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Abstract. We describe a modification of an interactive identification scheme of 
Schnorr intended for use by smart cards. Schnorr's original scheme had its security 
based on the difficulty of computing discrete logarithms in a subgroup of GF(p) 
given some side information. We prove that our modification will be witness hiding, 
which is a more rigid security condition than Schnorr proved for his scheme, if 
factoring a large integer with some side information is computationally infeasible. 
In addition, even if the large integer can be factored, then our scheme is still as 
secure as Schnorr's scheme. For this enhanced security we require only slightly 
more communication and about a factor of a 3.6 increase in computational power, 
but the requirements remain quite modest, so that the scheme is well suited for use 
in smart cards. 
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1. Introduction 

In this paper we describe an interactive identification scheme that is a variation of 
a scheme presented by Schnorr at Crypto '89 [17]. Schnorr's scheme has several 
features that make it advantageous for use in smart cards or other environments 
with limited computing power. Its security, more specifically, the soundness of the 
protocol, is based on the difficulty of the discrete logarithm problem in a subgroup 
of 7/*. 

Due to the current state of complexity theory, cryptographic schemes whose 
security is based on the difficulty of solving a specific computational problem are 
exposed to the danger that a fast algorithm may be found for the underlying 
computational problem. It therefore seems desirable to design systems with the 
property that breaking them requires the ability to solve two apparently dissimilar 
computational problems, both of which appear to be hard. An example of such a 
scheme was given in [13], where a key distribution scheme with this property was 

1 Date received: December 20, 1990. Date revised: September 27, 1991. A preliminary version of this 
paper was presented at Eurocrypt '90, May 21-24, ,~rhus, Denmark, and has appeared in the proceed- 
ings, pp. 63-71. This work was performed under U.S. Department of Energy contract number DE-AC04- 
76DP00789. 
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given. The key distribution scheme of [ 13] uses arithmetic modulo a number n that 
is a product of two primes. Breaking the system requires the factorization of n and 
the ability to solve the Diffie-Hellman problem modulo the prime factors of n. In 
the present paper we take a slightly different tack, by using arithmetic modulo a 
prime p. We choose p with the property that p - 1 has at least two large prime 
factors, so that the factorization of p - 1 is hard to recover. We then construct the 
system in such a way that breaking it requires both factoring p - 1 and computing 
a discrete logarithm in a subgroup of 2~*. 

The extra security gained in this scheme extracts a penalty both in the computa- 
tion time and the communication time, but the scheme still carries the advantage 
of allowing preprocessing of most of the computation, and should still be quite 
feasible for use in smart cards. The relative merits of the schemes will be discussed 
later, after we first present the schemes in detail. 

The scheme that we present in this paper is simpler than the one presented in our 
Eurocrypt '90 paper [2]. There are also changes in what we can prove about the 
security. We can prove that the new scheme is witness hiding if factoring p - 1 is 
hard. For the scheme in [2] and for Schnorr's scheme [17], nothing has been proved 
about witness hiding. Also, the scheme in [2-] is sound if either factoring p - 1 or 
computing a discrete logarithm in a subgroup of 2~* is hard. However, the new 
scheme is sound only if computing a discrete logarithm in a subgroup of Z* is hard. 

2. Schnorr's Identification Scheme 

We begin by describing the original Schnorr authentication scheme in terms of a 
security parameter t. In this scheme, each person who wishes to use the scheme to 
prove his identity will visit a key authentication center (KAC) and register his or 
her public key. When the KAC is originally set up, it chooses 

primes p and q such that q l P  - 1, q > 214~ and p > 2 s12, 
of order q in the group Z*, 

its own private and public keys for a signature scheme. 

The KAC publishes p, q, ~, and its public key. When a user comes to the KAC 
for registration, the user chooses a secret s ~ {1 . . . . .  q}, computes v = ~-s (mod p), 
and submits v to the KAC along with some form of identification. The KAC verifies 
the user's identity, generates an identification string I, and also generates a signature 
6e of the pair (I, v). The KAC can use any secure digital signature scheme whatsoever 
for generating this signature. 

We now describe the procedure by which party P (the prover) can prove its 
identity to V (the verifier). In a preprocessing phase, P should first have chosen a 
random number r ~ { 1 . . . . .  q} and computed x = ~' (mod p). In the identification 
procedure, P first sends to V its identification string I, its public key v, the KAC's 
signature Ae of (I, v), and x. V then checks the validity of P's public key by verifying 
the signature 6 e, chooses a random e e { 1 . . . . .  2' }, and transmits e to P. P sends to 
V the value y := r + s e  (mod q). Finally, V checks that x =-- arve (mod p) and accepts 
P's proof of identity if this holds. 

Schnorr suggests using t = 72, although this can be reduced substantially for use 
in the identification scheme (Schnorr also proposed a companion signature scheme 
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which requires the larger t). The parameter  t is used to control the probability that 
an impostor  will be able to guess a correct response to a challenge e. For  use in an 
identification scheme, we need only choose t so large that the probability 2 -t of 
guessing the challenge e is negligible. 

This scheme has a number  of novel features. First of all, much of the arithmetic 
to be done by the prover can be done in a preprocessing phase, using idle time of 
the processor. This is well suited to the case of a smart card, where the processing 
power is relatively small. Second, the number  of bits that must be communicated 
is considerably reduced over other schemes such as RSA or Fiat-Shamir .  There is 
also a signature scheme based on the same choice of keys, but we shall not discuss 
it here in great detail. 

Schnorr's scheme may be regarded as a practical refinement of the zero- 
knowledge protocols of Chaum e t  al. [4] and [3] for demonstrating possession of 
a discrete logarithm. In [4], the challenge e was either a zero or a one, and the basic 
protocol was repeated several times (requiring the prover to perform multiple 
exponentiations). Yet another interesting identification scheme based on discrete 
logarithms was proposed by Beth [1]. The security of the latter scheme is however 
more closely related to the E1Gamal signature scheme. 

3. The Modified Scheme 

In this section we shall describe the modification of Schnorr's scheme. The essential 
differences are that s is chosen and y is computed modulo p - 1 rather than modulo 
q, and that q is secret. Rather than the single security parameter  t, we describe the 
scheme in terms of the parameters k and t, with t < k. The KAC is used in the same 
manner as before. In the set-up phase, the KAC chooses primes p, q, and w such 
that q w l p  - 1, q2 ){p _ 1, q, w > 2 k, and q w  > 2 5x2. The KAC also chooses ~ of order 
q in the group Z*. The KAC publishes p, ~, and its public key, but not q or w. 

When a user wishes to join the system, he chooses a random number 
s ~ { 1 . . . . .  p - 1 }. The user then computes v = ~-~ (mod p), and presents v to the 
KAC along with some form of identification, but keeps s secret. The KAC verifies 
the user's identity, checks that v q = 1 (mod p), generates an identification string I, 
and produces a signature 5e of the pair (I, v), which it provides to the user. Once 
again the KAC can use any digital signature scheme whatsoever. 

In the identification procedure, P once again has a preprocessing phase, where 
P chooses from the uniform distribution a random number  r ~ { 1 . . . . .  p - 1 } and 
computes x = ~" (mod p). Then P sends to V the identification string I, its public 
key v, the KAC's  signature 6 a, and x. V checks the authenticity of P's public key by 
verifying the signature 6 e of (I, v). If  the keys are authentic, then V chooses a 
random e ~ {1 . . . . .  2 t} and transmits e to P. P then computes an integer y such that 
y ==- r + se  (mod p - 1) and sends y to V. V checks that x - olYl) e (mod p) and 
accepts P's proof  of identity if this condition is satisfied. 

The parameter  t can be adjusted to suit specific needs, but we suggest using t = 40. 
With this choice, there are 240 possible challenges e, and the probability of guessing 
the challenge ahead of time is therefore 2 -40 . 

Some care should be exercised in choosing the primes q and w, and in particular 
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we should try to choose them in such a way as to thwart any known algorithms for 
factoring qw. The choice of k ~ 140 is probably marginal in avoiding a determined 
implementation of the elliptic curve method of H. W. Lenstra, Jr., but may suffice 
for applications of a commercial nature. At present the record for the largest factor 
found by the elliptic curve method has 38 decimal digits, or about 127 binary digits 
(this factor was found by Robert Silverman). On the other hand, choosing k > 200 
will probably be safe against any conceivable implementation, and in any case the 
modified scheme imposes no performance penalty for choosing q larger, since all 
arithmetic is done modulo p or p - 1 anyway. The construction of p should be 
relatively easy, since heuristic evidence (see [19]) suggests that we should expect a 
prime p = 1 (mod qw) can be found with p < qw log2(qw). 

The recent results of Lenstra and Manasse [11] and Lenstra et al. [12] have 
raised a question about how long a 512-bit modulus will remain safe from attack 
by current factorization methods. We suspect, however, that by the time anyone 
will have at their disposal enough computational power to factor a general 512-bit 
modulus, the smart card technology will probably have advanced enough to allow 
easy use of a 1024-bit modulus. Moreover, the best known attack for breaking the 
scheme we present here requires in addition the computation of a discrete logarithm 
modulo a 512-bit prime, and current algorithms will probably have a much more 
difficult time with this problem. 

4. Performance Analysis of the Modified Scheme 

It is evident that the modified scheme suffers from a slight disadvantage in the 
number of bits that must be communicated. The following tables show the number 
of bits to be communicated in the two schemes, using the security parameters 
mentioned above. For  the sake of comparison, we have assumed that 100 bits suffice 
for each of I and 6 e. We have used a value of k = 140 in the original scheme. 

Original scheme Modified scheme 

! 100 I 100 
v 512 v 512 

6e 100 ~ 100 
x 512 x 512 
e 40 e 40 
y 140 y 512 

Total bits 1404 Total bits 1776 

The modified scheme therefore pays a penalty of an extra 372 bits in communica- 
tion, and possibly more if error correction is included. On the other hand, this is 
still well within the realm of possiblity using present technology. 

We now compare the computational requirements of the two schemes. We first 
consider the off-line computation, where in both schemes the prover computes at' 
(mod p). In the Schnorr scheme, r is chosen uniformly between 1 and q, while in our 
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scheme, r is chosen uniformly between 1 and p - 1. Hence our scheme requires 
about log2 p/log2 q more off-line computation. In the real time computation, the 
prover is required to compute y = r + s e  (mod q) in the Schnorr scheme, and 
y = r + s e  (mod p - 1) in our scheme. Using standard algorithms [9, Section 4.3.1], 
Schnorr's scheme would use about log2 q + c t  log2 q bit operations, whereas the 
modified scheme takes about log2 p + c t  log2 p bit operations. Hence both the 
on-line and off-line portions of the computation require about a factor of 
log2 p/log2 q more bit operations. For the parameters that were suggested, this is 
about a factor of 512/140 ~ 3.6 more computation, but the on-line portion of the 
computation is still considerably less than in the Fiat-Shamir scheme. 

So far we have only discussed the computational requirements of the prover, for 
which the new scheme shifts much of the burden to a preprocessing stage. We should 
point out that the computational requirements of the verifier are significantly 
greater for our scheme than for the Fiat-Shamir scheme, because in our scheme the 
verifier needs to do a full modular exponentiation. For a situation in which the 
verifier has more power (as in the case in a smart card talking to a host, or a mobile 
station talking to a mainframe computer), this is an advantage. For situations in 
which there is a need for bilateral identification, our scheme should perhaps be 
replaced by one more suited to a weak verifier. 

We close this section with a final comment on the original Schnorr scheme. In 
that scheme, y is reduced modulo q before transmission. At first sight it may appear 
advantageous to remove the reduction ofy modulo q in the original Schnorr scheme 
and thus gain a significant computational advantage in the on-line portion of the 
computation. In fact, this would be disastrous because if we know r + s e  and e, then 
we can construct an interval of length approximately q / e  containing s. An algorithm 

of Pollard [15] can then be used to compute s in only about x / ~  operations. For 
the parameters suggested by Schnorr, the expected value of this is only 235. 

5. Security of the Modified Scheme 

Like all cryptographic schemes, identification schemes can be attacked in a variety 
of ways. The purpose of introducing i n t e r a c t i o n  to identification schemes is to 
protect against passive eavesdroppers and cheating verifiers recovering secret infor- 
mation that they can later use to impersonate the legitimate user. In this section, 
we will give evidence which indicates that our scheme does provide such protection. 
However, there are other kinds of attacks that might arise in applications that are 
not protected against by using an interactive identification scheme by itself. 

In particular, Desmedt et  al. [5"1 have pointed out that an interactive identification 
scheme offers no protection against the situation in which the verifier cheats by 
passing on information provided to him by the prover to another cheating prover 

Furthermore, an interactive identification scheme does not offer any protection 
against a prover who gives away his secret information to another so that they may 
impersonate him, or against a prover who chooses weak secret keys that anyone 
can guess. A variant of this point was discussed by Burmester in the rump session 
at Eurocrypt '90. 
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Both of these attacks can be protected against if the system uses physical charac- 
teristic information to identify uniquely an individual. If the identification by 
physical characteristics offers perfect security, then there is no security gained by 
using an interactive identification scheme instead of simply using a digital signature 
(issued by the KAC) of the physical characteristics. However, if the identification 
by physical characteristics offers less than perfect security, then using an interactive 
identification scheme can in some cases result in increased total security of the 
system. For example, if two people share the same physical characteristics, then a 
digital signature of these characteristics could be transferred by a cheating verifier 
between these two people. With the use of interaction this will be impossible without 
the cooperation of the legitimate prover. 

In the remainder of this section, we will consider only the security provided by 
the system against passive eavesdroppers and cheating verifiers recovering secret 
information that they can later use to impersonate the legitimate user. As in the 
original Schnorr scheme, one kind of attack would be to try to construct a pair 
(I, ct -s) and a legitimate signature 6e of this pair for later use in identification. This 
would however require a successful attack on the signature scheme of the KAC. 
For this paper, we will assume that the signature scheme of the KAC is secure. 

To demonstrate the security of our identification scheme, it remains for us to 
show two things: 

1. A cheating prover P should not be able to convince a verifier that he (P) knows 
a discrete logarithm of v when this is not the case. 

2. A (possibly cheating) verifier should not be able to obtain any information 
that would later be useful to an imposter. 

This first condition is commonly referred to as the soundness [7], [18] of the 
protocol. Schnorr proved the soundness of his protocol [17], and with a slight 
modification of his proof, we prove the soundness of our protocol in Theorem 1. 

The second condition is the property that has inspired the definitions of zero- 
knowledge proofs [8] and witness hiding protocols [6]. Neither of these conditions 
have been estabished for the Schnorr scheme. We will use the model of witness 
indistinguishable and witness hiding to argue that our scheme is secure. In this 
paper, we will state only the informal definitions of these concepts, since our 
theorems will give statements specific to our protocol. The concepts are described 
informally and defined formally in [7]. Informally, a protocol is witness indistin- 
guishable if the verifier cannot tell which witness the prover is using, and a protocol 
is witness hiding if participating in the protocol does not help the verifier to compute 
any new witnesses which he did not know at the beginning of the protocol. Theorem 
2 shows that our protocol is witness indistinguishable and Corollary 3 shows that 
it is witness hiding. Feige and Shamir [7] have shown that witness indistinguish- 
ability implies witness hiding under certain conditions and these conditions are met 
by our protocol. However, by proving witness hiding directly instead of using their 
general theorem, we are able to describe the exact connection between the security 
of our protocol and the difficulty of precise computational problems. 

We should perhaps clarify the claim that we are basing the security on two 
different problems. We are in fact basing the security of our scheme on the difficulty 
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of  the following problem: 

Given an integer ~ and a prime p, find discrete logari thms modulo  p to the base ~t. 

The point  is that  if one could solve such a problem, then one could also solve the 
following two problems: 

Given p, ~, and q, with ~ of  order  q modulo  p, find discrete logari thms modulo  p to 
the base ~. 
Given p and ~, find the order  of  ~ modulo  p. 

These two problems are then the actual problems that  we base the security on. The 
dependence on factoring comes from the second problem, but  note that  while a 
successful at tack on the scheme requires the ability to solve the second problem 
(and therefore to factor p - 1), a cryptanalyst  will be in possession of  some side 
information,  namely, the knowledge of  an element ~t whose order  is the unknown  
factor q of  p - 1. Whether  this information can be used to factor p - 1 faster than 
current general purpose factoring methods is unknown.  Fo r  further information on 
the current state of  the art in factoring, see [12] or  1,16], and for information on 
comput ing  discrete logarithms, see 1,10] and [14]. 

This next theorem establishes the soundness of  the identification scheme. 

Theorem 1. Let  p and ct be as described in Section 3. Let  x = or" (mod p) for  some 
integer r. Le t  A = Ap ..... x be an algorithm with running time bounded by T that 
receives an input e, and attempts to compute an integer y such that ~Yv e =- x (mod p). 
I f  A will produce a correct output for  at least e2' o f  the possible challenges e (where 
e > 21-t), then there exists a probabilistic algorithm that with at least a constant 
probability, will compute a discrete logarithm o f  v in O(log 3 p + T/e) bit operations. 

Proof. This p roof  is similar to the p roof  given by Schnorr  for Proposi t ion  2.1 in 
[17]. Choose  r andom e's until an el and e2 are found for which A gives the correct 

1 t outputs  Yl and Y2- Such a pair  e 1, e 2 exists since e > 2 - .  The expected time for this 
is O(T/e). Then ~r,-y2 = ve2-e, (mod p). If  (e 2 - el,  p - 1) = 1, then we use the 
Euclidean algori thm to compute  f -  (e 2 - el) -1 (mod p - 1). It then follows that  
~lr,-r2~y = v (mod p), so that  (y~ - Y2) f  is the desired discrete logarithm. 

Suppose now that  d = g c d ( e 2 -  ex, p -  1 ) >  1. In this case, we set dl = d, 
m 1 = p - 1, and for i = 2 . . . .  , we compute  mi = mi-1/di-1 and d i = gcd(e 2 - el, mi). 
The mi's will quickly decrease until we come to a point  where di = 1, and we will 
still have q lmi since l e2 - ell < q < w. Applying the extended Euclidean algorithm, 
we then obtain  an integer l such that  l(e 2 - el) = 1 (mod mi), and it follows that  
(yl - y2)l is a discrete logari thm of  v. It is easy to see that  these computa t ions  can 
be done in O(log 3 p) bit operat ions  using s tandard  algorithms. [ ]  

A conversation between a prover  P and a verifier V consists of  the public informa- 
tion, p, v, g, I, and a triple (x, e, y) where x -- ~ '  (mod p) for some integer r chosen 
by P from the uniform distribution on the integers in I-I, p - 1], e is an integer, 
e e 1,1, 2 t] is chosen by V, and y is an integer satisfying ~rv e = x which is computed  
by P as y - r + se (mod p - 1). A tape o f  conversations between a prover  P and a 
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verifier V is a sequence of conversations between P and V. In the definition of 
conversation, we made no assumption about  how the verifier chose e. Therefore, in 
a tape of conversations, the verifier is free to use any method in choosing the e's 
and can use any auxiliary input, h, that he has. We use the notation a ~, A to mean 
that a is an element of A chosen at random from the uniform distribution on 
elements of A. 

We will now proceed with the proof that this identification scheme is witness 
hiding unless p - 1 can be factored. 

Theorem 2. The distribution o f  a tape o f  conversations between P and V does not 
depend on which discrete log o f  v is known by P. 

Proof. Let h be any auxiliary input that V has. The prover has an s such that 
a - '  - v (mod p). Let s' =- s (mod q) and s" - s (mod (p - 1)/q). s' is uniquely deter- 
mined by v, but there are (p - 1)/q distinct choices of s" for each v, corresponding 
to the ( p -  1)/q different discrete logarithms of v. It suffices to show that the 
distribution of a tape of conversations between P and V does not depend on s". To 
do this, we will show that each conversation does not depend on s" and, furthermore, 
that the distribution of each conversation, given h and all of the previous conversa- 
tions on the tape, does not depend on s". The proof  will be by induction on the 
number of conversations. 

To initiate a conversation, P will pick r % [1, p - 1]. Let r '  - r (mod q) and 
r" --- r (mod(p - 1)/q). The distribution of r '  is uniform on the set of equivalence 
classes modulo q, and the distribution of r" is uniform on the set of equivalence 
classes modulo (p - 1)/q. It follows that the distribution of the x = ~" (mod p) that 
P produces is uniform on the subgroup of residue classes generated by ~. It is also 
easy to see that x does not depend on either h, r", s" or on previous conversations 
on the tape. 

The e's that V picks to send to P can depend on h, v, ~, x, and all of the previous 
information already on the tape of conversations, but since (by induction) every- 
thing on the tape up to that point did not depend on s ' ,  and since V does not have 
access to s", the distribution of e, given h and all of the previous conversations on 
the tape cannot depend on s" either. Moreover, the e that V chooses cannot depend 
on r", since V has not yet seen anything that contains any information about it. 
Since P chose r randomly, it follows also that the value of r" does not depend on 
e, h, and the previous information on the tape. 

When P receives e from V, he computes y =- r + se (mod p - 1). Let y '  = y 
(mod q) and y" =- y (mod(p - l)/q). Clearly y '  depends on r', s', e, and q, but does 
not depend on s". On the other hand, y" = r" + s"e (mod(p - 1)/q), but r" does not 
depend on any of the previous communication. Therefore, r" completely masks the 
value of s", and the distribution of y" is uniform on the equivalence classes modulo 
(p - 1)/q. Thus, the distributions of both y'  and y" (even given h and all of the 
previous conversations on the tape) do not depend on s", which implies that the 
same is true for the distribution of y, from which the conclusion of the theorem 
follows. [] 
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We will now use these two theorems to show that if an impostor has a reasonable 
chance of success at passing himself off as P, then P together with the impostor 
could factor p - 1. 

Corollary 3. Let A be an algorithm that has access to a tape of conversations between 
P and any V. Suppose that A selects x, then receives an input e, and tries to produce 
an output y such that ~rve =- X (mod p). I f  A has running time T and will produce a 
correct output for at least e2 t of the possible challanges e ~ [1, 2r], where e >_ 2 l-t, 
then there exists a probabilistic algorithm that uses A and P that will discover a 
nontrivial factor of p - 1 in time O(log 3 p + T/e) with probability at least 1 - 2/w, 
where w is the largest prime factor of (p - 1)/q. 

Proof. It follows from Theorem 1 that in the expected time of O(log 3 p + T/e) bit 
operations, A will compute a discrete logarithm a of v. Since the tape of conversa- 
tions does not depend on which discrete logarithm P knows, a does not depend on 
s". Furthermore,  P initially chose s randomly, and hence a + s is a random integer 
multiple of q, with (a + s)/q uniformly distributed on [(a + 1)/q, (a + p - 1)/q]. Let 
d = (a + s, p - 1). Then qld. I fw is a prime factor of(p  - 1)/q, then the probability 
that w divides a + s is exactly 

{ I a + l  a + p -  11} n: w[n, n ~ 
q q 2 

{ [ a + l  a + p - 1 ] }  w 
n : n ~  

q q 

Therefore, Pr((d, w) = 1) > 1 - 2/w, and if (d, w) = 1, then d is a nontrivial factor 
of(p  -- 1)/q. [] 

6. Comments 

For  our modification of Schnorr's scheme, we have proved that if an impostor has 
a reasonable probability of success, then there is an efficient algorithm for factoring 
p - 1. FurthermOre, it is easy to see that even ifp - 1 is factored, then the security 
of our scheme becomes the same as the security of the Schnorr scheme. 

Our  identification scheme can be converted into a signature scheme using the 
same techniques that were introduced by Feige et al. I-6] and also used by Schnorr 
1-17]. To be more precise, let f be a one-way hash function. To sign a message, m, 
the prover selects x as in the identification scheme. Instead of the verifier choosing 
e, P computes e = f (x ,  m). The remainder of the signature scheme is the same as the 
identification scheme. 

An interesting modification to our scheme is to choose ~ to be a generator of the 
multiplicative group (mod p), i.e., an element of order p - 1. The rest of the protocol 
would work as before. In one sense, this appears to be more secure since we are no 
longer revealing an element of order q. We were able to modify the proof  of Schnorr 
117] to prove that if an impostor  could be successful, then he would have learned 
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the discrete logarithm of v (if 2 is the only prime factor of p - 1 that is smaller than 
2t). However, as with the Schnorr scheme, we could not prove that a verifier could 
not learn something about the discrete logarithm of v. Therefore, it is not clear 
whether choosing ~ to be an element of order p - 1 increases or decreases the 
security of our scheme. 
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