
AN INTERACTIVE REGION-OF-INTEREST VIDEO STREAMING SYSTEM

FOR ONLINE LECTURE VIEWING

Aditya Mavlankar, Piyush Agrawal, Derek Pang, Sherif Halawa, Ngai-Man Cheung and Bernd Girod

Information Systems Laboratory, Department of Electrical Engineering

Stanford University, Stanford, CA 94305, USA

Email: aditya.mavlankar@ieee.org, {piyushag, dcypang, halawa, ncheung, bgirod}@stanford.edu

ABSTRACT

ClassX is an interactive online lecture viewing system devel-

oped at Stanford University. Unlike existing solutions that

restrict the user to watch only a pre-defined view, ClassX al-

lows interactive pan/tilt/zoom while watching the video. The

interactive video streaming paradigm avoids sending the en-

tire field-of-view in the recorded high resolution, thus reduc-

ing the required data rate. To alleviate the navigation bur-

den on the part of the online viewer, ClassX offers automatic

tracking of the lecturer. ClassX also employs slide recogni-

tion technology, which allows automatic synchronization of

digital presentation slides with those appearing in the lecture

video. This paper presents a design overview of the ClassX

system and the evaluation results of a 3-month pilot deploy-

ment at Stanford University. The results demonstrate that our

system is a low-cost, efficient and pragmatic solution to inter-

active online lecture viewing.

Index Terms— IRoI video, lecture capture systems,

tracking, object recognition, slide synchronization

1. INTRODUCTION

Growing Internet access, increasing network throughput, im-

proving computer hardware and enhanced video compression

are providing a boost to inexpensive online delivery of lec-

ture videos. However, most lecture capture systems depend

on human camera operators as well as manual work of post-

production and online video publishing, thus resulting in ex-

pensive solutions. Some systems employ a static, unmanned

camera that records a limited field-of-view, thus confining the

lecturer’s movement. More recently, it has been proposed

to employ a high-spatial-resolution unmanned camera with a

wide field-of-view, followed by automatic cropping to simu-

late a human camera operator [1]. Note that cropping is nec-

essary since the entire field-of-view, recorded in high reso-

lution, entails prohibitive bit-rate for streaming to a remote

client, and is also unsuitable for display, unless the client has

a large display screen.

This work was done when Aditya Mavlankar was a doctoral candidate at

Stanford University.

The ClassX lecture capture system grew out of the ob-

servation that, the video, generated with or without a human

camera operator, might not show the portion of the frame

that a particular user wants to watch. ClassX solves this

problem by allowing each user to independently control

pan/tilt/zoom while watching the video. Thus, each user

can interactively choose an arbitrary region-of-interest (RoI).

Interactive region-of-interest (IRoI) allows the user to take

advantage of the wide field-of-view as well as the recorded

high resolution, while requiring modest transmission data

rate. Also, the display screen at the user’s end is not required

to be large.

We surveyed lectures on science, mathematics and engi-

neering topics and found that, typically, the lecturer writes on

several boards in the classroom. Besides, digital presentation

slides might be projected next to the boards. Figure 1 illus-

trates a typical podium with multiple boards. While watching

lectures with the ClassX client, each user can focus on an

RoI of her choice, thanks to IRoI functionality. For instance,

Fig. 1 shows screens of three viewers watching different RoIs.

A straightforward way to serve IRoI video is to decode

the high-spatial-resolution video followed by cropping out

the RoI sequence according to the client’s commands and en-

coding and transmitting this sequence. However, this sim-

ple approach does not scale, since RoI video encoding needs

to be invoked individually for each user. In our own work,

we have proposed spatial-random-access-enabled video cod-

ing, which allows the server to encode the recorded field-of-

view once with multiple resolution layers to support differ-

ent zoom factors [2–4]. However, with the coding scheme

in [2–4], the transmitted bit-stream is neither standard com-

pliant nor is it simply comprised of multiple standard com-

pliant video bit-streams. Hence, it is not possible to use de-

coders available in a web-browser to decode the received RoI

video. In this paper, we propose a coding scheme that pre-

serves spatial random access while still allowing RoI video

decoding by invoking one or more instances of a standard de-

coder available in popular web-browsers. The ClassX video

player has been tested inside Firefox, Safari, IE and Chrome

web-browsers and requires a one-time installation of the Mi-

USER A

USER B USER C

Fig. 1. A typical podium consisting of multiple writing boards. Sample RoIs chosen by three viewers.

Thumbnail

video

Hide or

display

thumbnail

Full-

screen

toggle

Rectangle depicting

location of current RoI

Select

preset RoIs

Tracking

mode

toggle

Volume

Play/Pause

Timeline

with random

seek

Arrows for

RoI

translation

Slider for

zoom

control

Display

video

and/or

slides

Pop-up

slide deck

for

browsing

RoI video

Fig. 2. Screenshot of the ClassX video player and available controls.

crosoft Silverlight plug-in1. Figure 2 shows a screenshot of

the ClassX video player and available controls.

1Although we chose Silverlight [5] platform for the ClassX system, it

is feasible to employ Adobe’s Flash [6] platform instead. Employing Flash

would require modification of the ClassX client software. Since the ClassX

player can be embedded in an HTML web-page, the user is unaware of which

platform is used, as long as the plug-in is installed in her web-browser.

Apart from allowing the user to control pan/tilt/zoom,

ClassX offers a Tracking mode. The RoI video streamed in

Tracking mode is generated through automatic cropping and

mimics a human camera operator, similar to the approach

in [1]. This approach differs from prior work employing a

camera that physically moves to track the lecturer or multiple

cameras that cover different regions [7–9].

Input HD

video

Server

storage

Digital

slides

Automatic

RoI selector

IRoI video

encoder

Slide

synchronizer

Metadata

Video tiles

Thumbnail

Tracking tile

Preset data

Metadata

Slides S
tr

e
a
m

in
g

s
e
rv

ic
e

v
ia

H
T

T
P

ClassX Client

Thumbnail

Req.

tiles

Slides

Metadata

RoI Req.

Fig. 3. Overview of system architecture.

ClassX can also ingest a deck of digital presentation slides

and automatically synchronize slide display with the video.

We employ computer vision techniques for estimating which

slide is shown during which time segment in the video. The

ClassX player can automatically advance slides during video

playback. The user can also select a slide and jump to the

video segment showing that particular slide.

The paper is organized as follows. Section 2 provides

an overview of the system architecture. Section 3 covers the

video coding scheme and discusses the aspects that lower en-

coding time as well as bit-rate. Section 4 explains how ClassX

generates video associated with the Tracking mode. The slide

recognition algorithm as well as slide presentation features

of the ClassX player are discussed in Section 5. We have

employed ClassX for recording and publishing several lec-

ture courses at Stanford University. We have analyzed usage

patterns and extracted several interesting metrics, which are

reported in Section 6.

2. OVERVIEW OF SYSTEM ARCHITECTURE

Figure 3 provides an overview of the ClassX system. The

high-resolution video, recorded using an HD camcorder, is

first decoded and fed to the IRoI video encoder. The IRoI

video encoder creates multiple resolution layers. Each layer

is subdivided into non-overlapping tiles. Each tile is inde-

pendently compressed using H.264/AVC [10]. A thumbnail

overview is also created and encoded using an H.264/AVC

encoder. Similarly, a tile of the video in Tracking mode is also

generated. A client receives the thumbnail video at all times

along with tiles that are relevant for rendering the chosen RoI.

If the user selects the Tracking mode, the client receives the

thumbnail and the Tracking tile.

At the client’s side, multiple instances of an H.264/AVC

decoder can be instantiated for decoding received tiles as

well as the thumbnail. The rendering of multiple tiles is

accomplished by simultaneous playback of multiple videos.

The client synchronizes playback and controls the scaling

and placement of received tiles in correspondence with the

chosen RoI. The tile portions falling outside the RoI are not

rendered. The streamed tiles belong to the resolution layer

that is determined by the chosen zoom factor. Additional re-

sampling employed at the client allows storing few resolution

RoI

RoI

Resolution layer 3

Resolution layer 2

Resolution layer 1

(Thumbnail)

High-spatial-resolution input video Encoded tiles
Ow

Oh

2

2

Ow / τ

Oh / τ

Oh / τ

Ow / τ

Fig. 4. Proposed coding scheme shown for the case of three

resolution layers. The original high-spatial-resolution video

is dyadically downsampled to create multiple resolution lay-

ers. Each resolution layer is further subdivided into tiles.

Each tile is independently coded using an H.264/AVC video

encoder.

layers at the server while allowing continuous adjustment of

the zoom factor.

For serving relevant tiles to the clients, we employ an

Apache HTTP (hypertext transfer protocol) server [11] with

a module that serves tiles with specified time segments. Note

that a newly needed tile can only be decoded starting from an

intracoded frame. In case a given tile is not available at the

client, we fill in missing pixels by upsampling relevant parts

of the thumbnail. Metadata describing locations of intracoded

frames are sent for each tile, so the client can request appro-

priate time segments for the relevant tiles.

Digital presentation slides are analyzed and matched

against the video to determine slide and video synchroniza-

tion information. Since the slide deck consumes little data

rate, it is transmitted in its entirety when the player starts

up. Metadata holding synchronization information is also

transmitted to the client.

3. IROI VIDEO STREAMING

3.1. Proposed Coding Scheme

The server performs a one-time encoding of the thumbnail

and the tiles and relevant streams can be served to different

users depending on their individual RoIs. As shown in Fig. 4,

the input video of size ow × oh is dyadically downsampled to

create K resolution layers in all. The lowest resolution layer,

which provides a thumbnail overview, is transmitted at all

times to aid navigation within the recorded field-of-view. Let

τ = 2
K−1. Each tile has spatial dimensions of ow

τ
× oh

τ
pix-

els, which is also equal to the size of the RoI display portion

at the client’s side. The tile size, RoI display size, and choice

of the resolution layer guarantee that any chosen RoI over-

laps at most four tiles from the relevant layer. Hence, includ-

Video

decoder

Down-

sampler

Load

balancer

Master

controller

�����

Queues with

YUV frames

Encoder Encoder

�����

Encoder Encoder

Parallel

encoders

Metadata

generator

Outputs

Encoded video tiles Metadata

Input

Video

Fig. 5. Proposed architecture of a multi-threaded IRoI video

encoder.

ing the thumbnail, the client needs to decode and synchronize

at most five H.264/AVC video streams, each having spatial

dimensions of ow

τ
× oh

τ
pixels. The client reduces required

bit-rate by not fetching a tile if the RoI overlaps less than 5%

of the area on the tile. As noted above, in the Tracking mode,

only two tiles (including the thumbnail) are fetched, with a

Tracking tile that is larger than the other tiles.

3.2. Parallelization Employed by IRoI Encoder

With multiple tiles and resolution layers, IRoI video encod-

ing entails higher complexity than coding a single HD video.

An efficient video encoder is essential for timely online pub-

lishing of lecture videos. Since each tile is encoded indepen-

dently, ClassX can parallelize tile encodings. Additionally,

it is efficient to crop out all tiles from the camera-recorded

video at the same time. Figure 5 illustrates our IRoI encoder

design. The encoder follows a multi-threaded software im-

plementation containing a master controller that distributes

the task of encoding each tile to a single thread. A thread can

be processed by any core within a CPU, enabling efficient

parallelization. During the encoding process, the master con-

troller first decodes the input video file into raw YUV frames.

Secondly, it downsamples the raw YUV frames into different

resolution layers and then subdivides layers into appropriate

tiles. Each raw tile is put into a queue that belongs to the

I P I

Active scene

(Regular GoP size)

I P P
� � I P P

� I P PI P PI P I P �

IDR-frame is inserted occasionally

to adapt to illumination changes.

Static scene Static scene

(Extended GoP size)

Frame repeat Forward motion prediction

P P PP PP

Fig. 6. Proposed coding structure using adaptive frame skip-

ping. The generated bit-stream corresponding to each tile is

H.264/AVC compliant as before.

corresponding encoder thread. Each encoder thread encodes

the respective tile into an H.264/AVC compliant bit-stream.

Lastly, all the encoded tiles are passed to the metadata gener-

ator, which builds the appropriate file container and annotates

the video with relevant information, such as the video time

length and the position of the intracoded frames.

3.3. Adaptive Frame Skipping for IRoI Video Coding

Lecture videos often contain large regions with static back-

grounds and small regions with active motion. Hence, it is

beneficial to apply conventional motion-compensated predic-

tive coding only for tiles that contain motion. For the static

tiles, we can simply encode a single static background frame,

and skip over all the subsequent static frames until the tile is

active again. The frame skipping approach lowers the encod-

ing complexity as well as the storage requirement of the IRoI

video without affecting its perceptual visual quality.

While incorporating adaptive frame skipping, we can

still generate an H.264/AVC standard compliant bit-stream

for each tile as depicted in Fig. 6. We determine an input

video frame to be part of a static scene or an active scene by

measuring its motion change compared to the last displayed

frame. Motion change can be detected by taking the sum of

absolute pixel differences and applying an appropriate thresh-

old in a block-based manner. If all blocks are classified as

static then the entire frame is classified as static. The block-

based method allows detecting small local variations and also

enables early termination of the decision process. When a

video segment is active, the video frames are encoded using

standard H.264/AVC structure with a regular group of pic-

tures (GoP) size to allow temporal random access. When a

segment becomes static, an IDR frame is inserted as a static

background frame. The IDR frame serves as a temporal

random access point and subsequent P frames are forced to

use the P-skip mode for each macroblock, thus avoiding mo-

tion estimation and motion compensation. In case of a static

scene, the encoder can also further extend the GoP size to

eliminate the coding of redundant I frames representing the

same scene. This method is similar to the long-term memory

background-based motion compensation in [4] except that

the I-frames are refeshed when changes occur. When a static

tile becomes active, the encoder reverts to the normal forward

prediction and the regular GoP size.

4. AUTOMATIC ROI SELECTOR

For ease of use, ClassX offers two modes of automatic RoI

selection: 1) Tracking mode, which mimics a human camera

operator by generating a video that follows the lecturer, and

2) Preset mode, which allows users to choose fixed preset

RoIs from a set of pre-determined locations.

4.1. Tracking mode

The Tracking mode entails streaming a Tracking tile contain-

ing a “recommended view”. The Tracking tile is cropped

directly from the input video and mostly tracks the lecturer

when he is visible in the recorded field-of-view. Although the

RoI in the Tracking mode is non-stationary, it does not entail

switching tiles once the Tracking mode is enabled.

To automatically identify our tracking target, a server-side

algorithm first detects a set of target points based on promi-

nent features of the lecturer, such as motion and skin color,

over a set of frames sampled from the video. The target points

are then grouped together by k-means clustering to generate

a set of matching templates. After we acquire the matching

templates, we find the starting location of the lecturer through

template matching at the beginning of the video sequence.

After the starting location of the lecturer is identified, we

can initiate lecturer tracking by using dynamic background

subtraction. First, we set the lecturer as the foreground of

the scene. We then apply background subtraction with run-

ning Gaussian average [12] to track the lecturer in subsequent

frames. Since the trajectory of the lecturer is continuous and

is often constrained to a horizontal direction, we reduce our

tracking problem into a 1-D problem and estimate the location

of the lecturer by calculating the horizontal centroid of the

foreground pixels. Factors, such as occlusion and motion of

non-target objects, can cause our tracker to drift from the tar-

get. To prevent this problem, we compute the matching confi-

dence between the templates and the estimated target. When

the matching confidence is high, we update our template set

by removing an older template and adding the current target.

This dynamic feedback provides the system with latest infor-

mation, such as target orientation and illumination changes,

and enables improved tracking accuracy without requiring a

large set of matching templates. When the matching confi-

dence is low, we try to find the best matching region through

template matching. If no match is found, we do not update the

location of the recommended view as well as the template and

the background model. In addition to generating the viewing

trajectory, we determine an appropriate zoom factor for the

recommended view based on the size of our detected target

and the motion activity surrounding the target.

To reduce computational burden, we process every fifth

video frame for lecturer tracking. A post-processing step, in-

volving low-pass filtering and trajectory interpolation, is ap-

plied to interpolate and stabilize the viewing trajectory. After

the trajectory is finalized, the system crops out the appropri-

ate region from the input video and encodes the sequence into

a Tracking tile using an H.264/AVC encoder.

4.2. Preset mode

Instead of following the lecturer, the Preset mode offers the

choice of different RoIs centered around different writing

boards or projection screens. Viewers can easily switch be-

tween these views and focus on different lecture material

printed on different boards. To find the set of appropriate

presets, our server-side algorithm applies the Canny filter and

determines a set of closed rectangular contours in the video.

The coordinates of the selected rectangular regions are then

streamed as metadata corresponding to preset views. Since

Preset mode entails a non-moving RoI, an independent tile is

not generated.

5. SLIDE RECOGNITION

To enhance the user experience, ClassX supports the display

of electronic slides alongside relevant sections of the lecture

video. When a slide transition occurs in the lecture video, the

slide image is updated accordingly. ClassX also allows the

user to select a slide and access the time segment of the video

where the selected slide is discussed.

To enable slide synchronization, we perform automatic

slide recognition offline by matching video frames with elec-

tronic slides. Slide recognition involves two steps: 1) extrac-

tion of keyframes from the video and 2) matching keyframes

to a deck of slides using pairwise image comparison. We

first extract keyframes from where slide transitions occur

in the video. To detect slide transition events, we compute

frame difference between successive frames, and declare a

slide transition when the difference exceeds a threshold. To

reduce the probability of false positive due to the movement

of foreground objects (e.g., instructor’s motion), we locate

foreground objects by comparing the current frame with a

background model and exclude them from computing the

frame difference in transition detection.

With the detected transitions and the extracted keyframes,

we then match the keyframes against a deck of electronic

slides to identify the ones being displayed in the video

frames. In particular, we use pairwise image comparison

to perform the matching [13]. We extract local descriptors

from a keyframe. We detect local extrema in the difference-

of-Gaussian (DoG) filtered images and select interest points

from these extrema [14]. We compute the 128-dimensional

Fig. 7. Matching interest points between a keyframe and an

electronic slide.

SIFT descriptor vectors to summarize the local gradients

around these interest points. These descriptors are invari-

ant to image scaling and rotation, and are partially invariant

to illumination and viewpoint change. Then, we compare

the extracted descriptors from the video frame against those

from the slides. We establish correspondences between de-

scriptors that are nearest neighbors in the descriptor space

(Figure 7). From these correspondences, we use RANSAC to

estimate the geometric transformation between the frame and

the slides [13]. We reject outlier correspondence pairs that are

inconsistent with the estimated transformation. We return as

the matching result the slide which has the maximum number

of correspondences consistent with estimated transformation.

6. PILOT PROJECT EVALUATION

Since September 2009, we have engaged in pilot deployment

of ClassX at Stanford University. To assess the techniques

presented in this paper, we analyze usage data gathered be-

tween January 2010 and April 2010. During this period, we

covered two courses offered by the Department of Electrical

Engineering. Two distinct lecturing styles were encountered

in these two courses. One style mainly relies on digital slide

presentation and the other style exclusively uses blackboards.

For these two courses, our system published a total of 37 lec-

tures. Each lecture is about 75 minutes long and is recorded

by a static camera with resolution of 1920 × 1080 pixels and

at 30 frames/sec. The camera compresses the high-resolution

videos using H.264/AVC at 24 Mbps. Our IRoI encoder de-

codes the recorded bit-stream and creates 3 dyadic resolution

layers with a total of 21 tiles. Each tile has 480 × 270 pixels.

The Tracking tile is generated by the automatic RoI selector

with a resolution of 960 × 540 pixels. Each tile is encoded

into an H.264/AVC bit-stream using FFmpeg and the x264

(v0.77) codec library. The motion estimation is set to have

quarter-pixel accuracy with a search range of 16 pixels. The

encoded videos have an intraframe period of 59 frames with

16 B frames between the anchor frames.

The IRoI encoder runs on a dedicated computer equipped

with an Intel Xeon Quad-Core 5140 2.33 GHz processor with

4 GB of RAM. Using the parallelization technique described

1

2

1

2

0

100

200

y
x

A
v
e
ra

g
e
 c

o
d
in

g
 b

it
−

ra
te

 [
k
b
p
s
]

60

70

80

90

100

110

120

130

(a) Average tile bit-rates (Layer 2)

1

2

3

4

1

2

3

4

0

200

400

yx

A
v
e
ra

g
e
 c

o
d
in

g
 b

it
−

ra
te

 [
k
b
p
s
]

100

120

140

160

180

200

220

(b) Average tile bit-rates (Layer 3)

1

2

1

2

0

20

40

y
x

P
e
rc

e
n
ta

g
e
 o

f
to

ta
l
re

q
u
e
s
ts

16

17

18

19

20

21

22

23

(c) Breakdown of requests (Layer 2)

1

2

3

4

1

2

3

4

0

2

4

yx

P
e
rc

e
n
ta

g
e
 o

f
to

ta
l
re

q
u
e
s
ts

0.5

1

1.5

2

(d) Breakdown of requests (Layer 3)

Fig. 8. Average coding bit-rate and percentage of total re-

quests for each tile from resolution layers 2 and 3. The x and

y coordinates correspond to the spatial location of each tile

relative to the top left corner of the video.

in Section 3.2, our IRoI encoder needs an average encod-

ing time of 50 ms per input frame. The processing times

for automatic RoI selection and slide recognition are 10 ms

and 8.25 ms per input frame respectively. As a result, the to-

tal processing time for a 75-minute lecture is only about 140

minutes.

On average, for a 75-minute lecture, the encoded video

with 22 tiles requires 1.95 GB of storage space. The average

coding bit-rates per tile are 184, 96, 146 and 570 kbps for

Layer 1, Layer 2, Layer 3 and the Tracking tile respectively.

The average coding rates for each tile in Layers 2 and 3 are

shown in Figs. 8 (a) and 8 (b). The average PSNR of all tiles

is 37.24 dB compared to the input of the tile encoder.

We also evaluated the effectiveness of adaptive frame

skipping for IRoI video. We implemented the method as

described in Section 3.3 by modifying the x264 library and

compared its performance against x264. The experiment is

performed on two 15-minute video segments extracted from

each of our published courses. The videos are encoded into

altogether 21 tiles across the 3 resolution layers. The encoder

settings are identical except for the differences in their coding

structures. The P-skip mode is also enabled in both encoders.

Figure 9 shows that adaptive frame skipping has an average

coding gain of 2 dB at low bit-rates and 0.6 dB at high bit-

rates over all encoded tiles. In terms of encoding complexity,

Fig. 10 indicates that adaptive frame skipping can reduce

the average encoding time spent per frame by up to 40% at

low quality and by up to 30% at high quality. These results

demonstrate that adaptive frame skipping helps in reducing

0.02 0.04 0.06 0.08 0.1 0.12 0.14
30

32

34

36

38

40

42

Bits per pixel

P
S

N
R

 [
d
B

]

with frame skipping

without frame skipping

Fig. 9. PSNR with and without adaptive frame skipping.

30 32 34 36 38 40 42
6

7

8

9

10

11

12

13

PSNR [dB]

A
v
e
ra

g
e
 t

ile
 e

n
c
o
d
im

g
 t

im
e
 p

e
r

fr
a
m

e
 [

m
s
]

with frame skipping

without frame skipping

Fig. 10. Encoding time with and without adaptive frame skip-

ping. The encoding time is the average encoding time spent

per frame per tile.

both storage space as well as encoding complexity of IRoI

videos, while providing H.264 compliant bit-streams.

During the pilot deployment, the ClassX streaming server

received a total of 84,064 video streaming requests from 782

unique IP addresses. The mean transmission bit-rate per

streaming session is 493 kbps with a standard deviation of

246 kbps. The highest observed bit-rate is 2342 kbps and

the lowest observed bit-rate is 133 kbps. The optimization of

fetching only those tiles having significant overlaps with the

RoI also plays a role in curbing required bit-rate. Each user

requires about 2.82 tiles on average. The percentage break-

down of the numbers of tiles streamed per request is shown in

Fig. 11 (a). We measured the average tile switching delay to

be 3.4 seconds with a standard deviation of 1.9 seconds. The

tile switching delay is the time between an RoI change and

when all newly required tiles start playing back. As described

previously, during the switching time, missing tiles are made

up for by using error concealment from the thumbnail video.

10%

37%

28%

10%

15%

1

2

3

4

5

(a) Number of tiles streamed

per request

10%

57%

8%

24%

Resolution layer 1

Resolution layer 2

Resolution layer 3

Track tile

(b) Breakdown of requests

according to layer

Fig. 11. Average number of tiles streamed per request and

breakdown of requests according to layer.

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time [min]

A
v
e

ra
g

e
 n

o
n

−
o

v
e

rl
a

p
p

in
g

 R
o

I
a

re
a

 r
a

ti
o

User 1 deviation

User 2 deviation

User 3 deviation

Deviation between users

Fig. 12. Deviation measure of RoIs for three individual users

and between five users. The vertical axis represents the area

ratio of the non-overlapping part of the RoI with a reference

RoI. In case of an individual user, the reference RoI is from

the previous frame. Given a pair of users, the deviation mea-

sure is computed by comparing the RoIs of the two users. The

plotted trace labeled “Deviation between users” is obtained by

averaging the numbers corresponding to all possible pairs that

can be formed with five users.

Figure 11 (b) shows the demand for the different reso-

lution layers. We observed that resolution Layer 2 received

the highest number of requests. The popularity can be at-

tributed to the best trade-off between video details and the

field-of-view offered by Layer 2. The Tracking tile accounted

for the second highest number of requests. Although most

users preferred Layer 2 and the Tracking tile, other layers are

also demanded for serving smaller or larger zoom levels. Fig-

ures 8 (c) and 8 (d) show the breakdown of the requests for

each tile from Layers 2 and 3. Most requests correspond to

the bottom region of Layer 2 and the center region of Layer 3,

where the lecturer is most likely to be.

We analyzed the positions and the sizes of the RoIs

recorded from five different users watching a 15-minute video

segment extracted from one of our lectures. To measure how

often a user operates pan, tilt and zoom, we calculate the

non-overlapping area of the user’s RoI with the previously

requested RoI. Figure 12 plots the non-overlapping area as a

ratio of the total RoI area for 3 users over the course of the

15-min video. A high ratio indicates significant change of

RoI in terms of its size and position. A ratio of zero repre-

sents no change in the RoI. We see that each user changed

the RoI at different times, with different amounts, and with

different frequencies. Furthermore, given a pair of users, the

deviation measure is computed by comparing the respective

RoIs of the two users. Also plotted in Fig. 12 is the average

of the numbers corresponding to all possible pairs that can be

formed with five users. The traces plotted in Fig. 12 confirm

that users are interested in watching different regions. When

we consider the deviation measure in conjunction with data

presented in Figs. 8 and 11, we find that users indeed make

use of the interactivity provided by the ClassX system.

7. CONCLUSIONS

In this paper, we present ClassX, a system for lecture video

recording, publishing and streaming. Once a lecture is pub-

lished online, users can watch it anytime. ClassX offers video

streaming with pan/tilt/zoom functionality such that users can

watch individual RoIs. Despite enabling multiple users to

navigate within the recorded field-of-view, it is possible to

compress the recorded video content only once and thus avoid

on-the-fly video encoding per user. Although several tiles

from multiple resolution layers are encoded while preparing

the content for online publishing, the complexity of the video

encoding is reasonably low. For example, a 75-minute lecture

can be published after about 140 minutes of processing.

Besides allowing users to watch arbitrary RoIs of their

choice, ClassX can automatically create a video that mimics

a human camera operator’s pan, tilt, and zoom. In the current

version of the system, a human operator is only needed to start

and stop the recording.

Digital presentation slides discussed during the lecture

can be uploaded to the system after the video has been

recorded. ClassX automatically recognizes which slide is

discussed during which segment of the video. The slides can

be advanced automatically during video playback. The user

can also select a particular slide and jump to the segment in

the video where that slide is discussed. It should be noted

that the processing time of 140 minutes reported above also

includes the time for creating a Tracking tile and automatic

slide synchronization.

We present and analyze usage patterns that gauge how real

users make use of various features of ClassX. It was found

that users choose the Tracking mode as well as control the

RoI themselves. The streaming bit-rates are in a range that is

feasible with today’s broadband speeds.

8. REFERENCES

[1] T. Nagai, “Automated lecture recording system with avchd

camcorder and microserver,” in Proc. ACM SIGUCCS fall con-

ference on User services conference (SIGUCCS’09), St. Louis,

Missouri, USA, 2009, pp. 47–54.

[2] A. Mavlankar, P. Baccichet, D. Varodayan, and B. Girod, “Op-

timal slice size for streaming regions of high resolution video

with virtual pan/tilt/zoom functionality,” in Proc. of 15th Euro-

pean Signal Processing Conference (EUSIPCO’07), Poznan,

Poland, Sep. 2007.

[3] A. Mavlankar, J. Noh, P. Baccichet, and B. Girod, “Peer-

to-peer multicast live video streaming with interactive virtual

pan/tilt/zoom functionality,” in Proc. of IEEE Intl. Conf. on Im-

age Processing (ICIP’08), USA, Oct. 2008, pp. 2296–2299.

[4] A. Mavlankar and B. Girod, “Background extraction and

long-term memory motion-compensated prediction for spatial-

random-access-enabled video coding,” in Proc. Picture Coding

Symposium (PCS’09), USA, May 2009.

[5] Microsoft Silverlight. Seen on Apr. 18, 2010. [Online].

Available: http://www.microsoft.com/silverlight/

[6] Adobe Flash. Seen on Apr. 18, 2010. [Online]. Available:

http://www.adobe.com/products/flashplayer/

[7] S. Mukhopadhyay and B. Smith, “Passive capture and struc-

turing of lectures,” in Proc. 7th ACM Intl. Conf. on Multimedia

(Part 1) (MULTIMEDIA’99), Orlando, FL, 1999, pp. 477–487.

[8] M. Bianchi, “Automatic video production of lectures using an

intelligent and aware environment,” in Proc. 3rd Intl. Conf. on

Mobile and ubiquitous multimedia (MUM’04), College Park,

Maryland, 2004, pp. 117–123.

[9] C. Zhang, Y. Rui, J. Crawford, and L.-W. He, “An automated

end-to-end lecture capture and broadcasting system,” ACM

Trans. Multimedia Comput. Commun. Appl., vol. 4, no. 1, pp.

1–23, 2008.

[10] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra,

“Overview of the H.264/AVC video coding standard,” IEEE

Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp. 560–

576, Jul. 2003.

[11] Apache HTTP server. Seen on Apr. 18, 2010. [Online].

Available: http://httpd.apache.org/

[12] D. Koller, J. Weber, T. Huang, J. Malik, G. Ogasawara, B. Rao,

and S. Russell, “Towards robust automatic traffic scene analy-

sis in real-time,” in Pattern Recognition, 1994. Vol. 1 - Confer-

ence A: Computer Vision Image Processing., Proceedings of

the 12th IAPR International Conference on, vol. 1, Oct. 1994,

pp. 126 –131 vol.1.

[13] S. Tsai, D. Chen, J. Singh, and B. Girod, “Rate-efficient, real-

time CD cover recognition on a camera-phone,” in Proc. ACM

Intl. Conf. on Multimedia, Vancouver, BC, Canada, Oct. 2008.

[14] D. G. Lowe, “Distinctive image features from scale-invariant

keypoints,” Int. J. Comput. Vision, pp. 91–110, 2004.

