
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

June 1969

An Interactive Graph Theory System An Interactive Graph Theory System

Michael S. Wolfberg
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Michael S. Wolfberg, "An Interactive Graph Theory System", . June 1969.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-69-25.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/798
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F798&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/798
mailto:repository@pobox.upenn.edu

An Interactive Graph Theory System An Interactive Graph Theory System

Abstract Abstract
The medium of computer graphics provides a capability for dealing with pictures in man-machine
communication. Graph Theory is used to model relationships which are represented by pictures and is
therefore an appropriate discipline for the application of an interactive computer graphics system.
Previous efforts to solve Graph Theoretic problems by computer have usually involved specialized
programs written in a symbolic assembly language or algebraic compiler language.

In recent years, graphics equipment with processing power has been commercially available for use as a
remote terminal to a large central computer. Although these terminals typically include a small general
purpose computer, the potential of using one as programmable subsystem has received little attention.

These motivations have led to the design and implementation of an interactive graphics system for
solving Graph Theoretic problems. The system operates on an IBM 7040 with a DEC-338 graphics
terminal connected by voice-grade telephone line. To provide effective response times, computing power
is appropriately divided between the two machines.

The remote computer graphics terminal is controlled by a special-purpose executive program. This
executive includes an interpreter of a command language oriented towards the control of existence and
display of graphs. Several interactive functions such as graph drawing and editing are available to a user
through light button and pushbutton selection. These functions which are local to the terminal are
programmed in a mixture of the terminal computer's machine language and the interpreted command
language.

For more significant computational requirements the central computer is used, but response time for
interactive operation is then diminished. In order to overcome the speed of the telephone link, the central
computer may call upon a program at the terminal as a subroutine.

Based on the mathematical terminology used to define graphs, a high level language was developed for
the specification of interactive algorithms. A growing library of these algorithms provides routines to aid
in the construction and recognition of various types of graphs. Other routines are used for computing
certain properties of graphs. Graphs may be transformed by some routines with respect to both
connectivity and layout. Any number of graphs my be saved and later restored.

A programmer using the terminal as an alphanumeric console may call upon the programming features of
the system to develop new interactive algorithms and add them to the library. Programs may also be
created for the display terminal, using the central computer for assembly.

Examples of system use which are presented include finding a shortest path between any pair of vertices
in a weighted directed graph, determining the maximally complete subgraphs of an arbitrary graph,
interpreting a graph as a Mealy model of a finite state machine, and laying out a tree for aesthetic
presentation.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-69-25.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/798

https://repository.upenn.edu/cis_reports/798

Unive rs i t y of Pennsylvania
TEE MOORE SCIiOOL OF ELECTRICAL ENGINEEELRiG

Phila&e l ph i a 19104

TECHNICAL FEPORT

Ali INTERACTIVE GRAPH THEORY SYSTEM

Prepared by

Michael S. Wolfberg

Moore School Report No. 69-25

f o r

Rome A i r Development Center
Griffiss A i r Force Base, Rome, New York

and

The Information Systems Branch
Office of Naval Research

Under
Contract NOnr 551(40)

June 1969

Reproduction i n whole o r i n p a r t i s permitted f o r any use of the
United S t a t e s Government.

The medium of computer graphics provides a c a ~ a b i l i t y f o r dealing wit'n pictures
i n m1-nachirie cornmication. Graph Ti;eo:-y is wed t o ooCsl rela3ioqships t i ~ i c h are

(r represented by pictures and is therefore 8x1 approyriate discipl ine f o r the applicatloh
of an interact ive computer graphics system. Previous e f f o r t s t o solve Graph Theore-
t i c problems. by computer have usually involved specialized programs wri t ten i n a
symbolic assembly language o r algebraic compiler language.

C

In recent years, graphics equipment with processing power has been commercially
available f o r use as a r e m t e terninal -Lo a large cea-bral compuJ~er, Althorn these

. terminals typica l ly include a sxnall geceral purpose computer, the potential. of using
one 88 cr programmable subsystem has received l i t t l e a t tent ion.

,
These motivations have led t o the design and implementation of an interact ive

graphics system f o r solving Gra;eh Theoretic problems. Tne system operates on an,
IBM 7040 with a REC-338 graphics terminal comected by voice-grade telephone l ine .
To provide ef fec t ive response times, computing power is appropriately divided be-
tween the two machines.

?

The remote computer graphics terminal is controlled by a special-purpose
executive program, This executi= includes an in terpre ter of a command language
oriented towards the control or' existence =d display of graphs. Several i n t e r -
active functions such as gmyh drs ' i r ,~ - -- a d edi t ing zre avaiiEiDle t o a user

through l i g h t button and pushbottoll selection. These 'functions which
are i oca l t o the terminal are p r o g r m e d i n a mixture of the terminal
computer ' s machine language and the i n t e ~ r e t e d command language .

For tmre s ignif icant computational requirements the central com-
3

puter is used, but response ti^ f o r interact ive operation is then
dhin ished . In order t o overcome the speed of the telephone l ink, the
cent ra l computer may c a l l upon a program a t the terminal as a subroutine.

Eased on the mathematical terminology used t o define graphs, a
high leve l language was developed f o r the specif icat ion of interact ive
algorithms. A growing l ib ra ry of these algorithms provides routines t o
a id in the construction and recogaition of various types of graphs.
Other routines are used f o r computing cer ta in properties of graphs.
Graphs m a y be transformed by some routines with respect t o both connec-
t i v i t y and layout. Any humber of graphs m y be saved and l a t e r restored.

A programmer using the teirninal as an al2hanun;eric console may c a l l
upon the progranming feacures of the sysxera t o deveiop r,ew interact ive algor--
it- and add them t o the l ibrary . Prcgrams may &so be created f o r tbe
display terminal, using the central. computer f o r assembly.

E x w l e s of system use which are presented include finding a
L

shor tes t path between any pa i r of ver t ices in e, weighted d i k c t e d graph,
'

determining the = i m l l y complete subgraphs of an arb i t ra ry graph,
interpreting a graph as a Emily m d e l of a f i n i t e s t a t e machine, and

I
l e ; y a out; a t ree f o r aes the t ic presentation.

ACKNOWLEDGEMENTS

The author would like to express his appreciation to Professor

Aravind K. Joshi as dissertation supervisor and to Professors John W.

Carr 111 and Noah S. Prywes for acting as co-advisors especially in

helping define this research activity. The author is also grateful to

Professor Prywes as project supervisor who has made possible the environ-

ment for this work. For support and encouragement, the author is grate-

ful to the Information Systems Branch of the Office of Naval Research

and to Rome Air Development Center under Contract Nonr 5'51(40).

The work of many members of the MULTILIST Project has made this

research possible. The author thanks Professor David K. Hsiao for pro-

viding the file system of the Problem Solving Facility and Dr. Richard

P. Morton for the operating system. Also Dr. Morton has been instrumental

in providing many valuable critical analyses and suggestions throughout

the design stages. The author is indebted to Mr. Marvin Gelblat for his

loyalty to the advancement and maintenance of the EaTLTILIST System in

addition to his own research activities. The author thanks Messrs.

William T. Park and David M. Kristol for their continued assistance

in the development and maintenance of the PDP-8 and DEC-338 systems.

Many ideas for implementation of DEC-338 input/output functions were

suggested by Mr. Kristol. He has also altered and maintained the PSF

program for the PDP-8, and he is the author of the CONSOL program for

the DEC-338.

Thanks are due Mr. Thomas H. Johnson for his work on the PDPMAP

Assembly System and Mr. Robb N. Russell for his help in the development

of the XDDT debugging program.

The author would like to thank Messrs. Paul A. T. Wolfgang

and William S. Mosteller for their help in IBM 7040 systems programming

and maintenance.

Mr. Stanley Sobel deserves credit for becoming a user of the

Interactive Graph Theory System and providing feedback on its ease

of use. He has provided the "Miscellaneous Functions" monitor and the

user programs INAM, XCGL, and FSAY..

The author would like to express his appreciation of excellent

secretarial help from hss Connie Murray,

As an unlimited source of confidence, encouragement, and patience,

the author thanks his spouse who has also assisted in an editorial

capacity and in various aspects of computer operations.

algorithms 10, 19, 26-27, 212
ALL 92-99, 103
ALLA 22-30, 32, 69, 134, 212, 288
ALLHIT 88, 103, 122, 141
a l t e r 19, 27, 94, 184-189
APL 22

arc 3, 61, 74, 83, 258
. ARC 9-92, 94-99, 103
mcm 123, 143, 161, 168
arrow 777 95, 179, 184, 248
ARROW 90, 94-98) 103
ARRCSJD 91, 103
ASCII 89, 102, 104, 112, 129, 137, 147, 149-150, 166, 267
AT01 166, 323
atom 30-319 40-41, 48, 303
ATOM 48, 599 168

bend 1-84
binary deck 26, 194, 279, 288, 322
BITS 165, 323
BITSIN 165, 323
blink

' 79, 85-86, 97,. 1559 1749 179
BLINK 90, 97, 103
BLINKM 85, 103
BLNDIM 128, 141, 161, 168
block 24, 114, 123, 143, 250, 263, 302
buffer 115, 125-126, 128, 134, 151, 15TY 163> 208, 321

CARD 6n
change window 195 -204
character 89, 102, 112, 116-117, 129-130, 149, 208, 211, 269
CHPSEU 88, 121, 141, 168
CH!IBL 2479 249
CZRPB 88, 103, 110, 139, l a y 9 3

INDEX (continued)

code conversion 164, 166

comment 60, 290
COMMON 60
communication cell8 25, 69-70, 81-82, 107, 134, 140, 151, 274, 323
CONCOM 6 3
COORDS 90, 93, 100, 103
COPY 55
CRATOM 41, 59, 1% 293, 3 3
create 19, 40-41, 78, 91, 172-183
CREATE 40, 59-60, 168, 292-293
created internal names 77,435, 88, 123, 143, 160
CRNAME 78, 91, 103

CRNAMS 161

CRNEIG 235-236

CRF'AIR 41, 59, 168, 293
CRSEZ 41, 59, 168, 293
cursor 70, 80-81, 85, 87, 174
CURSOR 88, 103, 121, 141
data structure 20-21, 24, 28, 31, 288

Dataphone 12, 15, 105, 115, 134

DATSTR 310, 315, 323

declaration 32-34, 162, 164, 290

DECtape ' 14, 170, 244 '

DEC- 338 7, 14, 16, 19, 27, 17'0
DEFALT 95, 103

delete 19, 46-47, 54, 78-79, 92, 1 9
D E L ~ 46, 59-60, 1-68, 292-2939 314, 318
DIM 90, 98, 103
DIMM 86, 103
dimming 79, 86, 98

directed 61, 66, 212

di sk 7, 14, 16, 18, 25, 89, 114-115, 170, 244, 272

display list 252-257

DOG 128-129, 135-137, 166, 168-169, 274, 292, 294-295, 323

DOGDOG 323

I NDm (continued)

DOC;FW 168, 296, 323
DOGFlUJSH 158, 169, 292, 296
DOGGIE 19, 28, 67, 107, 247, 274
DOG1 208 .

DOGSET 139, 166, 168-169, 292, 294-295
DOGSTR 168, 296, 323
DOGSRING 137-138, 169, 292, 295-2&
D W B L 288

DOGllM 168, 2967 323
D o m m 137-1387 1697 292, 296
DREADY 115
DSPLAY 90, 967 103
DTREE 66, 222

editing 27, 205
EIGHTH 73, 86, 103, 120, 141
element 31, 42, 46

empty 31, 40, 43, 49
ENFTY 49, 59, 168, 313
ENDDOG 1317 274
entity 8, 30-31, 303
ENTITY 327 59, 168, 292
entity equality 47
entity expression 3 3
entity function 33-34> 387 43
ENTITY FUNCTION 337 39
entity property 33-34> 387 587 315
entity variable 307 32-33, 387 47
error 194, 2907 2977 319-320
ERROR 163-164, 168, 323- 324
ESCAPE 152, 168-169, 195, 2927 2977 323
execution 19, 28, 19, 1491 192-1959 29, 244, 319
executive 9, 14, 18, 67

EXIST 9-95, 100, 103

INDEX (continued)

field 89, 114
f in i t e s ta te acceptor 210-211

F O R A U 49, 59, 168, 316-318
FORNXT 59, 168, 293, 316-318
FORTRAN 13, 18, 22-25, 27-30, 32, 37, 2879 297, 310
FOURTH 73, 86, 103, 120, 141
frame 196, 200-201

FRBLKS 123, 143, 168
free block 69, 250-252
from-vertex 31, 77, 162, 179
PSAI 210-211

FULL 73, 86, 103, 120, 141

FUNC 311

GDIM 161-162
GFTDAT 85, 89, 108-109
GETGRA 168, 297, 323
GEZIlGRAPH 158-159, 169, 292, 297, 321
GFll STA 168, 297, 323
GFTSTATUS 151, 169, 292, 297, 320
GET12 160, 323
GMISC 161-162
GMON 109, 249
G C ~ ~ O 89, 103, 105, 13, 134, 150, 157, 159, 321
GPACK 247

graph 8, 22, 31, 71, 82, 160-161, 194
graph input 158-162
Graph Monitor 19, 28, 109, 132, 152, 159, 163, 170-172, 279

Graph Theory 3-4, 22-23, 31, 244

GRAPHS 131-132
GRAPIN 159-162, 164-165, 168, 194, 323-326

GRUSER 279
 WIND 161
GMJIND 161

G. SYS 322

INDM (continued)

HALF 73, 186, 103, 120, 141
hardware 12, 16, 18, 247

HTIMER 12 3

IBM code 166-167
IBM 7040 12, 16, 18-19, 24, 27
IBSYS 13, 27, 194, 320, 323
I NAM 209
INARC 61-62, 215
initialization 78, 85, 289
I NNAME 136, 156, 161-162
INOUT 62, 323
I NSEIiT 44, 59-60, 168, 29~~293, 3 4
INTENS 120, 141, 161, 168
intensity 799 85, 120, 141, 160, 257
interface 12, 15, 19
internal name 71, 74, 77, 1% 2099 258
interpreter 18, 28, 68, 84, 105, 107, 131
INTERS 235-236
INTRFT 115- 118
IT QA 137, 166, 323
MSYS 319, 322

key 26, 190, 192, 194, 322
KRBKRB 112

KSFKSF 112

label 74, 77, 81, 95, 129, 174, 184, 267
LABG 90, 95-98, 1039 168
LABFLl,LABEL2,... 161-162
LABG(~) ,LABEL (2) , . . . ' 144, 147, 149, 161-162
language 3-4, 8-9, 13, 18, 21, 23, 25, 27, 68, 71, 8b, 105, 208, 288
LAYOTR 223, 226-228
Payout 5, 80, 222-233

LELM 42, 59-60, 168, 291, 313
13 ght button 19, 82, 109, 1701 172

INDEX (continued)

light pen 6, 27, 67, 80, 140, 170, 196
light pen handler 81, 88, 122, 141, 151, 155, 270

light pen hit 67, 69, 81, 99, 122, 151, 155, 269
light pen pointing 80-81, 155, 270

light pen tracking 67, 69, 80-82, 88, 121, 141, 248, 270-272

LIST 90, 91, 103

LOAD 89-90, 103, 107, 115, 134

LOADGO 89-90, 103, 107, 134
logical-IF 60, 166
loop 77, 92, 94, 248
LOOP 94, 103
LOOPE, LOOPN, LOOPS, LOOPW 91, 95, 103

LPHITl,LF'HIT2, ... 88, 122, 141, 155, 168

LTIMER 12 3

LTPEN 90, 999 103
L 5,24,29,245,288, 302,310

macro 13, 26, 28, 128-129, 274, 310

MANINT 110

manual interrupt button 109-110, 132, 150,,169-170, 172, 195, 281, 322

MAP 13, 24-25, 27, 29, 128, 160, 164, 274, 288-289, 310, 315, 323

maximally complete subgraph 229, 234-242

MCS 229, 234-242

M C S l 235-236

member 31, 43-44, 46-47, 49-50
MEMBER 49, 59, 168
memory structure 9, 20, 249 27, 29, 302

MESSAG 138, 168

miscellaneous functions 206-207, 280

MKCMPL 299- 301

modes 79, 85, 120, 26~
Moore School Problem Solving Facility 8, 12, 18-19, 26-27, 170, 205,

319

MOVWIN 87, 102-103

INBM (continued)

NAMES 90, 94-98, 103
N D T ~ 65, 222

neighbor 32, 156, 234-235
NEXT 99, 103, 235-236
m, 48, 59, 168 ,

NXTNEI 156

off set 74, 77, 95

 OFF^ 95, 103, 161-162, 165
orientation 77

OUTARC 61-62, 215, 226

packing 165
pair 30-31, 40-43, 47-48, 303
PAIR 48, 59, 168

paper 67, 70-71, 73-74
paper tape 16, 18, 209-210
PB 144, 168, 323
PBCLR 111

PBS 144, 168
PBSET 111

PBSKIP 111

PDPW 16, 27-28, 69, 106, 128, 132, 153, 205, 247, 274, 282

PDP-8 12, 15-16, 20, 27-28, 170
PDP-8 Disk Monitor System 114, 170, 247, 249, 272, 280

PENF'NT 100-101, 103
POP 46, 59, 16%
POSWIN 86, 100, 103
PRBCD 53, 559 59, 168
predicates 48

Pmm 53-54, 59, 168
preprocessor 23-25, 288
PRNAME 53-54, 58-59, 168
program segments 68, 89, 102, 115, 279

INDEX (cantinued)

property 30-31, 34-36, 42, 46, 51-54, 3 5
P R O P E ~ 35, 162, 292, 316
property element 527 9 6 - 3 8 , 316
property name 30, 34, 377 5 3 7 55, 315-316
property set 52, 306-308

property type 30, 347 54
PROPS 315-316, 323
PRSm 52, 597 168
PRVAL 53, 58-59, 168
PSEUDO 87, 100, 103
pseudo-pen-point 70, 80-81, 85, 87, 100, 121, 141, 174
PUSH 45, 59-60, 168, 292-293, 314
pushbuttons 6, 15, 27, 68, 80-81, 88-89, 110-111, 132, 138, 140, 144,

151, 155, 169, 1747 238, 257, 265
pushdown 45, 226, 270, 294

RCVCH

RELM

remove

REMOVE

REMPRO

REMPROP

RESET

RESGFT '

restore

RESTF~IT

ring

SAMPLE

save

screen

SCREEN

SELECT

set

sm
SFTCRN

INDM (continued)

SETWR 87, 100, 103

SETINT 85, 103
SETPB 89, 103, 110, 139, 168, 323
SETWIN 86, 103
SETVAL 54, 59, 168, 291, 314 - 3 5
shape 74, 91, 93, 248
SHAPE 90, 93, 96-94 103
shortest path 212-221
SHPATH 216-219
SHPTHW 213-214
SmCH 115 -117
START 88, 9-91, 93-100, 103
status 68-69, 82, 99, 120, 124, 140, 144, 150
STATUS 99, 103, 124, 144-145
STATl,SPAT2,. . . 124-128, 144-148, 161-162, 168
ST= 59, 168, 291, 314
STOP 88, 9, 92-93, 95-99, 103
STRELM 59, 168, 291, 314
SUBR 31
subroutine 18, 29, 70, 106, 135, 152, 280, 311
SYSIO 114-115, 272-273

T 129, 131, 274
telephone 6, 12, 15, 18, 82
Teletype 12-13, 15, 27, 89, 112-114, 140, 149, 151, 164, 170, 208,

281, 319
TERMIN . 168, 297, 323

~ R M I N A T E 163-164, 169, 292, 297, 321
termination 150, 153, 155, 163-164, 281, 322
text 95, 102, 129, 137, 164
T M T 95, 103
text console 8, 13, 15, 27, 195, 205
THROU W 49-52, 56, 163, 292-2939 297, 314, 316-318
timer 123

TLSrLS 113

INDM (continued)

to- vertex 31, 77, 162, 179
t r e e 65-66, 219, 222-233

TFmELA 223-225
TSFTSF 113
TTYBUF 150, 168
TTY IN 149, 168

TYPE 89, 103, 105

UNDEF 30, 34, 48, 59, 168
UNDIR 62

undirected 62, 65, 229

unpacking 165
UNUSFT 58-59
USEENT 57-59, 168
USEFR 58-59
USER 153, 280, 323
user message 132, 13-13, 154-156, 164, 245
user program 19, 26, 28-29, 69, 132, 152, 206, 274

use-set 56-57, 303, 307-308

USESFT 56, 59
USETYP 57-59, 168

value 34, 53, 315
VERCRN 123, 143, 161, 168
vertex 31, 74, 82, 91-92, 258
VERTEX 9-93, 95-100, 103

WAITCH 168, 297, 323
WAITCHANCE 151, 169, 292, 297
WHOLE 90-92, 96-100, 103
window 19, 71, 73-74, 85-87, 120-121, 141, 160, 195-204
WINSIZ 120, 141, 161, 168

XCGL 209-210
XCOORD 161, 226

XOFF 144, 146, 149, 161-162, 168
x p s m 121, 142, 168

INDEX (continued)

Y COORD 161, 226

Y OFF 144, 146, 148, 161-162, 168

Y P S ~ 121, 141, 168

YWIND 121, 141, 168

TITLE PAGE .

DEDI CAT1 ON

ACKNOWLEDGEMENTS

INDEX

TABLE OF comms

LJST OF FIGURES

LIST OF TABLES

BIB~IOGRAPHY

TABm OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 Motivation

1.1.1 Graph Theory
1.1.2 Computers and Graph Theory
1.1.3 Remote Computer Graphics Terminals

1.2 Objectives

1.3 Outline of the Dissertation

CHAFTER 2 SYSTEM DESIGN AND DEVELOPMENT

2.1 The Moore School Problem Solving Facility

2.2 Connection of the DEC-338

2.3 The P D P W Assembly System

2.4 A Display EXecutivk

2.5 Role of the DEC-338

2.6 Data Structure

2.6.1 Division of Labor
2.6.2 Representation of Graphs
2.6.3 Implementation

2.6.3.1 Compilation
2.6.3.2 Memory Structure

iii

xvi

2.7 Interaction

2.8 Use of MULTILIST

. 2.9 Summary of Capabilities

2.9.1 What it Does
2.9.2 How it is Done

CHAPTER 3 THE MJA LANGUAGE

3.1 Introduction

3.2 Entity Variables

3.3 Entity Functions

3.4 Entity l3xpressions

3.5 Properties

3.5.1 Property Assignment
3.5.2 Property Use
3.5.3 Property Removal

3.6 Entities and Properties - Some Examples
3.7 Entity Creation

3.7.1 Explicit Entity Creation
3.7.2 Implicit Entity Creation

3.8 An Atom

3.9 A Pair and its Elements

3.10 A Set and its Members

3.10.1 Insert a, Member
3.10.2 Remove a Member

3.11A Set as a Pushdown
3.11.1 Push
3.11.2 Pop

3.12 Entity Deletion

3.13 Entity Equality

xvii

3.14 Predicates

3.14.1 NULL!
3.14.2 ATOM, PAIR, SGT
3.14.3 EMPTY
3.14.4 MEMBER

3.15 THRCWGH Statement

3.16 Property Handling

3.16.1 Property Set
3.16.2 Property Name
3.16.3 Property Value
3.16.4 setting the Value of a Property
3.16.5 Property Type
3.16.6 BCD-Name of a Property
3.16.7 Illustrative &le: COPY

3.17 Uses of an Entity

3.17.1 Use-Set
3.17.2 Type of Use
3.17.3 Entity Where Used
3.17.4 Property Where Used
3.17.5 Illustrative Example

3.18 Miscellaneous Restrictions 59
3.18.1 Reserved Words
3.18.2 Statement Numbers
3.18.3 Logical-IF Statement
3.18.4 COMMON
3.18.5 Comments

3.19 Programming Examples 61
3.19.1 Cardinality of a Set 61
3.19.2 Incoming and Outgoing Arcs 61
3.19.3 Make a Graph Undirected 62
3.19.4 Connected Components of a Graph 62
3.19.5 Undirected Tree 65
3.19.6 Directed Tree 66

CHAPTER 4 DISPLAY OF GRAPHS GRAPHICAL INTERPRFTIVE EXECUTIVE 67

4.1 Introduction 67

4.2 Interaction Through Communication Cells 69

xviii

Page

4.3 Organization 70

4.3.1 Paper, Window, and Screen
4.3.2 Vertices
4.3.3 Arcs
4.3.4 Created Internal Names
4.3.5 &i stence and Display
4.3.6 Intensity, Blinking, Dimming
4.3.7 Light Pen

4.3.7.1 Input and Tracking
4.3.7.2 Pointing

4.3.8 Pushbuttons
4.3.9 Status of the Graph

4.4 DOGGIE Command Language 84
4.4.1 Miscellaneous Commands 85

4.4.1.1 In i t i a l i za t ion
4.4.1.2 Intensi ty
4.4.1.3 BLINK Mode
4.4.1.4 DIM Mode
4.4.1.5 Window Size
4.4.1.6 Window Position
4.4.1.7 Window Movement
4.4.1.8 Pseudo-Pen-Point Position
4.4.1.9 Cursor Position
4.4.1.10 Light Pen Tracking
4.4.1.11 Light Pen H i t s
4.4.1.12 Created Internal Names
4.4.1.13 Pushbutton Clearing
4.4.1.14 Fushbutton Setting
4.4.1.15 Teletype Output
4.4.1.16 Loading Program Segments

4.4.2 Graph Commands 90
4.4.2.1 Creating a Vertex 91
4,4,2.2 Creating an Arc 91
4.4.2.3 Deleting a Vertex 92
4.4.2.4 Deleting an 'Arc 92
4.4.2.5 Altering a Vertex Position 93
4.4.2.6 Altering a Vertex Shape 93
4.4.2.7 Altering %he Vertex Names of an k e g 4
4.4.2.8 Creating an Arrow (a n d U t e r i n g

Loop Orientation) 94
4.4.2.9 Deleting an Arrow 95
4.4.2.10 Crea t ing and Altering a Label 95
4.4.2.11 Deleting a Label 96
4.4.2.12 Display Control
4.4.2.13 Blinking

96

4.4.2.14 Dimming
4.4.2.15 L igh t Pen Status.

%
99

Page

4.4.3 Graph S ta tus
4.4.4 Coordinate Data

4.5 Encading the DOGGIE Command Language 101

4.5.1 MOVWIN Command
4.5.2 Offset of a Label
4.5.3 Text Characters of a Label
4.5.4 Name of a Program Segment
4.5.5 mPE: Command

4.6 In te rac t ive Programs i n the DEC-338 105
4.6.1 Available Routines 107

4.6.1.1 The Interpreter 107
4.6.1.2 R e s t a r t i n g the Graph Monitor 109
4.6.1.3 Manual In te r rup t Button 110
4.6.1.4 Pushbutton Handling 110

4.6.1.4.1 Clearing Pushbuttons 111
4.6.1.4.2 Set t ing Pushbuttons 111
4.6.1.4.3 Pushbutton Status 111

4.6.1.5 Teletype 1nput/0utput 112

4.6.1.5.1 Teletype Input 112
4.6.1.5.2 Teietype output 113

4.6.1.6 Using the Disk 114
4.6.1.6.1 Disk Act iv i ty Indicator 115

4.6.1.7 Dataphone Communications 115
4.6.1.7.1 Sending
4.6.1.7.2 Receiving

4.6.2 s t a t u s Information 1 20

4.6.2.1 In t ens i t y
4.6.2.2 BLINK Mode and DIM Mode
4.6.2.3 Window Size
4.6.2.4 window Posi t ion
4.6.2.5 Pseudo-Pen-Point Posi t ion
4.6.2.6 Tracking Indicator
4.6.2.7 Light Pen Handler
4.6.2.8 Created In te rna l Names
4.6.2.9 Available Storage
4.6.2.10 Timer
4.6.2.11 Graph Status

4.6.2.11.1 vertex s t a t u s 124
4.6.2.11.2 ~ r c Status 126

4.6.3 DOGGIE Command Syntax
4.6.4 Sample User Program

4.7 Interactive Programs in the' IBM 7040
4.7.1 DOGGIE Commands
4.7.2 Extending the DOGGIE Language

4.7.2.1 User Messages
4.7.2.2 Clearing and Setting Pushbuttons

4.7.3 Values of DOGGIE Words
4.7.4 Status of the DEC-338

4.7.4.1 Intensity
4.7.4.2 BLINK Mode and DIM Mode
4.7.4.3 Window Size
4.7.4.4 Window Position
4.7.4.5 Pseudo-Pen-Point Position
4.7.4.6 Tracking Indicator
4.7.4.7 Light Pen Handler
4.7.4.8 Created Internal Names
4.7.4.9 Available Storage
4.7.4.10 Pushbuttons
4.7.4.11 Graph Status .

4.7.4.11.1 Vertex Status
4.7.4.11.2 Arc Status

4.7.4.12 Teletype Input
4.7.5 Manual Interrupt Button
4.7.6 Requests for DEC- 338 Status and Interaction

4.7.6.1 Executable Statements: GEIISTATUS,
WAITCRANa, ESC;APE

4.7.6.2 Subroutines

4.7.6.2.2.1 Characteristics 154
4.7.6.2.2.2 Example 156

4.7.6.3 Buffering of DOGGIE Comm&nds 157
4.7.7 Input of Graphs 158

4.7.7.1 Functional Description of GRAPIN 161
4.7.8 Termination 163

4.7.8.1 ~ormal
4.7.8.2 Error

4.7.9 Helpful Functions
4i7.9.1 Bit Handling

4.7.9.1.1 Unpacking
4.7.9.1.2 Packing

4.7.9.2 Code Conversion 166

4.7.10 Reserved Words
4.7.11 Logical- IF Statement
4.7.12 Sample Interact ive Program

CHAPTER 5 OPERATION OF THE TEZMINAL

5.1 Graph Monitor

5.2 Create

5.3 Al te r

5.4 Remove

1; .5 Save

5.6 Restore

5.7 Escecute

5.8 Change Window

5.9 Text Console

5.10 Miscellaneous Functions

5.10.1 DOGGIE In te rpre te r (DOGI)
5.10.2 Display In te rna l Names (INAM)
5 . lo . 3 Paper Tape Storage of Graphs (XCGL)
5.10.4 F i n i t e S ta te Acceptor In te rpre te r (FSAI)

CHAPTER 6 UPLICATIONS

6.1 Irltroduction

6.2 Shortest Path

6.3 Tree Layout

6.4 Maximally Complete Subgraphs

CHAFTER 7 CONCKJSIONS

APPENDIX 1 IN'TERNAL ORGANIZATION OF DOGGIE

Al.l Introduction

A Minimum Hardware Requirements

A1.3 Storage Requirements

A1.4 Load, Start, Restart

A1.5 Storage Allocation

A1.6 Undefined DOGGIE Commands

Al.7 Display List

A1.8 Vertex and Arc Blocks

~1.8.1 ' Vertex locks
~ 1 ~ 8 . 2 Arc Blocks

Al.9 Label Blocks

A1.10 Light Pen Pointing

Al.11 Light Pen Tracking

A1.12 Use of the Disk

APPENDIX 2 USER PROGRAMS

A2.1 General Considerations

A2.2 Local User Programs

A2.3 User Programs as Subroutines

A2.4 SELECT Routine

APPEND= 3 AUA PREPROCESSOR

A3.1 Introduction

A3.2 Functional Description

A3.2.1 Declarations
A3.2.2 Data Structure Commands
A3.2.3 Control Statements
A3.2.4 DOG Statements
A3.2.5 Interactive Statements

Page
247

xxiii

A3.3 Error Messages

APPENDIX 4 ALLA MEMORY STRUCTURE AND SJBRUJTINE PACKAGE

~4.1 Introduction

A&. 2 Memory Structure

~4.2.1 Rings
~4.2.2 Entity Blocks
~4.2.3 Property Sets
~ 4 . 2 . ~ use-Sets

~ 4 . 3 Subroutine Package

~4.3.1 Form of Subroutines
~4.3.2 Examples

~4.3.2.1 LELM
~4.3.2 2 l3MPTY
~4.3.2.3 CRATCM

~4.3.3 Maintaining Structure
~4.3.4 Properties
~4.3.5 THRWQI Loops

APPENDIX 5 INTERACTIVE EXECUTION

A5.1 Methods of Interaction

A5.2 The Basic System

A5.3 Listings of ERROR and GRAPIN

Page
297

LIST OF FIGURES

Figure 2-1 Equipment Configuration

Figure 4-1 The Paper

4-2 Vertex Shapes

4-3 Display of Vertices and Arcs

Figure 5-1 Graph Monitor

5-2 Create Options

5-3 Create a Vertex

5-4 F i r s t Vertex Created

5-5 F i r s t Vertex Labeled

5-6 More Vertices

5-7 Ready t o Create Arcs

5-8 Creating F i r s t Arc

5-9 F i r s t Arc Created

5-10 More Arcs

5-11 Alter Qptions

5-12 Two Vertices Moved

5-13 Two Moved Arcs

5-14 A Bent Arc

5-15 Label Alteration

5-16 Parts Removed

5-17 Change Window Options

5-18 FCXJRTH Window

5-19 Position the Window

5-20 Smallest Winduw Frame Selected

5-21 WPndow Frame Positioned

Page

17

72

75

76

171

173

175

176

177

178

180

181

182

18 3

185

186

187

188

189

191

197

198

199

200

201

5-22 EIGHTH Window as Chosen

Page

202

5-23 Paper to be Moved 203

5-24 Paper Moved 204

5-25 Miscellaneous Functions 207

Figure 6-1 A Weighted Graph 220

6-2 A Shortest Path Computed 221

6-3 A Tree 230

6-4 The Same Tree After Layout

6-5 The Same Tree with Arcs Permuted

6-6 The Same Tree with Another Root 233

6-7 An Undirected Graph 2 39

6-8 An MCS Computed 240

6-9 Another MCS Computed 241

6-10 A Third MCS Computed 242

Figure Al-1 A Free Block 251

A1-2 Sample Display List Blocks 255

A1-3 Safe Display File Alteration 256

~1-4 Common Properties of Vertex Blocks and Arc Blocks 259

A1-5 A Vertex Block 261

~1-6 An Arc Block

Al-7 Full Label Blocks

Figure A4-1 A Ring with Three Links 304

~ 4 - 2 Entity Blocks 305

~ 4 - 3 Property Set of a Pair or Set 37

A4-4 A Property Element Block 307

Ah-5 A Use-Set

LIST OF TABLES

Page

Table 4-1 Relationships Between Window and Paper 73

4-2 DOGGIE Words and Their Values 103

4-3 Trimmed ASCII Character Codes 104

4-4 Correspondence Between Characters and Character
Terms 130

4-5 Correspondence Between Trimed ASCII and IBM
Character Codes 167

4-6 Reesrved Words in Ipteractive ALLA Programs 168

BIBLIOGRAPHY

1. Ash, W.L., and Sibley, E.H.: TRAMP: An Interpretive Associative
Processor with Deductive Capabilities, Proc. of the 23rd
National Conference, Association for Computing Machinery.
PP* 143-1569 1968.

2. Baecker, R.M.: Planar Representation of Complex Graphs. M.I.T.
Lincoln Laboratory Technical Note No. 1967-1, Lexington,
Massachusetts, February 1967.

3. Bartlett, W.S., et. al.: SIGHT, A Satellite Interactive Graphic
Terminal, Proc. of the 23rd National Conference, Association
for Computing Machinery. pp. 499-509, 1968.

4. Berge, C.: The Theory of Graphs and Its Applications. London:
Methuen, 1964.

5. Bernholtz, A., and Bierstone, E.: Computer-Augmented Design,
Design Quarterly 66/67. pp. 41-51.

6. Busacker, R. G., and Saaty, T .L. : Finite Graphs and Networks:
An Introduction with Applications. New York: McGraw Hill,
1965

7. Christensen, Carl, and Pinson, E.N.: Multi-Function Graphics for
a Large Computer System, Proc. Fall Joint Computer Conference,
1967. pp. 697-711. -

8. Christensen, Carlos: An Example of Directed Graphs in the AMBIT/G
Programing Language, to be published in Proc. of the Synrposium
on Interactive Systems for Experimental Applied Mathematics.
Washington, August 1967.

9. Clark, R.: he Use of Graph Theory in the Analysis of Spark
Chamber Data, Proc. IEEE Transactions on Nuclear Science.
pp. 108-112, August 1965.

10. Cooper, D.C.: Computer Programs and Graph Transformations.
Carnegie Institute of Technology, Pittsburgh, Pennsylvania,
September 1966.

11. Cotton, I.W., and Greatorex, F.S., Jr.: Data Structures and
Techniques for Remote Computer Graphics, Proc. Fall Joint
Computer Conference, 1968. pp . 5 33-544.

12. Digital Small Computer Handbook. Digital Equipment Corporation,
Maynard, Massachusetts, 1968.

xxviii

13. DtImperio, M.: Data Structures and Their Representation in
Storage: Part I, NSA Technical ~ournal: pp. 59-81, 1964
(unclassified) .

14. Dodd, G. G. : APL - A Language for Associative Data Handling in
PL/I, Proc. Fall Joint Conrputer Conference, 1966. pp. 677-
684.

15. Evans, D., and van Dam, A.: Data Structure Programming System,
Proc. IFIP Congress 1968.

16. Freedman, H.: A Storage and Retrieval System for Real-Time
Problem Solving. Moore School of Electrical Engineering
Report No. 66-05, University of Pennsylvania, 1965.

17: Gorn, S.: Specification Languages for Mechanical Languages and
Their Processors - A Baker's Dozen, Comunications of the
Am1. pp. 532-542, December 1961. -

1 Gotlieb, C . C., and Corneil, D. G. : Algorithms for Finding a Funda-
mental Set of Cycles for an Undirected Linear Graph,
Communications of the ACM. pp. 780-783, December 1967.

19. Gray, J.C.: Compound Data Structure for Computer Aided Design; - .
A Survey, P~OC. of the 22nd National conference, ~ssociation
for Computing Machinery. pp. 355-365, 1967.

20. Harary, F. (ed.) : Graph Theory and Theoretical Physics. New
York: Academic Press, 1967.

21. Harris, Z.: Mathematical Structures of Language. New York:
Interscience Publishers, 1968.

22. Harrison, M.A.: Introduction to Switching and Automata Theory.
New York: McGraw Hill, 1965.

23. Horwitz, L.P., et. al.: Index Register Allocation, Journal of the
ACM. pp. 43-61, January 1966. -

24. Hsiao, D.K. : A File System for a Problem Solving Facility.
Ph.D. Dissertation; University of Pennsylvania, May 1968.

25. IBM 7040/7044 Operating System (16132~) : FORTRAN IV Language
Form C28-6329-3) and Macro Assembly Program (MAP) Language
lFom ~28-6335-2). IBM Systems Reference Library, IBM
Corporation, New York.

26. Ingargiola, G. : A Representation Technique for Systems of Inter-
acting Algorithms. Ph.D. Dissertation, University of
Pennsylvania, 1967.

27. Johnson, T.H., and Wolfberg, M.S.: The PDPMAP Assembly System.
Moore School of Electrical Engineering Report No. 68-11,
University of Pennsylvania, October 1967. Also available as
DECUS Program No. 8-166, DEWS Program Library Catalog
(~une 1968) and Addendum (March 1969) . DECUS, Maynard,
Massachusetts.

28. Joshi, A .K. : String Representation for Transformations. Trans-
formations and Discourse Analysis Paper No. 58, University
of Pennsylvania, 1965.

29. Joshi, A.K., and Hiz, D.: Transformational Decomposition, Proc.
' -

of the- ~nternational Conference on ~ornputational Linguistics.
Grenoble, August 1967.

30. Joshi, A.K., Kosaraju, S., and Yamada, H.: String Adjunct Grammers.
Transformations and Discourse Analysis Paper No. 75, University
of Pennsylvania, 1968,.

31. Karp, R.M., and Miller, R.E.: Properties of a Model for Parallel
Computations: Determinacy, Termination, Queuing, SIAM -
Journal of Applied Mathematics. pp . 1390-1411, November 1966.

I
32. Knarlton, K. C . : A Programmer ' s Description of L", Communications

of the ACM. pp. 616-625, August 1966.

33. Kristol, D.M.: Modifications to CONSOL. Project MULTILIST
Memorandum, Moore School of Electrical Engineering, University
of Pennsylvania, May 1968.

34. Kristol, D.M. : Modifications to CONSOL(II) . Project MULTILIST
Memorandum, Moore School of Electrical Engineering, University
of Pennsylvania, July 1968.

35. Kristol, D.M.: The DEC-338, with CONSOL, as a PSF Terminal.
Project WLTILIST Memorandum, Moore. School of Electrical
Engineering, University of Pennsylvania, January 1968.

36. Kristol, D.M., and Gelblat, M. : PDPIW Under the ~orton/~rywes
System. PDP-8/~~~-338 Users Memorandum, Moore School of
Electrical Engineering, University of Pennsylvania, January
1969 I

37. Kuo, S.S., and Young, W.K.: Computer Studies of the Traveling
Salesman Problem. presented at the Sixth National Conference,
Computer Society of Canada, Kingston, Ontario, June 1968.

38. Laurance, N.: A Compiler Language for Data Structures, Proc. of
the 23rd National Conference, Association for Cornputins
Machineq. pp. 37-394a, 1968.

39. Lefkovitz, D., et. al.: CIDS No. 5, Computer Programing for an
Experimental Chemical Information and Data System. University
of Pennsylvania, June 1968.

40. Lewin, M.H . : An Introduction to Computer Graphic Terminals,
Proc. IEEE. Vol. 55, pp. 1544-1552, September 1967.

41. Machover, C. : Graphic CRT Terminals - Characteristics of
Comercially Available Equipment, Proc. Fall Joint Computer
Conference, 1967. pp . 149-159.

42. Mason, S. J., and Zimmerman, H. J. : Electronic Circuits, Signals,
and Systems. New York: John Wiley, 1960.

43. Meetham, A.R. : Partial Isomorphisms in 'Graphs and Structural
Similarities in Tree-Like Organic Molecules, Proc. IFIP
Congress 1968.

44. Moore, E.F. : Shortest Path Through a Maze, Annals of the Computa-
tion Laboratory of Harvard University. Harvard University
Press, Volume 30, 1959.

45. Morton, R.P. : On-Line Computing with a Hierarchy of Processors.
Ph . D. Dissertation, University of Pennsylvania, December 1968.

46. Morton, R .P . , and Wolfberg, M. S . : The 1nput/0utput and Control
System of the Moore School Problem Solving Facility. Moore
School of Electrical Engineering Report No. 67-30, University
of Pennsylvania, June 1967.

47. Wer, T .H . , and Sutherland, I .E. : On the Design of Display Processors,
Communications of tbe ACM. pp. 410-414, June 1968.

48. Newman, W.H.: A System for Interactive Graphical Programming, w. pp. 47-54.

49. Ninke, W.H.: A Satellite Display Console System for a Multi-Access
Central Computer, Proc . IFIP Congress 1968.

50. Ninke, W.H.: GRAPHIC 1 - A Remote Graphical Display Console System,
Proc . Fall Joint Camputer Conference, 1965. pp. 839-846.

51. Ore, 0.: Theory of Graphs. Providence, Rhode Island: American
Mathematical Society, 1962.

52. Paul, A., Jr.: Generation of Directed Trees, 2-Trees and Paths
Without Duplication. Coordinated Science Laboratory Report

, No. R-241, University of Illinois, Urbana, Illinois, January

5 . 1 - 1 1 k . I L 1 ? - e m . Uigi tal Equipment Corporation Dor*~lrnerlt-
No. DEC-E8-SDAA-D, Maynard, Massachusetts, April 1968.

54. Programmed Buffered Display 338 Programming Manual. Digital Equipment
Corporation Document No. DEC-O~-G~~C-D, Maynard, Massachusetts,
1967

55. Prywes, N.S.: Man-Computer Problem Solving with Multilist, Proc.
of the IEEE. pp. 1788-1801, December 1966.

56. Richardson, F .K . : Graphical Specification of Computation. Depart-
ment of Computer Science Report No. 257, University of Illinois,
Urbana, Illinois, April 1968.

57. Roberts, L.G.: Graphical Communication and Control Languages,
Second Congress of Information System Sciences, pp. 211-217,
Washington: Spartan Books, 1964.

58. Robinson, J .A. : A Review of Automatic Theorem-Proving, Proc. of
the Nineteenth Symposium in Applied Mathematics. p-
Providence, Rhode Island: American Mathematical Society,

59. Rose, G.A.: Computer Graphics Communications Systems, Proc. IFIP
Congress 1968.

60. Rovner, P . D., and Feldman, J .A. : The LEAP Language and Data
Structure, Proc . IFIP Congress 1968.

61. Schurmann, A. : The Application of Graphs to the Analysis of
Distribution of Loops in a Program, Information and Control.
pp. 275-282, 1964.

62. Seshu, S., and Reed, M.B. : Linear Graphs and Electrical Networks.
Reading, Massachusetts: Addison-Wesley, 1960.

63. Sibley, E .H . , et . al. : Graphical Systems Communication: An
Associative Memory Approach, Proc. Fall Joint Computer Con-
ference, 1968. pp. 545-554.

64. Staudhammer, J., and Ash, M. : A Sufficiency Solution of the
Traveling Salesman Problem. System Development Corporation
Paper SP-2514/000/00, Santa Monica, California, August 1966.

65. Sussenguth, E.H., Jr.: A Graph Theoretic Algorithm for Matching
Chemical Structures, Journal of Chernical Documentation.
pp. 36-43, February 1965.

66. Sutherland, I .E. : Sketchpad: A Man-Machine Graphical Camrmrnication
System. M.I.T. Lincoln Laboratory Technical Report No. 296,
Lexington, Massachusetts, January 1963.

67. Sutherland, W .R. : On-Line Graphical Specification of Computer
Procedures. M.I.T. Lincoln Laboratory Technical Report
No. 405, Lexington, ~assachusett s , May 1966.

68. Unger, S.H.: GIT - A Heuristic Program for ~estir& Pairs of
Directed Line Graphs for Isomorphism, Communications of the
ACM. - pp. 26-34, January 1964.

69. Vaswani, P.K.T.: A Technique for Cluster Emphasis and Its
Application to Automatic Indexing, Proc . IFIP Congress 1968.

70. Welch, J.T., Jr.: A Mechanical Analysis of the Cyclic Structure
of Undirected Linear Graphs, Journal of the ACM. pp. 205-210,
April 1966.

7$. Wessler, B.D.: TracD, A Graphic Programming Language. Master's
Thesis, M. I .T., Cambridge, Massachusetts, June 1967.

72. Wexelblat, R.L.: The Development and Mechanization of a Problem
Solving Facility. Ph.D. Dissertation, University of Pennsyl-
vania, December 1965.

73. Wolfberg, M. S. : corrections to DEC- 338 Manual (DEC-O~-&IC-D) .
DEC-338 Users Memorandum, Moore School of Electrical Engineering,
University. of Pennsylvania, ~uly 1967.

74. Wolfberg, M.S.: Determination of Maximally Complete Subgraphs.
Moore School of Electrical Engineering Report No. 65-27,
University of Pennsylvania, May 1965.

75. Wolfberg, M. S. : XOD-Extended Octal Debugging Program (September '
1967), available as DEWS Program No. 8-89, DEWS Program
Library Catalog (~une 1968). DEWS, Maynard, Massachusetts.

76. Wolfberg, M. S., and Russell, R.N. : XDDT Ektended Octal-Symbolic
Debugging Program (~pril 1968), available as DECUS Program '
No. 8-1-27, DECUS Program Library Cataloe (~une 1968) and
Addendum arch 1969). DEWS, Maynard, Massachusetts.

6 77. Wolfberg, M.S., and Wolfgang, P.A.T. : UP.L~ - An L System for
the IBM 7040. Internal Report, Moore School of Electrical
Engineering, ~niv&r sity of Pennsylvania, 1966.

78. 339 Graphics Software System Prograuuning Manual (preliminary) .
Digital Equipment Corporation Document No. DEC-9A-XPDA-D,
Maynard, Massachusetts, June 1968.

CHAPTEti1

II'rrRODUCTION

The medium of computer graphics provides a capability for dealing

with pictures in man-machine communication.. Graph Theory is used to

model relationships which are represented by pictures and is therefore

an appropriate discipline for the application of an interactive computer

graphics system. Previous efforts to solve Graph Theoretic problems

by computer have usually involved specialized programs written in a

symbolic assembly language or algebraic compiler language.

In recent years, graphics equipment with processing power has

been commercially available for use as a remote terminal to a large

central computer. Although these terminals typically include a small

general purpose computer, the potential of using one as a programmable

subsystem has received little attention.

These motivations have led to the design and implementation of

an interactive graphics system for solving Graph Theoretic problems.

The sygtem operates on an IBM 7040 with a DEC-3% graphics terminal

connected by voice-grade telephone line. To' provide effective response

times, computing power is appropriately divided between the two

ma chines.

The remote computer graphics terminal is controlled by a special-

purpose executive program. This executive includes an interpreter of

a command language oriented towards the control of existence and display

of graphs.. Several interactive functions such as graph drawing and

editing are available to a user through light button and pushbutton

selection. These functions which are local to the terminal are pro-

gramed in a mixture of the terminal computer's machine language and

the interpreted command language.

For more significant computational requirements the central com-

puter is used, but response time for interactive operation is then

diminished. In order to overcome the speed of the telephone link, the

central computer may call upon a program at the terminal as a subroutine.

Based on the mathematica1,terminology used to define graphs, a

high level language was developed for the specification of interactive

algorithms. A growing library of these algorithms provides routines to

aid in the construction and recognition of various types of graphs.

Other routines are used for computing certain properties of graphs.

Graphs may be transformed by some routines with respect to both connectiv-

ity and layout. Any number of graphs may be saved and later restored.

A programmer using the terminal as an alphanumeric console may

call upon the programmi.ng features of the system to develop new inter-

active algorithms and add them to the library. Programs may also be

created for the display terminal, using the central computer for assembly.

Examples of system use which are presented include finding a

shortest path between any pair of vertices in a weighted directed graph,

determining the maximally complete subgraphs of an arbitrary graph,

interpreting a graph as a Mealymodel of a finite state machine, and

laying out a tree for aesthetic presentation.

1.1 Motivation

This dissertation is concerned with a research effort which is

specific in its goal, but somewhat broader in its means of striving

towards that goal. The title, "An Interactive Graph Theory System,"

indicates the goal, which is to place man and machine in a situation

where effective solution of a class of problems may be performed. The

interfacing vehicle is not only a graphical display, but a sophisticated

terminal including a general-purpose computer. Thus, in addition to

computer graphics, this researcb touches on the use of camputer networks.

The aim is not to advance the field of Graph Theory itself; the emphasis

of the work described here is in the area of programming system design.

1.1.1 Graph Theory

. Graph Theory is a branch of mathematics which is appreciated by

many fields in a wide variety of applications. Electrical engineers

often treat electrical networks, switching circuits, and comication

networks as graphs. [6,'20,42,62] Theoretical physicists apply Graph

Theory to crystal structure 6203 and high-energy physics [gl . Chemical

structures can be considered as graphs, and therefore classification

and matching techniques are suitable for graph-theoretical approaches.

[39,43,65] Various kinds of linguistics analyses, in particular

transformational analyses, are readily represented as graphs. [21,28,29,30]

Graph Theory has a great impact on Computer and Information Science,

especially in Automata Theory, Mechanical Languages, and Programing

~angua~es.[17,22] Flowcharts are graphs, and so are the data and

memory structures on which programming systems are based.[10,61]

Some researchers have developed graph models of computation. [24,31]

A graph-theoretic approach has been used in'brder to optimize index

register allocation in compiled programs. [23] Some approaches employ

graphs as the very statements of a programming language. [8,48]

As Graph Theory is applied, the pure mathematicians continue to

extend the field with theorems independent of application. The reader

interested in learning about Graph Theory itself may refer to one of

the popular texts. [4,51)

The point has been made that Graph Theory is being used as a frame-

work in which to pose certain problems in order to benefit from the

terminology, theorems, and related understanding. Perhaps this formalism

appeals to many because of its vividly graphic nature where relationships

are modeled as pictures. Therefore it follows that when computers are

applied to graph-theoretic problems, it is of significant value to use

the two-dimensional (or three-dimensional) medium of computer graphics,

1.1.2 Computers and Graph Theory

Graph Theory is applied to various aspects of computers, and

computers likewise aid in solving some classes of Graph Theory problems.

Much work of the Graph Theorist cdnsists of creative mathematics such

as theorem proving. Research in the computer field has attacked such

problems [583, and this aspect would be a fundamental part of a

computerized laboratory for studies in Graph Theory. Other aspects of

the work are the development and application of algorithms, which are

more susceptible to computer aid.

There have already been many special-purpose programs written to

solve graph-theoretic problems, often in symbolic assembly languages or

algebraic compiler languages. [5,18,37,43,52,64,65,@,69,70,743 These

efforts have been carried out in batch processing environments where

no interaction could occur, particularly no graphical interaction.

Having had experience in this field [741, the author has been motiv~ted

towards a high level language which can be used for graphs and the use

of the medium of interactive graphics. In same stages during the develop-

ment of an effective algorithm, the user can benefit from a monitoring

feature which keeps him informed of the progress of computations. While

not in itself interactive, such a feature would be a likely by-product

of an interactive system. The interactive mode would be exemplified by

a user's directing the course of an algorithm as he notices its attempts

at seeking solutions in parts of a graph where there is no hope.

Although such motivations had been developing over %he past few

years, this research effort was sparked into action as a result of initial

investigations by Ronald M. Baecker at M.I.T. Lincoln Laboratory during

the summer of 1966. [2) His work was documented in a brief Technical

Note where he described a specialized interactive graphics program for

the TX-2 computer which aided in the studies of planar representations

of complex graphs. The major significance of this paper, however, was

Baecker's thoughts on the "use and design of a Graph Theory package."

Some of the design concepts employed in this research are to be f w d

in Baecker's suggestions. There were, in fact, mutual influences since

the author was in direct contact with Baecker at the time. For example,

6
it is not by chance that Baecker has suggested L as the language for

maintaining graph structure.

Another research effort which was reported concurrently with the

development of the Interactive Graph Theory System was carried out at

Harvard University by William M. Newman. [48] On the PDP-1 Newman

produced a system for interactive graphical programing using state

graphs as the form of programs. Although the programming system uses

graphs as programs, it does not include the facilities for the solution

of graph-theoretic problems. The most significant comparison of Newman's

work to this work is the form of drawing the graphs. In Newman's system,

all states are represented by circles to which and from which arcs are

drawn, with arrowheads placed at the ends of arcs. This format tends

to fill the screen quickly and when many arcs terminate on the same state,

the abundance of arrowheads adds unnecessary clutter to the picture. In

the Interactive Graph Theory System, one might expect, in general, that

many vertices would be drawn on the screen. Therefore, vertices m y be

rather small dots, and in order to avoid clutter, arrowheads are

positioned somewhere along the length of the arc.

1.1.3 Remote Computer Graphics Terminals

In addition to the application area of Graph Theory, this research

includes system design for a remote computer graphics terminal. During

the past four years, many such devices have been made commercially

available [11,40,41,47,59], but there has been little experience acquired

in the use of such hardware for useful processing at the terminal as well

as in the central larger computer. One motivation has been to demonstrate

how much computingmay be done at the terminal.

The typical configuration being considered is a large computer,

perhaps time-shared, with a voice-grade telephone link to a remote

graphics terminal, over which typical transmission is at 2000 bits-per-

second. The terminal consists of a general purpose computer augmented

with special display processing hardware which drives a CRT of viewin@;

area from 8 to 20 inches square. The terminal includes various input

devices for the user such as keyboard, light pen, buttons, knobs, tablet,

' etc.' In addition to the core memory of the terminal's computer, there

may be a disk or drum for programs and/or data. Prices of such terminals

range from $75,000 to as high as $200,000 or more. At the lower end of

the price scale is the Digital Equipment Corporation Programmed Buffered

Display 338 (or DEC-338), which was used in this research. Other research

groups have employed the same device, but their emphasis has been on

doing nearly all computing in the central machine. Specifically, work

has been carried out at M.I.T. Lincoln Laboratory, University of Michigan

[63], and University of Illinois, [56]. Bell Telephone Laboratory has

done pioneering work [50) and is continuing to pursue this area. [3,7,49]

Depending on the duration and frequency of attention the central

computer may give the graphics terminal, there is a tendency towards

expanding the terminal into a powerful computation and storage facility.

This depends upon the intended uses of the communication link. In a

system design, it is necessary to weigh the hardware costs with the

desired response times. For some applications the remote computer

graphics terminal described above may not be adequate; an example of this

is when a user must observe pictures on the screen at a dynamic rate of

information exceeding that of the communication link.

The DEC-338 remote computer graphics terminal is suitable for

incorporation into a system for Graph Theory, and thus it has been so

used. Much can be done locally at the terminal without the central cam-

puter, but this is not the recommended approach for system growth.

1.2 Oh jectives

The overall objective of this research effort consists of the design

and development of an experimental system which allows a researcher or

student to interact on-line with a powerful computer through a remote

computer graphics display terminal in order to solve algorithmic problems

of Graph Theory.

The above statement indicates the usefulness of the project, but

the methods used in building such a system are also to be emphasized

as objectives. At the beginning of the work, the hardware and software

systems which were available to the author dictated an initial constraint.

Since much of that environment had been previously designed and/or imple-

mented by the author it served as an ideal experimental system which

could be easily modified when nec-essary. Thus, an objective was to attach

the DEC-338 into the multi-console system called The Moore School Problem

Solving Facility in such a way that it could be used both as a text

console and graphics terminal. A user would then have the ability of

program development as well as applying programs already in the system.

Furthermore, the Interactive Graph Theory system programmer would have

the available tools to modify that system from the terminal.

A fundamental objective for the central computer was the development

of a compiler-level programming language oriented towards graph-theoretic

algorithms. In an attempt not to restrict the power of the language,

its primitives would reflect a set-theoretic approach. Thus graphs may

be defined in terms of entities which include atomic objects, ordered

pairs, and sets. In addition, the language would allow for specifying

arbitrary data associated with any entity, thus providing the power of

modeling arbitrary data structures. As in many programming languages,

other desirable features include flexible loop control and branching

capabilities, use of subroutines and functions, ease of use, and ease of

readabl lity .

The language must be enriched with appropriate primitives in order

that interactive programs may be written. Control of what is displayed

is essential since automatic monitoring of an arbitrary structure is

time-consuming and often undesirable.

Underlying the compiler-level language must be a collection of

processors which maintain a memory structure. An objective is modularity

so that changes may be made in the memory structure without affecting

the primitives of the language which deal with data structure. Thus this

system can be used as a framework for comparative studies ofmemory

, structures. For example, at this level, a doubly-linked list approach

could be compared against a list with only forward pointers.

Out at the graphics terminal there mustebe an executive program

which has control of the display and the small computer. It is to handle

input/output functions as well as maintain a' flexible display file organi-

zation and simple data structure capable of storing only those parameters

relevant to the display of graphs. The executive program would therefore

be special-purpose for this-applications area in order to increase the

potential for significant performance at the terminal.

The executive program should have a command language which is

interpreted so that requests from the central computer may affect the

data structure at the terminal. There should also be the ability to

execute local interacBive user programs at the terminal. Enough facilities

should be available for a programmer to avoid detailed knowledge of the

hardware of the terminal. As a result the programs tend to be more

machine- independent.

Finally, there must be communications procedures in both the cen-

tral computer and remote computer graphics terminal. In a system where

the terminal has computational power, there must be methods of altering

the center of control. At certain times, control should be in the hands

of the user, and thus at the terminal. At other times, the central cam-

puter must be able to direct the activities at the terminal.

There are other objectives underlying this system design which are

common to many programming systems. These include storage and updating

facilities for programs and data, modularity for easy modification of

parts of the system, and available tools for system growth. Adequate

response times are always desirable in an interactive system according

to the user's notion of the complexity of requests. Of some concern in

this experimental development is the efficient utilization of the resources.

The types of problems for which the system is being designed are

'mainly graph-theoretical algorithms, but it should also be a test bed

for layout problems such as were considered by ~aecker.[2] The develop-

ment of applications packages based on graph-theoretic approaches is .

another direction in which the system may grow. Any problems where

graphs are used are appropriate, but since the campiler language used

must be somewhat general, it is expected that the system might be applied

to other classes of problems as well.

1.7 Outline of the Dissertation

Chapter 2 presents the framework upon which the Interactive Graph
I

Theory System has been built, and then proceeds to discuss the methods

used in building the system. System organization is described, enhanced

by discussions of the reasons for the ways the system operates both as a

whole and in some detail.

Chapters 3 and 4 constitute the technical descriptions of the

languages specific to this system. They may be used as manuals by

programmers. Chapter 3 covers the compiler-level language which is

used to process graphs. The chapter ends with some practical examples

of graph- theoretic algorithms. Chapter 4 is concerned with the inter-

active and graphical aspects of the system. This includes a description

of the executive program in the remote computer graphics terminal and

the,way in which it is used both locally and within the central computer

as an enrichment of the compiler~level language.

Chapter 5 describes the operation of the terminal from the user's

point of view, including same of the interactive operations which are

performed locally.

An account of some of the practical problems which have been

tackled by the system is presented in Chapter 6.

Chapter 7 concludes the body of the document with a critique of

the work performed and suggestions for continued research.

 he five appendices provide technical details underlying the com-

puter implementation of the Interactive Graph Theory System. Since pro-

gram listings of all parts of the system consist of nearly one foot of

printout, they are not included in this document. Further information

required by 8 maintainer of this system has been provided by the author
$

in the form of memoranda.

CHAPTER 2

SYSTEM DESIGN AND DEVEZOPMENT

This chapter begins by describing the background and e~~vironment

used as a base for the construction of the Interactive Graph Theory

System. The middle part presents the important building blorks of the

system, and the final portion is a unification of the various aspects of

the effort into a description of what the system does and how it operates.

2.1 The Moore School Problem Solving Facility

The MULTILIST Project has been a continuing research effort at the

Moore School for many years. [55] It has been concerned primarily with

techniques for information storage and retrieval (which is the source of

the name), particularly with its relationships to problem solving. The

project has focused on the design, development, and use of a hardware

and software system called the Moore School Problem Solving Facility

(MSPSF). The software is an attempt to combine storage and retrieval

capabilities of a computer with its computational power to solve ~roblek.

The hardware used for this work consists of. a multi-console system

attached to an IBM 7040. since the IRM 7040 did not directly support

a variety of types of terminals, a PDP-5 was originally selected to

serve as an intermediary or satellite of the IBM 7040. The PDP-5 has

been since replaced by a PDP-8 which was almost program-compatible and

much faster. The PDP-8 is attached to the IRM 7040 by a direct data

connection which operates at memory speed. The PDP-8 services consolee

over telephone lines. There are three ports for Teletype consoles,

and a standard interface to a 201B Dataphone which operates over a

2400 b.p.s. private line. Originally, at the other end of the private

line was a Bunker-Ramo Teleregister 200 series Universal Control Unit

with two attached consoles. Each console had one alphanumeric display,

a keyboard, and a Teletype printer, The program written for the PDP-8

(named PSF) serviced the Teleregister consoles, Teletypes connected over

Telephone lines, plus the on-line Teletype of the PDP-8. In addition to

providing hardware interfacing, the PDP-8 interpreted a console control

language used for program editing, job control, and output observation.

Although many consoles were attached to the IBM 7040, the central

computer would only execute one job at a time in a "fast-batch" mode.

Each console had an associated input file and output file allocated on

the large disk of the IBM 7040. A user could perform editing functions

on his input file or peruse his output at any time, but he would have

to wait in a job queue to get processing time. When no console jobs

were pending, normal jobs for the IBSYS Operating System could be run

from the System Input Unit (either card reader or magnetic tape). The

1nput/0utput and Control System of the MSPSF was described in a Technical

~e~ort. [46]

Initially, console jobs consisted only of use of the MLJLTILIST

facilities, but later developments made available all of the IBSYS

Operating System to console users. [45 3 This provided a multitude of

programming languages, especially FORTRAN IV and MAP Assembly Language.

In addition, a very useful feature was made available at the same time:

macros at the level of the input to the operating system. In the

MUGTILIST environment, these macros may include statements which cause

retrieval by description of BCD card images, binary card images, or

other macros to be interpreted. Not only is this macro facility con-

ceptually appealing, but it has been proven most useful.

The most recent improvement to the MSPSF system was the division

of one all-inclusive file for storage into individual independent files.

This work also included the facilities for file ownership, sharing,

read-only access, etc. [24]

2.2 Connection of the DEC-338

As interest in computer graphics developed in the Moore School,

the need for graphics hardware was inevitable. A DEC-338 Programmed

Buffered Display was purchased for use by various projects of both

students and research staff. This device includes a PDP-8 computer as

one of two processors; the other is a specialized processor with its own

operation codes oriented toward control of the attached CRT display.

Both processors share a cammon 8~-word 12-bit memory with 1.5 ps cycle

time. The display processor represents a lot of digital logic, and

this is reflected back to the programmer so that it requires many weeks

to master the programming of the DEC-338. This was a strong motivation

for the use of an interpreted language for the display of graphs in the

Interactive Graph Theory System. Since even the programmer writing

interactive systems under, the executive of this system need not know

about the DEC-338 hardware, it is not further described here. The

interested reader .my refer to the manuals published by Digital Equip-

ment ~orporation[l2,54J and a memo written by the author which clarifies
Q

some of the operations of the hardware not covered by the manufacturer

literature. [73]

Although the DEC-338 can be used as a stand-alone system, it is

configured as a remote camputer graphics terminal. It has a small fixed-

head disk of 32K 12-bit words, and one DECtape for more permanent storage.

It i s equipped with a standard Dataphone interface t o a 201B Dataset

over pr ivate wires. This i s the means by which the DEC-3.38 i s attached

t o la rger computers on the University campus. The telephone connec-

t i o n i s used t o at tach t h i s terminal in to the MSPSF a t the same spot

where the Teleregister equipment t i e d in . Although the Teleregister

Universal Control Unit had fixed message protocol, the DEC-338 could be

programmed with any chosen design. I n par t icular , it could be s e t up

t o mimic the actions of the Teleregister device. This was the first

s tep taken i n the software support of the DEC- 338 i n the MSPSF. [33, 35 I

.Since the Teleregister equipment supported two independent consoles,

t he "simulator" on the DEC-338 retained the f l e x i b i l i t y of being con-

sidered e i the r one of the two consoles a t any one time. The DEC-338

on-line Teletype keyboard along with same of the pushbuttons replaced

the Teleregister keyboard, and the Teletype pr in ter was used f o r pr inted

output. The display screen of the DEC-338 served the same function as

t he screen i n the Teleregister console.

A t t h i s point no improvements had been.mde i n the operational

charac ter i s t ics of the display consoles, but t h i s i n i t i a l s tep pro-

vided the necessary groundwork f o r upgrading the f a c i l i t i e s t o support

the DEC-338 a s a graphics terminal. I n order t o accommodate t h i s

requirement, scnne changes had t o be made in.message protocol between

the intermediary PDP-8 and DEC-338. Also, code conversion which

previously took place i n the PDP-8 was eliminated so t h a t messages sent

t o and received from the DEC-338 would be arb i t ra ry binary sequences.

Externally, the operation of the DEC-338 a s a t e x t console remained

unchanged, but now the scene was s e t for the building of the Interact ive

Graph Theory System. Meanwhile, f o r other reasons, t he Teleregister

consolee left the Moore School, and the hardware configuration of the

MSPSF therefore has evolved to what is shown in Figure 2-1,

Next, the PEP program in the intermediary PDP-8 was modified,

and additional programs were written in the IBM 7040 to

support the transmission of binary output from the user's output file

on the disk of the IBM 7040 to the DEC-338. This link was needed for

sending the results of assemblies of PDP-8 assembly language programs

to the DEC-338 for either storage on the disk or punching out on paper

tapes.[341 The assembly system is described in the next section.

2.3 The PDPMAP Assembly System

The PDP-8 (or DEC-338) is a small computer, but it can be pro-

grammed to perform many valuable tasks. One task for which .many feel

it is inappropriate is the assembly of PDP-8 (or DEC-338) programs.

Thus the author instigated the development of a powerful assembly

system for the mall canrputer which runs on the IBM 7040 .[27] This

PDPMAP Assembly System includes extensive macro facilities, literals,

location counters, line printer listings with cross-referencing, and a

flexible cross-page linking facility. It has played a vital role In

the development of the DEC-338 programs in the Interactive Graph Theory

System.

PDPMAP has siso been used by the author and others for the develop-

ment of systems programs for the PDP-8 and DEC-338 which have lead to

more effective use of the amall computers. Two programs in particular

were developed in order to provide adequate debugging aids needed during

the development of the DEC-338 portion of the Interactive Graph Theory

system. [75,76 1

D
LC

-D
F3

2
M

IN
ID

IS
K

(3

2K

W
O

R
D

S
)

F
U

L
L

 D
U

P
L

E
X

IN

T
E

R
F

A
C

E

T
E

L
E

T
Y

P
E

3

2
 K

 M
EM

O
R

Y

FI
G

U
R

E
 2

-1

E
Q

U
IP

M
E

N
T

 C
O

N
F

IG
U

R
A

T
IO

N

In the MSPSF, PDPMAP can be used from the DEC-33, and the binary

output from an assembly may be transmitted to the remote terminal for

either storage on the disk or punching out of paper tapes.[34]

2.4 A Display Ekecutive

The first design problem which was confronted at the outset of

this research was a solution to the problem of displaying a graph on

the screen of the DEC-338. Changes may occur in such a picture and so

moTe than a display file must exist. As the various operations which

would be desirable in the display of graphs are formulated, it is

natural to list such operations as coomvlnds such as "move vertex Vi

to X Y.." 'One possible approach would be to make available several
j' J

subroutines which could be called with arguments. This approach is

often used in driving a display within a FORTRAN environment (see,

for example, the display support for the DEC- 339C78 1) . An alternative
approach was adopted which involved the design of a language to be

interpreted within the DEC-338. The motivation here was based on the

transmission of such commands by the central computer across the

telephone line to the remote terminal. The language approach also

seemed appropriate for affecting the display of graphs locally at the

terminal. Thus any changes which could be made in the displayed graph

would be done through the interpreter. l3y using only this special

language, it is a relatively easy task to program the display since the

underlying executive program provides all of the hardware-dependent

programming. Another advantage of this unified method is the possibili-

ty of substituting other interpreters so that the language could direct

other graphical devices such as a plotter ormicrofilm recorder.

The language which was designed for the control of the display of

graphs also includes the primitives which reflect the no5ion of a graph

existing in the DEC-338 without being displayed. Chapter 4 describes

the role of the DEC-338 in this system as controlled by the Display of

Graphs Graphical Interpretive Executive (DOGGIE) .
2.5 Role of the DEC-338

It has already been indicated in previous sections that the DEC-338

plays two distinct roles in the Interactive Graph Theory System. First,

it can be an alphanumeric display console of the MSPSF. Its second

mode of use .makes the terminal into a graphic display console for the

handling of graphs. In this mode the underlying display executive is

in control of the DEC-338, and it is considered the most fundamental

or primitive level of the basic system. On the next level, interactive

graphical programs may be implemented entirely within the DEC-3,B. The

author has provided an extensive set of such programs thus ,making the

terminal into an ,effective interface to a user. A "Graph Monitor"

presents light buttons which can be used to control the creation, altera-

tion, and deletion of graphs. The user is given the power to view a

graph through four window sizes, and there are controls to alter the

window position. Thus a user of the system has no need to know the

underlying system structure, and there is no mention of this structure

during normal use of the terminal. Three of the functions available to

a user call upon the IBM 7040 for processing. Graphs may be saved by

description in the MLTIITILIST file, and later restoration by description

of a m number of graphs may be performed. Interactive execution of

previously campiled algorithms' on the IBM 7040 (in conjunction with the

DEC-3%) gives the user the camputing parer 'unattainable in the terminal

computer alone. Chapter 5 describes the operation of the +.ermi~l t 1

under the Graph Monitor.

Same of the programs which support the available f'unctions of the

Graph Monitor are written iil a form which may be used by new local pro-

grams developed by system programers. The most us- of this class

are those groups of subroutines responsible for c ~ i c a t i o n s with

the IBM 7040 (via the PDP-8) .
2.6 ~ a t a Structure

It has been suggested that the term "data structure" has been too

widely applied. f 131 There are two Ustinet issues which should be

explicitly distinguished: the data elements and the relationships among

them vs. the utilization of the physical storage devices w i t h re-t

to bits, pointers, etc. The tenn "data structurew be u& to

describe the former issue, and "memory structure" for the latter. The

word "structurew w i l l be used to encanpass both concepts.

A central concern of many computer graphics systems is the tech-

nique used in modeling the relationships among various dab. This is

of copcern for the underlying implementation of' the problem being

attacked as well as for the maintenance of the display for the purposes

of interpretation of user inputs, alteration of the picture, etc. When

one central processor is used for the implementation of a camputer

graphics system, the tendency is to use one structure which encompasses

both levels of informition as has been done on the TX-2 computer at

Lincoln Laboratory. [57,66,67] When the graphical work is done at a

'tednal which includes a computer, the organization heavily depends

on the rate of information transfer. In the.Graphic-I organization,

nearly all structure appeared in the central computer since the remote

computer could be Jammed with a display file at very high speed. [50]

In a more divided system, where a voice-grade line links the terminal

to the central computer, at least a display-oriented data structure

must be maintained at the terminal for effective interaction.

One soluti~n to the need for two structures in two (often) different

computers is the implementation of the same basic structure in both

.mchines. Possibly, one machine might be able to handle a subset of

what the other can do. This type of approach has been used in the

ASP-1 and ASP-7 implementations [lg], and was a motivation in the develop-

ment of TRAC-D. [71] A strong reason for taking such an approach is

the possibility of writing same programs which.may operate in either

machine or both .machines. Also, the systems programmer .my be dedicated

to using only one language.

Although the above type of approach is logically pleasant, unless

the central and terminal caquters are appropriately related, it could

be stifling to the effectiveness of bothmachines. The structure in

the smaller ccmrputer m5ght be so general that its small memory is too

quickly exceeded, and,at the same time, the possibility for sophistica-

tion in the larger machine .might be suppressed. The division of labor

being used in the Interactive Graph Theory System is based upon the

problem area and the particular .machines involved, especially the

smaller one. Since it is an operational system, its effectiveness can

be demonstrated. The author feels the approach is successful.

The data structure used in the DEC-3% is primitive with just

enough features to handle the existence and display of graphs. The

details of the data structure are presented 'in Chapter 4, and the under-

lying memory structure is covered in Appendix 1.

2.6.2 Representation of Graphs

An important part of the design of the Interactive Graph Theory

System is the data structure and memory structure used in the IBM 7040.

The approach taken has been influenced by the experimental orientation

of university research so that sufficient modularity has been kept for

other students to use this system as a test bed for further studies.

Instead of providing a data structure capable of representing graphs

only, a more general approach w3s selected which provided an environment

where graphs could be represented as they are defined in Graph Theory

textbooks. Thus the constructs of set theory are used as the primitives

of the data structure. The need for data associations has prompted the

inclusion of the facility for associating an arbitrary amount of data

with any element of the data structure. Other systems which include

this type of power are APL (~ssociative Programming ~anguage) LL.41, LEAP

[60 3 , TRAMP (~ime-Shared Relational Associative Memory program) [I], and

work involving list processing in the MAD compiler language[38].

The data structure used in this research is based on the APL

approach, APL was "designed to be imbedded in PL/I as an aid to the

user dealing with data structures in which associations are expressed."

The IBM 7040 implementation of FORTRAN IV was extended in much the same

way in creating the associative language ALLA. Some of the primitives

of ALLA are taken from APL, but the operations appear as an extension of

FORTRAN rather than PL/I. One deficiency of APL which has been eliminated

in ALLA is the necessity for specifying in advance the allowable associa-

tions an entity may have. For use in graph-theoretic constructs, the

ability to dynamically associate new types of data is important when

extending the graph structure to include new attributes such as "color

of a vertex" or "neighbor." Chapter 3 is devoted to the ALJLA language.

2.6.3 Implementation

The primitives of ALLA were selected on the basis of need to

express certain relationships commonly used in Graph Theory and in an

attempt to provide full structure-scanning facilities for an arbitrary

given structure. The data structure design consists of the syntax and

semantics of ALIA presented in Chapter 3. An issue which is samewhat

independent is the underlying implementation of the campilation of AL,LA

statements and the way in which the memory structure is maintained.

2.6.3.1 Compilation

Since ALLA is an extension of FORTRAN IV, compilation must consist

of at least that of the FORTRAN language. Therefore, it is rather

advantageous to use the already-existing compiler as part of the process.

There are two obvious possibilities: either the compiler .my be changed

to process ALLA statements, or AUA statements may be changed to be pro-

cessed by the compiler. In the given environment, the second alternative

is the easier to accomplish. For reasons of legibility it was decided

not to mke ALLA statements conform exactly to the syntax of FORTRAN.

The only method, therefore, was to preprocess AUA into FORTRAN IV, and

then finish the compilation by applying the FORTRAN compiler to the out-

put of the preprocessor. Although this discussion has presented the

design process as sequential, it is the case that the ease of preprocess-

ing entered into the choice of the ALLA syntax.

The process of transforming AZlWl into FORTRAN IV is one of string

manipulation. In selecting a language in which to write the preprocessor,

assembly language was avoided in order to attempt machine-independence.

The SNOBOL language was available on the IBM 7040, but it was unreliable

and had no way to output text which the FORTRAN IV compiler could later

6 process. Since L was already being used (see the next subsection), that

language was chosen. Appendix 3 describes the preprocessor, giving the

transformations it performs on ALLA programs.

2.6.3.2 Memory Structure

The data structure and associative components of the ALLA language

are preprocessed and compiled into FORTRAN SUBROUTINE! and FUNCTION call-

ing sequences. Up to that poiqt, the underlying implementation is not

reflected; it could be written in any language capable of being linked

with FORTRAN and the memory structure could be anything. The .method

selected for the implementation of the memory structure is not coding in

assembly language, but in order to retain some machine- independence and

6
to make it easier to write, debug, and modify, the language L was chosen.

The language was originally designed and implemented at the Bell Tele-

phone Laboratories where it received the name "Bell Telephone - Labora-
6

tories ' - Low-Level - - Linked - List - Language" or L (pronounced "L- six") .[32 1

Based on the original implementation on the IBM 7094 using BELL MACRO-

FAP, the author implemented UP.L~ for the IBM 7040.[77] In the process

of translation, improvements and new features were added thus making

6 it easy to link L programs with both FORTRAN and MAP assembly language.

The memory structure underlying ALLA is written in L6 which

imposes only the organization of dynamic memory into blocks of 2"

(where n ranges from 0 to 7) full words. There f s no preset linkage

6 such as found in CORAL[^^]; instead L is a language in which the CORAL

memory structure could be implemented. In fact, the A U A memory

structure which has been implemented is based on the same general

organization of data as doubly-linked rings. The ALLA memory structure

is described in Appendix 4.

2.7 Interaction

The preceding sections have introduced same of the subsystems

of the Interactive Graph Theory System, but they were not tied together.

The role of the DEC-338 as a display terminal has been explained as being

directed by an interpreted command language. Local programs are written

using that language, and the important link joining the central and

terminal computers is also by means of the same language.

The ALLA language was introduced as an extension of FORTRAN IV

which provides data structure and associative processing. That language

has been enriched once more by adding the primitives for interaction

with the remote computer graphics terminal. This level of the language

is called "Interactive ALLA," and that is actually what the preprocessor

is capable of transforming (see Appendix 3). Interactive A U A includes

statements for sequencing of control and determining the activities of

the terminal through standard status communication cells. Furthermore,

interactive AUA programs may include the symbolic form of the command

language which drives the terminal. These capabilities are developed

in detail in Chapter 4.

The preprocessor transforms interactive statements into FORTRAN

SUBRCXPPINE calls upon a package of subroutines written in MAP assembly

longuege. These routines effect communication with the DEC-338 via

the input file and output file on the disk of the IBM 7040 associated

with that console.

2.8 Use of METILIST

The MULTILIST System, a f'undamental part of the MSPSF, is used by

the programs of the Interactive Graph Theory System directly, so that

a novice user does not need to know about the operations of MTLTILIST.

Users who are developing new graph-theoretic algorithms, writing new

interactive AUA programs, or writing new interactive user programs can

benefit from the functions which are available from MlTLTILIST using the

text console mode of the DEC-3% terminal.

The WTILIST data file is the repository for source card images

of any language, binary object decks, data items (such as graphs),

operating system macros, and useful MUITILIST worker programs. All items

contained in the file are referenced by descriptors or key words. Users

m y call upon standard worker programs for manipulating the descriptors

assigned to various items, old items may be deleted, and new ones .my

be entered. Ther'e are programs which can be used in order to determine

the contents of the file. Interested readers and users are referred to

other documents of the MULTILIST project .[16,24,45,46,72] Additional

information specific to this system can be found in Appendices 2, 3, and 5.

2.9 Summary of Capabilities

This section serves as a review of this chapter by summarizing the

essential features of the Interactive Graph Theory System as it presently

operates. There is first a description from a user's point of view of

what the system has to offer. Then, a systems designer's view is given

indicating the existing subsystems.

2.9.1 What It Does

The Interactive Graph Theory System is used, augmented, and modi-

fied from the remote computer graphics terminal which includes display

screen, Teletype keyboard and printer, light pen, and pushbuttons.

In the graphic .mode, a camplete graph drawing and editing facility is

available. Graphs may be saved with associated descriptors and

later restoration by description of any number of graphs may occur. A

library of graph-theoretic algorithms is maintained so users may apply

certain interactive algorithms to arbitrary graphs. Other algorithms

aid in construction or recognition of particular types of graphs.

Complete programming facilities are available for the users who

wish to develop new algorithms. File maintenance and examination f'une-

tions may also be used. Knowledgeable programmers can alter and add to

the basic system at various levels of implementation. merimental

systems programmers .may use the system as a framework for studies in

memory structures.

2.9.2 How It Is Done

The software of the Interactive Graph Theory System has all been

generated on the IBM 7040 using FORTRAN IV, interactive ALLA., L6, MULTI-

LANG (HTLTILIsT ~anguage), MAP, and PDPMAP. These programs run on the

IBM 7040, intermediary PDP-8, and the DEC-338 graphics terminal. The

operating system environment is a version of IBSYS .modified for remote

console use with fast-batch operation and integrated with the MULTILIST

storage and retrieval system, forming the Moore School Problem Solving

Facility. The program operating in the PDP-8 is dedicated to servicing

consoles and interpreting a console control language. The DEC-338 can be

used as an alphanumeric display console in order to use the MULTILIST '

system or any part of the operating system which is normally available to

users of the IBM 7040. Of interest to users and programmers of the

Interactive Graph Theory System is the availability of the compilers

and assemblers of those languages used in the system. There are same

operating system macros (equivalent to a sophisticated job control

language) which aid in these operations.

The other mode for the use of the DEC-338 is as a Graph Theory

terminal where the small camputer is under the control of a special-

purpose executive program called DOGGIE (for Display of Graphs Graphical

Interpretive Ekecutive) . As the name indicates, the program includes
an interpreter of a specialized cammand language which controls the

existence and display of graphs: Interactive programs .my operate cam-

pletely within the DEC-338 in which case they are composed of a mixture

of PDP-8 machine language and DOGGIE interpreter language. A Graph

Monitor with many facilities is provided as a basic system at the DEC-338.

There is a capability for adding new user programs which have been

assembled by PDPMAP on the IBM 7040 to the Jocal system at the terminal.

Through the Graph Monitor a user can save a graph, restore any num:

ber of graphs, and initiate interactive execution of IEiM 7040 programs.

Each of these operations requires the running of a job on the IBM 7040,

and this is set up by DEC-338 programs which prepare job input as if a

user had typed his request. For interactive execution, the terminal

is initially responsive only to commands fram the IBM 7040. The pro-

gram operating in the IBM 7040 at this point would be written in the

interactive ALZA language. FORTRAN IV has been extended with data

structure and associative processing components to form the language

ALLA. This compiler-level language was then enriched with the primitives

for interaction with the remote computer graphics temnal. Interactive

ALLA programs .may include output statements written in symbolic form for

the DOGGIE interpreter in the DEC-338. There are interactive MLA state-

ments which may be used to temporarily yield either partial or complete

control to the terminal. A program in the IBM 7040 may call upon a

DEC-3% user program as a subroutine. There are methods for the pro-

gram in the IBM 7040 to receive input from programs apd user actions

in the DEC-39.

A collection of interactive ALLA.programs has been written. Users

who are programmers .may add to this library from the terminal. The cam-

piler of interactive ALLA programs consists of a pr&processing phase

followed by application of the FORTRAN IV compiler. The preprocessor,

6
written in L , transforms interactive ALLA statements which are not

FORTRAN into FORTRAN SUBROUTINE and FUNCTION calls.

The underlying routines which implement the ALLA data structure

6
are written in L . The memory structure which they employ can be varied
without alteration of the semantics of the AF;LA language. The underlying

routines which implement the interactive statements are progranrmed in

MAP assembly language, and they ccmmunicate with the DEC-338 via an

associated input file and output file.

(3lfzL'ER 3

THE A I U LANGUAGE

3.1 Introduction

ALLA is an extension of the FORTRAN IV Language for the IBM 7040

which incorporates an additional data type, called "EPS~ITY", in order

to handle data structures not representable in standard FORTRAN. ALLA

includes all statements of the FORTRAN IV Language, plus a number of

statements used in reference to entities.

AI;LA does not explicitly refer to an entity, that is, there is

no entity constant in the language (in the way that FORTRAN has integer

constants, real constants, etc.) except for "UNDEF", which represents

an undefined entity. An entity may be referred to by an entity vari-

able or by a relation or association with an entity.

There are three types of entities: "ATOM", "PAIR", and "SFT".

An entity variable may, at any one time, name a particular atom, pair,

or set, or it may name nothing (be undefined) , i. e., it may have a value

Each atom, pair, or set may have any amount of associated data.

An associated datum is called a "PROPERTY", and is referenced by a

PROPERTY NAME. The value of the property of an entity may be an

integer, real, or logical constant, or it may be an entity. The type

for each property name (one of the above four) must be declared in the

same way that variable names are for consistent use throughout the

same subprogram.

An entity of the type atom is one which has no structure other

than its associated properties. A pair is a type of entity which,

in addition to any properties, has a LEFT-EUEMENfl and a RIGHT-ELEMENT,

each of which may be an entity or be undefined. In Algebra, the term

"ordered pair" is used to describe this struc-bure.

A set, besides having associated properties, is a structure with

any number of elements, each of which must be an entity. A set may have

no elements, in which case it is called EMPTY. Although the word "set"

is bed, the implementation imposes an ordering to the elements, and

so one may make use of the "list" nature of this structure. Also,

.membership in a set is not limited to a particular element appearing

once. There are no restrictions on the structuring of data in this

system. For example, a particular set may even be a member of itself

three times. More important, however, is the unlimited hierarchy of

the relationships which can be modelled in this structure.

This data structure can, of course, be easily used to represent

a graph. We will usually define a graph according to Berge [h) : as

an ordered pair, where the left-element of the pair is the set of

vertices, and the right-element is the set of arcs. Each arc is an

ordered pair, where the left element is the "from-vertext' of the arc,

and the right element is the "to-vertex." Each vertex will ordinarily

be an atom, but the ALLA data structure permits any type of entity as

the member of a pair or set. Thus one could even represent a graph of

graphs, or other interesting structures. More commonly, one finds the

following structures appearing in various Graph Theory manipulations:

1. A set of ercs [where ~rder f s importapt) fog s path.

2, A @ QrC6 &B pr~pe* of B ~~ * ~uQoffU3 arcs*

3. A se* of vertices 6s a prrrpedy of a mrks - those neighbors.
4. An ankger es B pmprty of a v e r b - depa h a tree.

The reminder a% this chapter describes those edill*ions to FDRTRi!UQ

IV which define fULA. reader 8 h N d note the kmlnology is con-

sfstent with and Jn some W e s cUmdlty m e n from the FOKPRAN manual.

chgpkr e& with some g m ~ ~ exaq4ee tJhtch relate t o Graph
B

Theory.

3.2 Entity Variables

An entity variab1e orrma conalsts of one to .k alphanumeric

charaaers, the first of which is alghabetic. It may be subscripted,

'but one s k W '6 tht same of the AIJlA spl8Zemeats restrict the use

of enti ty variables f o Zhose nons;ubscrgPbi ones. Nevertheless, it 18

%Pierefore possfble to represent I-, 20, OP 34Unensiod m y s of

entities. A I-dimenslona2 array of erRities is samewhat like s set,

excep* that an array size i s fixed at cmpik-ffme, but there is no
b

restriction on the number of elements fri a &t.

The programmer must declare those variable m e 8 he uses as

entity varltables ia s "Type Declaration Stakmen%lt of %he tom:

where 5, 2, s, . . . are entity varisble names (or entity action names)

appearing witbin the program.

Each variable name msy aptionslly be subscripkd e t h integer constahts

fo spec* dimensions.

Note fhi an ENTITY type declaration is 3 r ~ ePfect throughout the

program, and may no% be changed;. me same eh'tity variable m y , however,

be used to name atoms, pairs, or sets.

Examples :

ENTITY S1, S2

ENTITY ~(l0), X, INARC, WIRE(^,^)

3.3 Entity Functions

The programmer may write FUNCTION subprograms of type "entity"

in the same manner that he writes integer functions, real functions, etc.

An'entity function name consists of one to six alphanumeric characters,

the first of which is alphabetic. When he refers to an entity function

in a program, he must declare its name as an entity by using the ENTITY

type declaration described in the preceding section.

The following form must be used as the first statement of an

entity FUNCTION subprogram:

ENPITY WNCTION name(al,a2, ..., an)
where - name is the symbolic name of the single-valued function; and

al,a 2,...,an are arguments, of which there must be at least one,
A- -

which are nonsubscripted variable names, names of SUBRCKITINE

subprograms, names of FOmRAN functions, or names of library

functions.

Examples :

ENTITY FUNCTION CROSS(S~,S~)

ENTITY FUNCI! I ON SHPTHW (GRAPH, FROMV, T OV)

3.4 Entity Expressions

Basic FORTRAN IV includes two kinds of expressions: arithmetic

and logical. A third kind of expression is included in ALLA: the

entity expression. An entity expression may be an entity variable

(possibly subscripted), an entity function, or an entity property

(defined in the next section). The entity constant representing a

null or undefined entity - UNDEF - is also a valid entity expression.
An entity function or property may include one or more entity expressions

as arguments to any depth of call. This allows for such entity ex-

pressions as follaws.

mampl e s :

X

1NARc(v)

INARC (~ (F I R S T A (v)))

L~(L-(L~~(=(x) 11 1

G R W (~ , ~ , L ~ ~ (X)

where X and V are entity variables; INARC and FIRSTA are entity proper-

ties; and LELM and GROUP are entity functions.

The value of an entity expression is either an atom, a pair, a

set, or UNDEF, for undefined.

3.5 Properties

A property name consists of one to six alphanumeric characters,

the first of which is alphabetic. A property name ,must be declared

as one of the four following types by a type declaration statement:

INTEGER, REAL, LOGICAL, ENTITY. When ref erring to the property of an

entity, the programmer uses the following property form:

name (expr)

where name is the property name; and -
expr is any entity expression. .

3.5.1 Property Assignment

The property form may be used to assign a value to a property.

name(expr) = val

where name and expr are as above; and - -
val is an expression whose type must match the type of property -

name name. -
When a statement of this form is used in a program, the programmer must

declare the property name as such by a type declaration of the form:

PROPE2TlY a,b,c,. ..
where a,b,c, . . . are property names (nons~bscri~ted) appearing within

the program.

Ekamples :

PROPERTY RADIUS

PROPERTY LENGrH,WIlYrH,HEIGHT,AREA

3.5.2 Property Use

The second way in which a property form may be used is within an

arithmetic, logical, or entity expression. In this context, a property

form is syntactically the same as a function call., This has been pur-

posely done so that a programmer may write a statement such as:

AREA(RECT) = L E N ~ (R E C T) * KEIQIT(RECT)
where RECT is an entity variable, AREA is a real property, and WNC;TH

and HEIGHT are real.

The above statement is meaningful independently of whether LENC3I-I

and HEIGHT are properties or functions. The programmer m y decide at a

later time which of the two possibilities is more appropriate.

If a property is used in an expression before its value has been

defined, a default value is used as: zero for arithmetic properties,

.FALSE. for logical properties, and undefined for entity properties.

Such a default value is also used if a property is used after it has

been removed from an entity (as described in the next section).

3.5.3 Property Removal

The programmer may decide that a particular property associated

with a particular element is no longer wanted, and that property be

removed. The following statement form is used to remove a property:

REMPROP p FROM expr

where p is a property name; and

expr is an entity expression.

If the value of expr is undefined, or if the entity named by expr does

not have property 2, the statement has no effect.

When a property is removed from an entity, only the association

is lost. Removal of an entity property does not cause the deletion of

the entity referenced. If the referenced entity were not referenced

elsewhere in the ALLA structure then it would be left in a suspended

useless state. This concept is further discussed in Sect. 3.7.

Examples :

REMPROP LENGTH FROM IiECT

RENPROP NEIGH FROM NEIGH(V)

where RECT and V are entity variables, LENGTH is a property, and

NEIGH is an entity property.

3.6 Entities and Properties - Some Ekamples
Although the programmer who is comfortable with list-processing

or associative languages may find the concepts of entity and property

rather natural, the FORTRAN-only programmer may be somewhat confused

at this point in the text. Therefore some short exauxples are presented

here to give the non-sophisticated reader enough confidence to continue

further into this chapter.

The FORTRAN programer should be familiar with the following form

of arithmetic statement:

I = 5

The semantics of this statement gives the integer variable I the value -
of the integer constant 5. If the following arithmetic statement were

subsequently encountered:

* then the integer variable J would be given the value of the integer -
variable I, which is, of course, the integer constant 5. Now, there -

are two copies of the constant 5 which are values of I and J. - -
The above semantics are used throughout FORTRAN IV, but such a

modus operandi is not preserved with the addition of the entity. First

of all, there is no entity constant in AL;LA comparable to "5" in normal

FORTRAN IV. What must be understood is that an entity is not a number

or numerical or even logical quantity; instead it is an abstract struc-

ture. It is therefore meaningless to write any of $he following

statements :

where El and E2 are entity variables, and X is a real variable.

A numerical quantity may be associated with an entity by using

an integer or real property of an entity. For example, if IP is an

integer property name and RP is a real property name, then the above

meaningless statements could be .meaningf.Licly rewritten as:

IP (E~) = 5 The integer property IP of the en t i ty named by en t i ty

variable El i s given the value 5.

IP(E~) = IP(E~) + I P (E ~) The integer property IP of the en t i ty

named by en t i ty variable El is updated by the value

of the integer property I P of the en t i ty named by the

en t i ty variable E2.

X= SQRT(RP(E~)) The r e a l variable X i s given the value of the

square root of the value of the r e a l property RP of

the en t i ty qamed by the en t i ty variable E l .

The following ALLA statement i s a lso meaningful i n a sense different

than i n FOIITRAN I V :

El = E2

where El and E2 a r e en t i ty variables. Whereas a copy would be made if

El and E2 were integer, real , o r log ica l variables, when they a re en t i ty

variables, the above statement causes the en t i ty variable El t o reference

(or name, or point to) the en t i ty referenced by I%!. This interpretat ion

i s extended t o include, statements of the form:

El = expr

where E l i s an ent i ty variable and expr i s an ent i ty expression.

Whenever an en t i ty i s used i n ALU, it i s referenced through an

en t i ty variable, en t i ty function, or en t i ty property. In any of these

cases, t he atom, pair , o r s e t being referenced is an abstract structure

and i s only being named or "pointed to" by the variable, function, o r

property.

A s an example, suppose t h a t en t i ty variables A, B, and C each name

a unique atom, and tha t NMTl and NMT2 a re en t i ty properties, then the

folluwing AIJLA statements s e t up an interest ing relationship:

NEXT~(A) = B

NEXT~(B) = c

NMT~(C) = A

NMT~(A) = NMT~(NEXT~(A))

FEXT~(B) = NMT~(~VEXT~(B))

NExT2(c) = NEXTI(NEXT~(C))

The reader should note the last three statements could have been

written alternatively as:

NMT~(A) = C

NMT~(B) = A

NEXT~(C) = B

On the other hand, the same effect could have been accomplished

by defining NMT2 as an entity function instead of using it as an

entity property. The following is a catxrplete ALLA entity function

subprogram:

ENTITY FUNCTION NMT~(X)

EPSIIITY X, NEXT1

NEXT2 = MMT1(NEXT1(x))

RETURN

END

Note that in the definition of NEXT2 above, it is not necessary to

distinguish between NMTl as an entity function or entity property.

The advantage of associating data by means of a property rather

than a function is the savings in computation the. The advantage of

using a function is the evaluation is performed for each instance of

the name.

3.7 Entity Creation

3.7.1 Explicit Entity Creation

The following ALLA statements may be used to create explicitly

a new entity:

CREATE ATOM ent

CREATE PAIR ent

CREATE SET ent

wheye - ent is a nonsubscripted entity variable.

The first form above causes the entity variable en% to point to (or -
name) a new atam. The second form causes ent to point to a new pair, -
with undefined left-element and right-element. The third form causes

en% to point to a new set, with no members (i. e., empty) . In all three -
cases the new entity has no properties.

If the entity variable used in the CREATE statement had been point-

ing to some other entity, that old reference is lost. It is the duty

of the programmer to delete unwanted entities before losing pointers

to them. For example, consider the following sequence of statements:

CREATE ATOM X

CREATE SE3 X

After execution of the first statement entity variable X points to a

new atom, and it is the only "handle" (umbilical cord, perhaps) at this

.timet Execution of the second statement creates a new set which is then

pointed to by entity variable X, and that new atom is left "suspended in

space" with nothing pointing to it. It is lost forever, but still

occupies two words of storage space samewhere in the IBM 7040. The pro-

grammer has the power to express such a fiendxsh operation, but is

advised against excessive abuse.

3.7.2 Implicit Entity Creation

The CREATE statement provides the programmer with sufficient

power t o create any basic entity, but since creation is a cammon opera-

t ion there i s an implicit method of creation. U includes the follow-

ing three bui l t - in ent i ty functions:

CRATOM(ent)

C R P A I R (~ ~ ~)

CRSFT (en%)

where - ent i s a nonsubscripted erltity variable.

The first form above causes the en t i ty variable ent t o point t o a new -
atom; the value of the function also points t o the new atom. Similarly,

the second and t h i r d forms create a new pai r and a new se t .

A s i n expl ic i t creation, i f - ent had been the only handle on an

en t i ty pr ior t o the creation operation, t h a t ent i ty is l e f t 'in an imusable

s ta te .

Example :

RAD~S(CRATOM(C)) = 4.5

may be used as a short form of the folluwing two statements:

CREATE ATOM C

R A D ~ S (C) = 4.5

where RADIUS i s a r e a l property name and C i s an en t i ty variable.

Note tha t i n both of the al ternat ive forms the ent i ty variable C points

t o the created atom.

3.8 An Atom

'An atam i s the f i r s t type of ent i ty available i n an A I U structure.

The atom has no substructure other than any number of associated proper-

t i e s .

3.9 A Pair and Its Elements

A pair is the second type of entity available in an ALLA structure.

The substructure of a pair consists of its left-element and right-ele-

ment, each of which may be an ENTITY or be undefined. If one wishes to

define an ordered pair of integers, he must associate an integer proper-

ty with each of the two entity elements of a pair; the left- and

right-elements may not themselves be integers. A pairrmay also have

any number of associated properties.

The programmer refers to the left- and right-elements of a pair

by the pair-element forms:

L-(mpr)

~ m (expr)

where expr is any entity expression which names a pair.

If expr is an entity expression which does not name a pair, both ~ ~ ~ ~ (e x p r)

and ~ ~ ~ (e x p r) are undefined.

The pair-element formmay be used to assign a value to one of the

elements of a pair:

~ (e x p r) = ent

REL,bf(expr) = ent

where expr and - en% are entity expressions.

If the term on the left side of the "=" is undefined, the statement has

no effect.

Examples :

LELM(FIRSTA(V)) = FIRSTV(V)

RELM(CRPAIR(G)) = C R ~ (ARCS)

where V, G, ARCS are entity variables, and FIRSTA and FIRSPV are entity

properties.

The second way in which a pair-element form.my be used is within

an entity expression. In this context IZZM and RELM may be considered

built-in entity functions.

Examples :

VLIST(5) = LELM(G)

FIRSTV(V) = L~(FIRSTA(V))

LELM(LEEM(X)) = LELM(~(X))

where VLIST is a subscripted entity variable; V, G, X are entity varia-

bles; and FIRSTV and FIRSTA are entity property names.

3.10 A Set and Its Members

A set is the third type of entity available in an ALLA structure.

The substructure of a set consists of any number of members, each of

which.mst be an entity. A set may even have no .members, in which case

it is.called "empty." A set .may also have any number of associated

properties.

Although a set normally denotes an unordered collection of members,

the computer implementation being used for AI;LA forces an ordering, and

therefore one may use a set as a list - the order of the list is pre-
served throughout all references to the set.

Another extension to the classical notion of a set is the power

in ALIA to allow an entity to be a member of a set any number of titues.

In fact the ALLA data structure has no limitation on the structuring of

data. For example, a set may even be a member of itself three times;

or the left-element of a pair may be the pair itself. More important

than such strange relationships, however, is the unlimited hierarchy of

relakionships which can be modelled in an ALLA structure,

The remaining subsections of Section 3.10 plus Section 3.11 dis-

cuss the ways i n which a se t may gain or lose .members. The explanation

of how t o reference the individual e n t i t i e s which are members of a

part icular s e t w i l l be covered i n a l a t e r section on THROUGH loops.

3.10.1 Inser t a Member

Section 3.7 described how a new s e t may be created. When t h i s i s

done the s e t i s , of course, empty. The following statement form is

used t o inse r t an en t i ty in to a s e t a s a new.member:

INSERT exprl INTO expr2

where exprl and expr2 are ent i ty expressions.

I f the value of exprl i s undefined or i f expr2 does not name a set , the

statement has no effect . The en t i ty which i s inserted is . W e t he

" last" member of the set .

Ekample s :

INsEKI' V I N T O NEICH(REZM(A))

INSERT CRATOM(V) INTO C R S ~ (VS)

where V, A, VS are ent i ty variables, and NEIGH i s an en t i ty property

name.

3.10.2 Remove a Member

The following statement form i s used t o remove an ent i ty from the

membership i n a se t :

REMOVE exprl FROM expr2

where exprl and expr2 are ent i ty expressions.

I f the value of exprl i s undefined or if expr2 does not name a set , o r

if the en t i ty named by exprl i s not a member of the se t named by - 9 expr2

the statement has no effect. If the ent i ty removed is a member of the

set more than once, only its first occurrence as a member is removed.

Ekamples :

REMOVE V1 FROM VERTS

REMOVE LELM(A~) F R ~ M -(G)

REMOVE X FROM X

where V1, VERTS, Al, X are entity variables.

3.11 A Set as a Pushdown

A set may be referenced in ALLA as a pushdown list. The "pusht'

operation may be used to insert an entity into a set as the first -
member of the set instead of being made the last .member by the INSERT

statement . The "pop" operation is an entity function whose value is
the first member of the set, and application of the function also causes

that first member to be removed from the set.

3.11.1 Push

The following statement form is used to push an entity onto a push-

down list (or set) :

PUSH exprl ONTO expr2

where exprl and expr2 are entity expressions.

If the value of exprl is undefined or if expr2 does not name a set, the

statement has no effect. The entity which is inserted is made the "first"

,member of the set.

Examples :

where V and LISP are entity variables, PDL is a subscripted entity

variable, 1 is an integer variable, and NEIGH is an entity property name.

3.11-2 POP

The following expression fom.may be used within an entity express-

ion to pop an entity from a pushdown list (or set):

POP (expr)

where expr is an entity expression.

If expr does not name a set or if the set named by expr is empty, the

value of the above expression is undefined. The above function call

removes the "popped" entity from the set as the set's first member.

Examples :

x = POP (LIST)

HTSH IIELM(POP(ARCLST)) ONTO VLIST

where X, LIST, ARCLST, VLIST are entity variables.

3.12 Entity Deletion

The following statement form is used to delete an entity from the

ALLA data structure:

DELETE expr

where expr is an entity expression.

If the value of expr is undefined, the statement has no effect.

When an entity is deleted all of its associated properties are

also removed. In addition, if the entity had been the value of a proper-

ty of some entity in the data structure, that value is .made undefined.

All those left-elements of pairs in the data structure which had the de-

leted entity as their value are made undefined. All those right-elements

of pairs in the data structure which had the deleted entity as their

value are .made undefined. The deleted entity is also removed from all

sets which contained the entity as a member in all such occurrences.

When an entity is deleted, although all references to it are re-

moved from the ALLA structure, there may be any number of ALLA entity

variables which were pointing to it. It is the programmer's obligation

to avoid using such variables except to redefine their values. There

are several exceptions to this warning which are discussed in Section

3.15.

Note that when a pair or set is deleted its elements or members

are not automatically deleted. It would be rather unfortunate if this

were not the case; for example, it would be impossible to delete an arc

in a graph without deleting the two vertices which define it. In order

to delete an entity and its substructure, a program mst be used. This

type of operation is not a primitive in ALLA since deletion may be done

at various depths, and the programmer will likely decide for himself

what is appropriate.

Examples :

DEXECE A

where A, V are entity variables, and FIRSTA is an entity property.

Note the third statement has no practical value.

3.13 Entity Equality

The relational operators .EQ. and .NE. . m y be used within a logical

expression to compare entity expressions. Since entities are not

numeric quantities, the other relational operators .may not be used to

compare two entities (.GI!. , .LT., etc.) . The following forms . m y be
used:

(exprl .El&. expr2)

(exprl .NE. expr2)

where exprl and expr2 are entity expressions.

The first form is .TRUE. if and only if the value of exprl is the same

entity as the value of expr2. The second form is simply the negation

of the first form.

3.14 Predicates

AI;LA includes six built-in predicates or logical functions which

are used to test entities. Exatqles of the use of these predicates

follows the three subsections of this section.

3.14.1 NULL

The following form is a predicate:

where expr is an entity expression.

The value of the predicate is .TRUE. if and only if the value of expr

is UNDEF. This predicate is not a necessary constituent in U, since

the following logical expression is equivalent:

(expr .E&. UNDEF)

3.14.2 ATOM, PAIR, SE2

The following forms are predicates:

A~OM(expr)

PAIR (expr)

sm (expr)
where expr is an entity expression.

The value of the first predicate is .TRUE. if and only if the value of

expr is an atom. Similarly, the second predicate determines whether

expr names a pair, and the third one determines whether expr names a set.

3.14.3 EMPTY

The following form is a predicate used for sets:

EmFTy (expr)

where expr is an entity expression.

The value of the predicate is .TIRUE. if and only if either expr is

undefined or the value of expr is a set which is empty.

3.14.4 m m

The following form is a predicate used for sets:

MEMBR(expr1, expr2)

where exprl and expr2 are entity expressions.

The value of the predicate is .TRUE. if and only if the value of expr2

is a set and the value of exprl is an entity which is a member of that

set.

EXample s :

IF (NULL(~(A))) GOTO 10

K = .NOT.PAIR(A)

IF (SFT(B) .AND. MEMBER(A,B)) 1=1

where A, B are entity variables, K is a logical variable, and I is an

integer variable.

3.15 THRWGH Statement

The THRCXTGH statement is used for control in an ALLA program in

order to refer to the members of a'set. It is an extension of the DO

statement of FORTRAN IV in that it is used to cause repetitive execution

of a series of statements. The following is a form of this statement:

THROUGH n FORALL ent IN expr

where n is a statement number; -
ent is a nonsubscripted entity variable; and -
expr is an entity expression.

. This statement results in the execution of the statements that follow
the THROUBI, in the range, up to and including the statement numbered n. -
This iteration occurs once for each member of-the set which is the value

of expr. If the value of expr is not a set, or if it is an empty set,

the statements within the range are not executed. Otherwise, the bound
,

entity variable ent takes on the value of the first member of the set on -
the first iteration. Then after control continues past statement 2,

the statements within the range are executed, with the value of ent as -
the entity which is the second member of the set. This process continues

until control passes statement - n with the iteration having been performed

on the last member of the set; in this case, control then passes to the

statement following stat.ement - n.

The bound variable of a THRCUBI is the entity variable - ent.

Throughout the range of the THRCUGH, it may be used in any entity ex-

pression. If control leaves the range of the THRUJBI in any way, the

variable .may then be considered free, and it .may be used in further

entity expressions. If the iteration occurs for all.metnbers of a set,

and if the value has not been altered, then this variable will attain

the value of the last member of the *set. If no iteration occurs, the

value of the variable is undefined.

The programmer is pemitted to alter the value of the bound

variable within the range of a THRCUGH statement since the variable

is not used for the purposes of determining the "nexti' .member.

The programer may a l t e r the membership of the set being used fo r

a THROLTGH statement, even within the range of the THRWQI. The selec-

t ion of the ''next" element of a se t occurs a s a dynamic computation

for each i te ra t ion around the loop. This generality even permits the

deletion of the s e t being used within the range.

THRCRJGH statements may be nested among themselves or with DO state-

.merits. However, control .may not be transferred in to the range of a

THROUGH from outside the range.

The same rules apply for ' the statement tha t tellminates the range

of a THRCllTGH a s with the range of a DO, i.e. such a statement.must be

an executable statement, and cannot be an arithmetic-IF nor a GCIPO.

Fxamples:

THRUJGH 10 FORAU A I N ARCS

THROUGH 250 FORALL V1 I N LELM(G)

where A, ARCS, V1, G are ent i ty variables.

3.16 Property Handling

Section 3.5 described how en t i t i e s may have an arbi trary amount

of associated data, known as properties. It indicated how the associa-

t ion i s made, how it i s removed, and how the programmer references or

uses properties. These operations are not powerful enough t o express

a l l important .manipulations on properties. The additional necessary

feature which the programmer needs i s the ab i l i ty t o handle those prop-

e r t i e s which are associated with an entity, without "knowing" anything

about how many there are, which ones are used; or what the i r values are.

This type of information i s needed t o output an ent i re structure without

the knowledge of a l l properties being used. A siqpler example where

such a feature i s needed i s i n a routine t o copy an ent i ty including

all of its properties.

This section describes four special built-in functions which

give the programmer the power to handle those existing properties of

an entity. A special subroutine is also described which can be used

for setting the value of an arbitrary property of an entity. An illus-

trative example is given at the end of the section.

3.16.1 Property Set

. Properties are associated with an entity within the ALIA data

structure in the form of a set,'much in the same way that a set of

entities is modeled. This .makes it possible to use the THRCILTGU state-

ment to sequence through all the properties (property elements) in the

"property set" of an entity. The following special built-in f'unction

is used in a THROTJGH statement to refer to the property set of an entity:

THROUGH n FORALL prel IN p~m(expr)

where n is a statement number; -
prel is a nonsubscripted entity variable; and

expr is an entity expression.

The above THRCIUGH statement is meaningful only when the value of expr

is an atam, pair, or set. Otherwise, the statements within the range

of the THRCILTG3.I are not executed. On each iteration the bound variable

prel refers to a "property element." A property element is not an AUA

entity, and so it slay not be manipulated in any standard ALLA statement.

Instead there are two special built-in functions which.may be applied

to property elements. These special functions .may only be used in this

way.

F~ch property element represents one existing property of an

entity.

3.16.2 Property Name

The following special built-in function is used to determine the

name of the property of the association represented by a property ele-

.ment :

PRNAME (prel) .

where prel is an entity variable whose value is a property element.

The $due of this function is not a BCD representation, but a quantity

which can substitute for a property name in a function call, in a sub-

routine call, in a RENPROP statement, or in the special built-in func-

tions PRENT or PRBCD (introduced below).

This function is used in the copying of an entity.

3.16.3 Property Value

The following special built-in function is used to determine the

value of the property of the association represented by a property ele-

ment :

PRVAL (prel)

where prel is an entity variable whose value is a property element.

The value of this function is a direct (36-bit) copy of the value of

the property, and it is of type integer or entity. Care must be taken

by using EQUIVALENCE statements when properties are of types logical -

or real, and their values are to be used within expressions.

This function is used in the copying of an entity.

3.16.4 Setting the Value of a Property

Section 3.5.1 introduced the form used to assign a value to a

particular property which has been declared as such. An alternate form

i s available f o r the same purpose when the property name is unknown a t

the time of compilation. The following subroutine c a l l m y be included

i n an ALtA program:

CALL SETVAL (name, expr , val)

where name i s ei ther a property name, the PRNAME function of a property -
element, or an expression whose value is the BCD representa-

t ion of a property name (l e f t adjusted and padded with blanks).

expr i s any ent i ty expression; and

val i s an expression whose type must match the type of property -
referenced by name. -

This subroutine c a l l se t s the value of the property referenced by name -
of the ent i ty which i s the value of expr t o the value of val. - -

A subroutine c a l l of t h i s type i s used i n the copying of an entity.

It.may also be used t o create arbi trary properties of an ent i ty a t

execution time.

3.16.5 Property Type

The following bui l t - in logical function determines whether a

part icular property i s of the type entity:

P ~ N T (name)

where name i s ei ther a property name, the PRNAME function of a property -
element, or an expression whose value i s the BCD representa-

t ion of a property name (l e f t adjusted and padded with blanks).

The value of the PREPIT function i s .TRUE. i f and only if the property

name i s used f o r an ent i ty property. -
This function i s used i n the recursive deletion of a structure.

b

3.16.6 BCD-Name of a Property

The following built-in integer function yields a quantity which

is the 6-character BCD value of the name of the property:

PRBCD (name)

where name is either a'property name, or the PRNAME function of a -
property element.

If the name consists of less than six characters, its code is left-

adjpsted and padded with blanks. If the given argument does not repre-

sent a property name, the valuedof the function is zero.

This function is used in order to output the properties of an

entity.

3.16.7 Illustrative Example : COPY

The following is a listing of the AUA program used to copy an

entity. It is an entity function named COW and is self-explanatory.

-- ..--. --- - - . .--- - --A .---
E h T I T Y F U h C T I O N C O P Y (€)
ENTITY E , M . - . . - .. - . . . -- ... - .. .*

i F (A T O M (E) I G O T 0 10
. I F (P A I R t E I) G O T 0 20

Z F (S E T (E I 1 G O 7 0 30
C O P Y = UI'iDEE.. - .- .
I{ E TURN

................ ! 10 ..- - . ._._.CREATE ATOM COPY -

G O i O 50
2 0 . . C R E A T E P A I R C O P Y -.

L E L M (C 0 P Y) = L E L M (E 1
.. . - K ~ L M (C O P Y 1 . = R E L M I E) - ;

G O T 0 SO
. . 3 . C R E A T E SET C O P Y

THROUGH 4 0 F b R P L L M I N E ' 40- I N S E R T M I N i O COPY
50 THROUGH 6 0 FORALL M I N P R S E T (E)

. . - 6 0 - C A L L . SEIVAL(PRNAP1EtM) *COPY * P R V A C (H) - - ---.

R E T U R N
.... - EN0 - . .

3.17 Uses of an Entity

For efficient processing in certain types of problems, the /UJ.A

programmer is given the primitives to determine what entities make

reference to or use a particular entity. An entitymay be referenced

or used within the AI;LA Data Structure in any of the following ways:

as the left- or right-element of a pair, as a .member of a set, and as

the value of an entity property. Note that an ALLA entity variable

pointing to an entity is not considered a use of that entity.

This section describes three special built-in functions which

give the programmer the power to handle the uses of any existing entity,

An illustrative example is given at the end of the section.

3.17.1 Use-Set

Each existing entity has an associated use set, which is modeled

in the same format as a set of entities. This h e s it possible to use

the THROUQI: statement in crder to sequence through all the uses (use-

elements) in the use-set of an entity. The following built-in function

is used in a THRUJGH statement to refer to the use-set of an entity:

THROUGH n FORALL use1 IN USESFT (expr)

where n is a statement number; -
use1 is a nonsubscripted entity variable; and -
expr is an entity expression.

The above THROUGH statement is meaningful only when the value of expr

is an atam, pair, or set. Otherwise, the statements within the range

of the THROUGH are not executed. On each iteration the bound variable

use1 refers to a "use-element." A use-element is not an AILA entity, -
and 80 it may not be .manipulated in any standard A I U statement. Instead,

there are three special built-in functions which may be applied to

use-elements. These special functions may only be used in this way.

Each use-element represents one existing use of an entity. There

is one use-element associated with each instance where an entity is a

member of a particular set. If an entity is both a left--and right-

element of a particular pair, its use-set contains two use-elements

which represent the use of the entity by the pair. Likewise, there is

one use-element associated with each instance where an entity is the

value of an entity property of adparticular entity.

3.17.2 Type of Use

The following built-in integer function determines the type of

use a particular use-element represents:

USETYP (usel)

where use1 is an entity variable whose value is a use-element. -
The value of this function may attain only one of four values:

~~ErnP(use1) = 1 when the value of - use1 is a use-element representing

a use as the value of an entity property.

uSFMP(US~~) = 2 when the value of - use1 is a use-element representing

a use as an element of a pair.

~SE;mP(usel) = 3 when the value of - use1 is a use-element representing

a use as a member of a set.

USFI"~P(US~~) = 0 when one of the above conditions is not met, i.e. in

, an error situation.

3.17.3 Entity Where Used

The following built-in entity function determines the host

entity in the relationship represented by a particular use-element:

US- (usel)

where use1 is an entity variable whose value is a use-element. -
The value of this function is the entity where the use occurs. If the

value of use1 is a use-element representing a use as the value of an -
entity property, the value of ~SEEl'iT(use1) is that entity with which

the property is associated. If USEEl'iT is applied to an argument which

is not a use-element, its value is undefined. (This corresponds to

the case when USFTYP(U~~~) = 0.)

3.17.4 Property Where Used

The following built-in funation is used to determine which

property relationship is represented by a particular use-element:

uSEP~(use1)

where use1 is an entity variable whose value is a use-element represent-

ing a use as the value of an entity property.

The value of this function is a property element. Recall that a property

element is not an AUA entity; it may only be used in the special built-

in f'unctions PRNAME and PRVAL described in Sections 3.16.2 and 3.16.3.

If USEPR is applied to an argument which is not a use-element represent-

ing a use as the value of a property, its value is undefined. (This

corresponds to the cases when ~SETYl?(usel) = 0,2,3.)

3.17.5 Illustrative manrple

The following is a listing of an AUA subroutine which demonstrates

the handling of the uses of an entity. The subroutine named UNUSET has

one argument which is an entity. The subroutine removes that entity

from every set in which it is a member.

- - - - - ---- --
SUUItOUTiNC UNUSC T (E 1

-7 1-LY ...t_(..LL .-_.-----.--
TIIRIIUGH 10 FORALL U I N U S E S E T (E 1

. - . - . - - . . . - - . - 1 t (USETVY (U) . , - N E L - ~ _ ~ - . .G-UIl!-LO_ -----,---
R E M O V E U F I tOM U S E E N T (U 1

19 - - -- .. LC)NT 1 Nut . --..,--------..-.------.---- ----
RETURN

3.18 Miscellaneous Restrictions

This section indicates some restrictions on the syntax of ALLA

programs which are not found in FORTRAN IV.

3.18.1 Re served Words

The following is an alphabetical list of words which the ALLA

programmer may not use as his own variable names or function names:

ATOM MEMBER REMOVE

CREATE PAIR sm

CWAIR POP SFTVAL

DELEEE . PRENT ST=

EMPTY PRNAMF, UNDEF

ENTITY PRSET US-

FORAU PRVAL USEPR

FORNX?W PUSH USESE2

* These words are not explicitly used in ALLA statements,

but their use is restricted due to the underlying

implementation of the ALLA compiler and execution-time

system.

3-18.2 Statement Numbers

Statement numbers in an ALLA program.my range between 1 and

99000, i.e. a statement number may not exceed 9900.

. 3.18. 3 Logical-IF Statement
The executable statement which is to the right of the logical

expression in a Logical-IF statement may not be any of the following

ALLA statement forms:

CREATE . .
INSERT

PUSH ...
REMOVE . . .
RENPROP . . .
D-E . .
~m(expr) = ...
=(expr) = . . .
name(expr) = . . . where - name is a property name

THRCUGH . ..
3.18.4 C ~ O N

Since blank COMMON is used for the maintenance of the ALJA data

structure, the programmer may not use it. Labeled COMMON may be freely

used.

3.18.5 comments

As in FORTRAN IV, ALLA programs may include comment cards which

are denoted by the letter "C" in column 1 of the source card image.

In addition, the ALLA compiler considers a card image to be a comment

if it begins with the special character "*" in column 1.

3.19 Programming Examples

This section includes ALLA subroutines and functions which have

same practical value in Graph Theory. A graph w i l l be assumed t o have

the structure given i n Section 3.1.

3.19.1 Cardinality of a Set

The following integer function yields %he number of members of

the se t given as the argument.

- - - - - - - - - I hTEGER-EUMC_LIONCAmlS)
E h T I T Y S , E

.--------CARD z-9 ._

THROUGH 1 FOHALL E I N S
1 CAKO = CARD t 1

RETURN

3.19.2 Incoming and Outgoing Arcs

The following subroutine accepts one argument which i s assumed

t o be a directed graph. The routine defines two properties of each

vertex of the graph. The INARC property is used t o refer t o the se t

of those arcs which enter in to a vertex. The OUTARC property i s used

to refer t o the se t of those arcs which are defined t o emanate from a

.vertex

S l r L I H O U r l N E I N O U T (G 1
--------- EN1 1 J Y . G8 X8V,A,INA1<C,-UUTARC-- --------

PUUPtKIY l N A 2 C , U U I A K C
-- ------ THKUUGH 10 -FLKfiLL- V -IN _LUM[CI ------

I i \ A t < C (V I = C i t S t l (X 1
-- 1 L) U I: TAXC L V L = - C U W - L X I - -- -

TI IKI IUGH 20 FhRALL A I N I IELM(GJ
- - - - 1 N 5 i r : i i T A - LN CG-.lNARCCRLLMAALL

20 I N S L R T A m r o O U T A R C ~ L ~ L M (A)
_---HE I U R N - - - -

C Nlj

3.19.3 Make a Graph Undirected

Once the above subroutine has been applied to a graph, each ver-

tex has a set of incoming arcs and outgoing arcs. The following sub-

routine may be subsequently applied to the same graph in order to

make each incoming arc which is not a loop into an outgoing one, and

remove the set of incoming arcs. Thus, according to the (XITARC property,

the graph has been made undirected.

S I I B I ~ ~ U T 1NE U N D I R (G 1
E N I l T Y Gri/tPtINARC,OUTARC ----------- 1-
P R O P E R T Y A N A R C
l l i i<L;UGti LO F L l t A i L V I r l _ L E L M (Z)
THROUGH 10 FORALL A I N I N A K C t V J

- - IF (L E L M i A) LG.-V-)-GOT-
I N ~ ~ R T A r h r o O U T A R C (V)

-_lo ----- LQIYTINUE -
C E L E T E I N A K C t V)

- - 29- - -- R E!4PHOP_LMAKI1 +&DM _Y ------- --A -- -- - - -
HETURh
FND - -- ----

3.19.4 Connected Components of a Graph

After three rather simple examples, the following useful function

plunges into significant computation and complexity. The function

accepts one argument which is assumed to be asdirected graph. Treating

.-

-I--------- &T.JJY.-EU.E\iC.LLUN..LSblCaM_W --------------------------------
f X T I T Y G r V a X , V E K T S t A R C S i A r T E M P i . T E M P V , C , N

. ENT.II_Y._ .LN.ARC-r..QMARG&XCUP --------------
PROPER] Y GROUP

* . .

CALL I N O U T (G 1
------------ CALLYbDI.i<LGL

V E R T S = L t L M (G 1
..-----------ARCS_- r- .!i tW-CG) .

THROUGH 10 FOKPLL V I N VEKTS
10 C R O . U P L V . ~ _ - _ = _ _ W . F

C R E A T E S E T CONCCJM * . , a IHI?O.UGH . d.0 .EORPLL...Y.-.IN.-.Y.ERJS - ----
I E M P = GHOUP(V1

------------- LF ...- 1.1 EE"P..-&La..-U.Nl)kF-I. ..GQID-30 ------------------------------
L E L M (C R P A I R (T E M P 1 1 = C K S E T (X 1

-SCRL_TLMe_L_F.IJ4_1l1hlUL-T M . GHOUIJ(V) = T E M P
' I r J . L k K . 1 - . V -LN1U--L.E.LMf.J E.MP_I

30 THROUGH 7 0 FORPCL A I N O U T A R C f V)
' ----------- N 3-.LELMLAL

I F (N .EOe V) N = R E L M t A)
I F t N .EO. V) G O i n 73
1 F (GKOUP(N1 . h t . UNDEF) GOT0 60

------------ G R O U P 1 N) - s - W P
I N S E R T N I N T O L L L P (T E M P 1

------------GO la. .'I9 - ------ - --- -- - ------ ----------- ---- - - --, - -
60 I F tGKUUP(N1 eEU. GROUP(V11 C O T 0 7 0

~ T U ~ H ~ . J Q B P ~ I T E M P V I N I F I M ~ T F M P)
GROUP (TEMPV 1 = GROUP(N I

.--,-- 55 ---- U L H L - IE.NPV_-LCIJD-LELMU;KO.UPLMlL ---------------- ------ ---
CELETE L E L M (T E M P I

.----------- I:E.LEIE-1.LNP
TEMP = GROUP(N1

7 0 CQNUNYE
80 CONTINUE
(C --------------- -------------------------

THROUGH 100 FORALL C I N CONCOM
100 ---- HECF.:! C 1- .=- C K S E T.(.X.l----.-.----. - - -

1 HIiLUGH 110 FDRALL A 1N ARCS
l l C l 5 . E H . T - - A _ f h l _ Q - . . W _ L G W f I F l b U A 1 1 1 -.

*
THItOUGH 120 FOHALL V I N VENTS

.--,---LZlI ---- t l E N P H D P _ G B Q U . P . _ F ~ Y ------------------------------------
RETURN

the graph as if it is undirected, the algorithm yields a set of graphs,

with the vertices and arcs of the given graph, which constitutes the

set of connected components of the graph.

The algorithm begins by establishing the OUTARC'S of all vertices

of the graph considered as undirected (see the two previous examples).

Next, the variables VERTS and ARCS are assigned to refer to the set of

vertices and the set of arcs. Each vertex is then defined to have an

associated entity property named GRCeTP, which is initially undefined.

After creating the set which will be used as the result of the

function, the major computation loop begins. In this loop, every ver-

tex will be considered. The loop begins by determining whether that

vertex has already an associated group. A group is a potential connec-

ted component. If it doesn't, a new potential graph is created and

the vertex being considered is made to belong to the new graph.

At statement 30, an inner loop begins which scans all outgoing

arcs of the vertex in consideration. This is being done in order to

scan all first neighboring vertices of the one in consideration. Each

neighbor is considered. If the neighbor in consideration does not

yet have an associated group, it is made to be a member of the same

group as the vertex currently being considered. If the neighbor in

consideration already belongs to the same group as the vertex in con-

sideration, all is well. If, however, the neighbor's group differs,

then the two groups must be merged. The group of the neighbor remains

and all vertices which are members of the group of the current vertex

are moved into neighbor's group. The potential graph is deleted, and

the next neighbor is then considered.

After all neighbors of all vertices have been scanned in the

above manner, the connected components have been established. The arcs

of each component are then defined by sorting each arc by its associated

group. Finally, the algorithm ends by removing the GROUP property from

all vertices, since it was only being used as an aid to the speed of the

algorithm.

3.19.5 Undirected Tree

The following example is a logical function which determines

whether its given argument considered as an undirected graph is more

specifically a tree. The function makes use of two previously presented

functions. First, if the given graph has more than one connected cm-

ponent it cannot be a tree. Second, in order to be a tree it can have

no cycles, and this can be shown intuitively to be equivalent to having

one less arc than the number of vertices.

L O G I C A L F U N 4 . T I O N I \ t D T R E E (G)
---- 1 ------ l _ h T E G E H C b 4 0 _------------------ ,-- -----------

E N T I T Y CONCOM,C,C,Gl
----------- F ; Q l R E L =-,FALSE-.

C = C O k C O M (G 1
A iFr-_lGAKI:LGI__.NE_.-lJ_lriU17 1ao -

I t (C4RDIK2LN(G)) .GE* CARD(LELM(G))) GOT0 100
_ - ----_----- hL; TKC.E- r - . - T l < U t i .----------------------------

100 T t I R O I J G H 110 F O H A L L 61 I N C
-----------CkLt-TE,LELMCU3-----------------------------

Df L E T E R E L M (G 1)
110 D E L E T E Gl

RETURN

3.19.6 Directed Tree

This final example is included without explanation for the

conscientious reader. It is a logical function of two actual arguments,

but with the third argument of the function used to return parts of

the answer. The first argument is assumed to be a directed graph where

OUTARC' s have been defined (by INCUT, for example) . The second argu-
ment is assumed to be one of the vertices of the graph considered as

the potential root. The algorithm determines whether the graph is a

diGected tree with the given root. A by-,product of the algorithm re-

turns the depth of the tree in the function's third argument. Also

each vertex of the tree has an associated depth.
- - . - . -. - . - - .- - _ _ _ _ - - - -% -I 4 I----- ---

L O G I C A L F U N C r I O N C T K E t I G , K O C l r ' p D)
------------ t N T I TY G ~ . ~ O ~ ~ ~ ~ C L E - \ I E L ~ N L W ~ L L _ ~ V ~ - N U C ~ D U I A R C -----

I N T E G E R UEVTHvC
PI(OV.ER.TY...L!E-P TK
L l H t E = . F A L S E .
I t ... (NOT.. ..FLH e.Ei ..urn.[.LLLMI GI-L L G ~ T ~ ~ L . . .

TI-i<UUC;H 10 F O R A L L V i N L E L M (G 1
----- m ---- I; tFTH[Y 1 _ . ~ - @

CEPIHIHOUr) = 1
1 hStrRT-_HO.QT--1.NT.D-.. CKSET-C_GLE.YELL ,
o = o

20 I F--. i EMPIY.~IC.LEVEL-)_1-1;QI.U_-4fl
C = E ; + i

L - _ C I . : ~ A T E .. SET. ..I"\iLEVk.L-
lHKUUCH JO FGKALL V 1 1 4 C L E V E L

t t&OUGH..iQ E G K P . L L . - N E X I A 3 N - L l U L W J
I F (: L ; E P T t i (R E : L M (N C X T A)) - N E W 0) GOTU 6 0
DklLTHU<fl M I N F X I A) 1 - - ~ t 1

3 0 I h S E R T K C L M (~ E X T A) I N S 0 N L E V E L . , L tLE-T.E _.CLtV~LL
C L E V t L = h L E V E L .. .

- - L2C.TUL20 --
*

4 0 t I . - C R Y U U U S N I I V I N I F 1 M i C)
50 IF. (D E P ' T H (V 1 -CQ. 01 GOTO 7 0 . - L I.KE--=-.,LKUL, --------------------------- --

G U T 0 '10
.- -- - --SD_-- - A~kETL U L E Y L - - -- - --- -- - ---- - --- - --- - - - - - - -

7 0 C C L E T E C L E V E L

E N D . .
. .. . -. -.? -. -. - - - - - - -- -- - --- . -. . . - .- ---. . .-

CllHAPTER 4

DISPLAY OF GRAPHS GRAPHICAL IIVTERP;[IFTEVE EXECUTIVE

4.1 Introduction

The DEC-338 has two distinct roles in the Interactive Graph Theory

System. It may serve as a text console for the purposes of writing

new interactive AI;LA programs, local user programs, interactive user

programs, etc. It may be used to perform storage and retrieval of

texft files, editing, compiling, assembling, etc. The .more fitting use

of this graphical terminal is in its other role as a special-purpose

machine responsible for the display of graphs. W i n g this mode of

operation an executive program called DOGGIE - for Display of Graphs
Graphical Interpretive Executive - is in control of the DEC-338. A list

of the important services performed by DOGGIE follows:

1. The heart' of DOGGIE is .the interpreter of the DOGGIE Language,

which accepts sequences of 12-bit words which cause parts of graphs

to be created, altered, deleted, and displayed in a variety of

manners .
2. DOGGIE manages all input/output of the DEC-338 by handling interrupts

from the various display flags, the 637 Dataphone Interface, the

DF32 Minidisk, and the Teletype.

3. DOGGIE manages the display of the graph on the "papert' with four

window sizes available for viewing all or any part of the paper.

4. Light pen tracking is performed with optional horizontal and/or

vertical constraints on a pseudo-pen-point.

5 . DOGGIE interprets light pen hits as a result of pointing at dis-

played parts of a graph.

- 67 -

6. DOGGIE helps in the management of the pushbuttons of the pushbutton

box attached to the DEC- 338.

7. DOGGIE handles overlays of program segments by name by interfacing

with the PDP-8 Disk Monitor System. Programs may be a mixture of

PDP-8 machine language and DOGGIE commands.

8. DOGGIE includes facilities for the read out of status information

concerning the state of DOGGIE and its existing graph.

All of the above features will be explained during the remainder of the

chapter.

For the purposes of an introductory view, the interpreter of DOGGIE

should be considered as a special purpose machine dedicated to the dis-

play of graphs. Its basic or primitive operations are controlled by

a machine language which is accepted as sequences of 12-bit words. Each

command to DOGGIE consists of some number of these words which are bit

patterns. For purposes of description and also actual use in programs,

the DOGGIE Language is written symbolically. For example the two words

3440 (octal) and 0000 constitute a command which causes all arrows of

(directed) arcs existing in the graph to blink. The symbolic DOGGIE

command which is equivalent to and in fact represents these two words is:

START BLINK ARROW ARC, ALL

Since the bit patterns lack mnemonic value, and since the symbolic fo-m

is used by the programmer, the DOGGIE commands are presented completely

symbolically. There is a simple method of translating symbolic DOGGIE

commands into bit patterns, and this is given in a separate section.

4.2 Interaction Through Communication Cells

The DOGGIE Language is a machine-independent language for the

control of the display of graphs. The language in the pure sense is not

interactive - it is only an output language. It becomes interactive when

used in conjunction with other languages which include control specifica-

tion. The DOGGIE language is used in two different environments within

the Interactive Graph Theory System: First, it is imbedded into the

ALLA Language at the compiler language level in the IBM 7040. Second,

it is imbedded into PDPMAP Assembly Language through macros for use in

assembly language programs operating in the DEC- 338. The use of the

DOGGIE Language in either environment has the same meaning, which is to

direct DOGGIE to perform commands which define, alter, and display graphs.

The writing 0% interactive programs is somewhat different in the

two environments, but the basic idea is common to both languages. The

input aspect of the interaction is accomplished by programming in the

host language the observation of communication cells. These cells re-

flect the status of the DEC-338 and DOGGIE back to the programmer. The

information con$ained in these cells includes:

1. Current Graph Display Status - intensity, window size and position.
2. Light pen tracking indicators.

3. Indication of the amount of available free blocks.

4. Light pen hit information.

5. Complete status output for a vertex or arc.

A communication cell is a rather natural concept for use in the

DEC-338, for in that environment it is simply an accessible location on

the initial page of field 0. User programs operating in the DEC-338 are

written with references to the symbolic names of these cells. There are

some communication cells in the DEC-338 which are used as indirect

addresses of subroutines which DOGGIE performs such as the subroutine

to send an 8-bit character to the Dataphone. A number of comnunication

cells of this type are not duplicated in the environment.

Communication cells in the ALLA environment are referenced as any

other FORTRAN integer variable or logical variable. They are automati-

cally declared in each ALLA subprogram, so the programmer simply refer-

ences these cells by symbolic name.

Many of the communication cells in the 7040 are essentially copies

of the "real" cells in the DEC-338. The "real" introduced here means

real-time. For example, a pair of communication cells indicate the

position of the pseudo-pen-point linked to the light pen tracking cursor.

In the DEC-338, programs observing these cells may do so in real-time.

However, the communication cells of the DEC-3% are copied over to the

7040 only when requested by certain staliements in interactive ALLA pro-

grams. Since this copying operation takes about one or two seconds to
'

complete, and since tracking may alter the position of the pseudo-pen-

point every few milliseconds, %lie communication cells in the 7040 cannot

reflect this data in real-time. There are a few cmunication cells in

the 7040 not found in the DEC-338 since same common functions are

directly performed by subroutine calls in the smaller machine, such as

the checking for Teletype inpue.

4.3 Organization

All DOGGIE commands implicitly refer to a scratchpad "paper" on

which a single graph may be defined. It is only one graph in the sense

that there is no facility for hierarchical grouping, however, the single

graph may consist of any number of disjoint components which may give

the effect of displaying more %Can onz g r a ~ h a% a time. The graph

m y consist of any number of vertices or arcs, and it may be only

par t ia l ly defined a t arg time, since it i s per.dssfble t o define an arc

i n terns of vertices w5ich iio no t yet exist. There i s separate control

over which parts ~f %he defined graph are t o be displayed.

The graph maintained by DOGGIE i s buil t , nodified, and deleted

through interpreted DOGGIE camafnds. The cammnd language includes

e l e ~ e n t s which affect the gross aspects of eiz'ner tine existing graph,

th; displayed graph, or the way 'in which the graph i s b e i ~ ~ displayed.

A group of comnds m y refer t o a unique vertex or arc by internal name

or t o all existing vertices or arcs. Tine opkion i s also a v ~ i l a b l e fo r

DOGGIX t o supply e. created internal naae when a vertex or a rc i s defined.

4.3.1 Paper, Window, and Screen

The drawing srea where a graph.1~12~ be defined i s s two-dimsnsional

square grid called the "paper". The x-coordinate end y-coordinate of the

p a p r bo%h Tarae over the integers between 0 arAd 1023 10 Figwe 4-1 shows

the coorainates df the paper with a dot shown a t position (y,x) = (512,

The distance between two adjacext paper positions on the same

coordinate a x i s i s called a p p e r v a i t .

Graphs are always defined in terns of paper y and x coordinetes,

but the display of the graph as put on the dis,nlay screen may vary

according t o the window size and position. The vierdng screen on the

DEC-338 i s a 3/8" square and should be considered as a square window

on the paper. There are four window sizes available for vfewiq (the

size is the length o+" one oZ %he sides of Vnc window):

Figure 4-1 The Paper

1) f u l l paper - 1024 paper uni t s (largest window)

2) half paper - 512 paper uni t s

3) one-fourth paper - 256 paper uni t s

4) one-eighth paper - 128 paper uni t s (smallest window)

When a f u l l paper window i s used, the paper and window are the

same size, and the window cannot be moved a t a l l . With any other window

size, only part of the paper may be viewed, and the window" position

on the paper may be varied as long as the window always remains ent i re ly

on the paper, never crossing an edge. The window's position i s speci-

f i ed a s a paper position which i s the window's center (t h i s i s actually

one-half of a paper un i t i n y and x greater than the t rue center since

a l l windows have an even number of paper uni t s i n widtli).

A summary of the interest ing relationships between the window and

the paper i s given i n Table 4-1.

Window Window Size Minimum Window Maximum Window Actual Actual
Size i n paper uni t s Position Position Paper Window

(Y O r x) (Y o r x) Size Size
paper coords . paper coords. (inches) (inches)

Table 4-1 ~ e i a t i o n s h i p s Between Window and Paper

There are DOGGIE commands t o se t the window size, t o s e t the window

position, and t o move the window.

It i s often useful to' re fer t o a par t icular posit ion on the physical

screen of the display. For such pruposes, one should re fer t o the (y,x)

screen coordinates. Consistent with paper coordinates, the screen coor-

dinates range between 0 and 1023; paper coordinates and screen coordinates

are coincident when a full-paper window is used.

When the window i s some s ize other than full-paper, the screen coor-

dinates form a more dense gr id than paper coordinates (i n uni t s per inch).

Therefore, when a vertex i s positioned on the paper according t o some

screen coordinate, a round-off mv be introduced,

4.3.2 Vertices

A vertex i s defined t o ex is t a t some (y,x) posit ion on the paper.

Each vertex has a unique vertex in terna l name, which i s same integer

between 1 and 4095. Each vertex has one of eight possible shapes f o r

display purposes. One of these shapes i s null; but the other seven are

distinguishable v is ib le forms f o r displaying those graphs where vert ices

may be of various types, such as a Moore s t a t e graph. Figure 4-2 shows

the seven v i s ib l e shapes being used.

Each vertex may have an associated t ex t labe l consisting of up t o

27 characters. The labe l may be located anywhere on the paper r e l a t ive

t o the posit ion of the vertex. This re la t ive pos i t ion i s called the

"off set" of the label.

A vertex may ex i s t without being displayed. Also, the t ex t labe l

of a vertex may ex i s t without being displayed. Figure 4-3 depicts

ver t ices a s they appear along with arcs.

4.3.3 Arcs

An a rc i s defined t o ex i s t as a connect ingl ine between two vertices.

Each arc has a unique arc in te rna l name, which i s same integer between

- -

Figure 4-2 Vertex Shapes

NORTH LOOP UlTH ARROU

UtST LOOP UlTH ARROU

SOUTH LOOP

La81 LOO? CUT

e Y UlNDOU

Figure 4-3 Display of Vertices and Arcs

1 and 4095. Each arc 'has a "from-vertex" which i s a vertex internal

name (between 1 and 4095), and a "to-vertex" which i s also a vertex

internal name. When the two vertex internal names are the same, the

a rc i s a loop.

An arc may ex i s t even when the vert ices on which it i s defined do

not ex is t . The vert ices .must exis t , however, fo r the arc t o be displayed.

An arc which is not a loop i s displayed a s a s t ra ight l i n e between

i t s two vert ices . A loop i s displayed as a closed curve somewhat

e l l i p t i c a l i n appearance. In order t o draw good looking graphs four

loop orientations a re available: East, North, West, South.

Each arc may have an arrow. When it does, and when the arc i s

displayed, the arrow i s displayed a t the midpoint of the arc pointing

i n the direction toward the "to-vertex." When an arrow i s displayed

it i s drawn i n one of eight orientations according t o the angle of the

arc.

Each arc may have an associated t ex t l abe l consisting of up t o 21

characters. The label may be located anywhere on the paper r e l a t ive t o

the position of the midpoint of the arc. This re la t ive position i s

cal led the t 'offset" of the label.

An a rc may exis t without being displayed. Also, the t ex t l abe l

of an arc may ex i s t without being displayed. Figure 4-3 shows the dis-

play of the various types of vert ices and arcs,

4.3.4 Created Internal Names

It i s useful t o have DOGGIE provide created internal names fo r

vert ices and arcs, part icular ly fo r an interact ive user program where new

e n t i t i e s .must be created. DOGGIE .maintains a next created vertex in terna l

name and a next created arc internal name, where each t n a ~ range between

1 and 4095. They are both se t t o 1 by the in i t i a l i za t ion command, and

there a r e commands t o s e t each of them t o a par t icular value. The only

time a created in terna l name i s used i s when a vertex or arc i s created.

If the "CRNAME" option i s specified on a creation command, the current

created internal name f o r tha t type of en t i ty (vertex or arc) i s used

and t h a t name is then incremented by 1. I n the special case where the

name "4095" was jus t used as a created internal name, t h a t name i s then

s e t t o 1.

4.3.5 Existence and Display

Although the objective of DOGGIE i s the display of graphs, it i s

rather convenient t o have vert ices and arcs which exis t ; yet a re not

necessarily displayed. When a vertex or arc i s created, it i s not dis-

played. A separate command i s required t o display the ent i ty . When a

t e x t l abe l i s created, it i s not displayed ei ther . A separate command

must be given t o s e t t he display s ta tus of a label , which has an effect

only i f the labe l exis ts . If the display s ta tus of a l abe l has been set ,
. .

t ha t l abe l i s actual ly displayed only when the vertex or arc with which

it i s associated i s displayed.

The f a c i l i t i e s a re available t o s t a r t or stop the display of any

en t i ty i n the graph. The display of an arc i s independent of the display

of i t s associated vertices, and the display of a vertex is independent

of the display of i t s associated arcs.

Creation and deletion of e n t i t i e s a re not independent of the

existence or display of other en t i t i e s . When an en t i ty i s created,

i t s in te rna l name must be given. If there i s the same type of en t i ty

(vertex o r arc) with t h a t same name already i n existence, it is deleted

before the new one is created. The creation.of an en t i ty does not

starb the display of anything.

Deletion of an arc also stops the display of that arc. In addition

to stopphg i t s m display, deletion of e vertex also &ope the displq

.of a m arc connected t o it.

TRe Bisplay of an enti ty means that it is "drawn'' on the paper.

Whether or not any or a l l of a particular displayed sn%ity f e visible

depends on the particular window size end location.

4.3.6 Intensity, i in king, ~imming

There are eight-intensity .levels (0-7) available for %he overall

picture Ontensity. The lowest level (level. 8) is barrely vf sfbPe in 8

dark roam, an8 PeveP 7 i s samewhat bright. Unless otherwise changed,

DOGGIE uses intensity level 5.

For the purposes of calling attention t o same part of the displayed

graph, there are h exclusive nodes which can be used. When DOGGIE f a

in BEINRC,mode any gesrt sf the graph may be se t t o blink a t about t w o

cycles per second. Alternatively, when it i s i n DIM.mode, then each

part sf %he graph may be dis-pPayed a t a chosen fntensffiy Bevel.. m e

par ts of the graph which can be individually blinkedl and dimmed are:

vertices, arce, arrows, and tex t labels. Once a vertex or arc has

been created, its blink or dim status for each part i s fndlependent of the

existence of display of that part , Psr exa~mple, eun arc be created

with an arrow, and then i ts arrow and PabeP .mde %o blink. Then

suppose the% a tex t label i s creaked for the arc. Finally, when the

display of %he ent i re arc i s requested, the arc i t s e l f is-tiisplayed

steady, and i ts associated arrow and text Pabd are blinking.

There are cwmands to eet DOGGIE fiGo one mode or %he other, and

8 claee c-drs to affect %he blink or dfm &tue of any lparPt of

any existing vertex or arc.

4.3.7 Light Pen

In the Interactive Graph Theory System the light pen is an impor-

tant input device used for two distinct functions: inputting screen

coordinate information and pointing at displayed vertices and arcs.

DOGGIE performs.much of the work associated with these two functions.

4.3.7.1 Input and Tracking

Light pen input is included in the Interactive Graph Theory System

for both the drawing and the alteration of the layout of a graph. The

user has the facility to input this positional information through the

location (screen coordinate) of a special bright dot called the "pseudo-

Pen-Point". The name is meant to distinguish this point from the loca-

tion of the tracking box or cursor (pen-point), which is used to follow

the pen. In some graphic systems, the pen-point is the same as the

pseudo-pen-point. Here, however, they are kept distinct to provide more

flexibility for the user. Pushbuttons provide him with the control

over constraining the pseudo-pen-point horizontally, vertically, or both

(fixed); meanwhile he may .move the pen (and the cursor) anywhere on the

screen - the constraints only apply to the pseudo-pen-point.
When neither constraint is in effect the pseudo-pen-point moves

in direct correspondence with the cursor, except the pseudo-pen-point

will not cross over the screen edge. Similarly, the cursor never crosses

over the screen edge. By invoking both the horizontal and vertical con-

straints, the user may readjust the position of the cursor relative to

the pseudo-pen-point.

The tracking as described above is a built-in function of DOGGIE.

In addition, there are DOGGIE commands to turn on and off the cursor and

pseudo-pen-point, to set the location of the pseudo-pen-point, and to

set the location of the cursor. In a graphic system where a tablet is

used rather than a pen, the latter command would be meaningless.

4.3.7.2 Pointing

The Interactive Graph Theory System permits the user to select

particular vertices or arcs of the graph by pointing at them. Through

DOGGIE commands any vertex or ar,c may be made sensitive to being "hit"

by the light pen by enabling the light pen status of that entity. When

this status has been enabled and the displayed entity is within the

field of view of the pen - usually about one-half of an inch circle -
the DOGGIE Light Pen Handler will. make note of the first entity which

caused the pen to "see" light (according to internal name). Text labels

are not sensitive to light pen hits. Note that the handler does not

indicate which part of a vertex or arc caused a hit. If the hit entity

is a vertex the handler records the screen coordinates of the vertex;

if it's an arc, the handler records the screen coordinates of the point

where the arc caused the light pen hit. These outputs of the Light

Pen Handler are placed into communication cells so that programs .my

utilize the information.

When a hit occurs, the Light Pen Handler sets an interlock which

causes further hits to be ignored until it is cleared by program control.

4.3.8 Pushbuttons

There is a box of pushbuttons next to the display screen which

serve as another input ,mechanism for the user. Three of the buttons

are reserved for internal system use and three buttons are used for

control of l i g h t pen tracking. The s ix remaining buttons have no

permanent functions, but they may be used f o r appropriate input a ids

t o s u i t the needs of each user program. A design philosophy i n the

Interact ive Graph Theory System has been the preference f o r l i g h t buttons

a s a means of input of user choices. However, there are occasions

during user interact ion when selective pointing i s required a t a graph

which may appear anywhere on the screen. I n such a s i tuat ion a l i g h t

button cannot be used since it might be within the f i e l d of view of the

l i g h t pen concurrently with a sensit ive par t of the graph. The user

can perform effective selection by coordinating use of the l i g h t pen

i n one hand, while using h i s other hand t o push a button.

4.3.9 Status of the Graph

There i s one type of DOGGIE command used t o determine the s ta tus

of the exis t ing graph. It can be used t o f ind out a l l information about

a par t icular vertex or a rc and can a lso be used t o determine the s ta tus

of a l l ver t ices or arcs, one a t a time.

The s ta tus information about each en t i ty requested i s placed in to

communication c e l l s so t h a t a program may then read out any desired

information. The information i s coded compactly i n a way which i s

appropriate fo r transmission over the telephone l i n e t o the central

computer.

The s ta tus information f o r a vertex includes the following:

a) Whether the prevailing mode i s BLINK mode or DIM mode.

b) If i n BLINK mode, the blink s ta tus of the vertex shape.

c) I f i n DIM mode, the blink s ta tus of the label .

d) The display s ta tus of the vertex.

e) Whether there i s a label, and i f so, the of fse t and the tex t .

f) I f there i s a label , the display s ta tus of the labe l .

g) Whether the vertex i s subject t o l i g h t pen h i t s .

h) An indication t h a t the en t i ty i s a vertex.

i) The shape of the vertex.

j) The in terna l name of the vertex.

k) The y-coordinate of the paper posit ion of 'the vertex.

1) The x-coordinate of the paper posit ion of the vertex.

m) I f i n DIM mode, the in tens i ty l eve l of the vertex shape.

n) I f i n D I M mode, t h e intensi ty l eve l of the label .

The s t a tus information for an arc includes the following:

a) Whether the prevailing mode i s BLINK mode or DIM mode.

b) I f i n BLINK mode, the blink s ta tus of the a rc i t s e l f .

c) I f i n BLINK mode, t he blink s ta tus of the a r c ' s arrow.

d) I f i n BLINK mode, the blink s ta tus of the label .

e) The display s tatus of the arc.

f) Whether there i s a label, and i f so, the of fse t and the

t ex t .

g) If there i s a label , the display s ta tus of the label .

h) Whether the arc i s subject t o l i g h t pen h i t s .

i) If the a rc i s a loop, i t s orientation.

j) Whether the arc has an arrow.

k) The in terna l name of the arc.

1) The internal name of the vertex t o which the a rc i s incident.

m) The in terna l name of the vertex from which the arc i s inci-

dent.

n) I f i n DIM mode, the in tens i ty l eve l of the a rc i t s e l f .

o) If in DIM mode, the intensity level of the arrow.

p) If in DIM mode, the intensity level of the label.

4.4 DOGGIE Command Language

This section presents the pure form of the symbolic DOGGIE

Language which is the basis for use in both the IBM 7040 along with

ALLA and in the DEC-338 within user programs to affect the display of

graphs at the DEC-338. As explained in Section 4.2, the interactive

modes of the two environments are realized by the use of communication

cells. These are described in Se~tions 4.6 and 4.7. This section

describes what can be represented; the syntax and semantics are given

for all commands. The symbolic forms represent sequences of 12-bit

words which constitute the machine language of the DOGGIE interpreter.

Section 4.5 contains the key to the encoding of the language into the

corresponding bit representations.

In the presentation of syntax, braces are used to indicate any

one of the entries found within the braces may be used. A pair of

brackets is used to enclose an optional language constituent. The

terminal words of the language are capitalized, and non-terminals are

lower case letters or words. Command strings are generally written in

prefix form where various command words and operand words are optional.

Commands are grouped into three classes. The miscellaneous commands

refer to those commands which control the gross aspects of the existing

graph or the general facilities of DOGGIE including some input/output

functions. The commands which control the existence and display of the

vertices and arcs of the graph form the important class of commands.

The third class includes one command type which is used to determine

the s t a tus of the existing ver t ices and arcs of the graph.

4.4.1 Miscellmeous Commands

There a re 16 types of miscellaneous commands which control the

gross aspects of the ex is t inggraphor the general f a c i l i t i e s of DOGGIE.

4.4.1.1 In i t i a l i za t ion

Syntax: RESET

Semantics: DOGGIE i s i n i t i a l i z e d a s follows:

1. Display of the current graph i s stopped.

2. The current graph i s en t i r e ly deleted, and available storage

i s allocated.

3. The overal l picture in tens i ty i s s e t t o l eve l 5 .

4. The prevailing mode i s made BLINK mode.

5. The window s ize is s e t t o HALF paper.

6. The location of the cursor (tracking box) and pseudo-pen-point

a re both s e t t o the center of the screen.

7. The created vertex in terna l name and created arc in te rna l name

a r e both s e t t o 1.

8. The communication c e l l CrECDAT i s restored t o i t s normal con-

t en t s so t h a t f'urther c a l l s on DOGGIE cause data words t o be

read i n the usual manner. (see Section 4.6.1.1)

4.4.1.2 Intensi ty

Syntax: SE;TINT leve l

where l eve l i s an oc ta l d ig i t .

Semantics: The overal l picture in tens i ty i s s e t t o - level .

4.4.1.3 BLINK Mode

Syntax: BLIM(M

Semantics: Any blinking or dimming of all vertices and arcs is stopped.

The intensity level of all parts of the displayed graph becomes the over-

all picture intensity level. The prevailing mode is .made BLINK mode.

4.4.1.4 DIM Mode

Syntax: DlMM level

where level is an octal digit.

Semantics: Any blinking of all vertices and arcs is stopped. The inten-

sity level of all parts of the existing graph is set to level. The over-

all picture intensity level is not affected, but it has no effect until

the next time BLINKmode is established. The prevailing.mde is made

DIM mode.

4.4.1.5 Window Size

Semantics: The window size is set to one of the four possible sizes

according to the specified option. The position of the window on the

paper is unchanged unless it would otherwise overlap the paper's edge.

In this case, the window is repositioned at the edge of the paper with

a m i n i m change in window position.

4.4.1.6 Window Position

Syntax: POSWIN, y, x

where - y and - x are Coordinate Data (See Section 4.4.4).
Semantics: The position of the window on the paper is set to (y,x) - - which

is the y-position and x-position of the paper coordinates of the center

of the window unless this positioning would cause the window to overlap

the paper's edge. In this case, the window is repositioned at the edge

of the paper as closely as possible to the specified position.

4.4.1.7 Window Movement

Syntax: MOVWIN, dy, dx

where - dy and dx are integers between -1023 and +1023. -
Semantics: The position of the window on the paper is changed by dy -
(delta-y) and - dx (delta-x) paper units unless this positioning would

cause the window to not be fully on the paper. In this case, the window

is repositioned at the edge of the paper as closely as possible to the

attempted position.

4.4.1.8 Pseudo-Pen-Point Position

Syntax: PSEUDO, y, x

where y and x are Coordinate Data (see Section 4.4.4) . - -

Semantics: The position of the pseudo-pen-point on the window (screen)

is set to (y,x) which is the y-position and x-position of the screen - -
coordinates of the point.

4.4.1.9 Cursor Position

Syntax:. SETCUR, y, x

where - y and - x. are Coordinate Data (see Section 4.4.4) .
Semantics: The position of the cursor (tracking box) on the window

(screen) is set to (y,x) - - which is the y-position and x-position of the
screen coordinates of the center of the cursor. If this positioning

would cause the cursor to overlap the window's edge, then the cursor is

repositioned at the edge of the window as closely as possible to the

specified position.

4.4.1.10 Light Pen Tracking

Syntax : (STOP

Semantics: The "START" option causes the cursor (tracking box) and

pseudo-pen-point t o be displayed by se t t i ng the pushbutton which the

user a l so has available for t h i s function. Tracking may then be per-

formed. This option a l so c lears communication c e l l CHPSEU, which i s

used t o indicate a change i n the location of the pseudo-pen-point due

t o tracking by t h e l i g h t pen (see Sections 4.6.2.6 and 4.7.4.6).

The "STOP" option stops t he display of both the cursor (tracking

box) and pseudo-pen-point by clearing the pushbutton which the user a l so

has avai lable f o r t h i s function.

4.4.1.11 Light Pen Hi t s

Syntax: ALL;HIT

Semantics: The l i g h t pen h i t in ter lock (communication c e l l LPKIT~) i s

cleared so t h a t the Light Pen Handler w i l l i n t e rp re t t he next l i g h t pen

h i t . The c a m i c a t i o n c e l l LPHIT2 i s also cleared.

4.4.1.12 Created In te rna l Names

syntax: SETCRN { g ? ~) , narae

where name i s an integer between 1 and 4095. -
Semantics: The created vertex in te rna l name o r the created a rc i n t e rna l

name i s s e t t o -7 name according t o t he specified option,

4.4.1.13 Pushbutton Clearing

Syntax: CLFPB, nnnn

where nnnn i s some configuration of 12 b i t s . -
Semantics: Those pushbuttons corresponding t o the b i t s of - nnnn which

a re ZERO'S a re cleared. B i t 0 of - nnnn corresponds t o pushbutton 0, b i t

1 corresponds t o pushbutton 1, etc .

4.4.1.14 Pushbutton Setting

Syntax: SETPB, nnnn

where nnnn i s some configuration of 12 b i t s . -
Semantics: Those pushbuttons corresponding t o the b i t s of nnnn which

are O N E t s a r e se t . B i t 0 of nnnn corresponds t o pushbutton 0, b i t 1 -
corresponds t o pushbutton 1, etc.

4.4.1.15 Teletype Output
,

Syntax: TYPE, codes

where codes i s a s t r ing of 8-b i t character codes.

Semantics: Each of the given character codes i n codes i s outputted on

the Teletype. ASCII character codes may be used f o r typed text . How-

ever, t h i s command may a lso be used t o punch any sequence of 8-b i t codes

on the Teletype punch of the DEC-39.

4.4.1.16 Loading Program Segments

, segnam

Syntax: GOT0 f i e l d , addr

LOADGO f i e ld , segnam, addr 1
Semantics: When the LOAD option i s used, t he program segment whose name

(1 t o 4 characters) i s segnam i s loaded in to the memory of the DEC-338

from the disk.

The GOT0 option causes DOGGIE t o stop interpreting, and PDP-8

control i s transferred t o the DEC-338 location addr of memory f i e l d -
f i e ld . This option a lso causes the connnunication c e l l WDAT t o be

restored t o i t s normal contents so tha t fur ther c a l l s on the DOGGIE

interpreter cause data words t o be read i n the usual manner. (see

Section 4.6.1.1)

The LOADGO option i s a combination of the above two options. When

t h i s i s used, the segment i s f i r s t completely loaded, and then control

i s transferred. The command words causing t h i s loading may be i n an

area which i s overlayed by the loading segment.

(The programmer must beware t h a t use of e i ther the L O or LOGO

options w i l l not preserve the contents of locations 72008 - 75778 of the

4.4.2 Graph Commands

' This c lass of commands i s used t o e f fec t changes i n the existence,

display, and l i g h t pen s ta tus of the graph maintained i n the DEC-338.

syntax:

LTPEN

WH OLE

ARC mm
The following subsections include the semantics of possible group-

ings of these command words and with each section i s included the syntax

and semantics f o r "data." - - data may include "name" - 9 which i s an integer

between 1 and 4095.

The LIST option provides a shorter form for the use of the same

fundamental command type with a l i s t of arguments. For example, t h i s

option i s applicable when one wishes t o s t a r t a l i s t of ten vert ices

blinking. Ten individual cammands can be used, but one command with a

l i s t of t en vertex in terna l names is more concise. A specif ic example

i s given i n Section 4.7 e l .

For explanatory purposes the graph commands are presented with only

one s e t of data arguments. A l l groupings can be used with the LIST option;

however, note tha t a name of zero terminates the l i s t .

4.4.2.1 Creating a Vertex

Syntax: SARI! MIST WHOLE VWTEX shape, Inarne CRNAME) 9 Y,X

where shape i s an octal d ig i t , and

, where - y and - x are Coordinate Data (see Section 4.4.4) .
Semantics: If the "CRNAME" opti6n i s specified, a created vertex inter-

'nal name i s used. Any vertex with the given internal name i s first

deleted (see Section 4.3.51, and then a new vertex with the given inter-

nal name i s created a t the paper location specified by - y and x. The -
shape of t h i s vertex i s s e t according t o the given octa l d ig i t f o r

shape. The vertex i s created with l igh t pen status disabled'and with no

label. . I f the prevailing mode i s BLINK mode, a l l par ts of the vertex are

in i t i a l i zed t o be not blinking. I f it is DIMmode, all par ts are i n i t i a l &

ized t o be a t the dimming intensity level. This carmmand merely defines

a vertex, but does not s t a r t i t s display.

4.4.2.2 Creating an Arc

Syntax: LOOPE

-1- mom L A ~ W I)I ,I&\ , toname, -orname

where toname and fromname are integers between 1 and 4095.

Semantics: If the "CRNAME" option i s specified, a created arc internal

name i s used. Any arc with the given internal name i s f i r s t deleted

(see Section 4.3.5), and then a new arc with the given internal name

i s defined in terms of the ver t ices t o which and from which it i s incident.
L

These are given by the vertex internal names toname and fromname,

respectively; and these in te rna l names may be the same, thereby defining

a loop. I f a loop i s specified, e i ther the command may include a

specific orientation East, North, West, South (according t o LOOPE, LOOPN,

LOOPW, LOOPS), o r an East loop w i l l be used a s a default case. The arc

w i l l be created with an arrow i f the "ARROW." option i s included i n the

command. The arc i s created with l i g h t pen s ta tus disabled and with no

label . I f the prevailing mode i s BLINK mode, a l l par t s of the a rc a re

i n i t i a l i z e d t o be not blinking. I f it i s DIM mode, a l l pa r t s a re i n i t i a l -

ized t o be a t the dimming intensi ty level. This command merely defines

an arc, but does not s t a r t i t s display. Note t h a t the existence of the

vert ices toname and fromname i s not required a t the time when the a rc

i s defined.

4.4.2.3 Deleting a Vertex

S y n t a ~ : STOP MIST WHOLE KEmm, {E)
Semantics: The vertex whose internal name i s - name (including i t s label)

i s deleted from the graph. If such a vertex does not already exis t , the

en t i r e c o m n d is ignored. I f the "ALL" option i s specified, a l l ver-

t i c e s a re deleted. The display of each deleted vertex i s immediately

stopped, and a l l information about the vertex i s los t . I n addition,

the display i s stopped for each arc which i s defined i n terms of any

deleted vertex (e i ther incident t o or incident from the vertex).

4.4.2.4 Deleting an Arc

Syntax: s o p MIST WHOLE ARC, {z)
Semantics: The arc whose internal name i s - name (including i t s label)

i s deleted from the graph. I f such an arc does not already exist , the

en t i r e cammsnd i s ignored. I f the "ALL," option i s specified, a l l arcs

are deleted. The display of each deleted arc i s immediately stopped,

and a l l information about the arc i s los t .

4.4.2.5 Altering a Vertex Position

Note: It i s considered meaningless t o "STOP MIST COORDS VERTEX.. .It and

therefore such commands are ignored.

Syntax: STAItC MIST COORDS VERTEX, name, y, x

where - y and - x are Coordinate Data (see Section 4.4.4)

Semantics: The vertex whose internal name is name i s repositioned a t -
the paper position specified by - y and - x. I f such a vertex does not exist ,

the ent ire command i s ignored. This command does not a f fec t the display

s ta tus of the vertex. A l l displayed arcs defined i n terms of t h i s ver-

tex are appropriately updated so t h a t they a l l remain attached t o the

vertex.

4.4.2.6 Altering a Vertex Shape

syntax: STm MIST SHAPE VEKTEX shape,

STOP MIST SHAPE VERTEX, (E)
where shape i s an octal d ig i t .

Semantics: The "STAIirtt version of t h i s command se t s the shape of vertex

whose internal name i s - name t o one of the eight possible shapes according

t o the given octa l d i g i t f o r shape. The "STOP" version of the command

s e t s the shape of the specified vertex t o zero. I f such a vertex does

not exist , the en t i r e command i s ignored. I f the "ALL" option i s

specified, the operation is performed on a l l vertices. This command

does not affect the display s ta tus of the vertex; however, i f the vertex

i s being displayed the change of shape w i l l be immediately observable.

4.4.2.7 Altering the Vertex Names of an Arc

Note: It i s considered meaningless t o "SPOP EXIST NAMES ARC. . .", and

therefore such commands a re ignored.

Syntax :

LOOPE

=IS MS m~ [Loop /i!z)] , name, toname, frommme

where toname and framame 'are integers between 1 and 4095.

Semantics: The arc whose internal name i s name i s redefined t o be -
incident t o vertex toname and incident from vertex fromname. I f such

an arc does not exis t , the en t i re command i s ignored. I f the two speci-

f i e d vertex in terna l names are the same, a loop i s defined, i n which

case e i ther the command may include the "LOOP" option along with a

specif ic or ientat ion or an East loop w i l l be used a s a default case. .

This .command does not a f f ec t the display s ta tus of the a rc unless e i the r

vertex toname or vertex fromname does not exis t , i n which case, the a rc

cannot be displayed.

4.4.2.8 Creating an Arrow (and Altering Loop Orientation)

Semantics: An arrow i s placed on the arc whose in terna l name i s name. -
If such an a rc does not exis t , the en t i r e command i s ignored. If the

"ALL" option i s specified, the operation i s performed on a l l arcs. If

the affected arc i s a loop, the command may a lso be used with the "LOOP"

option t o r e se t the loop orientation t o e i the r East, North, West, o r

South according t o one of the options LOOPE, LOOPN, LOOPW, or LOOPS.

This command does not a f fec t the display s ta tus of the arc.

4.4.2.9 Deleting an Arrow

Syntax: STOP MIST ARROW ARC, {E)
Semantics: An arrow i s deleted from the are whose in terna l name i s name.

If such an a rc does not exis t , the en t i r e command i s ignored. I f the

"AU" option i s specified, the arrows of a l l a rcs a re deleted. This

command does not a f f ec t the display s t a tus of the arc,

4.4.2 . lo Creating and Altering a Label

Syntax :

START MIST LABEL {E? [~ ~ ~ ~ [~ ~ ~ ~] , n a m e [, o f f ~ , o f f x] [, @chars@]

where - offy and offx must be given i f and only i f "OFFSETf1 i s -
included; each may be an integer between 0 and 1023 t o specify a posi-

t i v e offset; a negative of fse t is specified by the word "MINUS" followed

by integer between 0 and 1023.

where chars must be given i f and only i f "TMT" i s included; it i s -
a l i s t (possibly null) of t e x t characters.

Semantics: This command i s used t o create or a l t e r a l abe l f o r e i ther

the vertex o r arc whose in terna l name is - name. If such an e n t i t y does

not ex is t , the en t i r e command i s ignored.

If the en t i ty did not previously have a label , the command creates

a l abe l with t ex t (chars), o r with a posit ion o f f se t (offy - and - offx),

o r both. I f neither of these options is used, a nu l l l abe l i s s t i l l

created. If the "OFFSFT" optibn i s not used, a defaul t o f f se t i s

assumed. When a labe l i s f i r s t created, i t s t ex t i s not displayed.

If the labe l f o r the en t i ty already existed, t h i s command e i ther

replaces the t ex t by J chars or se t s the position of fse t t o e i ther

default values or offy and offx, or both, or neither. I f neither the - -
"OFFSFT" or "DEFALT" option i s given, the of fse t is unchanged. Similar-

ly , if the "TEXT" option i s not given, the t ex t of the labe l i s unchanged.

This command does not a f fec t the display s ta tus of e i ther the en t i ty or

the label.

4.4.2.11 Deleting a Label

VERTm name
S : .POI? EX1S.F LABEL {mC .)

{ALL)
Semantics: The l abe l (both t e x t and off s e t) associated with the vertex

or arc whose internal name i s name is deleted a s i f it never existed. -
If such an en t i ty does not exis t , the en t i re command is ignored. If the

"ALL" option i s given, the operation i s performed on the labels of a l l

ver t ices or the labels of a l l arcs, according t o which type of en t i ty

i s specified. The display of any deleted l abe l i s immediately stopped.

4.4.2.12 Display Control

ARC '1
Semantics: A command of t h i s form s t a r t6 or stops the display of e i the r

one par t o r a l l par t s of e i ther the vertex or arc whose internal name i s

name according t o the specified options. If such an en t i ty does not
-9

exist , the en t i r e command i s ignored. I f the "AU" option is specified,

the operation is performed on ei ther a l l vertices or a l l arcs, according

t o the specified option fo r the type of ent i ty,

The "WHOLE" option f o r the display of a vertex i s used t o affect

the display of the vertex shape and label (i f the label exists) .

The "NAMES" option fo r the display of an arc i s used t o af fec t

the display of the arc i t s e l f . The "WHOLE" option af fec ts the display

of the arc i t s e l f , the arrow, and the label (i f the label exists) .

An arc may be displayed a s a r e su l t of an appropriate display

command only if both i t s from-yertex and to-vertex exist; otherwise,

the command has no effect.

4,4.2.13 Blinking

lEi\ ARC

Semantics: A command of t h i s form may be used only when the prevailing

mode is BLINK mode. The blinking of ei ther one part or a l l par ts of

e i ther the vertex or arc whose internal name i s - 9 name i s star ted or

stopped according t o the specified options. I f such an en t i ty does

not exist , the ent i re command i s ignored. I f the "ALL" option i s speci-

fied; the operation i s performed on ei ther a l l vertices or a l l arcs,

according t o ' t h e specified option for the type of entity.

The "WHOLE" option for the blinking of a vertex i s used t o af fec t

the blink s ta tus of the vertex shape and label (i f the label exists) .

The "NAMES" option fo r the blinking of an arc i s used t o a f fec t

the blink s ta tus of the a rc i t s e l f . The "WHOLE" option a f fec t s the arc

i t s e l f , the arrow, and the labe l (i f the labe l exists) .
4.4.2.14 D i d n g

START
smt-: {mop j DIM

ARC I
where l eve l must be given i f the "START" option i s given; it i s

an oc ta l d ig i t .

Semantics: A command of t h i s form may be used only when the prevailing

mode i s DIM mode. The intensi ty leve l of e i ther one par t or a l l pa r t s

of e i ther the vertex o r arc whose internal name i s name i s set , according -
t o the specified options. I f such an en t i ty does not exis t , the en t i r e

command i s ignored. I f the "ALL" option i s specified, the operation i s

performed on e i ther a l l ver t ices or a l l arcs, according t o the specified

option f o r the type of en t i ty .

The "START" option is used t o s e t the intensi ty leve l of the selected

par t of the graph t o level. The "STOP" option causes the in tens i ty leve l

of the selected pa r t of the graph t o be s e t t o the current dimming l eve l

according t o the most recent DIMM command.

The "WHOLE" option fo r the dimming of a vertex i s used t o affect

the in tens i ty l eve l of the vertex shape and labe l (i f the labe l exis ts) .

The "NAMES" option fo r the dimming of an arc i s used t o a f f ec t the

in tens i ty leve l of the arc i t s e l f . The "WHOLE" option af fec ts the a rc

i t s e l f , the arrow, and the label (i f the label exists) .
4.4.2.15 Light Pen Status

Semantics: The l i g h t pen status f o r the vertex or arc whose internal

name i s name i s enabled ("START") or disabled ("STOP"), according t o -
the specified options. I f such an ent i ty does not exist , the ent i re

command i s ignored. I f the "ALL" option i s specified, the operation

is'performed on ei ther a l l vert ices or a l l arcs, according t o the

specified option fo r the type of entity. When l i g h t pen s ta tus i s

enabled on an entity, it i s subject t o being "observed" or "hit" by

the l i g h t pen (see Section 4.3.7.2).

4.4.3 Graph Status

Syntax: [START] STATUS
VERTEX

Semantics: When the "START1' or "NEXT" options are not specified, s ta tus

information i s placed in to the s ta tus communication c e l l s f o r ei ther the

vertex name or the arc name according t o the specified option. I f such - -9

an ent i ty does not exist , one of the communication c e l l s i s se t t o an

indicative value.

The "START" and "NEXT" options are available fo r the interrogation

of the existing graph when the name of the ent i ty is not known. They

may be used, for example, t o read out the ent ire existing graph.

When the "START" option i s specified, the argument given a s "name" -
o r "NEXT" i s ignored. Status of the vertex or arc (according t o the

specified option) most recently created i s placed in to the s tatus

communication cel ls . If there are no existing e n t i t i e s of the specified

type, one of the communication c e l l s i s s e t t o an indicative value.

When the "SPml ' option i s not specified, but the "NMT" option is,

the s t a tus of the next younger vertex or arc (according t o the specified

option) i n the graph i s placed in to the s ta tus communication ce l l s .

" ~ e x t younger" re fers t o the l a s t en t i ty of tha t type whose s ta tus was

requested. The "NMT" option may not be used i f the l a s t en t i ty whose

s ta tus was examined has since been deleted (including deletion due t o

in i t i a l i za t ion) . If there i s no next younger en t i ty of the specified

type (i . e . , if the l a s t examined en t i ty was the youngest), then one of

the communication c e l l s i s se t t o an indicative value.

4.4.4 Coordinate Data

The following types of commands have a pa i r of arguments which

specify coordinate data:

POWIN.. .
PSEUDO. . .
smm.. .
START MIST WHOLE VEFiTM...

START MIST COORDS VERTEX. . .
The syntactic variables used i n the description of these f i v e

types a re "y" - and "x". - The syntax and semantics f o r - y (or - x) i s given

below.

Syntax: [PENPUT] [scFEXN] size

where - size i s an integer between 0 and 1023.

Semantics: The value of the given expression i s an integer between 0

and 1023. This value i s used a s a screen coordinate f o r the PSEUDO and

SFTCUR commands and a s a paper coordinate fo r the others.

If neither option Is specified, the value of the data is simply

the value of size. -
If only the "PENPNT" option is specified, the value of the data is

the value of the y (or x) screen coordinate of the position of the

pseudo-pen-point plus the value of size modulo 1024. This option is

usually used with size = 0.

If only the "SCFXEN" option is specified, the value of the data

is the value of - size transformed (according to the current window size)

to the y (or x) paper ~oordinate~position closest to the corresponding

y (or x) screen coordinate position.

If both the "PENPNT" and "SCREEN" options are specified, an inter-

mediate value is first determined, and that value is then transformed.

The intermediate value is the value of the y (or x) screen coordinate

of the position of the pseudo-pen-point plus the value of size modulo -
1024. The final value of the data is the intermediate value transformed

(according to the current window size) to the y (or x) paper coordinate

position closest to the corresponding y (or x) screen coordinate position.

4.5 Encoding of the DOGGIE Command Language

The preceding section fully presented the pure form of the symbolic

DOGGIE Language. The symbolic statements merely represent sequences of

12-bit words which constitute the machine language of the DOGGIE inter-

preter. This section describes the encoding of the DOGGIE statements

into these 12-bit quantities.

Each comma in a DOGGIE symbolic statement separates 12-bit words

except when it is used between two at-signs as a text label constituent.

Each 12-bit word may be represented by one or more terms separated by

spaces where each term has a corresponding value, and the value of a 12-

b i t word i s the inclusive-OR of the values of i t s terms. I f a term is

already a number, such a s the shape specification f o r a vertex, the

numeric value of the number i s the term's value. Table 4-2 gives

the corresponding v ~ l u e s of each DOGGIE word which may appear a s a

term within a DOGGIE statement. The tab le i s i n alphabetical order.

Although Table 4-2 provides most of the information necessary f o r

encoding statements of the DOGGIE Language, the following subsections

include fur ther information pertinent t o the cases not yet covered.

4.5.1 MOVWIN Command

dy and dx are given a s 12-bit two's complement integers. - -
4.5.2 Off s e t of a Label

offy and offx a re given a s 11-bit sign-,magnitu.de integers, where - -
the high order b i t of the 12-bit word i s ignored and the next b i t i s

the sign b i t .

4.5.3 Text Characters of a Label

chars represents a s t r ing of 6-bit trimmed ASCII character codes.

Two characters per 12-bit word are encoded according t o Table 4-3, where

the high-order half of the word contains the f i r s t character of the pair .

The l i s t terminates with a character code of 00, and i f t h i s code appears

as the f i rs t character of a pair , the second character code i s a l so 00.

4.5.4 Name of a Program Segment

segnam represents four characters given a s two 12-bit words packed

two characters per word. Each character i s coded according t o i t s

trimmed ASCII character code given i n Table 4-3. The high-order half

of each word contains the f i r s t character of the pair . Names of l e s s

than four characters a re padded with the character 00.

Word -
ALL

ARC

ARROW

ARROWD

BLINK

BLINKM

CLRPB

COORDS

CURSOR

DEFALT

DIM

D m

D S P W

EIGHTH

MIST

FOURTH

FULL a

GOT0

HALF

LABEI;

LIST

LOAD

L W G O

LOOP

LOOPE

Loom

Table 4-2 DOGGIE Words and Their Values

Value (octal) - Word

LOOPS

LOOPW

LTPEN

MINUS

M O W N

NAMES

NEXT

OFFSFT

PENPNT

POSWIN

PSEUDO

msm
SCREEN

smcm
SETCUR

sm1m
S E T P B

SETWIN

SHAPE

START

STATUS

S T O P

T r n

TYPE

VERTM

WHOLE

Value (octal1

Character

Table 4-3 Trimmed ASCII Character Codes

end-of-list

Code Value (octal) Character

space
I

I I

Code Value (octal)

40

41
42

43
44

4.5.5 W E Command

codes is given as a string of 12-bit words, ending with a terminator

word of all ONES. Bits 4-11 of each code word are used as the 8-bit

outputted code, and the other bits are ignored.

4.6 Interactive Programs in the DEC-338

The design of DOGGIE was based primarily on the goal of producing

an executive which provided the environment for easily writing effective

interactive graphical programs which operate locally at the DEC-338.

The chosen organization also haQ to support interactive programs between

the central computer and the terminal, and thus the use of an inter-

preter in the DEC-338 was rather helpful. The DOGGIE interpreter

accepts sequences of 12-bit words as commands. During the operation

of local user programs, these commands are directly scanned as a list

in the memory of the DEC-338. In the course of interaction .with the

central computer, these commands are received over the Dataphone and

directly scanned by the interpreter. In either case, the commands are

those described in Section 4.4 - the DOGGIE Command Language.
One possible design would have been to augment DOGGIE with those

operations which could make it into a programming language. Then local

user programs would be entirely interpreted. The author felt this

approach would yield an ineffective implementation in the DEC-338. One

.must keep in mind 8~ of 12-bits with a rather primitive set of instruc-

tions (i.e. the DEC-338) is very limiting in the design of an elaborate

system. Enough power had to be kept in the interpreted language for

the central computer to control the terminal. By including the GOrPO

command in the DOGGIE Language, the central computer can cause a specific

function to be performed at the terminal. Since that function may be

of arbitrary complexity, and may include effective interaction, there

is no need for interactive statements to be in the DOGGIE Language

itself. This type of statement would be, for example, one which

specified a particular operation to be performed as a result of a

particular action of the user.

The extension of the DOGGIE Language into a programming language

has been done by imbedding it into a programing language environment.

In the DEC-338 this was done by-allowing programs the power of the

PDP.8 machine. In fact, local user programs of the Interactive Graph

Theory System are primarily PDP-8 programs which include calls upon

DOGGIE both as an interpreter and an executive whenever necessary. The

DOGGIE interpreter is treated as a PDP-8 subroutine called by a standard

PDP-8 subroutine call.

The interactive components of local user programs are made possible

by the use of communication cells on the initial page of field 0. This

concept was introduced in Section 4.2, where it was also mentioned the

same philosophy is used in the interactive programs operating in the

central computer. In the DEC-338 there are several of these communica-

tion cells, merely PDP-8 locations, dedicated to the interfacing of user

programs with DOGGIE. In fact all interfacing is done via these calls.

When the user programs are written using the PDPMAP Assembly System,

the programmer refers to the cells by symbolic name, and that is how

they will be mentioned throughout this section.

In its current implementation the DEC-338 is allocated by DOGGIE

so that locations 6000~ through 757T8 are available for execution of

local user programs. These programs are stored on the disk of the ~ ~ ~ - 3 3 8

as absolute machine language programs. They are called in by name via

the DOGGIE commands "LQAD" or "LQADGO1', and these commands may be used

to bring in overlays of program segments, so there is practically no

limit on the size of any user program.

The remainder of this section consists of four subsections which

serve as a programmer's description for the writing of user programs

in the Interactive Graph Theory System. Section 4.6.1 covers the rou-

tines available to the programmer which are part of DOGGIE and available

through communication cells. Then, Section 4.6.2 describes those

communication cells used for status information concerning all of the

functions of DOGGIE. Section 4.6.3 describes the syntax used for DOGGIE

commands in user programs, and the development culminates in an example

given in Section 4.6.4.

4.6.1 Available Routines

The following subsections present a description of those routines

available in DOGGIE which user programs may call via communication cells.

The programmer of user programs should be familiar with the information

in the first four subsections. The remainder deal with particular input/

output functions which many user programs do not require.

4.6.1.1 The Interpreter

The DOGGIE interpreter is a subroutine within the DEC-338 which

is pointed to by the contents of the communication cell named DOGGIE.

Therefore, the following subroutine call is used to initiate interpreta-

tion of a list of DOGGIE commands which start at location Y in the

memory of the DEC- 338 :

JMS* DOGGIE

PZE Y-*

Note the calling sequence consists of two words where the second one

contains the argument which is a relative pointer to the list of DOGGIE

words, which may be anywhere within the same memory field as the call-

ing sequence.

The list beginning at location Y m y consist of any number of

DOGGIE cawands, one after the other, in sequential memory locations.

The list is terminated by a command of 0000 which takes no arguments.

When the interpreter decodes this special terminator word at a time

when it expects the beginning of a command, interpretation is suspended,

and control is returned to the calling program immediately following

the calling sequence.

As just described, the interpreter fetches words from a list

starting at location Y. This is, in fact, the normal mode of using

the interpreter; however, additional flexibility has been built into the

interpreter for special requirements. The interpreter actually fetches

its input words by calling a subroutine through a pointer in comunication

cell GFTDAT. In the normal case, this cell points to a subroutine within

DOGGIE which feeds the interpreter from the list specified in the call

to the interpreter. The DEC-338 programmer may alter the contents of

GEPDAT in order to substitute his own (alternate) subroutine for getting

input data when, for example, a list is an inconvenient form of input.

The cell GFTDAT may be changed to point to any field 0 location where

the programmer wishes to supply an alternate routine. Such a routine

may assume a cleared accumulator upon entry.

This option i e used. when the DEC-338 is 6e.t; up to interpret DOGGIE

comnds generated in the central computer. In this case the alternate

routine obtains input data for the interpreter from the Dataphone ser-

vicing routines.

The contents of cell GETDAT is restored to its normal contents

whenever the RESET (see Section 4.4.1.1) or W O (see Section 4.4.1.16)

commands are executed and whenever the Graph Monitor is restarted (see

Section 4.6.2) . Also, the communication cell RESGEZ' contains a pointer
to the subroutine which restores GFTDA'I. The following subroutine call

.may be used to cause the restoration:

JMS* RESGEZ

4.6.1.2 Re starting the Graph Monitor

In order for DOGGIE to properly function, it is required there be

a program segment named "GMON" on the disk of the DEC-338 which is a

program whose entry point is location 6000 8' .. In the Interactive Graph

Theory System this segment is the Graph Monitor which is used to control

the system by light buttons. The Graph Monitor is automatically begun

when DOGGIE is 1oaded.and started. Also, the convention has been

established to return to the Graph Monitor when the user depresses the

large button on the pushbutton box - the manual interrupt button. Since

this is such a common function, a routine to restart the Graph Monitor

is included within DOGGIE. The communication cell RESTRT contains a

pointer to this routine. Thus, the following instruction may be used

to terminate a user program and restart the Graph Monitor:

J-MF'* RESTRll

The restart routine also causes the contents of communication cell

GECDAT to be restored to its normal contents so that further calls upon

the interpreter cause data words to be read in the normal manner (see

Section 4.6.1).

4.6.1.3 Manual Interrupt Button

The Interactive Graph Theory System is used with the convention

that depressing the manual interrupt button suspends the current opera-

tion, and causes the Graph Monitor to be started. Since not all programs

can be arbitrarily interrupted anywhere, this convention was not made

an automatic feature of DOGGIE. This has the advantage of possibly

abandoning the convention at certain times during console operation.

Programs therefore must be written to check for this button's having

been pushed.

There is a software flag within DOGGIE, called the Manual Interrupt

Flag, which is set whenever a user hits the manual interrupt button on

the pushbutton box. The communication cell MANINT contains a pointer

to the subroutine which checks the status of the Manual Interrupt Flag.

The following subroutine call returns to the next location if the flag

is set; if the flag is clear, the subroutine returns by a skip. After

the sense of the return is determined, the subroutine clears the Manual

Interrupt Flag.

JMS* MANIrn

return 1 flag set

return 2 flag clear

4.6.1.4 Pushbutton Handling

The DOGGIE Command Language includes the CLRPB and SEZl?B commands

for the clearing or setting of one or more of the twelve pushbuttons

on the pushbutton box. A user program may a lso d i rec t ly c a l l the basic

subroutines i n DOGGIE which perform pushbutton clearing o r set t ing.

Another subroutine i s available which allows the user program t o

interrogate the s ta tus of any one of the pushbuttons.

4.6.1.4.1 Clearing Pushbuttons

The cammunication c e l l PBCLR contains a pointer t o the subroutine

which c lears pushbuttons. The following subroutine c a l l i s used t o

c lear those pushbuttons corresponding t o the b i t s of the argument "nnnn"

which a re ZERO'S. it 0 of "nnnn" corresponds t o pushbutton 0, b i t 1

corresponds t o pushbutton 1, e t c .)
JMS* PBCLR

OCT nnnn

4.6.1.4.2 Set t ing Pushbuttons

The communication c e l l PBSET contains a pointer t o the subroutine

which s e t s pushbuttons. The following subroutine c a l l i s used t o s e t

those pushbuttons corresponding t o the b i t s of the argument "nnnnfl which

are ONE'S. it 0 of "nnnn" corresponds t o pushbutton 0, bit 1 corres-

ponds t o pushbutton 1, e t c .)

JMS* PBSFT

om nnnn

4.6.1.4.3 Pushbutton Status

The communication c e l l PBSKIP contains a pointer t o the subroutine

which interrogates pushbutton s tatus . The following subroutine c a l l i s

used t o check those pushbuttons corresponding t o the b i t s of the argu-

ment "nnnn" which are ONEf s. it 0 of "nnnn" corresponds t o push-

button 0, b i t 1 corresponds t o pushbutton 1, etc .) The subroutine

returns t o the location a f t e r the argument i f a l l interrogated push-

buttons a re ZERO. If any of the interrogated pushbuttons a re ONE the

subroutine returns by a skip t o two locations a f t e r the argument.

JMS* PBSKIP

OCT nnnn

return 1 a l l selected pushbuttons are ZERO

return 2 one or more selected pushbuttons a re ONE

4.6.1.5 Teletype 1nput/0utput

Four communication c e l l s are available fo r Teletype input and

outppt. DOGGIE maintains a software completion f l a g and a character

buffer f o r both input and output; which are cleared, set , and checked i n

the same way t h a t the four corresponding PDP-8 IOT instructions operate

with the hardware f l ags (KSF, KRB, TSF, TLS).

4.6.1.5.1 Teletype Input

There i s a Teletype input f l a g which i s s e t whenever a key i s struck .

on the keyboard. The communication c e l l KSFKSF contains a pointer t o

the subroutine which checks the s ta tus of the Teletype input f lag. The .

following subroutine c a l l returns t o the next location i f the f l ag i s

clear; if the f l ag i s set , the subroutine returns by a skip. The sub-

routine preserves the contents of the accumulator and l ink.

JMS* KSFKSF

return 1 f lag clear

return 2 f l a g se t

When the Teletype input f l a g i s set , the ASCII character code

corresponding t o the struck key i s assembled i n the reader buffer. The

communication c e l l KRBKRB contains a pointer t o the subroutine which

reads the reader buffer in to the accumulator. The following subroutine

c a l l causes the contents of the accumulator t o be ignored, and t o be

replaced with the 8-b i t character code i n the low-arder eight b i t s and

with the high-order four b i t s s e t t o 2;ERO. The subroutine a l so c lears

the Teletype input f lag. The subroutine preserves the contents of the

l ink .

JMS* KRBKRB

4.6.1.5.2 Teletype Output

The DOGGIE Command Language includes the 'TYPE camnand f o r outputting

t o the Teletype. A user program.my a lso d i r ec t ly c a l l the basic subrou-

t i n e s i n DOGGIE which a r e used f o r Teletype output.

There i s a Teletype output f l a g which i s s e t whenever a character

may be typed. The f l a g i s clear only during the 100 ms . period a f t e r a

character has been typed. The programmer may not want t o both^? check-

ing t h i s f l a g since the type-out subroutine always waits f o r the f l a g

t o be s e t (unlike the PDP-8 hardware).

For completeness and fo r making it possible t o overlap output with

computation, the f a c i l i t y t o t e s t the output f l a g i s available. The

communication c e l l TSFTSF contains a pointer t o the subroutine which

checks the s t a tus of the T e l e t n e output f lag. The following subroutine

c a l l returns t o the next iocation i f the f l a g is clear; i f the f l a g i s

se t , the subroutine returns by a skip. The subroutine preserves the

contents of the accumulator and l ink ,

JMS* TSFTSF

return 1 f l a g clear

re turn 2 f l a g s e t

The communication c e l l TLSTLS contains a pointer t o the subroutine

'whicki causes a character t o be typed according t o the character code con-

tained i n t h e l o w order e ight b i t s of the accumulator. The following

subroutine c a l l f i r s t waits f o r the output f l a g t o become set , then types

the character, c lears the output f lag, and f i n a l l y returns with a c lear

accumulator. The subroutine preserves the contents of the l ink.

JMS* TLSTLS

4.6.1.6 Using the Disk

The comrmmication c e l l SYSIO contains a pointer t o a subroutine

equivalent t o the standard disk input/output routine which i s par t of

the PDP-8 Disk Monitor System [53]. A user program may include the

following ca l l ing sequence i n order to use the disk as a storage device:

JMS* a s 1 0

function (see below)

block t o be accessed

low order memory address

(al ternate return address)

(normal return here)

The above c a l l causes a-.reading from or writing onto a particu1a.r

block of the disk. The Disk System t r e a t s the disk a s 253 blocks of 128

words each. The blocks a r e numbered from 0000 through 0374~. Data may

be exchanged between.memory and disk only a s one block a t a time. The

"function" word controls the operation a s follows:

B i t s 0 - 1 Unused

B i t 2 If 0, the normal return 2s used.

I f 1, ONE plus the address contained i n

the fourth parameter word i s used as a

return address.

B i t s 3 - 5 Unused

 its 6 - 8 Memory Field

Bits 9 - 11 = 3 for reading from disk

= 5 for writing onto disk

4.6.1.6.1 Disk Activity Indicator

The communication cell DREADY contains a pointer to the subroutine

which checks whether there is a disk operation in progress either due

to a call via SYSIO or execution of the LOAD DOGGIE command. If there

is, the return from the following subroutine call is to the next loca-

tion. If there is no disk operation in progress the return from the

subroutine skips.

JMS* DREADY

return 1 disk active

return 2 disk activity complete

4.6.1.7 Dataphone Communications

DOGGIE handles Dataphone Communications through interrupt-time

service routines which use the DEC 637 Dataphone Interface. In the

Interactive Graph Theory System there are program segments kept on the '

disk of the DEC-338 which perform buffered Dataphone camtunications

including various timing considerations, checksum computations, etc.

These routines call upon the facilities described in this section. The

programmer writing user programs need not be fadliar with the detailed

level presented here. He should use the standard buffering routines as

described in a separate .memorandum. The information presented here is

directed to the systems programmer.

Three communication cells are available for Dataphone comu&ca-

tions using DOGGIE. The cell SNDCH contains a pointer to a location

used for sending. The cell RWCH contains a pointer to a location

used for receiving. The cell IWRET contains a pointer to the

"interrupt return" location to which control should be transferred

after a user function program completes either sending or receiving.

4.6.1.7.1 Sending

The communication cell SNDCH contains a pointer to a location

which is used as both an indicator and a subroutine entry point for

sending a character. In order to maintain a sense of timing, DOGGIE

is always transmitting (sending) to the Dataphone line. Every 3 1/3 ms.,

the Dataphone transmit flag causes an interrupt, at which time control

is transferred to a special sexvice routine. This routine first checks

the contents of the location as an indicator: if the location contains

0000, then a null or idle character (code = 000) is transmitted; other-

wise, control is transferred to the PDP-8 location specified by the

contents of the location.

In this way a user function programmay get control at interrupt-

time by placing an appropriate address in the location.

When control comes to the user's service routine, 8-bit characters

may then be transmitted by executing 'JMS* SNDCHv with the character

code in bits 4-11 of the accumulator. The character is sent, and the

return from the called subroutine occurs (with a cleared accumulator)

the next time a transmitter flag interrupt occurs. Meanwhile, the main

program flow may proceed independently.

Finally, when no .more data transmission is to be done, the user's

special service routine may set the contents of the location to 0000 and

then return from the interrupt-time routine by executing ' J W INTRFT'.

The following example will clarify the above information. In the

example the following three character codes are transmitted; 226, 291,

Main Program

TAD c m
DCA* SNDCH set pointer

DCA SFLAG clear indicator

. arbitrarily long camputa'tion
*

TAD SFLAG

SNA CLA

J-MP "-2 . . .

wait for transmission to camplete

proceed

CALPHA PZE ALPHA

SFLAG **+ indidator

Special Service Routine

ALPHA TAD =0226 send characters

JMS* SNDCH

TAD =02@

JMS* SNDCH

TAD =02@3

SMS* SNDCH

DCA* SNDCH

IS2 SFLAG

JMW I N T r n

stop sending

set indicator

return

4.6.1.7.2 Receiving

The communication cell RCVCH contains a pointer to a location

which is used as both an indicator and a subroutine entry point for

receiving a character. Whenever the Dataphone receive flag is set

(due to an incoming character), the DOGGIE interrupt-time service

routine first checks the contents of the location as an indicator:

if the location contains 0000, the character is ignored and the receive

logic is cleared ("receive-active") . However, if the location is non-
zero, control is transferred to the PDP-8 location specified by this

non-zero quantity, and bits 4-11 of the accumulator contain the

character code received (bits 0-3 are ZERO).

Therefore, in order to receive, a user program must first place an

appropriate address in the location. When the first character is

received, the user program has control at interrupt-time. More characters

may be received by executing 'JMS* RCVCH'. When this is done, the

return from the called subroutine occurs the next time a character is

received. Meanwhile, the .main program flow may proceed independently.

Finally, when no more charac;ters are to be received, the user's

special service routine may set the contents of the location to 0000

and then return from the interrupt-time routine by executing 'W* INTFEC'.

A special error condition is noted by DOGGIE: the receive-end flag

of the Dataphone Interface is set whenever the receive logic loses the

incoming signal. If this ever happens when a user program is waiting

to receive a character, control is returned to the calling program with

the accumulator set to all ONES.

The following example will clarify the above information. In the

example, the first three characters received are saved and receiving is

stopped.

Main Program

TAD C B m A

DCA* RCVCH

DCA RFLAG

TAD RFLAG

SNA (JLA

b .
CBFTA PZE BETA

RFLAG

Special Service Routine

BETA DCA C1

JMS* RCVCH

DCA C 2

JMS* RCVCH

DCA C 3

DCA* RCVCH

. ISZ r n G

JMP 1 m m

set pointer

clear indicator

arbitrarily long computation

wait until 3 chars have been received

proceed

indicator

first

second

third

stop receiving

set indicator

return

4.6.2 Status Information

The interactive components of a user program obtain outputs from

DOGGIE via the communication cells described below. All of the informa-

tion represented by these cells is also available to interactive pro-

grams in the central computer except for the timer presented in Section

4.6.2.10.

4.6.2.1 Intensity

The communication cell IIWENS contains the current overall picture

intensity level in bits 9-11, Bits 0-8 of this word are ZERO'S.

4.6.2.2 BLINK Mode and DIM Mode

The communication cell BLNDIM contains an indication which mode

is currently prevailing, and if it is DIM mode, it indicates the

current dimming intensity level. If BLINK mode prevails, BLNDIM contains

6301~ If the prevailing mode is DIM mode, this cell contains OOln, where

n is an octal digit whose value is the current dimming intensity level. -
Note that only the sign bit of this cell may be checked to determine which

mode prevails .
4.6.2.3 Window Size .

The communication cell WINSIZ contains the current window size in

bits 10 and 11 as given below. Bits 0-9 of the word are ZERO'S.

Bit 10 Bit 11 Window Size

0 0 m
0 1 HALF

1 0 FWRTH

1 1 EIGHTH

4.6.2.4 Window Position

The comunication c e l l YWIND contains the y-coordinate of the

posit ion of the center of the window on the paper i n b i t s 2-11. B i t s

0 and 1 of t h i s word a re ZERO.

The comunication c e l l XWIND contains the x-coordinate of the

posit ion of the center of the window on the paper i n b i t s 2-11. B i t s

0 and 1 of t h i s word a re ZERO.

4.6.2.5 Pseudo-Pen-Point Posit ion

The communication c e l l YPSEWD contains a 12-bi t pointer t o the y-

coordinate of the posit ion of the pseudo-pen-point on the screen. The

location where the posit ion i s stored contains the coordinate i n b i t s

2-11. B i t 0 of the word i s a ONE, and b i t 1 is a ZERO.

The communication c e l l XPSEUD contains a 12-bi t pointer t o the x-

coordinate of the posit ion of the pseudo-pen-point on the screen. The

location where the posit ion i s stored contains the coordinate i n b i t s

2-11. B i t 0 of the word i s a ONE, and b i t 1 is a ZERO.

4.6.2.6 Tracking Indicator

The communication c e l l CHPSEXT i s made non-zero whenever there i s

a change i n the location of the pseudo-pen-point due t o tracking by the

l i g h t pen.

After clearing t h i s c e l l t o 0000, a user program may then test

i t s contents i n order t o determine when t o perform a par t icu lar computa-

t i on which depends upon the movement of the ps'eudo-pen-point. The c e l l

CHPSEU may be cleared e i ther by the PSTAm CURSORt command (see Section

4.4.1.10) or d i rec t ly by a user program.

4.6.2.7 Light Pen Handler

There are four communication ce l l s dedicated t o l i g h t pen h i t s :

When the contents of LPHITl i s 0000, any l i g h t pen h i t causes the

Light Pen Handler t o interpret the h i t and output the following:

a) The contents of LPHITI. i s s e t t o 30108 i f the en t i ty h i t

i s a vertex, o r it i s se t t o 30008 i f the ent i ty h i t i s an

arc.

b) The contents of LPljIT2 i s s e t t o the internal name of the

ent i ty h i t .

c) If the ent i ty h i t i s a vertex, the contents, of LPHIT3 i s

s e t t o the y-coordinate of the screen position of the h i t

vertex. I f t ha t position i s off the screen, the nearest

coordinate on the screen is recorded (ei ther 0 .or 1023).

I f the en t i ty h i t i s an arc, the contents of WHIT3 i s s e t

t o the y-coordinate of the screen position where the arc

was h i t .

d) I f the en t i ty h i t i s a vertex, the contents of LPHIT~ i s se t

t o the x-coordinate of the screen position of the h i t vertex.

If tha t position is off the screen, the nearest coordinate

on the screen i s recorded (ei ther 0 or 1023).

If the ent i ty h i t i s an arc, the contents of LPHIT3 i s s e t

t o the x-coordinate of the screen position where the arc

was h i t .

Once a l i g h t pen h i t occurs, another one i s not allowed u n t i l the

contents of LPHITl are s e t t o 0000 e i ther by the ALLHIT command o r

d i rec t ly by a user program. Note t h a t the ALLHIT command also clears

communication cell LPHIT2.

4.6.2.8 Created Internal Names

The communication cell VERCRN contains the current vertex created

internal name. The communication cell ARCCRN contains the current arc

created internal name.

4.6.2.9 Available Storage

The area of memory of the DEC-338 not assigned to DOGGIE or used

for program overlays is maintained by a dynamic storage allocator as
.

19-wbrd blocks. The communication cell FRBLKS contains the number of

free blocks which are available for storage.

User programs may inspect this cell in order to determine whether

there is enough available space for a particular operation to be per-

formed. At present, it is a fatal error to run out of free storage.

The following information can be used to estimate space requirements:

a) A vertex ar arc with no label requires one storage block.

b) A vertex or arc with a label requires two storage blocks.

c) A storage block is used for approximately every eight

entities (vertices or arcs) being displayed.

4.6.2.10 Timer

A user program may refer to two cominunication cells, HTIMER and

LTIMER, which serve together as a 24-bit timer or real-time clock. The

contents of LTIMER is incremented every 3 1/3 ms., and whenever an over-

flow occurs out of the high order bit of LTIMER, the contents of HTIbUB

is incremented.

Since DOGGIE does not make use of the contents of these cells,

user programs may freely alter their contents. Since a program interrupt

may occur at any time, it is suggested that LTIMER be set before HTIEaER.

When the system i s loaded, these c e l l s both contain 0000.

4.6.2.11 Graph Status

Six communication c e l l s are dedicated t o output from the STATUS

command: STAT1, STAT2, . . . , S ~ A T ~ . When a STATUS command i s given these

c e l l s are f i l l e d with a l l of the information about a part icular ent i ty .

I f no en t i ty exis t s which sa t i s f i e s the s tatus request, the contents of

STAT2 is s e t t o 0000.

4.6.2.11.1 Vertex Status

I f there i s s ta tus output fo r a vertex, it i s coded as follows:

STAT1 -
Sthe twelve b i t s of t h i s c e l l (0 through 11) a re se t a s follows:

a) B i t 0 = ZEBO i f i n DIM mode.

= ONE i f i n BLIm mode.

b) B i t 1 = ZERO i f the vertex shape is not blinking.

= ONE i f the vertex shape i s blinking.

c) B i t 2

d) B i t 3

e) B i t 4

f) B i t 5

g) B i t 6

= ZERO

= ZERO i f the label i s not blinking.

= ONE i f the label i s blidting.

= ZERO i f the vertex i s not displayed.

= ONE i f the vertex i s displayed.

= ZERO i f there i s no label.

= ONE i f there i s a label.

= ZERO i f a labe l i s not displayed.

= ONE i f a labe l i s displayed.

h) B i t 7 = ZERO i f l i g h t pen h i t s are disabled.

= ONE i f l i g h t pen h i t s are. enabled.

i) B i t 8 = ONE

j) Bits g,lO,ll = the vertex shape

This cell contains the internal name of the vertex as a 12-bit

integer.

STAT 3

The two high order bits of this cell are ZERO and the low order ten

bits contain the y-coordinate of the paper location of the vertex.

The two high order bits of this cell are ZERO and the low order

ten bits contain the x-coordinate of the paper location of the vertex.

m 5

If the prevailing mode is BLINK mode, the contents of this cell

has no relevance. If it is DIM mode, however, the twelve bits of this

cell (0 through 11) are set as follows:

a) Bits 0,1,2 = ZERO

b) Bits 3,4,5 = dimming intensity level of the vertex shape.

d) Bits 9,lO,ll = dimming intensity level of the label,

 STAT^

This cell contains a 12-bit address which is one less than the

position of the label buffer in the DEC- 338 memory (field 0) . If a
label exists, as indicated by bit 5 of STAT1, this buffer contains from

3 to 16 words of information as follows:

First Word

This word contains the y-component of the offset as an ll-bit

sign-magnitude integer, where the high order bit is ZERO and the next

bit is the sign bit.

Second Word

This word contains the x-component of the of fse t a s an 11-bit sign-

magnitude integer, where the high order b i t i s ZERO and the next b i t

i s the sign b i t .

Remainder of the Buffer

The remainder of %he buffer contains from 1 t o 14 words with the

t ex t of the label. The unused buffer space i s padded with 0000's. Text

characters a re packed two per word i n the same format used i n the specifi-

cation of the label (see Section 4.5.3) .
4.6.2.11.2 Arc Status

I f there i s s ta tus output f o r an arc, it is coded as follows:

The twelve b i t s of t h i s c e l l (0 through 11) are s e t a s follows:

a) B i t 0 = ZERO i f i n DIM mode.

= ONE i f i n BLINK mode.

b) B i t 1 = ZERO i f the arc i t s e l f i s not blinking.

= ONE i f the arc i t s e l f i s blinking.

c) B i t 2 = ZERO i f the arrow i s not blinking.

= ONE i f the arrow i s blinking.

a) B i t 3 = ZERO i f the label i s not blinking.

= ONE i f the label i s blinking.

e) B i t 4 = ZERO i f the arc i s not displayed.

= ONE i f the arc i s displayed.

f) B i t 5 = ZERO i f there i s no label .

= ONE i f there i s a label.

g) B i t 6 = ZERO i f a labe l i s not displayed.

= ONE i f a label i s displayed.

h) B i t 7 = ZERO i f l i g h t pen h i t s a r e disabled.

= ONE i f l i g h t pen h i t s are enabled.

i) sit 8 = ZEXO

j) B i t s 9,10 = O,O f o r no loop when c (STAT 3) #C (STAT^) .
s 0,O f o r East loop 1
= 0 , l f o r North loop

when c STAT^) =C STAT^) .
= 1 , O f o r West loop

F 1,l f o r South loop)
k) B i t 11 = ZERO i f ' t h e a rc does not have an arrow.

= ONE i f the a rc has an arrow.

This c e l l contains the in te rna l name of the arc a s a 12-bi t integer.

STAT 3

The contents of t h i s c e l l i s the in te rna l name of the vertex t o

which the a rc i s incident.

 STAT^.

The contents of t h i s c e l l i s the in te rna l name of the vertex from

which the a rc i s incident.

.STAT5

If the prevailing .mode i s BLINK mode, the contents of t h i s c e l l

has no relevance. If it i s DIMmode, however,"the twelve b i t s of t h i s

c e l l (0 through 11) are' s e t a s follows:

a) B i t s0 ,1 ,2 =ZEXlO

b) B i t s 3,4,5 = dimming in tens i ty l eve l of the a rc i t s e l f .

c) B i t s 6,7,8 = dimming in tens i ty l eve l of the arrow.

d) B i t s 9,10,11 = dinrming in tens i ty l eve l of the label .

 STAT^ -
This c e l l contains a 12-bit address which i s one . less than the

position of the label buffer i n the DEC-338 .memory (f i e l d 0). If a

l abe l exists, a s indicated by b i t 5 of STAT1, t h i s buffer contains from

3 t o 1 3 words of information as follows:

F i r s t Word

This word contains the y-component of the offset as an 11-bit sign-

magnitude integer, where the high order b i t i s ZERO and the next b i t is

the sign b i t .

Second Word

This word contains the x-component of the of fse t a s an 11-bit sign-

magnitude integer, where the high order b i t i s ZERO and the next b i t i s

the sign b i t .

Remainder of the Buffer

The remainder of the buffer contains from 1 t o 11 words with the

t e x t of the label. The unused buffer space i s padded with 0000's. Text

characters are packed two per word i n the same format used i n the

specification of the label (see Section 4.5.3).

4.6.3 DOGGIE Command Syntax

Section 4.4 described the DOGGIE Cottunand Language i n i t s pure form.

When these commands are incorporated in to interactive programs i n the

central computer the syntax used there is, f o r the .most part , the pure

form. However, user programs fo r the DEC-338, written under the PDPMAP

Assembly System, must adhere t o the syntax of MAP. A few macros a re

predefined for the user which allow fo r symbolic DOGGIE commands.

The fundamental macro i s named "DOG".. This macro i s used t o

assemble one DOGGIE code word given as one argument. The argument may

be either a single DOGGIE word or any number of words or numbers

separated by commas and enclosed within parentheses. Numbers are inter-

preted as decimal, and the DOG macro merely adds the values of the given

terms and assembles one 12-bit word. Table 4-2 presented in Section

4.5?lists all defined DOGGIE words along with their values.

The role of the comma in pure DOGGIE Command Language separates

12-bit words, whereas separate lines must be used in user programs. The

comma is used in a user program in place of a SPACE of pure DOGGIE

Language. For example the DOGGIE command

START MIST WHOLE VERTEX 2, CRNAME, PENPNT SCREEN, 512

would be expressed in a user program as

DOG (START,MIST,WHOLE,~,~)

DOG CRNAME

DOG (PENPNT, SCREEN)

DOG 512

Since MAP includes the OCT pseudo-operation, DOGGIE commands may include

octa1,numbers. For example, the last Pine of the above four have been

written as:

om 1000
Another useful macro is named 'IT" and is used for the assembly of

text labels. This macro is defined to take one argument as a list of

character terms separated by cammas and enclosed within parentheses.

Each given character term is encoded into 6-bit trimmed ASCII according

to Table 4-3. Since macro parameters cannot include a11 special characters,

special characters are represented by a pair of alphabetic characters.

Table 4-4 indicates the correspondence between characters and character

terms.

Table 4-4

Correspondence Between Characters and Character Terms

Text Character

A-Z

space

Character Term

A-Z

LB

BS

RB

UA

LA

Text Character

1
*

Character T-

RP

AS

PL

CM

M I

In!

SL

0-9

CL

SC

LT

E&

GT

QN

A s an example, the pure DOGGIE command

START EXIST LABEL VEITTM TEXT, 1, @ H I T ' R ' N ' WHEN DONE @

would be expressed i n a user program as

DOG (S T ~ , M I S T , L A . B E L , ~ M ~ ~ M T)

DOG 1

T (H,I,T, .,AP,R,E,T,U,R,N,AP, =,w,H,E,N,.,D,o,N,E)

Note the T macro automatically terminates the sequence of character codes
I

by a code of 00.

The DOG and T macros along with MAP pseudo-operations DEC, OCT,

PZE, MZE, e t c . a re suf f ic ien t ?or assembling DOGGIE Command Language i n

user programs. In order f o r the assembled code t o be interpreted by

DOGGIE a c a l l upon the interpreter must be made as:

JMS* DOGGIE

PZE Y-*

where Y i s a locat ion where DOGGIE cammands have been assembled i n

sequential words u n t i l e i ther a GOTO command i s included or ,a command of

0000 i s given which terminates the l i s t of commands.

A s an a id t o the programmer, two macros a re predefined t o surround

a l i s t of commands placed i n l i n e with PDP-8 code. A c a l l upon the

DOGGIE macro causes a pa i r of words t o be assembled which constitu2;es

a c a l l upon the DOGGIE interpreter , with the r e l a t ive pointer indicating

where the command l i s t begins. The command l i s t i s assembled a t a

different place i n memory according t o the "GRAPHS" Location Counter,

and the DOGGIE macro places %hat Location Counter i n control. Therefore,

a l i s t of DOGGIE commands i s .meant t o follow t h e c a l l upon the DOGGIE

macro. This l i s t i s terminated by a c a l l upon the ENDDOG macro which

f i rs t assembles the termination command of 0000 and then switches back

to the normal Blank Location Counter. The GRAPHS Location Counter is

begun immediately following the end of the assembled program.

This feature makes programming easier, and especially makes coding

readable, as can be observed in the example presented in the next sec-

tion.

4.6.4 Sample User Program

This section presents a rather small, yet complete, example of a

user program which is written for the PDPMAP Assembler. The program

beghs at location 6 0 0 0 ~ in the DEC-338, which is rather standard since

this is the beginning of the area used for program segments. It

initially places two messages (for the user) at the lower left corner

of the screen by using labels of vertices whose shape is null. As the

messages indicate, the program changes the shape of all vertices seen

by the light pen to be square (vertex shape 6) until either pushbutton 11

or the .manual interrupt button is depressed, at which time the Graph

Monitor is restarted. Note since the Monitor will define new vertices

with internal names the same as those used for .messages, it is not

necessary to delete them before calling the Graph Monitor.

A source listing of the sample user program follows on the next

page

4.7 Interactive Programs in the IBM 7040

Section 4.6 has described the interactive camponents of DOGGIE

which supplement the DOGGIE Command Language to support interactive user

programs. The Interactive Graph Theory System, as seen by a user,

includes complete graph manipulation tools which are user programs

written by the author. The facility for other user programs to be added

is included in the design, but it is expected that the system will grow

- . - - . .- - - -. -. - -- -- - - - G L G G 1 .- - --. . - - - . -
UUG (STAX i lLTPElrIirJtiOLEIVERTfX 1
0.ui;. I= - -. .. -. - - -
UUG (S T A j i T r E X 1 S T t I . i H G L E t V E R r C X I L I S T)

- -- - - - - - - - - - . ~ . G ~ - . ~ ~ ~ ? P . L ~ Z ~ I ~ O L ~ ..

O G T 7 7 7 6 , 2 0 5 4 12024
uC-r-.o 61\19. ..CIF..-i_I._S_T_
UUG (STAt(71irrX IST,LAtiELiVL-RTEXr TEXTrLIST)
(JdlT-Z 7 76 ---
T (P ~ O ~ ~ ~ N ~ T ~ . ~ T ~ O ~ . ~ V ~ E ~ R ~ T ~ I ~ C ~ E P S , . I T ~ O ~ . ~ B ~ E ~
Lic.r. 77.7 1 ..-.- -- .

T (M I A , D I L , * I S ~ Q ~ U , A I ~ I E ~ C H I * ~ P ~ . B , . ~ ~ ~ L ~ ~ ~ T ~ O ~ . ~ S ~ T I O ~ P) . - . - - ~ . L J _ - O . . - - - - rNV-1-v-hlSI -

DCG (START IDSPLAY 9 WHULEIVERTEX,LIS~-1

> > .
. - -- - - - -- - ~",~)R~E.._L,A.._ L ~) H I C.L ALLO!~_.~CITS

W A I T J i r S * PBSI('AP CHECK PL! 11
oc-1- 000.L .-...-.--._.-..--..a----.------------------------

JMS* MANIl\jT CHECK l I N T E R R U P T 8
J h P * I i E J T K T -- - . . - -- - . . - -. RcSTAKT GiiAPH MOhI I I O R
TAB LPCII l l
S.N.A-C.L~A ._.-.---.---CHCCK -F_O3.-H_I_b ---------------------------
JWP d A A T WAIT FUR SLIMETHING

. - - . - - - - - . - -- - -- - r -. + ~ D - L ~ . H I - ~ ~ . H IT _O.CL-U_RE.G -----------------------------
D L A NOWSQ SET U P (\IAMC

... _. .. _ - J.H!?-MORE
END

more readily by writing interactive ALLA programs for the IBM 7040.

Such programs are easier to write, easier to read, and particularly signi-

ficant is the graph-theoretical and arithmetic support which the ALLA

environment provides.

When the user at the terminal calls upon the central computer to

execute a program already in the system, a particular user program is

given control in the DEC-338 which .makes the terminal a slave to the

central computer. As such, it is capable of receiving over the Data-

phone line nearly all possible POGGIE commands. In addition, this

dedicated use of the DEC-338 allows for some information flow from the

terminal to the central computer in response to a request from the

latter. For the most part, this is in the form of directly copying

various communication cells containing status information.

The remainder of this section describes fram the programmer's view-

point the facilities of the Interactive Graph Theory System which extend

ALLA to interface with DOGGIE.

4.7.1 DOGGIE Commands

The DOGGIE Command Language may be included in &LA programs in

order to control the existence and display of graphs at the display

terminal. All commands described in Sect. 4.4 may be used except LOAD,

GOTO, or LOADGO. This restriction does not outlaw the calling of user

programs into operation from the central computer; another method is

available for this operation as described in Section 4.7.6.2.

Unlike user programs, A l L A programs do not include explicit calls

upon, the DOGGIE interpreter. Instead there are three types of statements

which are used to output one or more 12-bit words for DOGGIE. This

outputting is buffered in the memory of the IBM 7040, on .the disk of

the 7040, and also in the PDP-8 and DEC-338. Therefore, statements which

output to DOGGIE may be scattered among other types of statements. This

gives the ALLA programmer an easier means of expressing DOGGIE operations

than the programmer of user programs.

When the DOGGIE interpreter is called directly by a user program,

it is treated as a subroutine (see Section 4.6.1.1) . The DOGGIE command
of.0000 is then interpreted as a terminator of a sequence of commands and

results in return of control from the interpreter back to the calling

program. Since this operation has no parallkl during the use of DOGGIE

within ALJLA programs, the meaning of the DOGGIE command of 0000 is lost.

Therefore, the convention has been established to treat this special

case as a no-operation command.

The DOG statement is the fundamental statement type for the out-

putting of DOGGIE commands. It is used to indicate what follows on

the same card image is to be coded into 12-bit words and placed into the

buffer for DOGGIE commands. In general, a complete symbolic DOGGIE

command appears on one card, as shown in the examples:

DOG BLINKM

DOG SEIWIN HALF

DOG START BLINK ARROW ARC,ALL

However, separate statements .nay be used to specify individual 12-bit

words. For example, the previous DOGGIE command could be given as:

DOG START BLINK ARROW ARC

DOG ALL

The DOG statement may include DOGGIE words along with decimal numbers in

the syntax of DOGGIE comnds presented in Section 4.4. In addition,

the terms of a DOG statement may be f l I L A integer expressions. Each

expression of a DOG statement whose value is negative is evaluated as

the 12-bit two's complement quantl.ty.

The programmer may use symbolic DOGGIE words up to the term in a -
DOG statement where he employs one of the following special characters:

The remainder of the DOG statement is then treated as any number of in-

teger expressions. Using this facility, the arrows of the first seven

arcs (internal names 1 through 7) of a graph may be blinked by:

DO 10 I = 1,7

10 DOG START BLINK ARROW ARC, (I)

Note that the " (" is the indication that what follows is not a symbolic

DOGGIE word, but is instead an integer expression. The following sequence

of statements has the same effect as the above two statements, but out-

puts fewer DOGGIE words:

DOG START BLINK ARRW ARC LIST

10 DOG (I)

DOG 0

The above example is not particularly useful, but its idea can be extended

to a sequence which blinks the arrows of those arcs belonging to set ARCS*

In the following example, the property name I N N M is used as an integer

property whose value is the internal name of the entity with which it

is associated,

DOG START BLINK ARROW ARC LIST

THROUGH 10 FORALL A I N ARCS

10 DOG (I ~ (A))

DOG 0

The use of integer expressions, or particularly integer variables,

is a significant addition to DOGGIE commands. The positioning of a ver-

tex at some paper or screen location may be done by a DOGGIE command

with integer expressions representing computa%ions fo r the y- and x-

coordinates. Further uses of t h i s feature w i l l 'become apparent when

cammunication c e l l s a re introduced.

The one aspect of pure DOGGIE command language which i s not avail-

able with the DOG statement i s the specification of t e x t characters f o r

a label . The DOGSTRING statement i s available f o r encoding labe ls which

a r e completely known a t the time the program i s compiled. These a re

often used fo r instructionalmessages to the user. The DOGSTRING state-

ment includes the labe l preceded by and followed by any character which

does not appear within the l abe l i t s e l f . For example, the apostrophe is

used a s the signal character i n the following DOGGIE command:

DOG STARC MIST LABEL VERTEX T E X T , ~ O ~ ~

DOGSTRING 'POINT TO VEFXPEX TO BE MOVED'

The t h i r d type of statement available f o r outputting DOGGIE commands

i s DOGTEXT, which i s used t o construct labe ls a t execution t i m s . A

DOGTMT statement includes one or more integer expressions, each separated

by a comma. Each given expression i s evaluated a s a 36-bit word and

t rea ted as six 6-bi t trimmed ASCII character codes. The f i r s t 6-bi t code

of 00 detected causes the remainder of the given arguments t o be ignored.

The following i s an example of the use of DOGTEXT, where the function ITQA

t rans la t e s six character codes of one 36-bit word from IBM code t o trimmed

ASCII.

DOG START MIST LABEL VERTM TEXr,b95

DOGTEXT LABEL(^) LAB^(^), ITOA(~HIS NOT), ITCA(~H NEAR.)

4.7.2 Extending the DOGGIE Language

Since AI;LA includes the f a c i l i t y f o r writ ing subroutines, comonILy

used groups of DOGGIE commands m y be replaced by appropriate subroutine

calls upon a subroutine which has the same effect. Two examples of this

form of extending the language are given.

4.7.2.1 User Messages

A subroutine named MESSAG has been made a standard part of the

available facilities in order to aid the programmer in giving a message

to the user. The subroutine has one argument which is an integer quan-

tity specifying the line number of the message which follows the call.

Lines are numbered 1,2,3,..., beginning at the lower left corner of the

screen and going up the left edge. The following source Pisting of this

subroutine should be sufficiently clear to the reader to make its charac-

teristics obvious.

WBR~UTINE MESSAG(I)

INTEGER I, J

J = -I

DOG MIST WHOLE VETCTEX, (J)
DOG SCFGEN-!-~~*I-~

DOG SCREm20

DOG START MIST LABEL VERTEX TMT, (J) ,B
DOG STAm DSPLAY WHOLE VEWICM, (3)

DOG STAm MIST LABEL VERTM T ~ , (J)

RFnTm
END

The call upon the MESSAG subroutine must be followed by a DOGSTRING

or DOGllMT statement to specify the message. An example of such a call

follows :

CALL MESSAG(3)
DOGSTRING *POIIfI' TO FROM--EX*

4.7.2.2 Clearing and Setting Pushbuttons

Another reason for extending the DOGGIE language is to overcome

its inadequacies. The c m d to clear selected pushbuttons according

to bit pattern is convenient for use in PDPMAP user programs., but rather

inappropriate within ALLA programs. The following subroutine may be used

to clear one selected pushbutton according to Lhe given integer.

SUBR~INE CLFPB(I)

INTEGER I

DOG CLWB, -P-2~(11-1)

m m
END

An equivalent version of the above subroutine and a similar one named

SETPB for setting pushbuttons are included as standard facilities in the

Interactive Graph Theory System. Since they were coded in assembly

language, they were written to accept any number of arguments as integer

expressions whose values range between 0 and 11. For example, the follow-

ing two subroutine calls clear pushbuttons 7, 8, 9, 10 and set push-

buttons 4 and 5 :

CALL CLRPB('~',~,~,~O)

CALL SETPB(~,~)

4.7.'3 Values of DOGGIE Words

Since an integer expression may be used to specify an expression

of a DOG statement, the programmer may wish to set the value of an integer

variable equal to the value of a DOGGIE expression. The DOGSE!T state-

ment is available for this purpose. This type of statement includes an

integer assignment statement, except the expression to the right of the

equal sign is interpreted as a DOGGIE expression. The following examples

are included to clarify the syntax of this type of statement:

DOGSET SELVT = START MIST LABEL VERTEX TEXT

DOGSm LOOP(P) = LOOPE

DOGSET LOOP(^) = LOOPN

Note the first example is a case where a programmer may wlsh to abbre-

viate a frequently used DOGGIE expression. The second and third lines

indicate another use of the DOGSET statement. The idea behind them is

that a computation yielding an integer between 1 and 4 could be directly

encoded into a DOGGIE command to affect a loop orientation. This, of

course, presumes LOOP(^) and LOOP(^) have been similarly assigned values.

4.7.4 Status of the DEC-338

During execution of an ALLA program in the Interactive Graph Theory

System, the program may request standard status information from the

DEC-338. This status is the means by which the user inputs to the system

via Teletype, light pen, and pushbuttons. Most of this information is a

copy of various comrmtnication cells of DOGGIE which were described in

Section 4.6.2. When the status information enters the IBM 7040, it is

distributed to a set of cammunication cells which are integer and logical

variables which all ALLA program decks may reference. This section

describes the cammunication cells which the programer may reference.

There is no need for him to declare any of the cammunication cell

variables since their allocation is automatically handled in each A L U

subprogram deck. It should be remembered that their contents are changed

only when there is a request for status information. The various ways

in which status requests occur will be presented in Section 4.7.6.

Since the size of the memory word is 36 bits in the IBM 7040, each

integer variable is assigned that many bits in order to ~"epresent an

integer. Many items of status information occupy only 1:: bits since

they originated from communication cells in the DEC-338. These 12-bit

quantities are kept in the low-order end of the 36-bit word, i.e. bits

24-35. Where bit numbers must be given in the following subsections they

are based upon the $-bit word.

4.7.4.1 Intensity

The communication cell INJXNS is an integer variable whose value is

between 0 and 7 which indicates the overall picture intensity level.

4.7.4.2 BLINK Mode and DIM Mode

The communication cell BLNDIM is an integer variable which indicates

which mode prevails, and if it is DIM mode, it indicates the current inten-

sity level. If BLINK .mode prevails, the value of BLNDIM is -1. If the

prevailing.mode is DIMmode, the value of BLNDIM is between 0 and 7 which

indicates the dimming intensity level.

4.7.4.3 Window Size

The communication cell WINSIZ is an integer variable whose value is

between 0 and 3 which indicates the size of the window as given below.
, ,

Value of WINSIZ Window Size

3 EIGHTH

4.7.4.4 Window Position

The co~ication cell YWIND is an integer variable whose value

is the y-coordinate of the position of the center of the window on the

paper. This is an integer between 0 and 1023.

The communication cell XWIND is an integer variable whose value

is the x-coordinate of the position of the center of the window on the

paper. This is an integer between 0 and 1023.

4.7.4.5 Pseudo-Pen-Point Position

The communica%ion cell YPSEUD is an integer variable whose value

is the y-coordinate of the position of the pcseudo-pen-point on the screen.

This is an integer between 0 and 1023.

The communication ce l l XPSFXTD is an integer variable whose value is

the x-coordinate of the position of the pseudo-pen-point on the screen.

This i s an integer between 0 and 1023.

4.7.4.6 Tracking Indicator

The communication ce l l CHPSEU i s an integer variable whose value i s

cleared t o 0 by the 'STm CURSOR' command (or directly by a user program

within the DEC-338). The value of CHPSEU is l af te r there i s a change in

the location of the pseudo-pen-point due t o tracking by the l igh t pen.

4.7.4.7 Light Pen Handler

There are four cammunication cel ls which are integer variables dedi-

cated t o l igh t pen hits: LPHIT1, LPHIT2, LPHIT3, LPHIT~. Unless altered

by the ALLHIT command or by a user program i n the DEC-338, thei r contents

reflect the l a s t l ight pen h i t which was interpreted. In order for the

Light Pen Handler t o interpret a hi t , the cammunication ce l l LPHITl (in

the DEC-338) m s t be clear, It .may be cleared by the AILHIT command or

directly .by a user program i n the DEC-338. Note that the AI;LHI'I! command

also clears communication ce l l LPHIT2.

When the Light Pen Handler interprets a h i t , it outputs the following:

a) The value of LWITI i s se t t o 30108 i f the enti ty h i t i s a

vertex, or it is se t t o 30008 i f the enti ty h i t i s an arc.

b) The value of LPHIT2 is se t to the internal name of the enti ty

h i t . This i s an integer between 1 and 4095.

c) If the enti ty h i t i s a vertex, the value of LPHIT3 i s se t

t o the y-coordinate of the screen position of the h i t

vertex. If that position i s off the screen, the nearest

coordinate on the screen i s recorded (e i ther 0 or 1023).

This is an integer between 0 and 1023.

I f the ent i ty h i t i s an arc, the value of LPHIT3 i s se t

t o the y-coordinate of the screen position where the arc

was h i t . This i s an integer between 0 and 1023.

d) I f the ent i ty h i t i s a vertex, the value of 1 9 ~ 1 ~ 4 i s s e t

t o the x-coordinate of the screen position of the h i t ver-

tex. I f tha t position i s off the screen, the nearest

coordinate on the screen i s recorded (e i ther 0 o r 1023).

This is an integer between 0 and 1023.

I f the ent i ty h i t i s an arc, the'value of Ll?HIT3 is se t to

the x-coordinate of the screen position where the arc was

h i t . This i s an integer between 0 and 1023.

4.7.4.8 Created Internal Names (.. ,

The communication c e l l VERCRN i s an integer variable whose value

i s the vertex created internal name. The communicatfon c e l l ARCCRN i s

an integer variable whose value i s the arc created internal name. Each

of these may be integers between 1 and 4095.

4.7.4.9 Available Storage

The area of memory of the DEC-338 not assigned t o DOGGIE or used

f o r program overlays i s .maintained by a dynamic storage allocator a s

19-word blocks. The eottmrunication c e l l FRBLKS is an integer variable

whose value i s the number of f r ee blocks available i n the DEC-338.

A program may reference t h i s eel1 i n order t o determine whether

there i s enough available space f o r a paxticular operation t o be per-

formed. A t present, it is a f a t a l e r ror t o run out of f r ee storage.

The following information can be used t o esti-te space requirements:

a) A vertex or arc with no label requires one storage block.

b) A vertex or arc with a label requires two storage blocks.

c) A storage block is used for approximately every eight

entities (vertices or arcs) being displayed.

4 .7.4.10 Pushbuttons

There are two methods which ALLA programs m y use to determine the

settings of pushbuttons. Since pushbuttons 0 and 6 are used internally

by DOGGIE they always appear as being cleared according to the status

information. The communication cell PBS is an integer variable whose

value is a bit pattern corresponding to the 12 pushbuttons. Bit 24

corresponds to pushbutton 0, bit 25 corresponds to pushbutton 1, ...,
and bit 35 corresponds to pushbutton 11. A pushbutton which is clear is

represented by its corresponding bit set to ZERO, and a set pushbutton

is represented by its corresponding bit set to ONEo

It .may be convenient to reference the cell PBS in order to check

for a pattern match of some of the pushbuttons, but it ismore cammon

to check only one pushbutton at a time, For this purpose a logical

function PB is available to the AUA programmer. This function is

used with one integer argument whose value should be between 0 and 11 in

order to specify a particular pushbutton. The value of the function is

.TRUE. if and only if the selected gushbutton is set (according Lo the

4.7.4.11 Graph Status

Twelve communication cells in the IBM 7040 are dedicated to output

from the STATUS command. Seven of these cells are integer variables:

STAT1, STAT2, STAT3, SPAT^, StAT5, YOFF, XOFF. The remaining five cells

are members of an integer list (one-dimensional array): LABEL(?).

Unless al tered by a user program in the DEC-338, the values of these

ce l l s ref lec t the resul ts of the l a s t STATUS command. When a STATUS

command i s given these ce l l s are f i l l e d with a l l of the information

about a particular entity. If no ent i ty exis ts which sa t i s f i e s the

s tatus request, the value of STAT2 i s s e t t o 0.

4.7.4.11.1 Vertex Status

If there i s status output for a vertex, it i s coded as follows:

STAT1 -
The low-order 12 b i t s of STAT1 (24 through 35) are s e t a s follows:

a) B i t 24 = ZERO i f i n DIM mode.

= ONE i f i n BLINK mode.

b) B i t 25 = ZERO i f the vertex shape i s not blinking.

= ONE i f the vertex shape is blinking.

c) sit 26 = ZERO,

d) B i t 27 = ZERO i f the label i s not blinking.

- ONE' i f the label i s blinking.

e) B i t 28 . = ZERO i f the vertex f s not displayed,

= ONE i f the vertex i s displayed.

f) B i t 29 = ZERO i f there i s no label.

= ONE i f there i s a label,

g) B i t 30 = ZERO if a label i s not displayed.

= ONE i f a label i s displayed.

h) B i t 31 = ZERO i f l igh t pen h i t s are disabled,

= ONE i f l i gh t pen h i t e are enabled.

i) B i t 32 = ONE

j) B i t s 33,34,35 = the vertex shape

The value of SPAT2 is the internal name of the vertex. It i s an

integer between 1 and 4095.

STAT 3

The value of STAT3 i s the y-coordinate of the paper location of the

vertex. It is an integer between 0 and 1023.

 STAT^

The value of STAT^ i s the x-coordinate of the paper location of

the vertex. It i s an integer between 0 and 1023.

If the prevailing mode i s BLINK.mode, the value of STAT5 has no

relevance. I f it i s DIM mode, however, the low-order nine b i t s of STAT5

(27 through 35) are se t a s follows:

a) B i t s 27,28,29 = dinrming intensi ty level of the vertex shape.
\.

b) B i t s 30,31,32 = ZE8O

c) Bi ts 33,34,35 = dimming intensity level of the label.

Y OFF -
If the vertex has a label, a s indicated by b i t 29 of SPAT1, the

value of YOFF i s the y-component of the of fse t contained in the low-

order 11 b i t s (25 through 35). This quantity i s coded a s a sign-magnitude

integer where b i t 25 i s the sign b i t .

XOFF -
If the vertex has a label, a s indicated by b i t 29 of SIIAT1, the

value of XOFF is the x - c q o n e n t of the offset contained i n the low-order

11 b i t s (25 through 35). This quantity i s coded a s a sign-.magnitude

integer where b i t 25 is the sign b i t .

LA~rn(l) , . . . ,LABm(51

If the vertex has a label, as indicated by b i t 29 of STAT1, these

ce l l s are packed with 6-bit trimmed ASCII codes of the label. The codes

are packed six per word and unused positions are padded with OOss. Note

a vertex label may have a t most 27 characters.

4.7.4.11.2 Arc Status

I f there i s status output fo r an arc, it i s coded as follows:

STATl

The low-order 12 b i t s of STATl (24 through 35) are s e t a s follows:

a) B i t 24 = ZERO i f .in DIM mode.

C-J
= ONE i f i n BLIMCmode.

b) B i t 25 = ZERO i f the arc i t s e l f i s not blinking.

= ONE i f the arc i t s e l f i s blinking.

c) sit 26 = ZERO i f the arrow is not blinking.

= ONE: i f the arrow i s blinkfng.

d) B i t 27 = ZERO if the Babel i s not blinking.

= ONE i f the label i s blinking.

e) B i t 28 = ZERO i f the are i s hot displayed.

= ONE i f the arc i s displayed.

f) B i t 29 = ZERO if there i s n's label.

= ONE i f there i s a label.

g) B i t 30 = ZERO if a label i s not displayed.

= ONE i f a label i s displayed.
I

h) B i t 31 = ZERO i f l i gh t pen h i t s are disabled.

= ONE if l igh t pen h i t s are enabled.

i) it 32 = mo

3) Bi t e 33,34 = 0,O for no loop when c STAT^) #C (STAT^) .
= 0,O for East loop 1
= 0 , l fo r North loop

when c(STAT~)=C(STAT~).
= 1 , O Tor West loop

= 1,l for South loop

k) B i t 35 = ZERO i f the arc does not have an arrow.

= ONE i f the arc has an arrow.

STAT2

The value of STAT2 i s the internal name of the arc. It i s an

integer between 1 and 4-09?.
\

STAT 3

The value of mAT3 i s the internal name of the vertex t o which

the arc i s incident. I t is an integer between 1 and 4095.

 STAT^

The value of STAT4 i s the internal name of the vertex from which

the arc i s incident. I& f s an integer between B and 4095.

If the prevailing mode i s BLINK mode, the value of STAT5 has no

relevance. I f it i s DIM mode, however, the low-order nine b i t s of STAT5

(27 through 35) a re s e t as follows:

a) B i t s 27,28,29 = dimming intensi ty leve l of the arc i t s e l f .

b) B i t s 3O,3l, 32 = dimming intensi ty leve l of the arrow.

e) B i t s 33,34,35 = dimming intensi ty leve l of the label.

Y om -
If the arc has a label, as indicated by b i t 29 of STAT1, the value

of YOm i s the y-component of the of fse t contained i n the low-order 11

b i t s (25 through 35). This quantity i s coded a s a sign-magnitude integer

where b i t 25 i s the sign b i t ,

X OFF -
If the arc has a label, as indicated by b i t 29 of SPAT1, the value of

XOFF i s the x-component of the offset contaided i n the low-order ll b i t s

(25 through 35). This quantity is coded as a sign-magnitude integer

where b i t 25 i s the sign b i t .

LAI3EL(l), . . LABEL(^)

If the arc has a label, as indicated by b i t 29 of S11AT1, these

ce l l s are packed with 6-bit trimmed ASCII coaes of the label, The codes

are packed six per word and unused positions are padded with 00's. Note

an arc 1 a b e l . m ~ have a t .most 23 character8b

4.7.4.12 Teletype Input

When the DEC-338 'is acting as a slave t o the IBM 7040 during execu-

t ion of an interactive AUA program, the dedicated user program in the

DEC-338 echos and buffers Teletype input of up t o one 64-character l i n e

a t a time. Whenever the user types vFEl?URNt, the l ine which it terminated

i s ready t o be sent t o the IBM 7040. The l i ne i s sent along with status

information on the next time there i s a request from the 7040 for l l ~ C - 3 9

status. When th i s occurs a LINE FEED is typed out so the user .may proceed

typing another input l i ne i f he so desires. Any characters he may attempt

t o type before the LINE FEED i s given are l o s t and are not echoed.

The AI;LA programmer may t e s t communication ce l l IN which is a

logical variable whose value indicates whether the l a s t s tatus sent

included a l ine of teletype input. The value of TI'YIN f s .TIIUE. if

~ e l e t y p e input i s available.

Eleven communication cells, members of an integer list (one-

dimnsiona2 array) named 'ITYHJF', constitute the Teletype input buffer .
This buffer has relevant contents only when the value of TWIN is .TRUE.

This input buffer is packed six characters per word as trimmed ASCII

code, with a characteristic code of 00 following the last input character

(unless the line is full).

4.7.5 Manual Interrupt Button

The convention has been established (see Section 4.6.1.3) which

assigns a meaning of termination to the .manual interrupt button. Inter-

active programs in the IBM 7040 cannot test for the condition that the

button has been pushed. Instead, the convention has dictated a more

automatic response. Pushing this button during interactive execution

causes that execution to terminate, and an indicative message is shown

on the screen.

4.7.6 Requests for DEC- 338 Status and ~nteriction

The communication cells of the IEM 7040 described in Section 4.7.4

are filled with status information from the DEC-338 only when the program

in the IBM 7040 requests this status. There are three additional types

of statements plus two subroutines in the ALLA environment which the pro-

grammer .may call upon. These statements and subroutine calls cause

the generation of certain DOGGIE GOT0 commands in order to get the

dedicated user program running in the DEC-338 Lo perfom an alternate

task. The programmer, therefore, should not have uncompleted DOGGIE

commands pending at the points in his program where these requests are

made. In order to avoid such problems any of this class of interactive

command first outputs three words of 0000 for DOGGIE. 'This is followed

by the GOT0 command. In order to insure that.alP of the DOGGIE commands

will reach the DEC-338, a flush of the DOGGIE ccnmnasld buffer is also

performed. The programmer is also given the power to flush this buffer

as described in Section 4.7.6.3

. 4.7.6.1 Executable Statements: GrmSFmS, WAITWGE, ESCAPE

The ALLA programmer .my include the following executable statement

within a program:

At execution time, this statement causes the DEC-338 status informa-

tion to fill the cammunication cells. Control does not pass through

this statement until the information transfer is complete. An autowic

GETSTATUS operation is always performed at initialization time, directly

after loading, of every application of the ALLA system,

The dedicated user program which controls the DEC- 338 during %he

execution of interactive IBM 7040 programs keeps track of the status

information it sends to the IBM 7040 concerning pushbutton status,

light pen hit status, and Teletype input status. Since interactive pro-

grams often require the user to perform some input action in order to

proceed, another executable statement.may be included within an AI3,A

program:

WAITCHANGE

At execution time, this statement causes the DEC-338 to send status

information only after a change in the status of the pushbuttons, Light

Pen Handler, or Teletype input (a complete input line). Control does

not pass through this statement until a status infomtion transfer

occurs and is complete.

The third additional type of statement which results in DEC-338

status information filling the IBM 7040 communication cells is used more

sparingly, for it releases control of the DEC-338 to the user for local

use with the "understanding" that the user will later return to the

interactive execution mode by selecting the "Resume Execution" option

available under %he Graph Monitor (described in Section 5.7). The form

of the ALLA statement fa:

ESCAPE

At execution time, this statement causes the DEC-338 to escape

control of the IBM 7040 and the Graph Monitor is made available to the

user. A ty-pical use of this feature is during an interactive program

when the user must make significant modifications to the graph he is

currently handling. The local %ea%ures of manipulation available through

the Graph Monitor can be used. Meanwhile, the IBM 7040 hangs waiting

for the DEC-338 status information, which will finally be sene when

the user "resumes execution," Control does not pass the ESCAPE state-

ment until a status information transfer occurs and is complete.

If the user decides to terminate interactive execution at a

time when he is using the Graph Monitor as a result of an ESCAPE, he

must first resume execution and then use the manual interrupt button to

terminate,

4.7.5.2 Subroutines .

A very useful feature of the Interactiv9 Graph Theory System is

the facility for interactive programs running in the central computer

to call upon specially written user programs which can provide inter-

active operations many times faster than the interactions between the

central computer and the display terminal. These programs are written

in the same manner as any local user program using the PDPMAP Assembly

System, except there is some restriction on their placement in the

DEC-338 memory, and they must texminate in particular ways. Also, the

conventional use of the manual interrupt button must be handled.

Appendix 2 includes the rules governing the writing of these user pro-

grams. There is a system capacity for nine such special user programs

to be on the disk of the DEC-338 at any one time. The file names used

for the programs must be USEl,USE2, ..., USE9.
4.7.6.2.1 USER

A user program of the type described above is called into action

by the following subroutine call in an interactive AUA program:

CALL USER(^)

where - n is an integer expression whose value is between 1 and 9. Accord-

ing to the argument given, the corresponding user program is started in

the DEC-3%. That program must be writeen so that upon termination it

will send status information to the IBM 7040 and resume the dedicated

user program which makes the DEC-338 a slave to the central computer.

Meanwhile, after the subroutine call to USER has been.mde, the IBM

7040 hangs waiting for DEC-338 status information. Control does not

pass through this statement until a status infoxmation transfer occurs

and is complete.

A user program of the type being considered here may be designed

to perform only a particular phase of an interactive program which is

complete in itself. However, a user program may require the communication

of information back to the central computer as a result of its operating.

The means by which such comication may occur is via those communica-

tion cells which are copied when DEC-338 status information is sent out,

This type of communication is used by the SELECT routine given as a

complete example in Appendix 2 and described in the following subsection.

4.7.6.2.2 SELECT

Since the interactive operation of having the user select a vertex

or arc by pointing is so common in using the Interactive Graph Theory

System, the author has provided one user program which can be called

into action from the IBM 70h0 to perform this fbnction. The program

is named SELECT, but it is saved on the DEC-338 disk with the name

USE9. Therefore, the following subrowbine call may be used to activate

. the program:

cxu uf333(9)

Since this particular program is considered a -standard feature of the

Interactive Graph Theory System, a special subroutine call, equivalent

to the above call, may be included in ALLA piograms:

CALL SELECT

The characteristics of this program are presented here for the ALLA pro-

grammer who wishes to make use of it. The PDPW assembly listing of

the program is included in Appendix 2 as an example of a user program.

A simple example of the use of the SELECT routine follows below.

4.7.6.2.2.1 Characteristics

When the SELECT routine is called, it assumes the programmer has

placed a message on the screen at message Pines 3, 4, etc. which indicate

to which entities the user should point, For example, the following

statements might be used:

CALL MESSAG (3)
DOGSTRING 'POINT TO A SCAFQING VERTEX '

The SELECT routine always begins by placing the following.message a t

message l i n e 2:

OR PB 10 FOR NO SEL;E(;TION

The ALLA program must also enable the l i g h t pen s ta tus of those

e n t i t i e s which may be selected. For example, i f the user i s t o . s e l e c t

any vertex, the following two statements might be used:

DOG STOP LTPEN WHOLE ARC,AZ;L

DOG START LTPEN WHOLE VERl%X,m

The routine then se ts the prevailing mode t o BLINK mode, clears

pushbuttons 10 and 11, and clears the communication c e l l LPHITl so t h a t

l i g h t pen h i t s may occur. When a h i t does occur on a vertex or arc, that

en t i ty i s made t o blink, and i f then another ent i ty is h i t , the previously

h i t one stops blinking, and the freshly h i t one blinks. When the f i rs t

h i t occurs, message l ines 1 and 2 are changed to:

PB 11 SELECTS BLINKING ONE

OR POINT TO ANOTHER ONE

These l ines do make sense t o the user i n the context of message l ines

3, 4, etc. , which remain displayed during the pointing.

I f pushbutton 10 i s ever pushed (even a f t e r selection has

occurred), any blinking i s stopped, the contents of communication c e l l

LPHITl i s s e t t o 1, L9HIT2 i s se t t o 0, and ngllmal termination occurs.

If pushbutton 11 i s pushed a f t e r a selection has been made, the contents

of the four communication c e l l s associated with the Light Pen Handler

are s e t t o indicate the light pen' h i t which caused the blinking ent i ty

t o blink, and normal termination occurs. The selected blinking en t i ty

remains blinking.

Normal termination of the SELECT routine consists of eliminating

the messages on message lines 1, 2, 3, and 4. Finally, DEC-338 status

is returned to the IBM 7040.

During the execution of SELECT, a line of Teletype input may be

prepared, but it does not affect the operation of the user program. In

keeping with the established conventions, the SELFi.3 routine monitors

the manual interrupt button, and it interprets the hitting of this

button as a user eamnd to terminate interactive execution.

4.7.6.2.2.2 Example

The following interactive AI,LA subprogram is an example of the use

of the SELECT routine. The program requests the user to select any

vertex. Upon selection, the program dims down the graph to intensity

level 3, and brightens all vertices of the graph which are reachable

from the chosen vertex by travelling along any arc which emanates from

that vertex. The practical value of the function is negligible, but it

demonstrates the use of SELECT. The one argument to the routine is an

entity which is the graph in the ALLA structure corresponding to the one

being displayed at the DEC-338. The property 1- is an integer

property of each vertex and arc which is the internal name of that entity.

The following is a source listing of the interactive AUA subroutine NXTNEI:

S U O R G U T I N E N X T N E I (GI
E N T I f Y G , A - - - - -

I h T E G E R I NNAME
-- - - - -- - O b G S T O P L T P E N HHOLE ARC, A L L - ------ ----- --

DOG START L T P E h WHOLE V E R T E X # A L L
C A L L M E S S A G (4 1 - - - - - - - - - - -

D O G S T R I N G ' T O SHOW NEXT NE IGHBORS'
C A L L M E S S A G (3) - - -

-- - -- - - - - C C G S T K I N G ' P O I N T T O ANY V E R T E X D
C A L L S E L E C T -- -- -

- - - - - - - -
C O G D l M M 3
I F (L P H I T Z . E Q e 0) R E T U R N - - * - -

- - -
C A L L M E S S A G I 1 I
D O G S T R I N G 'NEXT N E I G H B O R S ARE SHOWNa - -

COG S T A R T D I N hHULE V E R T E X 7 L I S T * 4095
THROUGH 100 F O R A L L A I N R E L H t GI - - -- - --

--
I F (I N N A M E (L E L M (A I 1 .NE. L P H I T Z) GOT0 100
DOG (I N N A M E (R E L M (A))) -. - - - - - -

100 GONT I NU€
- COG 0 - - - - - - -

R E T U R N
- END - - -

4.7.6.3 Buffering of DOGGIE Commands

In Section 4.7.1, the use of a buffer for DWGIE commands was

introduced. There are in fact many places where these words are

buffered between the execution of a DOG statement and the final inter-

pretation in the DEC-338. The programmer, as one would hope, .my

normally ignore the detailed underlying workings of the system he is

using. The one occasional exception to this philosophy arises since

command words are buffered, at the first level, in the .memory of the IBM

7040. When commands are yet in this particular buffer, they cannot get

to the DEC-338. This DOGGIE camand: buffer .must either be completely

filled with 320 12-bit DOGGIE words or the buffer .must be flushed.

As explained in the beginning of Section 4.7.6, a11 interactive

statements which cause special action to be performed by the DEC-338

create a GOTO command followed by a buffer flush. Therefore, at any

initial point in a program when input from the user is requested, the

buffer has been flushed and thus all DOG commands executed have been

interpreted by DOGGIE.

Although it may be unnecessary computationally, it may be an

aesthetic requirement for an interactive program to flush the DOGGIE

command buffer explicitly. This need might arise when using the Inter-

active Graph Theory System to process an algorithm which involves much

computation. In such a case, very few DOGGIE commands might be generated

as indicative monitoring of the algorithm, perhaps, for example, only

every few seconds. In order for the user to follow the monitoring, the

program must flush the buffer whenever necessary, The following state-

ment is used in an interactive ALLA program to %Push the DOGGIE command

buffer :

DOGFLUSH

An attempt to flush the DOGGIE command buffer when it has already been

flushed and is still empty results in no output operation. One restric-

tion of which the programmer must beware is a buffer flush must not be

done when there are any incampleted DOGGIE cammands pending,

4.7.7 Input of Graphs

There are two distinct ways in which an interactive ALLA program

may read in graphs. The more common source of a graph is the graph being

displayed at the DEC- 338. The f ollowfng statement i s used in an inter-

active ALLA program to read into the AL;LA structure the graph being dis-

played at the terminal:

GETGRAPH ent

where - ent is a nonsubscripted entity. This statemen% causes a special

DOGGIE GOT0 command to be sent to the DEC-338 in the same way in which

other interactive statements operate (see Section 4.7.6) . However,
DEC-338 status is not updated in the IBEI: 7040 as a result of executing

this statement. This statement must not be used at a point in the pro-

gram when there are any uncompleted DOGGIE commands pending. When the

statement is executed, the IBM 7040 hangs waiting for the coded graph to

be sent from the DEC-338. Control does not pass the GETGRAPH statement

until the entire displayed graph is sent and has been set up in the ALLA

structure as described below.

The other source of graphs is the MJLTILIST Data File. When the

user initiates execution through the Graph Monitor, he is given the

opportunity to include a description of those graphs saved in the Data

File which he wants to be used as input data for the particular job he is

preparing. The option is also available for the graph being displayed

at the DEC-338 to be used as this type of input data, The following sub-

routine call is used in an interactive ALLA program to read into the blIdLA

structure one graph from the input data stream:

CALL GRAPIN(~~~)

where ent is a nonsubscripted entity variable, Whereas the GETGRAPH -
statement may be executed any number of times, this subroutine call

may be called only once for each graph in the input data, One extra

call is allowed in order %or the program to be able to accept an

arbitrary number of graphs as input data. The extra e d P returns with

UNDEF as the value of - ent. If this ever occurs, no further calls on

GRAPIN may be made by the interactive AELA program.

The graphs which are inputted by e i ther of the above methods a re

encoded i n precisely the same format a s a sequence of 12-bit words. The

encoding includes a l l of the information which is available through the

s ta tus communication c e l l s about each vertex and arc whose in terna l name

i s l e s s than 4080 (see Section 4.3.9) . I n addition each encoded graph

includes the following information which i s associated with the e n t i r e

graph:

a) Whether BLINK Mode or DIM Mode prevails

b) If i n DIM mode, the dinrming intensi ty level

c) Window Size

d) Overall Picture Intensi ty Level

e) Window Position

f) Vertex and Arc Created Internal Names

An encoded graph i s read in to the U structure by the ALLA sub-

routine GRAPIN. A s indicated above, when an interact ive A I M program '

ca l l s the subroutine, it reads the encoded graph from the input data.

The G R ~ I N subroutine makes ca l l s on the subroutine GFT12 which returns

through i t s one argument a 12-bit word which i s next i n the sequence of

12-bit words of the encoded graph. The Gm12 subroutine i s coded i n MAP

assembly language and normally obtains i t s input from the input data

stream. The GETGRAPH statement i s interpreted by another assembly

language subroutine which se t s a program switch i n GFT12 and then c a l l s

upon GRAPIN t o read i n the encoded graph. With the a l te rna te se t t ing

of the switch, GET12 essent ial ly fetches i t s input words from the DEC-338.

Since the GRAPIN subroutine i s such an important par t of the ~ n t e r a c t i v e

Graph Theory System a l i s t i n g of it i s included i n t h i s report i n

Appendix 5 . A functional description of i t s operation i s presented

in the following subsection.

4.7.7.1 F'unctional Description of GRAPIN

The GRAPIN subroutine, written in interactive AI;LII, is used to read

into the ALLA structure an encoded graph being used as input in an inter-

active AL;LA program. The subroutine is called with one argument which

is an entity variable, whose value becomes the graph being inputted,

The graph is defined as a pair with integer properties directly corres-

ponding to status information as returned in IBM 7040 carammication cells

as follows (see 4.7.4.1 through 4.7.4.4 and 4.7.4.8):

Property Name

GMISC (bit 24)
GMISC (bits 25-27)

GMTSC (bits 31-32)

GMISC (bits 33-35)

GYWIND

W I N D

CRNAMs (bits 12-23)

CRNAMs (bits 24-35)

Communication Cell

BLNDIM (sign bit)

BLNDIM (bits 33-35) when in DIM .mde

WINSIZ

1-S

YWIND

mND

ARCCRN

Vmcm

The left element of the pair which is the graph being defined is

a set of all vertices of the graph. Each vertex is an atom with integer

properties directly corresponding to the status information as returned

in IBM 7040 communication cells as follows (see Section 4.7.4.11.1) :

Property Name

m1sc

INNAME

Y COORD

XCOORD

GDlM

OFFSET (bits 12-23)

OFFSET (bit 24-35)

Communication Cell

STAT1

STAT2

STAT 3
 STAT^
STAT5

Y OFF

XOFF

mm(1)

The right element of the pair which is the graph being defined is

a set of all arcs of the graph. Each arc is a pair whose left element

is the vertex which is the from-vertex of the arc, and whose right ePe-

ment is the vertex which is the to-vertex of the arc. In addition,

each arc has integer properties directly corresponding to the status

information as returned in IBM 7040 cotumunication cells as follows

(see Section 4.7.4.11.2) :

Property Name

m1sc
INNAME

GDIM

O F F s F l l (bits 12-23)

Ol?KEC (bits 24-35)
LABEL1

LABEL2

LABEL3 '

 LABEL^

LABEL5

Communication Cell

STAT1

STAT2

STAT5

Y OFF

XOFF

LABEL (3)
mn(4)
LAI3BJ-45)

The integer properties used in the structure of a graph as described

above are not automatically declared within interactive A I U programs.

This implies that the programmer must include INTEGER declarations for

each of the graph properties he uses within each subprogram. If a

program includes statements to change the value of one of these proper-

ties, that property name must also be included in a PR-Y declaration

statement.

4.7.8 Termination

Section 4.7.5 described how the user can stop the interactive

execution process by hitting the manual interrupt button. The pro-

grammed control of termination is described here. An interactive ALLA

statement may be used to terminate interaction in the normal case. A

subroutine named m O R is also included in the Interactive Graph Theory

System for the use of the programmer.

4.7.8.1 ~ormal

The following statement is used in an interactive ALM program

to terminate interactive execution:

TERMINATE

It causes a special DOGGIE command to be outputted, and this is

followed by a flush of the DOGGIE buffer, After execution of the

TERMINATE statement, control immediately returns to the next statement.

The interactive ALLA programmay continue to execute, but no further

interactive statements will have any effect. Meanwhile, an indicative

termination message has been displayed to the user, and this leads him

back to the Graph Monitor.

4.7.8.2 Error

A standardized fatal error subroutine is available to the pro-

gramer, particularly for including in algorithms at places where there

are what the programmer expects to be "impossible" paths, For example,

a THRWGH loop might be used to perform a search, and according to the

algorithm a match must be found before the loop is exhausted. For safe

programming, the programmer may include a call upon the ERROR subroutine

immediately following the range sf the loop as a protection against the

unforeseen occasion when the search may not yield a match.

The following subroutine c a l l is used i n an interactive AI;LA pro-

gram t o terminate interactive execution, and display t o the user a short

error message:

CALI, ERROR (text)

where t e x t i s a Hollerith constant. The m O R subroutine i s written i n -
interactive AILA. It begins by outputting four DOGGIE words of 0 i n

order t o terminate a possibly pending DOGGIE command. This i s followed

by a DOGGIE command t o ring the b e l l on the Teletype twice. Next a

message i s placed a t message l i n e 6 which reads "ERROR IN EXECUTION. ''

The t ex t passed t o the ERROR subroutine as an argument is then placed

a t message l i n e 5. Note tha t only up t o 27 characters -may be displayed

on one message l ine . The subroutine ends with the statements TERMINATE

i n order t o cease interaction and STOP i n order Lo cease execution,

A l i s t i n g of the ERROR subroutine i s included i n Appendix 5,

4.7.9 Helpful Functions

Since both b i t handling and code conversion are cammon operations
. .

i n interact ive ALLA programs, there are four functions available which

are par t of the Interactive Graph Theory System. Each i s an integer

function and must be declared i n an IWEQB declaration statement i n

each subprogram where the function i s used. Each of these functions

i s written i n MAP assembly language.

4.7.9.1 B i t Handling

Two of the helpful. functions are used f o r handling b i t s within

36-bit ALWl integer variables. The need f o r these functions ar i ses i n

the GRAPIN routine and i n places where certain properties of a graph

are being used. Each of these functions has three arguments. The

f i r s t two arguments must be i nteger expressions whose value i s between

0 and 35 i n order t o signify b i t numbers i n a 36-bit word. The th i rd

argument i s an integer expression whose value i s being e i ther unpacked

or packed. The f i r s t argument represents the leftmost b i t number, and

the second argument represents the rightmost b i t number of the sequence

of b i t s of the th i rd argument.

4.7.9.1.1 Unpacking

The following integer function i s used f o r unpacking a sequence

of b i t s of a 36-bit word:

 BITS(^ ram, to, word)

where from, to, and word are integer expressions. The value of t h i s - - -
function i s only those b i t s specified adjusted t o the low-order end of

the $-bit value. For example, if V i s an ent i ty variable whose value

i s a vertex of a graph entered in to the AILA structure by GRAPIN, then

the following application of the BITS function yields the y-offset of

the label of t h a t vertex:

BIT~(l2,23, omsm(v))

4.7.9.1.2 Packing

The following integer function i s used f o r packing a quantity in to

a part icular sequence of b i t s of a 36-bit word:

where from, 2, and word are integer expressions, The value of t h i s - -
function is the number of b i t s specified by the values of - from and t o -
taken from the low-order end of the value of - word and repositioned a t

b i t positions - from through - to i n the 36-bit value, For example, i n

the GRAPIN subroutine, the 12-bit quantity of the y-offsee is i n TEMP,

and the x-offset i s also a 12-bit quantity i n S1EMPl. The following

statement defines the OFFSE2 property of = .ent i ty :

OFFSIXC(WT) = BITsIN(~~,~~,TEMP) + TEMP1

4.7.9.2 Code Conversion

The other two helpful functions are used to convert a 36-bit word

treated as six 6-bit character codes between trimmed ASCII and IBM 9-

code. The following integer f'unction converts alP characters from

ASCII to IBM code: - -
AT01 (word)

where - word is an integer expression. The following integer function

converts all characters from IBM to ASCII code: - - -
~ ~ ~ (w o r d)

where word is an integer expression. Table 4-5 presents the corres- -
pondence between trimmed ASCII and IBM character codes used by these

two functions.

4.7.10 Reserved Words

Section 3.18.1 presented a list of words which the programmer of

pure ALLA.mst avoid. With the addition of interactive camponents to

ALLA, the list of reserved words has been extended significantly.

Table 4-6 is an alphabetical list of words which the interactive AUA

programmer may no% use as his own variable names, function names, or

subroutine names. Since DOGGIE words .must appear only with DOG and

DOGSET statements, they do not impose any restrictions.

4.7.11 Logical-IF Sta'kernent

Section 3.18.3 presented a list of statement forms which the pro-

grammer of pure AUCl could not use to the right of the logical expression

in a Logical-IF statement, With the addition of interactive components

to ALL&, the list has been extended to include the following forms:

Table 4-5
Correspondence Between Trimmed ASCII and IBM Character Codes

ASCII IBM ASCII IBM
(octal) (octal) Character (octal) loctal) Character

00 77 end-of-list 40 60 space

Table 4-6 Reserved Words in Interactive &LA Programs

ARCCRN

ATOM

BLNDIM

CHPSEU

CLRPB

CRAT OM

CREATE

CRPAIR

CRsm
DELETE

DOG

DOGFLU*

D O G S a

DOGSTR*

DOGI'EX*

EMPTY

ENTITY

ERROR

ESCAPE

FORALL ,

FORNXT*

FRBLKS

GFTGRA*

GFTSTA*

G W I N

INSERT

INTENS

LABEL

L r n

L P H I T l

W H I T 2

W H I T 3

LPHIT~

MEMBER

MElSSAG

PJLTU

P A I R

PB

PBS

BOP

PRBCD

PREW

PRNAME

PRSFT

PRVAL

PUSH

RELM

REMOVE

m R W

SELErn

SET

SFTPB

SETVAP,

STAT1

sm2

STAT 3

 STAT^

STAT5

S T L W

STREZM*

TERMIN*

TTYBUF

TTY I N

UNDEF

U S E E m

USEPR

USER

USESET

USETYP

VERCRN

WAITCH*

WINSIZ

X OFF

XPSEUD

XWIND

Y m

Y P s m

m m

* These words are not explicitly used in interactive ALLCl statements,
but their use is restricted due to the underlying implementation
of the AUA campiler and execu%ion-time system.

DOG . a

DOGSTRING a .
DOGI'EXP . . .
DOGSET 0 . a

GETSTATUS

WAITCHANGE

E S W E

DOGFLUSH

GrnGRAPH ...
TEFUINATE

4.7 .12 Sample Interactive Program

This section presents a rather small, ye% complete example of an

interactive A l U program. It i n i t i a l l y places two messages (for the

user) a t the Power left; corner of %he screen. A s the messages indicate,

the program changes the shape of a l l vertices seen by the l igh t pen t o

be square (vertex shape 6) un t i l either pushbutton 11 or %he manual

interrupt button i s depressed. Section 4 .6.4 presented a sample user

program which has %he same operational characteristics as t h i s one, A

source l i s t i ng of the.sample interactive program follaws:
.- ..PA--.---- -

SUBROUTINE SAMPLE
(.ALL CL.R.PBI1.1.)- --.. - -- - .. .- - . - - . ---
OOG START LTPEN WHOLE V E R T E X 0 ALL

- ----- c.A.c.~ .. ME: S.S-A.GJ.~..~- -. - .-.-.---..------.----.------
O O G S T K I N G @ P O I N T T O V E R T I C E S TO B E g

- - - - .. - - - - - - CALL ..MESS.AG!.l ! -------------
UUGSTKiNG ' M A D E SQUARED P B 11 T O STOP8

--1Q U.(T;!;i ... ALL-H LT
20 W A L T C H A N G t

- - i . . ~ . . IPD ! . l _ l . _ ~ - ! - - ~ _ o . r ~ - 3 . ~ . ~
I F (L P H i T 1 .EQ* 01 G O T 0 20

. - - - - - -- - - -- - DOG .STAF!C.-E__X_I_SI-_SHA_P_E_Y_EBLS_X_-~-LUU_HILZL --L
G O T O 10

3 0 -- T-E,.t< M I N A T E
STOP

-5

OPERATION OF THE TERMINAL

Whenever the Moore School Problem Solving Fac i l i ty i s operating,

a user.may use the Interact ive Graph Theory System a s any other user

uses the system. Other users may be using Teletype terminals, but the

Interact ive Graph Theory System must be used fram the DEC-3% graphics

terminal. Moreover, the minidisk of the DEC-338 must be s e t up with

a t l e a s t a basic system. Each user of the Interactive Graph Theory System

car r ies a DECtape which includes such a disk image. Less than one

minute is needed t o load the disk from DECtape, and then the only other

consideration i s t o .make sure the DEC-338 Dataphone l i n e is connected

t o the PDP-8 being used a s the intermediary s a t e l l i t e of the Moore School

Problem Solving Fac i l i ty .

5.1 Graph Monitor

A t the terminal, the user i n i t i a l i z e s by typing a very br ief

loading command t o the PDP-8 Disk Monitor (f ive typed characters), and

DOGGIE i s loaded and s ta r ted . The Graph Monitor i s automaticalPy started,

and the display screen appears as i n Figure 5-1. The Graph Monitor i s

the user program segment which allows the user t o se lec t one of the

nine a l te rna t ives displayed on the screen" The Graph Monitor i s the

basic s t a r t ing point for aPP operations a% %he terminal using the Inter-

act ive Graph Theory System. The user may return back t o the Graph Moni-

t o r a t any time by h i t t i n g the Barge button on the pushbutton box

labeled "INTERRUPT".

When the Graph Monitor operates, the user i s expected t o se lec t

one of the nine functions displayed. To the l e f t of each function i s

displayed a small t r iangular l i g h t button'and a d ig i t . To make a

selection, the user may either use the light pen to point at a triangle

or he may type the associated digit at the Teletype. The effect of

either selection method is the same, which is the presentation of informa-

tive display messages, which in general give further choices for the

user to indicate the type of action he is seeking. Each of the nine

possible message displays after the Graph Monitor are unique and indicate

which choice was made in case the light pen pointing happened to be

sloppy. For this same reason, no irrevocable operation is performed as

a result of a first choice. If the user decides that the wrong choice

had been made, he may simply push "1NTERReTPTu to get back the Graph Monitor.

The following sections describe the various operations which can be

done at the DEC-338. Most of these constitute a general graph drawing

facility which is entirely local to the terminal. This includes manage-

ment of the window on the paper, and a complete facility for alteration

of the graph including arbitrary repositioning of vertices. The following

section gives more detail about the actual interactions which occur at

the terminal than the succeeding sections. This detail is included for

the reader who does not have the opportunity to either use the system

or watch it being used. Even so, there is much about the way the ter-

minal s'feePs's to a user which is important and yet cannot be easily

described in writing.

5.2 Create

When the user selects the first alternative available under the

Graph Monitor, the display screen appears as in Figure 5-2, thus

requiring specification of the particular ty-pe of creation to be done.

One consideration which arises as these choices are displayed is that

the light buttons of the new message should be sufficiently far from

s t ~ t c t wat PO tretlfe
& UEWEX

OORC L s l m
o art

OWRTOX kamga
Y nrw

Figure 5-2 Create Options

the location on the screen where the light pen slay remain after pointing

at the previously displayed message.

Initially, when there are no existing graph parts, the only rea-

sonable choice is the creation of a vertex. After the user points to

the corresponding light button, the screen appears as in Figure 5-3.

Note that again, he may retract his choice one level by depressing push-

button 5. 'This possibility is available after each of the five choices

of the creation operation. Of course, the user . m y also revert back to

the Graph Monitor by depressing "INTERRUPT". A graphical terminal pro-

vides an effective medium for correcting errors in operation. This

system takes advantage of that feature, thus being rather forgivfng.

Fram the state of the screen as in Figure 5-3, the user may use

the light pen to position the cursor and pseudo-pen-point shown in the

center of the screei?. After positioning, he depresses pushbutton 11

to create a vertex and the screen then appears as shown in Figure 5-4.

He now has the choice of altering the shape of the freshly created vertex

or labeling it. In order for the user to be sure which verkex he Just

created it is blinking at this time, A light buttorn is used for the

former and the latter option is accomplished by typing on the Teletype

keyboard. Figure 5-5 shows the display screen after the vertex has

been labeled. The user may then depress pushbutton 11 again to be given

the facility to create another vertex. As this is done blinking final3.y

stops on the previously created vertex. This precess continues until

more labeled vertices have been creaeed as shown in Figure 5-6.

PB I 1 C R t A T t S VERTEX nT PEN

OR rl) 6 TO CRLRTE NORL

E' iwe 5-3 Create a 'Vertex

YOU HAY VYPt R L R l t L
r C O l U T %RE TO CHRNBE S M W o

?I 11 TO CRtRTt T P

Figure 5-4 Fir s t Vertex Created

YOU flay PYPL a LRBEL
a c o ~ n t HERE TO cnanet snare

~e 1 1 TO cRtnTC NORE

Figure 5-5 FSrst V e r t e x Labeled

Figure 5-6 More Vertices

Next, when the user depresses pushbutton 5, he i s again given

the choice of what t o create a s shown i n Figure 5-7. Now i f he se lec ts

the Pight button labelled "ARC", the display screen indicates the first

step i n the creation of an arc. Figure 5-8 shows the instructions t o

the user t o point t o a from-vertex. The interaction which follows i s

typical of many s f the graph .mnipula%ion sequences which are avail-

able under the Graph Monitor. It i s also used i n the SELECT inter-

active user program a s described i n Section 4.7,6.2.2.10 When the user

points t o a vertex which i s ks be the from-vertex of the arc, the ver-

tex blinks and the instruc-bions Lo the user indicate t h a t the blinking

vertex w i l l be accepted only when pushbutton 11 is depressed. Unti l

then, the user .my point t o another vertex a s a tentat ive candidate.

This feedback i s part icular ly helpful when the user i s selecting an

ent i ty which i s rather close t o another selectable one. Since a dis-

played graph.my be located anywhere on the screen, a pushbutton rather

than ,a l i g h t button must be used t o indfcate the f i n a l choice.

After a from-vertex has been selected, the user m y e i ther se lec t

a to-vertex by pointing or use a pushbutton t o indicate he wants t o

create a loop. I n e i ther case the same selection procedure i s used.

Figure 5-9 shows the display screen a f t e r %he user has created an are.

He i s given the options of .making the arc a directed one by displaying

an arrowhead and he may also Babel it, Figure 5-10 shows 'the screen

a f t e r more labelled directed arcs have been created, and control has

returned to %he Graph Monitor.

The remaining options of the creation function permit the user

t o display an arrow on an a r c and possibly reverse its direction (if

it i s not a loop), and t o create a label for' a vertex or arc.

A UERI tX
R R C LRBEL

P ARC
o u ~ l t t x LABEL

o RRROU

Figure 5-7 Ready Lo Create Arcs

t o c ~ t n t t an nac
SELECT TROn-VERTEX UlTH PER

OR PI s YO C * Y O ~ ~ now

Figure 5-8 Creating F i r s t Are

Figure 5-9 F i r s t Arc Created

F i w e 5-10 More Arcs

5.3 Alter

The second alternative available under the Graph Monitor permits

the created graph t o be altered: When the user selects t h i s al ternat ive

the screen appears a s i n Figure 5-11. Under vertex alteration, e i ther

a vertex shape .my be al tered or a vertex may be moved. The l a t t e r

option i s most impressive t o perform since as the user drags a chosen

vertex around on the screen all. connected arcs are continuously adjusted

.to remain attached. This ef fec t is usually described as "rubber-banding".

A s %he arcs change orientation the i r associated arrows are also kept

painting along the proper direction. Figure 5-12 shows the display

screen a f t e r two of the vert ices have been.moved.

There are two ways i n which arcs may be altered. F i rs t , an a rc

may be moved, which.means %hat it may be redefined t o have any other

from-vertex o r to-vertex. Figure 9-13 shows the screen a f t e r the arcs

labelled "A2" and "A3" have been moved. The second type of arc al tera- .

t ion is the feature of bending an arc. This operation introduces an

extra Joint i n an already existing arc by actually creating a vertex of

shape number P i n the middle of the arc, The user miy .move t h i s bend

anywhere on the screen by the l i g h t pen, Figure 5-14 shows the display

screen a f t e r a bend has been introduced in to the arc labelled "A2".

Alteration of an arrow amounts t o allowing the user t o reverse

i t s direction*

Vertex and arc labels may be al tered i n two ways: an ent i ty may

be given a new tex t label., or the label may be .moved t o some other

position re la t ive t o the ent i ty. Figure 5-15 shows the f i r s t vertex

and a rc relabelled with "mu ma "Mu; the labels " ~ 6 " and "A7"

have been moved, and the Graph Monitor has been restarted.

s u e c T UHAT T O A L T E ~
A ULRTPK

PLIRC LWEL
r ARC

U t J S T C X LGPEL
A W R W

Figure 5-11 Alter Options

Figure 3-12 Two Vertices Moved

Figure 5-13 Two Moved Arcs

P P c R e R f e raue a t cnanee ~tscoow
a 2 RLYLR n6 RLSTORO o 6 TEXT CO~BOLE

n3 R L ~ W r e ~xecuta a s nlrc runcrto~tr

Figure 5-15 Label Alteration

5.4 Remove

The th i rd al ternat ive available under the Graph Monitor permits

the removal of any par t of the displayed graph: vertices, arcs, arrows,

and labels. When a vertex or arc i s removed, i t s associated par ts a re

also removed. When a vertex is removed a l l arcs which are connected

t o tha t vertex disappear. ('They are s t i l l defined i n the structure,

but cannot be displayed.) Figure 5-16 shows the same graph with the

following par ts removed: vertex "Vl", and therefore arc " A l q q , arc "A5",

the arrow of arc " ~ 4 " , and the labels of vertex " ~ 4 " and arc "A3f'.

Also shown i n t h i s figure are instructions t o the user fo r the removal

of an a rc label.

5 . 5 Save -
This alternative i s the fourth one available under the Graph

Monitor, It permits a user t o take a snapshot of the graph

defined a s being displayed on the paper. The graph i s encoded in to a

compact sequence of 12-bit words and saved i n the MULTILIST data f i l e

on the disk of the IBM 70b. It i s saved with from one to six alpha-

numeric keys (descriptors) which the user must ty-ge on the Teletype

keyboard* Before the graph i s saved, any graph already i n the fPle

is f i r s t deleted i f it i s described (a t leas t) by a l l keys being used

t o describe the new graph. Therefore each saved graph must have a

unique description. In order Tor %he graph t o be saved, a PIPJLTILANG

job ,must be executed on the IBlM 7040. The DEC-3% autamatically se t s

up t h i s job i n proper format, and iS must wait i n the job queue along

with other console jobs. The t emfna l i s termporasiJ.y aanusaibke fo r any

other operation u n t i l the execu%fsn of the 30b is eamplete; when t h i s

Y O RLnoue an arc LnBeL
SELLCP I N I R C Y l l H ? t W

Figure 5-16 Parts Removed

happens the Teletype b e l l rings. Saving a graph i s not a destructive

process. Saved graphs .my l a t e r be restored by description using the

operation described i n Section 5.6, and they".my be included i n the

input stream of an interact ive execution a s described i n Section 5.7.

5.6 Restore

The f i f t h al ternat ive available under the Graph Monitor gives t h e

user t h e f a c i l i t y t o restore t o the DEC-39 terminal any graph saved

away i n the MLTLTILISP data f i l e . Although only one graph.my be

restored t o the paper a t any one time, any number of graphs may be

retrieved from the MULTILIST data f i l e in to an intermediate "Restore

File." Then the user m y sequence through the l i s t by pushbutton con-

t r o l . The Restore F i l e is preserved a s long as no fur ther SAVE,

RFSTOm, or EXECUTE functions are performed. Therefore, when the user

se lec ts the IZESTORF: option, he i s given the choice of f reshly s t a r t ing

by restor ing same graphs t o the Restore F i l e and seeing the first one,

or he .my request the first graph of the Restore Fi le . I n the f i r s t

case, he i s requested t o type a description of those graphs t o be

restored. This may be any logical combination of keys including the

operators sANDq, g O R q , and ONOTq. I n order f o r a r e t r i eva l t o be per-

formed, a MULTILANG job must be executed on the Il3M 'j'0k0, The DEC-338

automatically s e t s up t h i s job i n proper format, and it must wait i n

the job queue along with other console jobs, The terminal i s temporarik,

unusable fo r any other operation un t i l t he execution of the job produces

e i ther the f i r s t graph o r no graphs;the Teletype bell rings when the

terminal is available.

Once the Restore File has been f i l l e d ss 8 resul t of a retr ieval ,

graphs .may be obtained essent ial ly instantaneously; it i s not

necessary t o execute another job. When any graph restorat ion i s

requested there a re only two possible responses. I f %here i s a graph

t o be restored, it is, and then the user i s given the choice of return-

ing t o the Graph Monitor, restoring the next graph of the Restore Fi le ,

or restoring the f irst gragh of the Restore F i l e , On the other hand,

if there i s no graph t o be restored an indicative ,message i s displayed

and the user .my request the f i r s t graph of the Restore P i l e o r he , m y

return t o the Graph Monitor.

The s ixth al ternat ive available under the Graph Monitor is used

t o i n i t i a t e or resume the execution of interact ive AI;EA. programs a t the

IBM 7040. When the user selects the EXECUTE option, Pie i s then

requested t o point t o a l i g h t button t o resume execution or type a

gFWVRN' on the Teletype keyboard t o begin. Resuming execution m y be

done only a f t e r interaction had already been. i n progress and the in ter -

active ALLA program executed the ESCAPE statement (see Section 4.7.6.1).

This causes the direct control. of the DEC-338 by the IBM 7040 t o be

temporarily suspended. The Graph Monitor i s placed i n control i n the

DEC-338. The user may take advantage of the loca l features of manipula-

tion, but he m s t not attempt ts use the SAVE or BESTORE options" Mean-

while the BBM 7040 hangs wafting f o r the DEC-338 t o send a s ta tus message;

t h i s happens when the user Psres~mes e x e c ~ t i o n ~ ' ~

When the user chooses to begin execution, he .must tylpe a descrip-

t i o n of those program decks (subroutines and functions) which are t o

be used fo r the part icular interact ive ALkA Job. Be need not specify

the standard system programs (e.g, GRAPIN) since those are always

automatically loaded. The details of the loading are covered in

Appendix 5. The description of program decks may be any logical cm-

bination of keys including the operators 'AND', 'OR', and 'NOTe. All

binary decks in the MULTILISC data file whose description corresponds

to the request will be retrieved for loading by the IBSYS loader. If

no decks .meet the description, the user will be informed of the error

condition. When nore than one deck with the same name is in the

MULTILIST file, the most recently stored version will be used; this is

not considered to be an error,

Next, the user is asked to type an entry point name. This must

be en deck name or subroutine name fnc9uded in the program decks requested;

it m y be from one to sfx alphanumeric characters.

The third request to the user is for a description of any graphs

he wants to be used in the data input stream for the interactive ALLA

program. He may type a sfiFllUF379 to specify none, or he m y type 8

description as any logical cambination of keys including the operators

'ANDP, 'OR', and 'NOT'. U P saved graphs in the MJLTIEIST data file

whose description corresponds to the request will be retrieved for the

data input stream. If no graphs meet the description, the user will

be informed of the error condition. In addition, the user may include

the graph currently displayed on the paper to be included at the end

of the data input stream. This is specified by typing an UP-ARROW

anywhere before the terminating YREZ'UREJ'. Graphs placed on the data

input stream may be read into the ALLA structure within an interactive

AUA program by a call upon the W I N subroutine described in Section

4.7.7.

After the user tries the 'RETURN' terminating the description

(i f any) of graph data, the DEC-338 autamatically s e t s up a MLTLTIMG

job i n proper format, and it nus% wait i n the job queue along with other

console jobs. The terminal i s temporarily unusable f o r any other

operation u n t i l the execution of the job produces e i the r an e r ro r con-

d i t ion or properly begins. The user i s kept infomed of the progress

of h i s job a s it begins loading and a s it begins execution. He need

not s t a re a t the display screen, however, since the Teletype issues

appropriate characters a s displayed messages change. 1% a11 goes well,

the f i n a l message displayed i s PMEWTION BEGUNq. Otherwise, an er ror

due t o any one of many conditions causes an indicative message %o be

displayed. The user i s then given the option of immediately using

the TEXT CONSOLE t o determine the source of the error . This i s

fur ther discussed i n Section 5.9.

During interact ive execution the nature of the operation of the

terminal i s dependent on the par t icu lar interacl ive ALEA program i n

control. If the program terminates by i t s e l f , the user is appropriately

informed. If the user wishes t o nanually stop interact ive execution,

he may a t any time depress the qINTERFUFTq button. If he decides t o

terminate execution a t a time when he i s using the Graph Monitor a s a

r e s u l t of an ESCAPE, he mst first resume execution and then use the

YINTERliWTq button.

5.8 Change Window

Witih the seventh a l te rna t ive available under the Graph Monitor

the user i s given loca l control of the window being used t o view the

paper. Light bu%tons w e available which allow %he user "to select,

the next smaller on. next la rger wfndow whenever apgrsgriate. Isnpossfble

choices a re not presented; fo r example, there i s no l i g h t button dis-

played which allows f o r a smaller window when the window size i s

already the smallest. hlen the window i s not FUI;E, the user i s given

the choice of moving the paper under the window frame by l i g h t pen

control. I n any window size, the user i s given the option 0% selecting

a window frame size on the paper and positioning any non-FULL, window

frame anywhere on the paper by l i g h t pen control.

Figure 5-17 shows the display screen a f t e r the user has selected

the CHANC3 WINDOW option under the Graph Monitor, Since the window

s ize i s HALF', a l l four options are available t o the user, Figure 5-18

shows the e f f ec t of choosing the next smaller window. Next, Figure

5-19 shows the display screen a f t e r the user chose the option t o posi-

t i on the window on the paper. The graph i s displayed with FULL win-

dow and three possible smaller frame sizes a re available. A frame

i s selected by pointing with the usualanethod of blinking followed

by a confirming push of pushbutton 11. Figure 5-20 shows the screen

a f t e r the smallest window frame has been selected. Next, t4e user

.my drag the displayed window frame around on the screen u n t i l he has

positioned it where he wants it (see Figure 5-21) . Then, when push-

button 11 i s depressed, the screen becomes the chosen window, a s

shown i n Figure 5-22. The option of moving the window i s then

selected a s shown i n Figure 5-23. The user may use the l i g h t pen t o

p u l l the en t i r e paper under the window, a s Figure 5-24 indicates

a f t e r the l i g h t pen has been used t o pul l t he cursor (andl therefore

the paper) upward and t o the l e f t .

Figure 5-17 W n g e Window Options

n snetct~ u~noou r rostrlon urnoou on rnrca

;-G%SL u m o u amUt rlnl w t w R v r n w
>-

-- *--- - --
Figure 5-18 F(KIR& Window

--- --

Figure 5-.25 -~lsce~~aneous ~unctf on; -

a t r i v i a 1 , m t t e r f o r any user t o add a new program segment t o h i s

copy of the DEC-338 disk. The program PIP (peripheral. Interchange

program) . m y be used f o r t h i s purpose or t o delete unwanted program

segments from the disk.

5 . lo . 1 DOGGIE Interpreter (DOGI)

The user program DOG1 was or iginal ly writ ten t o a id i n debugging

DOGGIE, but it has since been proven useful a s a demonstration and

learning a id so it remains available. The program enables a

user t o campose DOGGIE commands on the Teletype i n the syntax used t o

describe the language i n Section 4.4. The symbol table of the program

includes a l l DOGGIE words a s given i n Table 4-2. A s the user types a

command, each word i s checked; i f the program does not recognize an

input word, it ignores it and responds with "7". Unacceptable char-

ac ters a r e ignored and cause the Teletype b e l l t o ring.

A user .may caqose a sequence of commands by using "," a s a

separator between two successive cammands. Interpretation does not

occur u n t i l a "FENRN" i s typed. The buffer used t o hold the 12-bit

words being camposed i s YO0 words long. I n order t o prepare commands

which exceed the width of the Teletype carriage, the user m y type

"VERTICAL TAB'' (c t r l K) t o indicate continuation. This causes a "-"

t o be typed followed by an indented new Pine. Since "-" i s no% a

legitimate input character, the typed copy i s no% ambiguous,

Each expression typed, delineated by ",'>~lnay consist of any nun-

ber of terms. Each term may be e i ther a DOGGIE word or an oc ta l num-

ber. Only the Past four d i g i t s of an ocP;al number a re taken t o be

the value of such a tern. The user may cause the program t o ignore

the command sequence he i s typing by h i t t i n g e i the r "ALT MODE" or

"RUB OUT" a t any time. The program responds by typing " # followed

by a new l i n e f o r a f resh s t a r t .

Since a "REXJRN" cannot be used a s one of the characters of a

label , the program w i l l autamatically type a closing "at-signvf and

proceed t o in te rpre t when the user ty-pes a "ml' in the midst of

a character s t r ing.

The "INTERRUPT" button m y always be used Lo release control and

r e s t a r t the Graph Monitor. I n addition, the user may type "c t r1 ElP

i n order t o end o r ex i t . - -
5.10.2 Display Internal Names (INAM)

When using DOG1 (see Section 5.10.11, it .may be helpful t o know

the in te rna l names of cer ta in ver t ices or a rcs being displayed. The

INAM user program i s used t o l abe l any one vertex or a rc or aPP ver t ices

or a l l arcs with a &-digit oc t a l nuniber corresponding t o the internal

name of the en t i ty . This i s acccsmplished through user selection by

l i g h t button and pushbu%ton control.

The " I N T E R m " button i s used t o cease the labeling process

and r e s t a r t the Graph Monitorc

5.18.3 Paper Tape Storage of Graphs (XCGL)

Many research proJecks a t the University of Pennsylvania use the

IBM 7040 f o r cer tain systems which are incampatible with %he Moore

School Problem Solving Fac i l i ty . Therefore, the .multi-console operating

system which i s needed f o r the .major coquta t ions of the Interact ive

Graph Theory System i s no% always available. This r e s t r i c t s any

work with graphs t o remain loca l a t the DEC-338, I n t h i s mode a l l of

the graph drawing and manipulation f a c i l i t i e s a re avaiPab1e. This

use of the loca l system motivated %he w r i t i n @ ; of a program which allows

the saving of a graph on paper tape. The saved information d i rec t ly

corresponds t o the encoding used by the SAVE: function described i n

Section 5.5. Since paper tape has only eight information channels, a

compressed binary format i s used where three l i n e s of tape correspond

t o two 12-bit informzition words.

A corresponding loader program has a l so been m i t t e n which reads

a paper tape punched i n the compressed binary format f o r graphs and

re-creates the saved graph.

The punch program and loader program have been t i e d together with

a small monitor, named XCGL (fo r Extended - - Compressed - Graphical ~ o a d e r) , -
which gives the user l i g h t button and pushbutton control over loading

and punching graphs. The " I ~ ~ " button m y be used &o r e s t a r t

the Grapli Monitor.

5.10.4 F in i t e State Acceptor Interpreter (FSAI)

Although the IBM 7040 i s supposed t o be the computer used f o r

graph-theoretic computations, the FSAI user program has been written

t o demonstrate the power of the s m a l l machine. The program in terpre ts

a s t a t e graph prepared i n a prescribed format and car r ies out the

operations of a f i n i t e s t a t e acceptor using the Mealy model. Inpuk

symbols a re taken from the T e l e w e keyboard or reader, and symbols

(or even strings) a r e outputted st the T e l e t y p pr in ter (and punch

i f desired),

The FSAI program initerprets a graph which is of any connectivity,

but has a unique s t a r t ing s t a t e indicated by a special. shape - the

l a rges t vertex shape (number 7). A11 arcs are assumed t o be directed

independently of whether t h e i r arrows are displayed. Each arc

represents a possible t r ans i l i o n from one s t a t e (vertex) t o another.

A label m y be of the form:

where each X i s e i ther a single alphameric character or the special -
terms "W" o r "NUMff. "EFT" i s a shorthand f o r any alEjhabetic

character, and "NUM" represents any d ig i t . The - Y g s a re any characters.

The program begins by blinking the s t a r t ing s t a t e . When s

character i s typed (or read) each arc directed out of %he current s t a t e

is checked. Each X or each arc l abe l i s checked until a .match occurs. -
I n t h i s ease a t rans i t ion occurs t o the new s t a t e t o which the corres-

ponding a rc points. If the l abe l included some - Y s s , they a re typed out.

Blinking of the previous s t a t e stops, and the new s t a t e blinks t o

indicate the current s ta te . I f there i s no match on any labeled arc,

then if there i s an unlabeled arc leaving the current s t a t e , it i s

taken; otherwise, the s t a t e remains unchanged as i f there had been

no inputY The process continues as each input character i s given.

The "INTEEIRWT's button i s used t o stop the process and r e s t a r t

the Graph Monitor.

CHAPTER 6

APPLICATIONS

6.1 Introduction

This chapter presents examples of the application of the Inter-

active Graph Theory System to three different types of problems in

order to demonstrate various properties of the system. Each example

includes program listings, pictures of the display screen, and explana-

tory text. The first example finds the shortest path between any pair

of vertices in a weighted directed graph. It demonstrates the use of

data associated with arcs and a method for indicating particular sub-

parts of a graph. The second example demonstrates ,more interactive

methods where graph connectivity and vertex positioning are used by the

algorithm in order to produce an aesthetic presentation of a tree. The

third example is the solution of a purely graph-theoretic problem which

produces an arbitrary number of graphs as a solution. All three exam-

ples serve as further demonstrations of the use of the interactive N U

language.

6.2 Shortest Path

Given an arbitrary directed graph the problem is to compute a

shortest path from a selected starting vertex to a selected ending

vertex. A non-negative integer weight oi cost is associated with each

arc of the graph. The cost of a particular path in a graph is the sum

of the costs associated with the arcs comprising the path. The term

"shortest path" is used to indicate a.minimaP cost route. This problem

has a wide variety of applications particularly in networks of connuunica-

tions or transportation systems.

A solution of the problem has been programed for the Interactive

Graph Theory System with interactive user selection of the starting ver-

tex and ending vertex. If there is no possible path, the program will

so indicate; otherwise, a shortest path is displayed as a set of bright

arcs against a background of the dimmed graph. The user is then given

a choice of either choosing another pair of vertices or arbitrarily

altering the graph before another paLh is requested. Alteration would

typically consist of assigning new weights or even changing the structure

of the graph.

One entity function named SHPTHIS (for - shortest path, - - weighted)
computes the path given a graph with each arc having an integer property

WEIGHT, and given the starting vertex and ending vertex. The value

of the function is a set of arcs which comprise a shortest path. If no

path is possible, the set is eurpty. A source listing of the SHPTKW

fun.ction follows.

t i t T I T Y F U h C T l O h S H P T H W (A , B , G)
C N T I I Y A ~ B I G , O S ~ T , T D S E T , V ~ O A V ~ R V O A V ~ A A

---~-.-_-,--- L O G I C A L S \ \ I I T C H - - -- -- -- - - ----- - -
E N T I T Y I N A R C , O U T A R C

_.---.- I R T E G E K W E I G H T , D i S T ----------------------------A- .-- -- -
P R O P E R T Y D I S T

- -- T H R O U G H 1 0 F G K b L L V I N L E L M (G 1 -- - - - - - - - - - - -
10 C I S T (V I = AOOG0000

-- . D i S T (A 1 = O . . . - -.---- ----. . ..

I N S E R T A i N T O C R S E T (D S E T 1
.. 20 . . T O S E T = D S E T -.. *..

C R E A T E S E T C S E T
. - - - -. - T h i t O U G H 40 F O R A L L V I N TDSET . -. - .. - .

THKUUGh 3 0 F O K A L L OAV I N O U T A R C (V 1
. R V O A V = RELP.(QAV) ... -

1 F (D I S T (R V O A V 1 .LEO (O I S T t V) + W E I G H T (U A V I 1 1 G O T 0 30
C L S T (R V O ' 1 V J = C I S T (V) + WEIGHT(UAV1--.------.---------.--.--- - - -

I N S E R T K V O A V I h T O D S E T
3 0 CObiTTNUUE - - - .- - - -. - - . . - - - - - - - - - - . - . .. -
40 C O N T I N U E

D E L E T E . I D S E T - - .. . - . - -. - -
I F (. N O T . E M P T Y (D S E T)) G O T 0 2 0

. - - - - - -. - . . . -- - - - D E L E T E D S t T - . .- .- - . - . - - - .. - - - - .. - .. -

C R E A T E S E T S H P T H W
--------.. ~ ... - I F . (C I S T (8) , EQ, 10000000) C(JTO 3QQ .- - .- -

v = B
1 1 0 1 F [V ,EQ+ A) GOTC; -300-.- --.--.- -

THROUGH 120 F O R A L L AA IN I N A R C (V 1
- - -- - 1 2 0 . . - . I F (I D I S T (LELM(AA1) + W E I G H T (A A)). r E Q s - . - D L S T (V l) - GOT0 '130

. CALL E H R I J H (6 H S I ~ Y T H H)
. - - - . - - - 130 - -- - I N S E R T A A I N T O - S H P T H W -, - - -. -. - -. .. - - -. - - - - A - - . . - - - - - - . . . -

V = L E L M L A A I
-- G O T 0 - L - I 0

300 RETURN
END

The aim of solving this problem was to demonstrate the use sf the

AUA language and typical ty-pes of interaction. There is nothing

special about the method used for the computation. It is already a

commonly known algorithm of E. 3'. Moore.[44] It begins by assigning

an associated distance of infinity (actually ten million here) to each

vertex in the given graph. The starting vertex is given a distance of 0.

The distance property represents the minimum known path cost from the . .

s t a r t i n g vertex. I n i t i a l l y , the distance assigned t o the s t a r t i n g ver-

t ex i s t r i v i a l l y known t o be 0 . A l l other distances a r e assumed t o be

i n f i n i t e since without considering the graph's connectivity a l l other

ver t ices a r e po ten t ia l ly unreachable.

The SHPTHW function assumes each vertex of the given graph has a

s e t of I N A R C D s and a s e t of OUTARCPs (see Section 3.19.3). The algorithm

consis ts of two par ts : a search followed by a t race . The search begins

a t the s t a r t i n g vertex and a distance i s assigned t o each vertex which

can be reached from the s t a r t i n g vertex by t ravers ing one outgoing a re .

Next, distances a r e assigned t o ver t ices which a re connected by an out-

going a rc t o the ver t ices Jus t assigned. The distance of a next vertex

i s equal t o the distance of the previous vertex plus the $eight of t he

a r c . If a distance had already been assigned t o a vertex, it 1 s replaced

with a new distance only when the new distance i s numerically smaller.

This process is repeated u n t i l rz pass i s -made which does not improve

any distance i n t he graph. A t t h i s time, the distance associated with

each vertex i s the m i n i m cost t o reach %hat vertex s tarking from the

given s t a r t i ng vertex.

In terms of the EXFTHW function, TDSET i s the see of previously

assigned ver t ices a s each pass occurs. DSET i s the s e t used t o keep

t rack of the new ver t ices being assigned during a pass. The search pa r t

of t he algorithm i s between statements 20 through two statements past

statement 40. Then there i s a check f o r whether the given ending vertex

has been assigned a distance. If i t s distance has remained in f in i t e ,

then it cannot be reached and there i s no t race . Otherwise, the t r ace

begins near statement 110.

The t race s t a r t s with the ending vertex. Each incoming arc i s

considered along with the vertex from which the arc emanates. If the

distance of tha t vertex plus the weight of tha t arc equals the distance

asdigned t o the ending vertex, tha t arc is par t of a shortest path.

This process continues u n t i l the s ta r t ing vertex i s reached a t which

point the answer has been computed.

The SHPTHW described above performs the necessary computation t o

f ind the shortest path through a graph, but i n order t o interface t o a

user, an interactive AUA routine must be used. The subroutine SHPATH

has been written for t h i s purpose. A source l i s t i n g follows.

. -
S L B R O U T I N E S H P P T H
E A T 1 T Y 6, A v F K O P , V t TQVp SHPtSHPTHk
I N T E G E R WEIGHTtLABELltINNAME,GMISC,BITS~ASCDEC
Lot;icAL S H l T C H . . - - x - - - - - - - - - - - - - - . . .

P H O P E K T Y h E I G H T
5 C O G 8 L I N K M

G E T C R A P H G
...................... C A L L I h O U T (G J

THROUGH 10 F O K A L L A I N R E L M (G J
.- . - . - - h E 1GH.r (A) . = A s c D E c (L A B E L 1 (A])
10 H E M P K C P L A B E L L F R O M A
20 . S k l T C t . 1 = . F A L S E . .. -

C O G S T A R T L T P E R WHOLE V E K T E X v A L L
- - - - - - - . . - - - -. - . D O G S T U P L T P E N WHOLE V E R T E X L I S ~

T h R U U G H 2 5 F O R A L L FROMV I N L E L 1 " t G I
I F tDITS(33r35tGMI-SC(FROMVI-)- oNEe 1)
I;CG (I N N A P E (F K O M V 1)

25 r I N U E . .- . - - -

L O G 0
C A L L M E S S A G (3) - - - - .

C O G S T R I N C , ' S E L E C T A S T A R T I N G V E R T E X s
. CALL - S E L E C T - - ----- T -- -- --

TI-IKOUGH 3 0 F O R A L L FROMV I N L E L N (G 1
------- 30----- - - - - - IF (I N N A M L ! F A O M V) e E Q w L P H I T 2) G O T 0 4 0 - . - - -

3 5 , C A L L M E S S A G (3 1
.................... C O G S T R I N G 'NO V E R T E X S E L E C T E E * . . -

S W I T C H = .TRUE.
G O T O 90 - - ... - ...-.. .-.. - -- ..--Me---. -

40 C O G S T A R T E X I S T SFAPE V E R T E X 4,(LP,tiIT29
.............-..... COG S T O P U L I N K WHCLE V E R T E X , (L P H I T Z I

COG S T O P L T P E N WHOLE V E I I T E X t (L P t i I V Z B
....................................... - - - - - - - - - - - - . G A L L - M E S L A G (3 1

D C G S T R I N G * S E L E C T E N D I N G V E R T E X D
G & L C - . - S E L E C T - - . .- .- ---.- ---- . .- . - ...
T H R O U G H 5 0 F O R A L L TOV I N L E L M (G 1

(I N N A M E (T O V 1 - . EQ. L P t i I T 2) GOTU 60
DOG S T A R T E X 1 S T SHAPE V E R T E X 2, (INNAPE,(F R O M V I

.GOTQ 35

---- - - -. -- - --- --. . -. -. .

60 COG S T A R T E X I S T S H A P E V E R T E X 7 1 I L P H I T 2)
-----.---.. ..------.A- COG S T U P B L I N K NHOLE V E R T E X * (L P t l l ' 6 2 P - - . .

SHP = S H P T H W (F R O M V , T O V l G)
.-----._-. I F [E M P T Y (S H P 1 1 G O T 0 8 0 -.- --_. .

COG O I K M 3
- C O G .START.. .DIK. hHOLLARC -7- L l S T - * ~

THiXUUGH 7 0 FOKPLL A I N SHP
70 .------.COG (IhNAFL (A ,)) - . . . - - - . . - .

C O G 0
. . - - - .. - C E L E T E St-11'

C A L L M E S S A G (3 1
G OGS T R I NG-- ' -A -SHQRTEST----PA T-K-1.5---SHOWN 9.- .. - -. .

G C T O]LOO
. * - - - - - - - - - - - - - -

80 CALL M E S S A G I 3 9
- - - - - - - - ----- C O G S T K I N G a [HEHE HS N O P A T t 1 8 ---

90 COG OiMlc l 5
1 0 L C A L L MESSAG(2 I - - - -- - --------- -- - ------

C O G S T K I N G @ P O 10 FOR A N O T H E R P A I R Q
-------- ---- - - CALL MESSAG(1 1

0 0 G S T R l N G " P B 11 T O A L T E R G R A P H s
--------.------ --- OI;G O

UGG START D I M k H G L E V E R T E X LIST+XNTENS~4093~409404095pO
- - C A L L CLKPC(LO r l L I - - - - - - - - . -- ---- -- - - - -- --- -- -

200 h A I T C H A I L G E
---- - ------- 1 k (.NUT- I P R (l O I . O R m P B (1 1))) G Q T U 2 0 0 - - -

I F (S W I T C H) GCTO 210
------- - - CGG S T A R 1 E X I S T SHAPE V E K V E X 2 L I S T

D O G (i t I N A Y E (F R C M V f) i (I N N A M E (T O V)) , 0
+ L C (P U (1 0 1 4 - - ~ 8 -----

COG O L I N K P
- - - - - - - . . C A L L DELGRAIGP

E S C A P E
,

G O T Q . - S

E N D

The SHPATH subroutine begins by get t ing the current graph from

the DEC-~& and computing incoming and outgoing arcs. Next, each a rc

l abe l i s replaced by an integer representing i t s weight. The user i s

then given a choice of selecting a s t a r t ing vertex using any vertex of

the graph whose shape i s not B (used f o r bends i n bent arcs). I t i s

assumed t h a t a l l ver t ices (which a r e not bends) a re i n i t i a l l y of shape

2. When the user se lec ts a s t a r t ing vertex, it i s changed t o shape 4,

which makes it a larger dot. The user i s then requested t o choose an

ending vertex. When t h i s i s done, it i s changed t o shape 7, e larger

c i rcu lar shape. The next s tep c a l l s upon the S H P W function t o compute

a shortest path. If the answer i s an empty s e t the user i s informed

t h a t t h e r e i s no path. Otherwise, the whole graph i s dimmed down t o

in tens i ty l eve l 3, and the a rcs comprising the path a re in tens i f ied t o

l eve l 7. I n order t o remain conspicuous the user message l i n e s a re

brightened back t o the overal l picture in tens i ty leve l . The'user i s

given a choice of e i the r choosing another pa i r of ver t ices or a l t e r ing

the graph. 'Phe.Patter choice causes the old graph t o be deleted and

.control i s given t o the loca l manipulation f a c i l i t i e s of the Graph

Monitor. Later, when the user resumes execution %he subroutine r e s t a r t s

by get t ing the graph again.

Figure 6-1 shows a weighted graph a f t e r a user has selected a

s t a r t ing vertex. Figure 6-2 shows the r e su l t of a shortest path rompu$a-

t ion .

6.3 Tree Layout

This example be t t e r demonstrates %he advantages of an interact ive

system since a problem i s attacked which is concerned with human

judgment. The user i s expected t o c a l l upon t h i s routine with a special

Figure 6-1 A Weighted Graph

1 O)*WlTtUT PATH 19 O))oOI
n la ran Anorwr mta
PO 1 0 te anr W~OO

Figure 6-2 A Shor%es% Path Computed

type of graph displayed at the terminal. The type of graph on which

the algorithm operates is called a tree. When regarded as undirected

this type of graph is one which has no cycles. This means there are no

paths in the graph which have the same starting vertex and ending vertex.

An equivalent definition of a tree is: a graph whose number of vertices

is exactly one more than its number of arcs. If a graph is regarded as

directed, then a definition of a tree becomes more ifivolved. It must

have a unique vertex called a root, and starting from the root, each

vertex must be reachable by exactly one path. Section 3.19.5 gave an

algorithm for determining whether a given graph is an undirected tree

in the form of a logical function named NUTREE. Section 3.19.6 presented

the logical function M'REE used for determining whether a given graph is

a directed tree with a particular vertex as a root. Both of these

functions are used within the subroutines written to perform tree layout.

The example which has been implemented accepts an undirected tree

and a user-selected vertex to be taken as the root. Any arrows of the

given graph are-then re-oriented so the graph is a directed tree with

the chosen vertex as root. The computer then repositions the root at

the top of the screen at the center. Each vertex a of depth 1 (namely,

those which are at the other end of all arcs leaving the root) are

repositioned along the same horizontal line below the root, All vertices

of depth 2 are repositioned along a Power horizontal line, etc. This is

done in such a way that no arc crosses another. Also, the relative

positions of vertices in the given graph are preserved as long as the

constraint of tree-like S.ayout can be met. The tree is positioned to

nearly fill the display screen, independently of window size.

After a tree layout has occurred the user i s given three choices:

he may re ta in the graph and permute arcs, he may select another root,

or he may revert t o the Graph Monitor fo r a rb i t rary graph al terat ion.

The f i rs t al ternat ive i s used t o move a vertex t o a new position on

the horizontal re la t ive t o other vertices of the same depth. A l l arcs

and vert ices below the repositioned vertex w i l l r e t a in t h e i r re la t ive

positions.

The organization of the progrem which underlies t h i s example is

of the same form as t h a t used i n the shortest path example. A subrou-bine

named TRBELA i s the main program which includes a l l of the interactive

operations. It c a l l s upon the subroutine LAYOTR which performs the t r e e

layout algorithm. Although the subroutine i s called i n a fixed way,

.it is written t o perform a t r ee layout i n a given rectangular area

according t o four integer arguments representing Bower and upper x- and

y-coordinates.

In view of the pr.evious description, the source listing of the

TFEEU subroutine follows without further explanation.

. S U B R O U T I N E T K E E L A
i i ~ T i T Y G , R O O T ~ V , V l , C I S T ~ A , I N A K C ~ O U T A R C t N E X T V

, , . - - . . , INTEGER I N N A R E s Y C O O R D ,XCaORO---.-.-.---.--- -. - - .

L O G I C A L N C T H f E
_---,--- '.. -.-+ P R O P E R T Y 1 N A K C p O U T A R C , XCOURD

10 G E T G H A P H G
._-..--_IF INUTKEE(GI1 G O T O 30

C A L L M E S S A G (2 1
_ . . . U O G S T R I N G ' TH.LSIS-NO.T-.A--IKEE.?.-:- ----.-. .- .

1 5 C A L L M E S S A G I . 1 1
......... C C G S T K I N L PB 11. .TO ALTER. GRAPH* -. -

C A L L C L R P B (1 1)
. . - 20 N A I T C H A N G E - . - - -

I F (. N O T . P B I l l) l G O T 0 20
. 2 5 .CALL D E L 1 ; K / S (G) -.-. -. -.-.--- - -.- .- - .- -- -- - - ...

E S C A P E
G C T O 10 -.... -

30 COG S T A R T L T P E h k H C L E V E R T E X o A L L
- --------- . -. - - C A L L M E S S A G (3) -

C O G S T R I N G ' S E L E C T A R O O T g
. - C A L L - S E L E L T ----

T E K O U G H 4 0 F O R P L L KOOT I N L E L M t G l
.... -------.-.40e.. - - - - . - I F (IN ILAME (R O O T 1 s f 6)- L P H I . T 2) GOTO 50 - - - - - . .

C A L L M E S S A G (3 1
-------- CL;GSTKlNG a NO V E R T E X SELECTED@ - .

G L r O 15
5 n C A l . L .ihOUT (. G) . - -. *. - - - - .- - - . -. . --- .- - - -- . .-. .

C A L L U N D I H (G)
. . - - - - - - .. - - - - - -. - - - . C O G -START E X 1 ST S H A P E V E R T E X 7 , (L P H I T Z I - - . - - - - - - -

COG STGP U L I N K WHCLE V L K T E X , I L P H I T Z)
. - - - .. -, - - - .. - .. - - - - . I N S . E R T .ROOT I N T U C H S E I (L 1 S T)

TIIKCUGH t10 F O R A L L V I N L I S T
Vhi l lOUGH-- 70 F . O R A L L - A - - 1 I J UU-TAR&.(-V b----
I F (L E L M (A 1 . E G c V 1 G O T U 60

~ . R E L M (A 1 = L E L M (A 1 . . -
L E L M (A 1 = V

.--------.--COG S T A R T E X 1 ST N A P E S ARC, (LNNPME(A) 8 -

COG (I N i J A P E (R E L M (A 1)) r (INNAMEILELM(AI1)
6 0 - - N E X I V -= R t L M (A) . -. - - - - -. . . - - - - . . .

K L R O V E A I-KCM O U T A R C (N E X T V 1
. - . . . - .. . III\;AKC P N E X T V 1 = C R S E T f TEMP-) - - .-

I h S E R T A I N T O TEMP
........ 7 0 - I hSCHV N E X T V OhVO LIST ' . - . - - -

8 0 HLPOVE V FHUM L I S T
-- JJOGFLUSH - - - - - -- --- - - - -

CALL M E S S A G (1 1
COGSTRING--@ COHPUT INGO- -- ---- -- - .

OOGFLUSH

, ..90.--CALL L A Y U T R (G r L i 0 C . T r L12Leo 1 9 4 b 9 1i!24e1948) . --..

L C G S T A R F E X I S T COO%OS V k R T t X L I S T
.,L T H H O U G H 1100 F U R A L L V I h L E L M t G)

100 C C G (I i % N A R E (V) l p [Y C O O R D B V ~ I V 4XCOUKEIVII
. . I CCIG Q

L O G S l ' A K h E X I S T SHAPE V E R T E X 2 9 [L P H 1 6 2 1
-150 -,___.CALL RESSAG 13 1 , - - - - - --. .. -- -..-. -.-. - . -.- - -. .

C t G S T K I N C , 'PO 9 T Q P E K M U T E A R C S "
I CALL MESSAGLZI

C C G S T R I N G ' P H 10 FOR ANOTHER .R'OC~Ts
[;ALL M E S S A G t 1) -

C C G S T R I N G ' P B 1 1 T O ALTER GKAPHs
. C A L L C L K P B (. 9 9 10, 11 ----.----.---..--..-.--.-----.-..--------. -

200 k A l T C t i A I 4 t i L
. - - .- - . I F (P O (Y) 1 G C T C 290

I F (P B (1 0)) G G 7 0 30
. . I F (P O (l i l) G G T U 2 5

G O T 0 200
. ---290---- CALL ' E S S A G L 3 9 --

L C G S T R I N G ' P a i h T T O A V E P T E X T U M O V C *
. ---- C C G S T C P L T P E N WHCLE V t K B f X , (~ N N A M c (H O O T P I

C A L L S t L f C T
- C O G S T A K T L T P E N WHOLE V E R T E X (INNAkE BR80T P)

Tt - IKOUGH 2 9 1 F O R A L L V L I N L E L M (G 1
741 B F : (I& \ i fLAP\E (V 1) , = Y e . L P H I T Z) GOTQ-..29& -

G C C O 1 5 0
- . - - - - 292 C(.G PSEUDOp L L P t I I T 3 1 0 (L P H L T 4 P - -

i;LG S E r C l J K o PEhPN? 9248 PENPNT
- - - - - - . . - . - . - -. . . CALL G L K P B i 7 p P l P

C A L L SETPBc8l
. . - - . - - - - . . - - . - . .CURSQK.- -.

C A L L P E S S A G 1 3 1
- - - - - .. - - - - COGSTRlNL; 'P.OVE P E N T O NEH R t L A F I V 4 E s - . -

C A L L kfS3kGI2 9
. C O G S T R I I U G P G S I TIGN O F - T H E - - V E R T E X C

C A L L M E S S A G ~ 1 P
C(-:GSTR I ti(; 9.YB . 1 1 .-..WHEN .DONE-@-.........

293 W A I T C H A h G E
. - I F (. N O T . P U (L L)) G O T 0 293

OOG S T O P C U R S O R
..... C A L L CLHY b l d P

C O G S T L l P B L I N K WHOLE V E R T E X * ELPHITZP
- I F (GHYSj-U --.- E Q e . . Q) GOTO 150 .- ~ - ..-.

X C O O H D (V 1 1 1 = P C 2 4 9 X P S E U O
. - C O T 0 90

E N 0

The EAYOTR subroutine i s the heart of the t r e e layout process.

1 % ~ arguments a re the graph (t ree) and i t s root plus four arguments

signifying the rectangular area t o be occupied. The purpose of the

subroutine i s t o assign new XCOORD and YCOORD properties t o each vertex

of the given graph. The YCOOR13 i s assigned only according t o the depth

of a par t icular vertex and the maximum depth i n the given t ree . I n

order t o assign values t o x-coordinates, the OTJTARC se t f o r each vertex

i s first ordered according t o the x-coordinates i n the given t ree . Then

a pass i s made f o r each leve l of the t r ee u n t i l a l l endpoints a re

collected in to an ordered s e t according t o the ordering of the CKTTARC

se ts . Endpoints a re then assigned x-coordinates so tha t they a re spread

equidistantly. This assignment determines the r e s t of the positioning

since each remaining vertex i s essigned an x-coordinate which i s the

average value of the x-coordinates of those vert ices which a re connected

d i rec t ly below it. This part of the U program demonstrates the use

of a pushdown l i s t .

A source Listing of the LAYOTR subroutine follows:

- S L U l t U U T I N E LAYOTR(GpROOT,XYMINVXXMAX,YYMIN,YYMAX)
E N T I T Y G I R O O T I E M D P ~ V , P O L ~ C U R R V ~ I) U T A R C
E N T l T Y NEHOUl 9 O U T A V t A ,MiNARCvNEWENk) . ---.. -.- -
I N T E G E R X X M I N r X X H A X , V Y 1 4 1 N p Y Y M A i c , X r J i l N ~ X M A X , Y M i N , Y M A X

. . - - . . - - - - - - - - - - - - . I N T E G E R 1 E M ~ ' ~ D ~ S I Z E ~ S U M o t J , Y C O O R D ~ X C O O R D o D E P T H ~ C A R O - .

I N T E G E R X C , M I N X
.- - R E A L NUMt DEN, D E L T A

L O G I C A L B T R E E , S k i 1 TCH
..... . . . - - - - - - - - - - P R O P E R T Y Y C D O K D t X C C O K C r O U T A R G .-..--- ----- ------

1F [D T R E S [G , R U O T I T E P P) G O T O 10
.~ - .. --- -- .. ------ - .. CALL E R R O R (, 7 5 H @ L A Y O T R G I V E N A NON-TREE)

10 X M I N = M I NO(I A B S (X X M 1 1 4) , l A B S (X X M A X 1)
... X M A X = K A X O (I A B S (X X M I E J) , l A U S (X X M A X I 1 - - - - - .

Y N l N = M I N O I l A E S ~ Y Y M I N) , I A B S I Y Y M A X I)
-. -... Y i 4 A X = M A X O I I b C S (Y Y M I N l v I A I J S (Y Y F B A X) -) -- ----- -- -

T H R O U G H t3O FOKALL V I N L E L M (G)
-.......----- C R C A TE SE T NE WOUT - - -..--

OUTAV = O U T A K C (V)
.- - - -- - -. -~ 5 0 ---.-...IF (E M P T Y (U U T A V)) - C O T O 7 0 . -

M I N X = 1300000
- T HR IJ iJ G H 6 0- .+-OR A L L- -4.. .-OUT-&V-------------

X C = X C O O K D (R E t M r . 4) l
-.-..--... . - - . . - - --- - - - - - ... I F (X C ,,GE. M I h X) G O B U 6 0 : ---- . .

M I N A R C = A
. - - - - - . - . . - . - - - M i N X = X C - - - . - -. . . . -

60 COIVI I N U E
1 I S E g T f l 1 NARG-INTIJ- . - f lEWOUT ----------------.-------- -.

R E W O V E V I N A R C F R G P OUTAV
....... - - -. - - - - - . - . . - - -. GOTO 50 -

70 . CELETE O U T A V
........ - .. 80 - - C U T A K C (V 1 = NEhOUT . -. . - - . - I

I N S E R T R O G T I N l O C R S E T (E N D P 1 I

- - - - -- -- S W I T C H = . F A L S E *
t

C R E A T E SET NEkEND
- - - - . - - . - THHOLGH 130 FCHALL V I N ENDP -

C U P A V = O U T A R C (V 1
-.-- - --- I F (E M P T Y I O U V A V) 1 GOTO 8 2 8 - - -- - - - - - - - - - -

SWIFCH = - T R U E .
THROUGH 110 FORALL A I N O U T A V

11Q I N S E R T R E L M 1 A) I N T O NEWEND
G O T 0 130

1 2 0 I N S E R T V I N T O NEkEND
. - 1 3 0 - - 4 0 N T NU&--- ----- - ---- - ------- - - - - - ----- -- --. - - - - - - - - -

... -. .- - - ..- - - . - -. - .. -

D E L E T E ENOP
--. --- ..--. . . . ------- ENDP = NEMEND ---- -- - --.-.- ------.----- - -. - --

I f - (S W I T C H) GOTO 100
NUN = Y M A X - Y P l N - - .. - . - - - .. - . - . ..

D E N = U - 1
... I F (D .NE.1) D E L T A = NUM/DEN . . -. -. - .. - - - . - - .. -.

THi?OUGH 1 5 8 FCRALL V I N L E L M (G)
---.-.-._____ XCCLiRD (V l =. .- 1 - - _ - _ - _ - - ---.--..--- --

R U M = D E P T H (V) - 1
._ . S I L E = NUEL*CELTA - -. - .- - . .

1 5 0 Y C O O R D (V 1 = Y Y P X - S I Z E
-. . - . - - - - - NCM = X M A X - X M I l J - . . .

CEN = C A R O (E N D P 1 - 1
. - . - - I F (CEh.NE.0.) QEL.TA--.= -NUM/Ua--- - - --- --- . . -- . .-..

hUM = X M i h
. - .- ~ THI<OUGH 160 FORALL V IN ENGP .-

SIZE = NUM
. - . X C C O K D (V 1 = S I Z E

160 hLiM = NUr4 9 OELCA
- ------ CtLEl E tfJLP - - - ---- - - -- ------ ---- -- -- * ---.-

P U S l l ROOT O N T O C R S E T (POL)
- - - - - - - 200 I F (E M P C Y (P U L I 1 G O T 0 300

C L K K V = POPiPGLI
.--- - - - - 3 U k = 0

N = O
.... -...... -... ... SWI I C H = - , F A L S E , .. - - - - -- - -- -.-- -. - -- .-

rHKOUGH 230 F C H A L L A I N O U T A R C I C U R R V)
- 'j [Z E = XCOORO(RELM(A))

I F (S 1 Z E . N E . I - 1)) G O T O 2 2 0
. - . --- I F (S W I T C H) G C l O ,210

SWITCH = .Tl<UE.
--. - ---PUSH GURU V . - - W T O P O L - - . -----.-

2 10 PUSH K t L M t A P O h T O PDL
.-........ ---- . - .. - GOTO 230 - ,.

220 I F (S W I T C ' H I G C T O 230
--------- -- . - SUM = SUM +. SI.LE. . - - - A - -

N = N + l
2 . 3 f J C O N T I NUE -- ---- - . - - . -

I f (S W I T C H) G O T 0 200
X(,0uj.!u [C U R R V) . = SUM/N . . - .. - . - -. - - - .- - -

G Q r U 200
. - - 300 D E L E T E PDL *..

RETURN

Figure 6-3 shows a graph which is a tree as it might be created

by a user. After applying the tree layout function, the vertices have

been repositioned to yield Figure 6-4. Next, the "permute arcs" option

was taken and the tree was further changed to Figure 6-5, As one more

example of use, another root was then selected which resulted in another

layout process as shown in Figure 6-6.

6.4 Maximally Complete Subgraphs

A problem which arises in the organization of informatian, such as

autamatic classification and automatie indexing, is "clustering" or

"clumping" of descriptors. This problem has been posed with a graph

theoretic model where the descriptors are represented by vertices. A

relationship between two descriptors is represented by an undirected arc

joining the two corresponding vertices. The problem of finding clusters

is represented by the determination of maximidly camplete subgraphs.

E5 9 69,741

A complete subgraph of a given graph is camposed of some subset

of the vertices of a graph where there is an arc connecting eaeh pair

of vertices in the subset. A maximally complete subgraph (MCS) of a

given graph is a complete subgraph of a given graph which is not a sub-

graph of any other complete subgraph of the gfven graph.

Previous work carried out by the author resulted in a report which

presented algorithms for %he determination of all maximally camplete

subgraphs of a given graph.[7&] The following formulation of the

"Basic MCS Algorithmft is taken from the T%swchart on page 17 sf' tha t

report,

---- --- . - - .- -
Figure 6-3 A Tree

PB 9 TO P c u n u T t RRCS
CB 16 TOR RNOTHtR ROOT
CB I 1 TO R L T t R BRRPH

Figure 6-4 The Same Tree After Layout

PB 9 TO P e R n u T e RRCS
PB 16 FOR RNOTHLR ROOT
PB I 1 TO W T E R ORRPM

- ,

Figure 6-5 The Same Tree w i t h A r c s permuted

PB s TO P a e n u w QRCS
P I I # TOR QWOTMCR ROOT
PO 81 TO m L T t R BRIPM

Figure 6-6 The Same Tree with Another Root

Step 1: I$9 * * e 9N 4 Y[Oj

o 4 a(o)
0 - k

Step 3: ~[k]/&(k+l) .-, ~ (k + l)

and go t o step 7 i f nul l

Step 4: k + l + k

YCk-11 n x [Q (~)] -+ ~[k]

Step 5: I f ~ [k) i s not empty, go t o step 2

Step 6: Output MCS: $(1), $(2), . , . , ~ (k)

Step 7: If k = 0 terminate

s tep 8: k - i + k

and t o t o step 3

The above formuPation of the algorithm operates on integers which

represent vertices. The graph has N vertices which are a rb i t r a r i ly

assigned unique integers: l,2,,, , ,N. Associated with each vertex j

is a . s e t X[j of vert ices which are the immediate neighbors of that

vertex* MCSfs are b u i l t up by adding one vertex a$ a time to a

candidate l i s t of those vertices being considered as a possible MCS.

This l i s t i s named - g, and the variable k keeps track of the number of -
members of the j, l i s t , The algorithm uses a l i s t of se ts or' vertices: -
~ c l] , ~ [2] , ..., where each ~ [j] i s the ordered se t of those vert ices

whf ch are connected t o vertf ces &(I), a(2) 7 . , . and a(j) .
The special notation of step 3 above indicates tha t $(k+l) i s

replaced by %he smallest member of ~[k] which i s greater than fi(k+l).

Starting with the above formulation of the algorithm each line was

encoded into an equivalent &LA statement. Since F0KIRA.N subscripts

begin with 1, the range of the variable k has been increased by one, -

The ALLA version is an improvement over the above formulation since it

treats vertices as abstract entities rather than integers, This

change necessitates another definition of the operation performed in

step 3 above. Instead of numerical ordering, the algorithm picks the

next vertex according to the original arbitrary order of the set of

vertices of the graph. The subroutine which creates the set of neigh-

bors preserves the ordering. Since the function for set inkersection

also preserves the ordering, the orderfng of the Y sets reflects the

original ordering of vertices,

The following listing of the MCSl subroutine should be compared

with the above eight steps. Step 6 has been expanded Lo ten card

images, and the termination portion of the subroutine begins at state-

ment 40. The original algorithm is otherwise found in the listing as a

line-by-line translation.

At statement 5, a subroutine call is specified which creates

the X lists (here named NEIGH). At statement 20, the NEXT function

finds the next vertex in the given set as performed in step 3 above,

At three statements after statement 20, the INTERS function is applied,

which camputea the set intersection of two given sets, Listings of

CRNEIG, NEXT, and INTERS follow the listing of MCSP.

- - - -- . - --- - - - --..- --- -- - - - -
S U E P O U T IN E MC S l
ENTI l Y L (4 0) ~ Y 1 4 0 1 v G v INTERSeNE-T
I N T E G E R KtI,IFJNPME

5 C A L L CRNE I G I C 1
Y I 1) = L E L M (G)

- - L (1 1 = U N D E F --- -------- "------ - - - - -- -- - - -
K = l

10 L (K + l) = L (K 1
20 L (K + 1) = N E X T (Y (K 1 , L (K + I))

I F (N U C L (L (K + 1 1)) GOTO 30
K = K + l

- V (K) = INTERS(YIK-I)T NE1CH(L-(KS1)------------------------
I F (. N 0 1 . E M P T Y (Y I K)) 1 G O T 0 10
COG S l P R T € X I S 7 SHAPE V C I I I E X 2 1 ALL
C A L L P t S S A G (2 1
C O G S T K I N G ' A N YCS I S SHOWNq
CALL MESSAGII 1

-.- - - 0 OG S T I< I N(; a P B 4 T 0 S E E N E X 7- ONE *-- ---- ------ ---- ---
C A L L S C l P B (3)
C O C S T P I I T frXIST SHAPE V E R T E X - Q L I S T
00 2 5 I = 2 , K

2 5 DQG (I N N A M E (L (1)))
C O G 0,O

- - - - 30 - 1 F [K . € 0 . 1) GOTO 40 - - - - - - - - - - - - - -- - -- -
D E L E T E Y (K 1

. K = K - 1

C O T 0 2 0
*
40 DOG START r Y 1 S f SHAPE V E R T E X 2 0 . ALL

- - - -- C A L L M E S S A G (2) - - - - -- - - -- --- - - -

C O G S T R I N G *A0 MORE N C S I S *
C A L L MCSSAG(I1
L O G ~ ~ ~ { I N I J 'PO 1 1 TQ ALTER GRAP.H'
C A L L C L H P B (3 9 11 1

50 W A l CCHANGE
I F (F B I 1 1)) CQTO-+Q ------------------- -- - - -

G O T 0 50
61) C A L L G E L G R A I G)

E S C A P E
G O T 0 5
END
- - --- - --"" ----- -" --- ---------- - -

--------- - S U B R O U T I N E C P N E I G (G 1 .- - -

E N T I T Y G ~ V ~ T V ~ T A ~ X ~ N E I G H ~ O U T A R C
- --- - - - - INTEGER D E P T H I I

FPOPERTY N t I G H ~ O E P I W ~ O U T A R C
- G E T G R A P H (5 - - - -- --- - -- ---- - --- -- - --

CALL I N B U T (G I
. . - - - - - - - - - - C A L L U N Q I R [C I

I = 1
".--- - T H R O U G H 4 0 F O R I L L V I Ih L E L M (G 1

N C I G H t V l) = C K S E T (X 1
- - - O E P T H (V 1) = I - ---- ----- -..- - ------------ -

i = I + 1
- - - - - THROUGH 3 0 F O R A L L V 2 I N LECM(G1

I F 1 V 1 .EQ. V 2 1 G C T 0 36
- - - - - - - - - - - - - - THROUGH 10 FORALL P I N O U T A R G i V l)

I F (L t L M t A I . E Q a V 2) G C T O 2 0
- 1 0 I F (R E L N (A 1 a E C a V 2 1 GOTO-20 -- - - . - - - - -- -

G O T O 30
---- .. - 2 0 - . INSERT V2 EhJO X - - - - - - - - - - - - -

3 0 C O N 1 I h U E
- - - - - - - - --- D t L E T E O U T A R C (V 1)

P E M P R O P O U T A R C FROM V 1
4QQCONT 1 h (J L QQ ----_--- - ---- -- ----

RETURN

X = UNQEF- -
26 NEXT = X

I
- - - - - - - - R E i ' U R N

END

- - - - - - -- - - - - -- --- --------
E N i I T Y FUNGI ION I N T E K S (B t 8)

- - - E N T I T Y A v B p E
CKEPTE SET INTERS

- - - .- - - THROUGH 10 F O R A L L E I N A
I F (* N O T - M E H e E R (E v B I GOTO 18
I N S E P T E--3NTO-IN'F-ERS- - " - - -- - - - - - --- -- -- - - - -- - - - - - - *

10 CONTIhUE
- - - - - - - - - - - - - RETURN - - ..---- ---

END

Figure 6-7 shows an undirected graph drawn at the DEC-338 as a

copy of a figure in the report "Determination of Maximally Complete

Subgraphs" (page 9).[74] The Basic MCS algorithm was applied to the

graph. Since all vertices of an MCS are mutually connected, it

suffices to cite each MCS as its set of vertices. The graph of Figure

6-7 has vertices labelled with integers, but the algorithm is independent

of such labels. Its output is in terms sf the actual vertices of the

graph. Figure 6-8 shows a first MCS computed by making square those

vertices forming the MCS: 1, 3 5 9, 1 12 The user then depresses

pushbutton 4 to see the next one, and immediately the display screen

appears as' in Figure 6-9.

A feature of interactive execution which .makes this speed possible

is the single-step option. When pushbutton 3 is ON, and the interactive

AUII program has generated a DOGGIE command word 0% 0000, the user pro-

gram m i n g in the DEC-338 stalls when that word is detected until

pushbutton 4 is depressed.

Figure 6-10 shows a third MCS computed as it appears when the

user again depresses pushbutton 4, As the user continues to request

, MCSPs, they immediately appear on the screen until all have been shown.

In this example, the remaining MCSqs of the given graph are:

Figure 6-7 An Undirected Graph

L)N RCS I S SMOUN
P9 4 YO Stk? NEXT ONE

Figure 6-8 An MCS Computed

PM ncs as ,s~ouw
PB t TO SEE NLX? onr

Figure 6-9 Another MCS Computed

an HCS IS SMOUN
PB 4 TO set nexr one

Figure 6-10 A Third MCS Computed

c3lAPrm a
CONCLUSIONS

This dissertation has described. how a remote computer graphics

terminal was connected into on existing multi-eonsole operating system

which previously supported only Teletype and alphanumeric display ter-

minals. In this environment an Interactive Graph Theory System was

built where modularity and flexibility have been stressed, The DEC-39

is used both as an alphanumeric console and a graphics terminal, The

design has departed from other efforts involving a computer graphics

terminal with processing power. In this system the terminal may be

programmed to perform both local func.f;ions and functions which are

performed as subroutines of the interactive program running in the cen-

tral computer.

The FORTRAN IV language was enriched with data structure and
associative operations and also interactive components, yielding the

interactive ALWl language. This language includes those set-theoretic

operators ~hich'~ermit the handling of graphs. Chapters 3 and 6 have

demonstrated the effectiveness of BL92A by showing its readability and

power of expression.

A valuable pad of the system is the DOGGIE executive andl inter-

preter which resides in the DEC-338. The use of the DOGGIE camnand

language in both the central and terminal camputers has been ins-brumental

in the ease and speed with which the system was developed. It has

unified the system organization, which is reflected in a mffied'descrip-

tion in Chapter 4.

A library of interactive algorithms has been started. The system

is ready to be used by a programmer who wishes to pursue a particular

application. Before a non-programmer may benefit, however, the system

must be extended with more graph-theoretic algorithms. These would

include both generators and recognizers of certain types of graphs

such as symmetric graphs, regular graphs, and complete graphs, Functions

of one or more graphs would include computation of cycPomatic number,

chromatic number, a graph coloring, internal stability, minimum cover,

homomorphism, etc. The generation of a random graph is another useful

function which should be available. There are commonly needed functions

for graph manipulations such as automatic labeling; duplicating, moving,

or deleting gubgraphs; and some general methods of selecting a subgraph

or set of entities. The tree layout algorithm might be extended to

help layout lattices or perhaps graphs of arbitrary connectivity.

The current method of initiating interactive execution is oriented

towards the programmerDs view of the system. A user program could be

written to provide the user with a menu of available functions. In

order to improve initial connecition Lime, a user program could be

written to automatically sign in (or Bog in) a uspr of the Interactive

Graph Theory System.

The use of the DEC-338 in this system has demonstrated the limits

of an 8~-word machine with a 32Kminidisk. The available space limits

graphs to be no larger than about 60 labeled vertices and arcs, but

flicker of the display screen starts to become a problem at this point.

There is no room to save graphs on the minidisk. A future project

could consist of saving and restoring graphs on DECtape. This could

remove the burden from the central computer, However, the central

computer saves graphs by description and the power of the MULTILIST

facilities in dealing with graphs is often aore significant.

In the design of DOGGIE, there has been no special treatment of

user messages. Instead, messages are labels of vertices of null shape

(or shape 3 for light buttons). This has been a disadvantage since

messages are the most commonly created objects. If the notion of a

message had been embodied in the DOGGIE command language, the coding

of the language would be more compact, but generality now present

would be lost. The DOGGIE program itself would also have to be larger.

Another disadvantage of the way messages are now handled is the D M

command and the ALL option must refer to the messages as well as the

graph. However, the control which is now available has been used, and

therefore it would be too severe a limitation to permit a change,

6
In the IBM 7040, the use of L to implement the underlying memory

structure has proven advantageous. This was especially iqortant during

the development of the memory structure, since it could be easily

modified as program bugs were detected. For speed of processing, the

memory structure routines were coded without error diagnostics, but

6
this has forced the author to resort to either L or IBSYS dumps during

the debugging of some of the AXLA programs, Future work could include

the expansion of the memory seructure routines into an alternate package

to satisfy this deficiency. As emphasized previousPy, this type of

system modification may be carried out from tne remote terminal. Another

topic for future work is the extension or modification of the memory

structure package either to create more primktives such as set operators

or to represent relationships differently such as employing tmi-direc-

tional linkage.

The Interactive Graph Theory System presently employs one data

structure and memory structure. Certain types of problems may have

significantly simpler solutions when posed under an alternate organiza-

tion of the data. A valuable extension of the current system would per-

mit a% least a variety of memory structures, and also possibly data

structures. Perhaps a programmer would direct the conversions among

the structures, or such transformations might occur automatically. This

approach then leads to the problem of transforming algorithms consistently

with the data transformations.

The existing system may now be used to solve a variety of individual

,problems. Packages dedicated to particular applications can be developed

which aid in ' teaching graph theory and finite state machines. The inter-

active layout techniques may be used for presentation or publication.

Each reader of this dissertation has probably developed his own ideas

of what this system has to offer and how it .may be developed to encompass

*%her applicati ons .

INTERNAL ORGANIZATION OF DOGGIE

A l . l Introduction

DOGGIE (for Display of Graphs Graphical Interpretkve ~ e c u t i v e) i s

the program resident i n the DEC-336 during any graphical manipulation

i n the Interact ive Graph Theory ,SJ7stem. The heart of DOGGIE i s the

in te rpre ter which decodes and executes s t r ings of 12-bit words. This

appendix describes DOGGIE a t a level. which a user or programmer of the

Interact ive Graph Theory System need not know. It i s wri t ten fo r the

interested person or %or the maintainer of the program. Knowledge of

the P D P - 8 , ' ~ ~ ~ - 3 3 8 , and PDP-8 Disk Monitor System i s assumed.[12,53,54,73]

DOGGIE i s written in.PDPMAP Assembly Language and consists of two

source decks, named GPACK and CHTBL. The l a t t e r i s only the dispatch

tab le and increment-mode subroutines f o r alphanumeric character shapes,

Since the assembly l i s t i n g s of GPACK and CHTBL consist of more than 100

computer printout pages, they a re not included i n t h i s report . The

l i s t ings , however, a re very f u l l y commented and serve a s the best explana-

t i on of the programss operation a t the detai led level . This appendix

may be used a s a guide by those who wish t o study the program, The sver-

a l l flow of control and explanation sf the more d i f f i c u l t pa r t s of the

program supplement the assembly l i s t i n g .

AP.2 Minimum Hardware Requirements

The minimum hardware necessary f o r the operation of the current

version of DOGGIE is:

a) PDP-8 with 8~ memory

b) On-line ASR-33 Teletype

c) DEC-338 Programed Buffered Display

d) 32K DF32 Minidisk

e) 637 Dataphone Interface to Full Duplex 201B Dataphone.

Note that no character generator is being used at the present time.

A section of this appendix describes what to do to make use of a char-

acter generator if DOGGIE is run on a machine which has one,

The 637 Dataphone Interface is used to cammunicate with the large

central computer. However, it is also used a5 a source of an interrupt

every 3 1/3 ms. This constant rate interrupt is used to limit the refresh

rate of the display and for constant-rate light pen tracking.

A1.3 Storage Requirements

DOGGIE is written for a DEC-338 with either 8~~ 12K, or 1 6 ~ of 12-

bit core memory. The current version is assembled for an 8~ .machine,

and the program occupies the following locations (octal) :

00000 - 00004
ooolo - 00015
00020 - 05777
07600 - 10002
10013 - 11343

Locations 6000 - 7577 .are reserved for user programs which call upon
DOGGIE. User programs may also operate anwhere in the unused areas sf

fields 1, 2, and 3 which have not been allocated for the storage of

graph data and display file. In m 8~ machine, it is recommended that

user programs be limited to field 0.

The l 3 g 8 words of field 1 consist of unchanging display subrou-

tines for vertex shapes, Poops, arrows, and alphanumeric characters.

All of these subroutines must be in the same memory field, but may be

placed anywhere by suitably adjusting the 0~igin pseudo-operations in

t he assembly decks of GPACK and CHTBL. One could, f o r example, place

these subroutines a t the end of f i e l d 3.

Unused areas of f i e lds 1, 2, and 3 may be used fo r the storage of

graph data and display f i l e . For any pract ical problem s ize t o date,

locations 11344 - 17577 have been suff icient fo r t h i s purpose,

Locations 5, 6, and 7 of f i e l d s C and 1 are l e f t unused so tha t

e i ther XOD o r XDDT debugging programs may be used t o a i d i n debugging

when DOGGIE i s being developed.

Locations 00016, 00017, l0010, 10011, 10012 a re auto-index regis te r

locations available f o r user programs.

~ 1 . 4 Load, S tar t , Restart

DOGGIE i s saved as two System Save f i l e s on the minfdisk of the

DEC-338 by the following commands t o the Disk Monitor System:

. SAVE GPAC ! ooooc-06177; 05400

.SAVE G~S!l0000-11377;11377

In order t o load and s t a r t the program, f i r s t the f i e l d l portion

must be loaded *(GSYS). When GSYS i s loaded, it s t a r t s and causes the

automatic loading and s ta r t ing of the f i e l d 0 segment (GPAC) a t 05400.

The i n i t i a l routine a t 05400 moves the page of code a t 06000-06177

t o the area 07600-07777, thus replacing the Monitor Head of the Disk

System with a special one used with DOGGIE.

A switch i s then s e t so tha t a l a t e r r e s t a r t a t 05400 w i l l not

move the Monitor Head page again.

The s t a r t and r e s t a r t routine then clears software indicators of

hardware flags, s t a r t s the transmitter of the Dataphone, executes the

DOGGIE command RESET, and then c a l l s upon DOGGIE t o load (from disk)

and s t a r t the Graph Monitor user program (GMON).

A1.5 Storage Allocation

The available areas of fields 1, 2, and 3 are divided into blocks

of 19 words each. Allocation is performed by the RESET cammand, and a

list of free blocks (available space) is generated. This is a unidirec-

tional list with a pointer to its head.

There is a subroutine to allocate storage by successive returning

of blocks to the free list. At present this storage set-up routine is

called only fram the RESET routine, but it could be incorporated into a

more complex allocation algorithm which did not initially allocate all

available storage.

There is a subroutine to get a block fram the head of the free list.

This routine stops at a fatal halt if it is called when there are no more

free blocks.

Another subroutine returns a block to the free list by a pushdown

operation. Thus the same blocks are re-used again and again even though

there are other free blocks in memory. Storage is allocated such that

numerically higher addresses are at the head of the free list initially.

, A pointer to a block must be 14 bits in length, This is typically

stored as two consecutive words: bits 7 and 8 of8 the first word are used

as a field part and the entire second word is a 12-bit address pointer.

The other bits of the first word are often used for same other purpose.

A pointer to a block does not point to the numerically lowest

address of the block as is the custam in linked-list systems. Instead,

a block is pointed-to at its third-last word. Since the PDP-8 has no

index register, the requirements for compact sLorage plus speed led to

this design. Figure Al-b shows the representation of a free block.

The negative and positive integers indicate'relative word positions in

pointer
. pointer to next free

block

Figure A1-B A Free Block

the block based upon the pointer location.

Note that each free block links to the next free block by a pointer

in words 0 and -1-1. The quantity "f " represents the field of the zointer
P -

at bits 7 and 8 of word 0. The last free block on the free list has a

pointer of all zeros as a special indicator.

The contents of the other 17 words of a free block remain unchanged

fram the previous use of the block.

At any particular time a block is used by DOGGIE,in one of five

ways :

a) free block

b) vertex block

c) arc block

d) label block

e) display-list block

~1.6 Undefined DOGGIE Cammands

,
Cammands are given to DOGGIE as sequences of 12-bit words. DOGGIE

decodes these cbmmands and dispatches to particular routines to carry out

specified functions. In general DOGGIE ignores meaningless and undefined

commands. The single exception of this is the ha'lt which occurs when

DOGGIE is given a command word with bit 0 as a ONE. If this happens, the

user may hit CONTINUE on the PDP-8, which causes DOGGIE to suspend inter-

pretation of its current input stream and return control to %he program

which called DOGGIE.

DOGGIE will properly skip over data words of a command according to

the expected form of data when the vertex or arc named does not exist.

For example, if a cammand is given to alter the paper position of a non-

existent vertex, DOGGIE will skip over two'data words which specify the

vertex coordinates.

A1.7 Display Ei s t

Commands t o DOGGIE cause the creation, a l t e r a t ion , and delet ion of

ve r t i ce s and a rcs a s defined within the memory of t he DEC-338. One

block i s used f o r each exis t ing vertex o r arc . I n addition, an extra

block i s required f o r each exis t ing vertex l abe l o r a r c labe l . A l l

information specif ic t o a par t icu la r vertex o r a rc i s campactly stored

i n i t s one o r two (when it has a labe l) blocks. This includes the dis-

play f i l e code used t o display the par t icu la r en t i ty . This e f fec t ive

use of space i s accomplished by using much of the display f i l e code it-

self fo r t h e encoding of the infomation describing the e n t i t i e s and

' t h e i r l abe ls .

A s explained i n the main t e x t of t h i s report , an e n t i t y may e x i s t

within the DEC-338 s t ruc ture independent of i t s display s ta tus . The dis-

play f i l e code of each vertex or a r c i s contained within i t s block a s a

display subroutine. I n order f o r an e n t i t y t o be displayed, it must be

cal led,by a PJMP display subroutine c a l l command. A display l i s t con-

sis$ing of a l i s t of display l i s t blocks i s maintained f o r t h i s purpose.

Each display l i s t block may contain up t o e ight sf these PJMP c a l l s

followed by a JUMP t o t he next display l i s t block, except the l a s t block

of the display P i s t may contain up t o nine PJMP c a l l s . YThe display

l i s t i t s e l f i s a display subroutine and thus it terminates by a POP.

A pa r t i cu l a r e n t i t y may be on the display P i s t a t .most once. The d is -

play l is t is dynamic i n t h a t the display of par t icu la r e n t i t i e s may be

s t a r t ed and stopped. Stopping the display sf an e n t i t y causes a two-

ward gap i n the display l i s t where the PJMP associated with t h a t e n t i t y s s

display was removed. These gaps are not closed up, but a r e reused when

a l a t e r en t i t y display i s begun. Due t o r e s t r i c t i ons on avai lable

memory, code t o compress (or garbage co l lec t) the display l i s t has not

been wri t ten. Therefore, the space used by the display l i s t is deter-

mined by the maximum number of e n t i t i e s which have been simultaneously

displayed since the l a s t execution of the REShT connzland.

An objective of t he implementation of t h i s system has been t o always

keep the display running. This r e s t r i c t i on makes a l t e r a t ion of the did-

play f i l e an operation which must be carefully planned. The display l i s t

i s one such place where a l t e r a t ion occurs. A s a sample of the techniques

used t o a l t e r the display, the explanation of the maintenance of t he dis-

play l i s t i s given here.

When the display l is t i s packed t o capacity (as shown i n Fig. ~ l - 2 a)

and another en t i t y is t o be displayed, a f r e e block i s f i r s t obtained

from the head of the f r e e l i s t . The f i r s t pa i r of words i s f i l l e d with

a copy of t he PJMP c a l l a t the end of the current display l i s t . The

next p a i r of words i s f i l l e d with a PJMP c a l l t o the new e n t i t y t o be

displayed. The next seven pa i r s of words a r e f i l l e d with 0000 and 0002.

Finally, the l a s t word of t h i s new block i s s e t t o a POP command. Figure

A1-2b shows a display l i s t block i n t h i s i n i t i a l c,onfiguration.

The PJMP c a l l a t the end of the current display l is t i s then over-

l a i d t o be a JUMP t o the display l i s t block jus t created. Figure A1-3a

d.epicts t he sequence of the values of t h i s pa i r of words which allows

f o r a safe t rans i t ion . The underlying idea which makes such a t r ans i t i on

work properly i s locat ion 0002 of each memory f i e l d has a POP display

command. This l i t t l e t r i c k well defines each of the four forms i n

Figure A1-2a. A s imilar t r ans i t i on i s used t o a l t e r one PJMP c a l l t o

another PJMP c a l l , as shown i n Fig. A3-2b. This method is of use only if

(a) N l (terminal) (b) Initial (terminal) (c) Partial
(non-terminal)

Figure A1-2 Sample Display List Blocks

missing a subroutine call is allowed. This is the case in the slteration

of the PJMP to a particular loop shape, arrow shape, or vertex shape

subroutine.

As more entities are placed onto the display list, PJMP calls

fill the terminal block until it becomes full as shown in Fig. A1-2a.

Figure A1-3c shows the transitions used to fill the display.list block.

Then the next request for a new entity to be displayed causes another

free block to be obtained, etc., as described above.

When an entity is to be removed from the display list, its associated

PdMP call is removed from the display list by the transition shown in

Fig. A1-3d. That word pair is then available for further PJMP calls.

Figure A1-2c shows a typical non-terminal display list block with three *

available word pairs. "Non-terminal" means this block is not the last

block of the display list. (~ote it ends with a SUMP to the next display

list block.)

The display list described above is a subroutine which is called

from the display file driver. This driver is a sequence of display command .

words occupying 12 locations on page 0. It is responsible for limiting

the refresh rate of the display to 23 1/3 milliseconds. This is done by

waiting for pushbutton 0 to be a ONE. The PDP-8 sets this pushbutton

every 23 1/3 milliseconds, and the display file driver clears it on

every display cycle. The display file driver also sets pushbutton 6

to a ONE for proper display of loops. The driver includes the scale'

~ n d intensity setting parameter command used for the entire graph,

~ 1 . 8 Vertex and Arc Blocks

Each vertex or a rc u t i l i z e s one block for both display f i l e and

a l l other associated data except fo r a label. A vertex labe l o r a rc

l abe l occupies one block which i s a subroutine called from the vertex

o r a rc block. Vertex and arc blocks have some common properties which

are introduced next. The following two sections describe %he specif ic

differences between vertex blocks and are blocks.

A l l ver t ices exis t ing within the DEC-338 structure a re l inked

together by a unidirectional l i s t of the same format a s the f r e e l is t ,

A l l exis t ing arcs a re linked together i n the same way. This form i s

shown i n Figure ~ 1 - 4 .

I The f i e l d b i t s of the pointer a re found i n b i t s 7 and 8 of word

0 of the block. This word a lso includes. a PNLS display command (POP, -

iNhibit restoring Light pen and scale), which does not in te r fere with - - -
any se t t ing of b i t s 7 and 8, The l a s t vertex (arc) i n the vertex (arc)

l ist i s indicated by a pointer of 00000.

The 12-bit in te rna l name of each vertex or a rc i s saved a t the +2

word of the block. This i s the name used in DOGGIE commands which

refer t o specific ver t ices and arcs. The vertex or a rc l is t i s scanned

f o r such commands by a f a s t search routine which chases down the list

looking fo r a matching of the name,

Although the general forms of vertex and arc blocks a re very-

similar, only three other words of the block are similar enough t o

warrant mention here. The reader should re fer t o Figure ~ 1 - 4 t o see

these common words.

pointer from
previous vertex- pointer t o next
(arc) +1 vertex (arc)

+2 vertex (arc) name

Figure ~ 1 - 4 Common Properties of Vertex Blocks
and Arc Blocks

Word -14 of an arc block is used for many purposes; however, one

function which it' has in common with a vertex block is that bit 0 of

the word indicates whether that entity is being displayed by virtue of

its being on the display list. This word will be again discussed for

each type of entity.

Word -12 is always a PJNP with the field bits (9-11) set to the

field where the block is stored because -11 is an address within the

very block. Word -12 includes the unique indicator of whether the

entity is light pen sensitive. This indicator is also the display file

code which turns light pen sensitivity on or off.

At any one time DOGGIE is either in BLINK mode or DIM mode according

to the last DOGGIE cammand interpreted which set the mode. The subparts

of each entity may be blinked or dimmed independently of the others, and

there are individual words of each vertex and arc block dedicated to

this control. Word -7 of the block is always used to control the blink-

dim status of the label of the entity. This word is either BKOF or BKON

when in BLINK.qode. It is same intensity-setting display cammand when

DIM mode is in effect. Each vertex block contains an additional blink-

dim word for the vertex shape, and each arc block includes control for

blink-dim of both the arc itself and its arrow,

~1.8 .I Vertex Blocks

Figure A1-5 shows the organization of a vertex block. Four words

of the 19-word block are unused in a vertex block: these are words -16,

-159 -13, and -4.

not displayed or - 14 displayed

entry point

-10 1 blink-dim shape I

-8 I SHAPE (n) I
-7
-6

no label or label

- 5

positioning scale = 1 or
subroutine scale = 2, 4, 8

--2 1 y (non-intensified) 1

I x (escape)
pointer from
previous vertex o pointer to next

+1 vertex

+2 vertex name

Figure A1-5 A Vertex Block

Word -14 of a vertex block i s used only t o indicate whether the

vertex is being displayed. B i t 0 i s ZERO i f and only i f the vertex i s

displayed, and the remaining b i t s of t h i s word are a l l ONE. When a ver-

tex i s displayed.there i s a PJMP c a l l on the display l i s t t o word -12 of

the vertex block. The display f i l e of a vertex ends with e i ther a POP

a t word -6 o r a POP within the labe l block associated with tihe vertex.

The f i r s t display command of a vertex i s a PJMP c a l l t o the positian-

ing command words of the vertex block beginning a t word -3. This position-

ing subroutine i s a lso called by each arc which emanates fram t h i s ver-

tex. The PJMP a t word -12 a lso includes.the b i t s t o control the l i g h t

pen s t a tus of the vertex. I f a FULL window i s being used (i . e . , i f the

display scale i s 1) word -3 i s EDS POINT CSB, and the next pa i r of words

indicates the paper (or window) posit ion of the vertex. I f the windov

i s not FULL then a vertex .my be positioned anywhere on the paper, possi-

bly off the screen area: t h i s i s done by using a non-intensified vector

drawn fram the or igin by using EDS VEC CCB CSB followed by an appropriate

and AX. These A ' s a r e computed according t o the paper posit ion of

the vertex, the window size, and the window position. Words -2 and -1

contain the only information about the vertex position. I n order f o r

t h i s method t o work properly, the djlmensions of the display a re always

s e t t o correspond t o the scale. For example, when the window s ize i s

FOUFtPH the scale i s k and the x- and y-dimensions a re se t t o 12 b i t s ,

Words -10, -9, and -8 of a vertex block are dedicated t o the ver-

ta shape. Word -10 is the blink-dim word fo r the shape par t of the ver-

tex. The next pa i r of words constitute a PJMP c a l l t o the vertex shape.

The eight shapes a re closed subroutines ending with PNLS i n the same

f i e l d a s character shapes, e tc . The entry points fo r the shapes a re

every other word i n 16 consecutive words. Shapes a re usually drawn i n

the same scale as the r e s t of the graph except when the scale i s 8;

i n t h i s case, shapes a re drawn a t scale 4 f o r be t te r appearance by se t t ing

the scale a s pa r t of the PJMP. The other instance when the scale is

s e t a s pa r t of the PJMP i s when a vertex is created whose in terna l name

i s greater than 774T8; i n t h i s case, a scale 2 se t t ing i s used. This

i s intended t o have messages f o r the user i n scale 2 - both l i g h t buttons

and labe ls . Since each shape subroutine inhib i t s restor ing the scale,

and because of the way i n which labels are called, any vertex whose

in terna l name i s greater than ~ 7 4 7 ~ w i l l be created with shape and l abe l

i n scale 2. Subsequent execution of the SEXWIN command w i l l t r e a t a l l

exis t ing vert ices i n the same way, thus eliminating the special scaling.

Words -7, -6, and -5 of a vertex block are dedicated t o the vertex

labe l . Word -7 i s the blink-dim word f o r the l abe le I f no o f f se t or

t e x t have been defined then there i s no vertex l abe l block. I n t h i s

case words -6 and -5 a re POP and 2 respectively. I f , on the other hand,

there is a vertex l abe l block words -6 and -5 const i tute a JUMP t o t h a t

block. The JUMP includes a Bcale se t t ing fo r scale 2 whenever a FULL

window i s not being used. A description of the vertex l a b e l block i s

given i n Sect. A l . 9 .

~ 1 . 8 . 2 Arc Blocks

Figure AL-6 shows the organization of an arc block. A l l words ~f a

19-word block are used i n an arc block. It was, i n f ac t , the a rc block

which dictated the choice of the block length used.

Since an a rc may exist independently of the existence of i t s

associated vert ices , two worde of %he arc block must contain the in te rna l

names of these vertices. The names may be the same, i n which case the

to-vertex name

- 15

entry point ~ ~ 2 :
uncomputed or

-13
displayed

-12

blink-dim arrow

2 or ARROW (n) no arrow o r arrow

-7 blink-dim label

-5 label

blink-dim arc I

pointer from L

previous a r c od

EDS VEC

I \ AX (escape) I
PNLS f

* I
pointer

arc name

non-loop o r loop

\ pointer t o next arc

Figure ~ 1 - 6 An Arc Block

arc is a loop. Word -1.6 contains the name of the to-vertex and word -15

contains the name of t he from-vertex. The ver t ices have no indicators

of those a r c s where they a re used. Instead the a r c l i s t must be scanned

t o f ind those a rcs which a re defined i n terms of a par t icu la r vertex.

When an a rc is f i r s t created, it is not au tomt i ca l ly displayed.

I n order t o be displayed both ver t ices associated with the a rc must ex i s t .

When an a rc which i s not a loop is displayed, it i s drawn a s a

s t r a igh t l i n e from i t s from-vertex t o i ts to-vertex.. A n arc which i s a

loop i s displayed a s one of the four loops avai lable (~ a s t , Morth, West,

south). I n e i t he r case the display f i l e of the a rc must begin by a

posit ioning of the beam t o the fram-vertex. When an a rc i s displayed

there i s a PJMP c a l l on the display P i s t t o word -14 of t he a r c block.

Words -14 and -13 then cons t i tu te a PJMP c a l l t o the posit ioning pa r t of

t h e from-vertex block (word - 3) .
The ac tua l a rc i s then drawn i n two halves. I f t he a r c i s a non-

loop each half i s the same vector. I f the a r c is a loop each half i s

drawn a s a r e s u l t of the same c a l l on one of the loop display subroutines.

Each loop subroutine, however, t e s t s and complements pushbutton 6 upon

entry and therefore can draw f i r s t and second halves on a l t e rna t e ca l l s .

The f i r s t half of an a r c i s drawn a s a r e s u l t of the PJMP c a l l

a t words -12 and -91. This PJW is made to word -4 of the a r c block

i t s e l f . The PJMP a l so includes the b i t s t o control the l i g h t pen s t a tu s

of the a rc . Note t h a t word -4 controls t he blink-dim of the a r c i t s e l f ,

and t h i s display cammand word i s executed f o r each half of t he arc.

After the first half of the a r e i s drawn, t he arrow (i f any) and

l a b e l (i f any) are drawn. Words -10, -9, and -8 of each a rc block a re

dedicated t o t he a r c ' s arrow. Word -10 i s .the blink-dim word f o r the

arrow. If an arc being displayed has an arrow, words -9 and -8 con-

stitute a PJMP call upon one of the eight available arrows. If a dis-

played arc does not have an arrow these words contain a PJMP call to a

POP. The PJMP includes a scale setting so that arrows are drawn in

scale 1 when the scale of the graph is either 1 or 2. Otherwise they

are drawn in scale 2.

Words -7, -6, and -5 of an arc block are dedicated to the arc label.

Word -7 is the blink-dim word for the label. If no offset or text have

been defined then there is no arc label block. In this case words -6 and

-5 are POP and 2 respectively. If, on the other hand, there is an arc

label block words -6 and -5 constitute a P M call to that block. The

PJMP includes a scale setting for scale 2 whenever a FlTLL window is not

being used. A description of the arc label block is given in Sect, Al.9.

Both the arrow and arc label subroutines preserve the beam position

so that the second half of the arc can then be drawn to complete the dis-

play of the arc.
.

When an arc is first created it is not autamatically displayed.

In order for an arc to be displayed both of its associated vertices must

exist. Before an arc.is displayed, same of contents of the arc block are

not determined. The arc is then in an uncamputed state, which is indica-

ted by word -14 containing 0. When the display of a non-loop is begun

the appropriate PJMPqs must be determined for the initial positioning

and for the arrow. Also the proper vector size .must be determined

according to the positions of the vertices. Once an arc has been cam-

puted, if it is then removed from the display list, it remains in a

computed non-displayed state which is indicated by setting bit 0 of word

-14 to OF=, and preserving the reminder of the word, If subsequently

there is a change wl~ieh would require a re-eomputl.ng of the arc, it i s

instead flagged a s being uncompufYed once again. This would happen, f o r

example, when one of the a r e ' s associated ver t ices is moved to a d i f fe r -

en t posi t ion i n the case when the arc is nat a loop.

When an a r c is s loop, its orientat ion is uniquely determined by

which loop suhroutirle i s cal led a t words - 3 and -2. A JUMP i s a l l t h a t

i s needed t o c a l l the loop subxautine since each Dne ends i n a PNLS on

the f irst half and RW on the second half'.

A l . 9 Label Blocks

Each vertex or a r c which has an associated l a b e l o f f s e t or t e x t

has a l a b e l block. The block includes no pointers , It i s en t i r e ly a

display f i l e subroutine which begins a t the f i r s t word of the block and

occupies a s many words a s a r e required, ending i n a POP. A l a b e l block

i s associated with only one vertex o r arc, and i t s existence i s dependent

upon the existence of i t s host ,

There i s one difference between a vertex l a b e l block and an a re

l a b e l block. Although it i s not necessary f o r a vertex label , an arc

l a b e l .must preserve the beam posit ion. Therefore, an a rc block must

terminate with e correction vector, occupying three words of the block.

These th ree words cannot be used f o r character codes a s they a re i n a

vertex label. block. This i s why a vertex l a b e l may be up t o 27 characters

i n length whereas an a rc Label may only have 21 characters a t most.

Figure A l - 7 shows f d 1 vertex label and a r c label blocks. The subscripted

a s represent & b i t trimmed A S C I I codes. -
A l a b e l block begins with three words specifying the non-intensified

of fse t vector. PP a l abe l exisks, but i s not displayed, t he f i r s t word

of the label block i s ;t PCP. The fourth word i s INCR STOP, which is a

Vertex Label Block Arc Label Block

Figure A1-7 Full Label Blocks

special soft;ware signal to the PDP-8 to go into the interrupt-time rou-

tine which simulates a 6-bit character generator, This program organiza-

tion will .make it very easy to reassemble GPACK and CHTBL to take advan-

tage of the speed of a character generator. The use of a character genera-

tor has one other advantage: it will make it possible to get light pen

hits on labels. This is not possible now since the character generator

simulator keeps initializing the display for each character, and display

initialization clears the light pen enable flag.

Each character shape is stored as an increment mode subroutine,

Normally a section of display file is as follows:

EDS INCR
) increments

POP

However, since the PDP-8 is performing the dispatching, each such sub-

routine must end in an internal stop. Instead of just replacing the POP

by STOP, each POP has been eliminated and each character begins wit'n

EDS"INCR STOP. An extra STOP is placed after the last character shape.

Thus, the display file of characters is of the following form:

EDS INCR STOP

) increments
EDS INCR STOP

increments
EDS INCR STOP

etc.

Thus there has been a net savings of 62 locations over the obvious

organization. The only software overhead, which -bakes negligible Lime,

is the necessity of performing a resume (F E s ~) in the PDP-8 after initial-

izing to a new character.

The simulated character generator routine escapes whenever it reads

a character code of a l l ZERO'S i n e i ther the l e f t or r ight byte, Figure

A1-7 shows labe l blocks which contain the .mxtmum number of t ex t characters.

When there a re fewer characters (even none) the one or four termination

words appear immediately f'olPowing the word containing the escape code.

A1.10 Light Pen Pointing

Whenever the l i g h t pen is pointed a t a displayed en t i ty whose l i g h t

pen s t a tus has been enabled, an interrupt causes the l i g h t pen handler

t o be entered. I f the l i g h t pen handler interlock i s clear, the handler

w i l l record information pertinent t o the h i t en t i ty , Due t o the r e s t r i c -

ted form of the display f i l e of DOGGIE, it i s very easy t o determine which

e n t i t y caused the l i g h t pen h i t . The display pushdown l i s t provides the

fundamental key. This l is t consists of three leve ls (6 locations) where

the f i r s t l eve l simply records the c a l l upon the display l is t , The

second l eve l records each c a l l upon a displayed ent i ty , and the t h i r d

records the various subroutine c a l l s described i n Sect. ~ 1 . 8 . These .

include vertex positioning, vertex shape, arrow, arc label , and loop sub-

routines. The l i g h t pen handler makes use of the second l eve l of the

pushdown l i s t t o determine the en t i ty which caused the h i t .

A 1 . 1 1 Light Pen Tracking

It i s re la t ive ly easy t o do l i g h t pen tracking on the DEC-3% using

the - Light - Pen - Sense - Indicator, A square tracking box i s drawn of a s ize

barely larger than the f i e l d of view of the l i g h t pen. Before each s ide

i s drawn the LPSI i s cleared. After each side i s <drawn, the LPSI i s

checked. If it i s ON, t h i s indicates tha t side i s within the f i e l d of

view of the l i g h t pen, and %herefore a small correction vector i s drawn

which moves the box toward the side just drawn. Since t h i s is done f o r

each of the four sides, it tends to keep the box positioned under the

light pen as the pen is moved around the screen. A complete programing

example of this method of light pen tracking is given in the report on

the PDPMAP Assembly System.

The above method used for tracking is effective only if the square

is drawn every few milliseconds. The less frequently tine square is

drawn, the slower is the speed at which the pen may be moved about the

screen. This requirement makes effective %racking rather difficult to

implement on the ~ ~ ~ - 3 3 8 ~ The .meYnod employed within DOGGIE takes ad-

vantage of the limited structure of the display file. If no tracking

is in effect, there is no overhead of extra subroutine calls. When

tracking is in progress, the PDP-8 externally stops the &isplay every

3 1/3 milliseconds. The interrupt service routine for the external stop

flag saves the contents of the second level of the display pushdown

list and replaces it by a fake return to the tracking subroutine; then

the display is resumed. After the display stops displaying the current

entity, the tracking subroutine is entered.

The tracking routine begins by an absolute point plat for the

positioning of the tracking box. After the box is drawn, with possible

'correction vectors, an internal stop occurs. The interrupt service

routine for this internal stop reads the coordinate registers which

indicate the updated tracking box positionY At this time the second

level of the display pushdown list is restored, and %he pushdown pointer

is repositioned so that the next entity to be displayed is displayed

when control exits from the tracking subroutine. Thus, in effect, the

tracking subroutine is like another entity on the display list squeezed

between two cansecutive display list subroutine calls.

The above description is .meant to be an overview of the tracking

process. There are same subtle special cases which arise due mainly

to timing considerations for which additional checking is made.

A1.12 Use of the Disk

Since the memory size of the DEC-338 is ~ I C , and since much local

activity is desirable, the DF32 Disk is an integral part of the Interactive

Graph Theory System. This disk is used primarily for the storage of .

program overlays. These overlays are stored on the disk as USER SAVE

files of the PDP-8 Disk Monitor System. They are loaded by a DOGGIE

camnand according to a name of one to four alphanumeric characters.

The programmer may also use the Disk System basic input/output routine

to read or write 128-word blocks.

The PDP-8 Disk Monitor System is being used because of the ease

of maintaining files. The author could have written his own version

of the system, but such an effort would not significantly enhance the

system performance. Furthermore, there are many already existing utility

and systems programs which aid the Interactive Graph Theory System builder

in maintaining and adding to the system. The one major disadvantage of

using the already-existing Disk System is its relatively slow speed.

A special-purpose rigid system might speed up current operations at

least tenfold; however, this one disadvantage has been overshadowed by

the many advantages of using the standard system.

All of the Disk Monitor System is used as provided by DEC except

the basic input/output routine which is incompatible for use with the

program interrupt system of the PDP-8. For servicing the display and

and dataphone, it is an absolute necessity to keep interrupts enabled

nearly all the time. The basic routine "SYSIOfs has been rewritten to

operate with interrupt ON, and is compatible with the various parts of

the Disk System. It can also be called by a user function program

through a pointer in a comunication cell on page 0 . When this call is

made, the real SYSIO is not called, but an alternate one is actually

called which sets some indicators and then calks upon the basic rou-

tine.

The new SYSIO, along with the way in which the LQAn command is coded,

allows for useful computation to proceed during df sk input/output trans-

fer times. Moreover, the interrupt service routine for the disk

"remembers" one level of interrupt status, and allows other interrupts

to occur during execution of the Disk System routines.

APPENDIX 2

USER PROGKAMS

This appendix supplements Chapter 4 by describing essent ia l de ta i l s

regarding the creation of user programs - both loca l ones and those used

a s subroutines of the central computer. A l i s t i n g of the SELECT routine

described i n Section 4.7.6.2.2.1 i s included a s an example of a user

program.

A2.1 General Considerations

The PDPMAP Assembly System [27] i s used t o assemble user programs.

The process operates i n two steps: the MAP Assembler f i r s t performs the

assembly through the macro and operation code defini t ion f a c i l i t i e s ,

and then a postprocessor program transforms the 36-bit code produced by

the MAP assembly in to 12-bit words. The postprocessor a l so creates off-

page l inks t o help the programmer with the paged addressing of the PDP-8.

The f i n a l r e s u l t of the assembly i s an absolute program stored i n the

output f i l e (on the disk of the IBM 7040) associated with the DEC-338

terminal. Once t h i s binary f i l e has been placed there, the user a t the

terminal may cause t h a t f i l e t o be transmitted t o the DEC-338 and have

it stored on the minidisk.

Each user program source deck begins by 113 cards which serve t o

prime the MAP Assembler t o assemble PDP-8 programs with references t o

the DOGGIE communication c e l l s and the following macros: DOGGIE, ENDDOG,

DOG, T. The use of these macros was explained i n Section 4.6.3. For

completeness, a l i s t i n g of the 113 defini t ion cards follows below. Note

t h a t the communication c e l l names are defined t o be external symbols.

The values of these symbols a re defined a t load time before the post-

	An Interactive Graph Theory System
	Recommended Citation

	An Interactive Graph Theory System
	Abstract
	Comments

	tmp.1199736038.pdf.xetAC

