test Problem

The DTLZ2 test problem [30] is scalable to number of objectives. In the three-objective case, all points
(objective vectors) are bounded by two spherical surfaces in the first octant. In the case of minimizing all
objectives, the inner surface (close to the origin) becomes the Pareto-optimal front. But here, we maxi-
mize each objective of the DTLZ2 problem. Thus, the outer spherical surface becomes the corresponding
Pareto-optimal front. An M-objective DTLZ?2 problem for maximization is given as follows:

Maximize f(x) =
(1.0 + g(x)) cos(
(1.0 + g(x)) cos(
: ’ (10)
(1.0 + g(x)) cos(z1) sin(Fx2)

(1.0 + g(x)) sin(5z1)

subjectto 0<z; <1, fori=1,...,12,

where g(x) = 3125 (z; — 0.5)%

The Pareto-optimal front for a three-objective DTLZ2 problem is shown in Figure 10. The points (objective
vectors) on the Pareto-optimal front follow the relation: fZ+ f3 + f3 = 3.5%. The decision variable values
correspond to x1 € [0,1], z9 € [0,1] and x; = 0 or 1 for i = 3,4,...,12.

To test the working of PI-NSGA-II on this problem, we have replaced the decision maker by using a
linear value function (emulating the DM), as follows:

V(f1, f2, f3) = 1.25f1 + 1.50 f2 + 2.9047 f5. (11)

This value function produces the most preferred solution on the Pareto-optimal front as z* = (1.25, 1.50, 2.9047).
The PI-NSGA-II is run with N = 10 x 3 or 30 population members 21 times, each time with a different

random initial population. In terms of the accuracy measure from z*, Table 4 presents the minimum,

median and worst performing runs. Table 5 shows the accuracy, number of overall function evaluations

and number of DM calls needed by the procedure. It is clear that the obtained points are close to the most

preferred point z*. Figure 10 shows the population at the final generation of a typical PI-NSGA-II run.

5.3 Five-Objective Test Problem

We now consider the five-objective (M = 5) version of the DTLZ2 problem described in the previous
subsection. The Pareto-optimal front is described as f + f3 + f2 + fi + f2 = 3.5%
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Figure 10: Final population members after termination of the algorithm for three-objective modified
DTLZ2 problem. The complete Pareto-optimal surface is marked as ‘P-O front’.

Table 4: Final solutions obtained by PI-NSGA-II for the three-objective modified DTLZ?2 problem.

z* Best | Median | Worst
f1 ] 1.2500 | 1.2459 | 1.2197 | 1.3178
fo | 1.5000 | 1.5050 | 1.4888 | 1.4755
f2 129047 | 29039 | 2.9233 | 2.8873

For this problem, we choose a non-linear DM-emulated value function, as follows:

V() = 1/((fi —L1)*+ (fo — 1.21)* + (f3 — 1.43)?
+(fs — 1.76)* + (f5 — 2.6468)?) . (12)

This value function produces the most preferred point as z* = (1.0,1.1, 1.3, 1.6, 2.4062).

Table 6 presents the obtained solutions by PI-NSGA-II with 50 population members. Table 7 shows
the accuracy measure, the number of overall function evaluations, and the number of DM calls. Although
the points close to the most preferred point are obtained in each run, the higher dimensionality of the prob-
lem requires more function evaluations and DM calls compared to two and three-objective test problems.
However, the above results are obtained for a strict termination criterion with dg = 0.01. Smaller number
of DM calls and evaluations are expected if this termination criterion is relaxed. We discuss these matters
in the next section. It is worth mentioning that the application of an EMO (including NSGA-II) will face
difficulties in converging to the entire five-dimensional Pareto-optimal front with an identical number of
function evaluations, but since here our target is one particular preferred point on the Pareto-optimal front,
it is possible to apply a PI-EMO to a five-objective optimization problem.
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Table 5: Distance of obtained solution from the most preferred solution, number of function evaluations,
and number of DM calls required by PI-NSGA-II on the three-objective modified DTLZ2 problem.

Minimum | Median | Maximum
Accuracy 0.0008 0.0115 0.0434
Func. Evals. 4,200 6,222 8,982
# of DM Calls 17 25 36

Table 6: Final objective values obtained from PI-NSGA-II for the five-objective modified DTLZ?2 problem.

z* Best | Median | Worst
f1 | 1.0000 | 0.9931 | 0.9785 | 0.9455
fo | 1.1000 | 1.1382 | 1.0502 | 1.1467
f3 | 1.3000 | 1.3005 | 1.3382 | 1.3208
fa | 1.6000 | 1.5855 | 1.5947 | 1.6349
f5 | 2.4062 | 2.4007 | 2.4199 | 2.3714

6 Parametric Study

Besides the usual parameters associated with an evolutionary algorithm, such as population size, crossover
and mutation probabilities and indices, tournament size etc., in the proposed PI-NSGA-II we have intro-
duced a few additional parameters which may effect the accuracy and number of DM calls. They are the
number of points used in obtaining DM’s preference information (), the number of generations between
DM calls (1), termination parameter (d), KKT error limit for terminating SQP algorithm in value function
optimization and in single-objective optimization used for the termination check, and the parameter p used
in the ASF function optimization. Of these parameters, the first three have shown to have an effect on the
chosen performance measures — accuracy, the number of overall function evaluations, and the number of
DM calls. As mentioned earlier, the parameter 7 is directly related to the maximum number of pairwise
comparisons a DM would like to do in a single DM call. Of course, if more points can be compared, a
more appropriate value function can be obtained. However, based on a maximum of 10 pairwise compar-
isons per DM call (in line with the recommendation of 7 42 comparisons as suggested in [31]), we restrict
1 = 5 in this study and do not do a parametric study with this parameter. Thus, in this section, we study
the effect of two parameters (7 and d), while keeping the other PI-NSGA-II parameters identical to that
mentioned in the previous section. In each case, we use the same three test problems.

Table 7: Distance of obtained solution from the most preferred solution, function evaluations, and the
number of DM calls required by PI-NSGA-II for the five-objective modified DTLZ2 problem.

minimum | median | maximum
Accuracy 0.0084 0.0240 0.0902
# of Function Eval. 23,126 27,202 41,871
# of DM Calls 57 67 102
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6.1 Effect of Frequency of DM Calls (7)

First we study the effect of 7 by considering four different values: 2, 5, 10 and 20 generations. The
parameter d; is kept fixed to 0.01. To investigate the dependence of the performance of the procedure on
the initial population, in each case, we run PI-NSGA-II from 21 different initial random populations and
plot the best, median and worst performance measures.

We plot three different performance measures — accuracy, number of DM calls and number of function
evaluations obtained for the modified ZDT1 problem in Figure 11. It is interesting to note that all three
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Figure 11: Three performance measures on modified ZDT1 problem for different 7 values.

median performance measures are best for 7 = 10, although 7 = 5 also results in a similar accuracy
and the number of DM calls. A small value of 7 means that DM calls are to be made more frequently.
Clearly, this results in higher number of DM calls, as evident from the figure. Frequent DM calls result in
more single-objective optimization runs for termination check, thereby increasing the number of overall
function evaluations. On the other hand, a large value of 7 captures too little preference information to
focus the search near the most preferred point, thereby causing a large number of generations to satisfy
termination conditions and a large number of DM calls.

Figure 12 shows the same three performance measures on the three-objective modified DTLZ?2 prob-
lem. For this problem, the number of DM calls is similar for 7 = 5 and 10 generations, whereas accuracy
and the number of function evaluations are better for 7 = 5 generations. Once again, too small or too large
7 is found to be detrimental.

For the five-objective modified DTLZ2 problem, 7 = 5 produces optimal median performance on the
number of DM calls and accuracy (Figure 13). However, the overall function evaluations is smaller with
smaller 7.

Based on these simulation studies on two, three and five-objective optimization problems, one can
conclude that a value of 7 within 5 to 10 generations is better in terms of an overall performance of the
PI-NSGA-II procedure. This range of 7 provides a good convergence accuracy, requires less function
evaluations, and less DM calls to converge near the most preferred point.
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Figure 12: Three performance measures on three-objective modified DTLZ2 problem for different 7 val-
ues.

6.2 Effect of Termination Parameter d,

Now, we investigate the effect of the termination parameter ds on the three performance measures on all
three problems. In this study, we fix » = 5 and 7 = 5. Figure 14 shows the positive correlation between
accuracy and dg. As dj is increased (meaning a relaxed termination), the obtained accuracy (distance from
z*) gets worse. Interestingly, the associated variation in obtained accuracy over number of runs also gets
worse. The flip side of increasing d; is that the number of function evaluations reduces, as a comparatively
lesser number of generations are now needed to satisfy the termination condition. Similarly, the number
of DM calls also reduces with an increase in d.

Similar observations are made for three-objective and five-objective modified DTLZ2 problem, as
evident from Figures 15 and 16, respectively.

These results clearly reveal the behavior of our proposed algorithm on the choice of d. Unlike in the
parametric study of 7, where we observed an optimal range of values of 7 for which the performance of
PI-NSGA-II is better, here we find a monotonic variation in performance measures with d,, however with
a trade-off between accuracy and the number of DM calls (or, the number of function evaluations). This
indicates that ds need not be chosen as an arbitrarily small value. If approximate solutions are acceptable,
they can be achieved with a smaller number of function evaluations and DM calls. Figure 17 shows the
trade-off of these quantities for the modified three and five-objective DTLZ2 problems. The nature of
the trade-off between accuracy and the number of DM calls indicates that at d; = 0.05 makes a good
compromise between these performance indicators for these problems, as a smaller d, requirement calls
for substantially more DM calls, and a larger d setting, although reduces the number of DM calls, makes
a substantially large deviation from the most preferred solution.

7 Random Error in Preference Information

In the above simulations, a mathematical value function is used to emulate the preference information to
be given by a DM. However, in practice, the DM is a human being (or representative of a group of human
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Figure 13: Three performance measures on five-objective modified DTLZ2 problem for different 7 values.

beings). There is bound to be some level of inconsistencies in providing preference information from one
DM call to another. To simulate the effect of this factor, we consider a DM-emulating value function which
is stochastic in nature.

A linear value function similar to the one used before is chosen, but the coefficients of the value
function are made stochastic. The stochasticity is reduced with the increase in the number of generations.
This has been done to replicate a realistic DM who is likely to make errors during the start of the algorithm
when he/she is in the process of learning his/her preferences. Later, the decision maker is likely to make
more consistent decisions. Ironically, a large stochasticity in the beginning may also cause an algorithm to
get misled from progressing towards the most preferred Pareto-optimal solution. A successful convergence
of an algorithm in this case verifies that the algorithm does not get misdirected by inconsistent preference
based information during the beginning of the run.

The DM-emulated value function used for the three-objective modified DTLZ2 problem is as follows:

V(f1, f2, f3) = noise(1.25,0)f1 + noise(1.50,0) fo
+noise(2.9047,0) f3, (13)

where o is set as exp(—t/10) (¢ is the generation counter) and noise(u, o) refers to a random normal
distribution with a mean p and standard deviation o. This setting ensures that the standard deviation of
the noise around the mean reduces as the number of generations of the algorithm increases. With o = 0,
this value function gives the most preferred point as z* = (1.25,1.50,2.9047). At the first instance of DM
calls (that is, at t = 7 = 5 generations), o = exp(—0.5) = 0.606, meaning a significantly different value
function than what is required for the algorithm to converge to the most preferred point.

Table 8 shows the best, median and worst points obtained by the PI-NSGA-II procedure with n = 5,
7 =5, ds = 0.01 and other parameter values used in Section 5.2. Again, 21 different runs were performed
from different initial random populations. As clearly shown in Table 9, the accuracy for the best and
median runs is small, despite the large stochasticities involved in the early stages of the optimization
process. Although the number of function evaluations and the number of DM calls are 20 to 40% more
compared to that in the deterministic DM-emulated value function case (Table 4), the accuracy of the final
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Figure 14: Three performance measures on modified ZDT1 problem for different d values.

Table 8: Final solutions obtained by PI-NSGA-II for the three-objective modified DTLZ?2 problem with a
stochastic DM-emulated value function.

z* Best | Median | Worst
f1 ] 1.2500 | 1.2555 | 1.2695 | 1.2902
fo | 1.5000 | 1.5105 | 1.5205 | 1.6437
f3 | 2.9047 | 2.8969 | 2.8856 | 2.8078

point is good. This indicates that the final point is close to the most preferred solution for the deterministic
case.

Next, we apply the PI-NSGA-II procedure to the five-objective modified DTLZ2 problem with the
following stochastic value function to emulate the DM:

V(f) = noise(1.0,0)f; + noise(1.1,0) fo + noise(1.3,0) f3
+noise(1.6, o) f4 + noise(2.4062, o) f. (14)
The best, median, and worst points obtained by PI-NSGA-II are shown in Table 10. As shown by the
performance measures in Table 11, despite somewhat larger function evaluations and number of DM calls,

final points obtained by PI-NSGA-II are reasonably close to the most preferred point obtained for the
deterministic version of the DM-emulated value function.

7.0.1 Effect of Extent of Stochasticity

In the above study, we used a noise factor on the coefficients of the DM-emulated value function, given
as a function of generation counter ¢ as follows: o = exp(—t/10). As discussed above, at the first DM
call with 7 = 5, this has an effect of having a standard deviation of 0.606 on each objective. We now
investigate the effect of increasing the standard deviation by modifying the o term as follows:

o = sexp(—t/10), (15)
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Figure 15: Three performance measures on three-objective modified DTLZ2 problem for different d;
values.

Table 9: Distance of obtained solution from the most preferred solution, function evaluations, and the
number of DM calls by PI-NSGA-II for the three-objective modified DTLZ2 problem with a stochastic
DM-emulated value function.

Minimum | Median | Maximum
Accuracy 0.0142 0.0342 0.1779
Func. Evals. 5,841 7,608 9,663
# of DM Calls 24 31 39

where s is a stochasticity factor. For s = 1, we have an identical stochastic effect as in the previous
subsection. By using a larger value of s, we can simulate a situation with more inconsistencies in the
decision-making process. We use four different values of s: 1, 5, 10 and 100.

With a large value of s, it is expected that the DM-emulated value function provides a different ranking
of 7 points than an ideal ranking (which would have been obtained without the stochasticity effect). We
count the number of times the ranking of top three points is different from the ideal ranking of the same
three points and tabulate it in Table 12 for a typical run. The corresponding function evaluations and
accuracy in the final optimized point from z* are also shown in the table. An increase in stochasticity in the
decision-making process requires more DM calls and more function evaluations to achieve an acceptable
accuracy and termination. Importantly, since all runs are terminated with ds = 0.01 condition, despite
large stochasticities involved in the beginning of PI-NSGA-II runs, the algorithm is able to find a point
close to the most preferred Pareto-optimal point corresponding to the deterministic version of the DM-
emulated value function.
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Figure 16: Three performance measures on modified five-objective modified DTLZ2 problem for different
ds values.

Table 10: Final solutions obtained by PI-NSGA-II for the five-objective modified DTLZ2 problem with a
stochastic DM-emulated value function.

z* Best | Median | Worst
f1 ] 1.0000 | 1.0103 | 1.0875 | 1.0557
fo | 1.1000 | 1.1171 | 1.1495 | 1.2394
f3 | 1.3000 | 1.3037 | 1.3525 | 1.4915
fa | 1.6000 | 1.6025 | 1.5942 | 1.4977
f5 1 24062 | 2.4140 | 2.4125 | 2.4889

8 Extensions of Current Study

This study has suggested a simplistic yet elegant methodology by which the DM’s preferences can be
incorporated with an EMO algorithm so that the final target is not a complete Pareto-optimal set (as is usual
in an EMO application), but a single preferred solution on the Pareto-optimal set. The ideas suggested can
be extended in a number of different ways, which we discuss in the following paragraphs.

e Incomparable class and constrained problems: In this study, we have not considered the case in
which the DM judges some of the 7 points to be incomparable. Although our optimization problem
formulation (equation 4) considers this situation, a study is needed to implement the idea and par-
ticularly analyzing the effect of dy in the development of the value function. Since some cases may
occur, in which a value function satisfying all DM’s preferences is not possible, this study will also
test the specific part (Step 3) of the proposed PI-EMO algorithm.

Moreover, we have not tested the constrained optimization problems in this study. The modified
constrained domination principle can now be used and tested on some challenging problems.
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Figure 17: Trade-off between accuracy and the number of DM calls for the modified three and five-
objective DTLZ problems.

Table 11: Distance of obtained solution from the most preferred solution, function evaluations, and the
number of DM calls by PI-NSGA-II for the five-objective modified DTLZ2 problem with a stochastic
DM-emulated value function.

Minimum | Median | Maximum
Accuracy 0.0219 0.1137 0.2766
Func. Evals. 33,653 39,264 52,564
# of DM Calls 72 87 136

e Other value functions: In this study, we have restricted the value function to be of certain form (equa-
tion 4). Other more generic value function structures can also be considered. Our suggested value
function construction procedure results in strictly increasing functions. However, a more generic
non-concave value function may be obtained by using different conditions in the optimization prob-
lem formulation.

e Robust value functions: The optimization problem for deriving the value function can include a ro-
bustness consideration, in which the insensitivity of the value function coefficients in producing an
identical ranking of 7 points can be ensured. This would be a different way of handling inconsisten-
cies in decision-making.

e Other termination conditions: Our proposed PI-EMO algorithm terminates when there does not
exist a far away point with a better value function value than the currently judged preferred point.
Although this indicates somewhat the probability of creating better preferred points than the cur-
rently judged preferred point, other termination indicators are certainly possible. In this direction,
instead of terminating based on Euclidean distance between the two points, the difference in value
function values can be checked.
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Table 12: Effect of stochastic factor on performance measures for three-objective modified DTLZ2 prob-

lem.

s | Incorrect ranking | Total DM Calls | Func. Evals. | Accuracy

1 12 20 6,786 0.0399

5 17 23 7,528 0.0437
10 19 28 8,572 0.0498
100 23 31 9,176 0.0512

e Reduction in DM calls: One outcome of the parametric study is that by fixing a relaxed termination

criterion (relatively larger value of ds), the number of DM calls can be reduced. However, there are
other extensions to this study which may also reduce the number of DM calls. The basic operators in
the suggested algorithm can be extended so that the modified procedure requires a reduced number
of overall DM calls. The issue of having more points in each DM call, thereby reducing the overall
number of DM calls to achieve a comparable accuracy will constitute an important study. Instead of
keeping a fixed interval of 7 generations for each DM call, DM call interval can be varied (or self-
adapted) based on the extent of improvement achieved from the previous value function. Varying
the number of points (1) in each DM call in a self-adaptive manner would be another important
task. Since the points early on in the PI-EMO procedure are not expected to be close to the Pareto-
optimal front, the number of DM calls and points per call can be made small. Thereafter, when the
procedure approaches the Pareto-optimal front, more points can be included per DM call and the
frequency of DM calls can be controlled by the observed rate of improvement of the performance
of the procedure. Also, it would be an interesting study to ascertain the effect of cumulating the
preference information from one decision call to the next and use it in approximating the value
function.

Fixed budget of DM calls: In this study, we have kept a termination criterion which is related to
the extent of improvements in currently judged preferred solution. We then recorded the number
of DM calls needed to achieve a limited extent of possible improvements (with the parameter dy).
However, a comparative study, in which different algorithms are compared for a fixed number of
DM calls may be performed.

Value function based recombination and mutation operators: In this study, we have modified the
domination principles to emphasize points which have better value function value. However, EMO
algorithm’s recombination and mutation operators can also be modified based on developed value
function. For example, restricting one of the top two currently judged preferred solutions as one
parent in the SBX operator may help generate better preferred solutions.

PI-EMO with other EMO algorithms: In this study, we have integrated the preference information
in NSGA-II algorithm. A natural extension of this study would be to incorporate the preference
handling approach with other popular EMO methodologies, such as SPEA2 [22], PESA [32], and
others.

9 Conclusions

In this paper, we have suggested a simple-minded preference based evolutionary multi-objective opti-
mization (PI-EMO) procedure, which iteratively finds new solutions by using an EMO algorithm and
progressively sends a representative set of trade-off solutions to a DM for obtaining a complete or partial
preference ranking. DM’s preference information has been used in the following three ways in developing
the new algorithm:
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e Firstly, a strictly increasing value function is derived by solving an optimization problem, which
maximizes the value function value between ranked points.

e Secondly, the resulting value function is then utilized to redefine the domination principle between
the points. The modified domination principle is used to drive the EMO search.

e Thirdly, the resulting value function is used to constitute a termination criterion for the PI-EMO
algorithm by executing a single-objective search along the gradient direction of the value function.

The above generic preference based EMO approach has been implemented with the NSGA-II procedure.
The PI-NSGA-II procedure has then been applied to three different test-problems involving two, three and
five objectives. By using a DM-emulated utility function, we have shown that the PI-NSGA-II is capable of
finding the most preferred solution corresponding to the emulated utility function. A parametric study on
the additional parameters has clearly indicated optimal parameter settings. Finally, to simulate the practical
inconsistencies, which may arise in providing preference information was simulated by considering a
stochastic value function with a noise effect reducing over time. Even in such cases, the PI-INSGA-II has
been able to come closer to the most preferred point corresponding to the deterministic version of the
DM-emulated value function.

Combining the ideas, from EMO algorithms and multiple criterion decision making (MCDM), seems
an encouraging direction for future research in multi-objective optimization. In this paper, we have sug-
gested one particular integration of DM’s direct preference information into an EMO algorithm. The
method is generic and the obtained results indicate that it is a promising approach. More emphasis must
now be placed for developing pragmatic hybrid algorithms for multi-objective optimization and decision-
making.
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