
An Interactive Remote Visualization Environment

for an Electromagnetic Scattering Simulation

on a High Performance Computing System

Gang Chengyz;Yinghua Luy;Geo�rey Foxyz;Kim Millsy and Tomasz Haupty

yNortheast Parallel Architectures Center
zSchool of Computer and Information Science

Syracuse University, Syracuse, NY 13244

Abstract

Electromagnetic scattering(EMS) simulation is

an important computationally intensive application

within the �eld of electromagnetics. Advances in high

performance computing and communication (HPCC)

and data visualization environment(DVE) provide new

opportunities to visualize real-time simulation prob-

lems such as EMS which require signi�cant compu-

tational resources. In this work, an integrated interac-

tive visualization environment was created for an EMS

simulation, coupling a graphical user interface(GUI)

for runtime simulation parameters input and 3D ren-

dering output on a graphical workstation, with compu-

tational modules running on a parallel supercomputer

and two workstations. Application Visualization Sys-

tem(AVS) was used as integrating software to facili-

tate both networking and scienti�c data visualization.

Using the EMS simulation as a case study in this pa-

per, we explore the AVS data
ow methodology to natu-

rally integrate data visualization, parallel systems and

heterogeneous computing. Major issues in integrating

this remote visualization system are discussed, includ-

ing task decomposition, system integration, concurrent

control, and a high level DVE-based distributed pro-

gramming model.

1 Introduction

Scienti�c visualization has traditionally been car-
ried out interactively on workstations, or in post-
processing or batch on supercomputers. With ad-
vances in high performance computing systems and
networking technologies, interactive visualization in a
distributed environment becomes feasible. In a re-

mote visualization environment, data, I/O, compu-
tation and user interaction are physically distributed
through high-speed networking to achieve high perfor-
mance and optimal use of various resources required
by the application task. Seamless integration of high
performance computing systems with graphics work-
stations and traditional scienti�c visualization is not
only feasible, but will be a common practice with real-
time application systems [18, 16, 15].

Electromagnetic scattering(EMS) simulation repre-
sents an important computationally intensive applica-
tion in industry, and is an area of emphasis in the
national high performance computing initiative[5]. In
previous work, an electromagnetic scattering(EMS)
problem was used as an application problem in a
benchmark suite for the Fortran-90D/High Perfor-
mance Fortran development at Northeast Parallel Ar-
chitectures Center(NPAC) at Syracuse University, to
evaluate parallel algorithm and programming lan-
guage issues of this application on parallel systems
[14]. To further develop this application and pro-
vide engineers with visual insights into EMS simula-
tion problem, an interactive remote visualization envi-
ronment was developed. Over a Ethernet-based local
network, this environment combines a graphical user
interface of runtime system control and 3D graphics
rendering on a graphical workstation with parallel and
sequential computational modules running on a paral-
lel supercomputer Connection Machine CM5 and two
SUN Sparc stations. Application Visualization Sys-
tem(AVS) was used in this real-time simulation system
as a data visualization environment(DVE), enabling
high level 3D data visualization and networking capa-
bilities.

In this paper, we address a number of issues en-
countered in building an interactive visualization envi-



ronment for EMS, including decomposition of compu-
tation, system integration, interstage communication
and concurrent control, and a high level DVE-based
distributed programming model.

2 The Electromagnetic Scattering

Problem

Electromagnetic scattering is a widely encountered
problem in electromagnetics [7, 10, 21], with impor-
tant applications in industry such as microwave equip-

ment, radar, antenna, aviation, and electromagnetic
compatibility design. Figure 1 illustrates the EMS
problem we are modeling. Above an in�nite conductor
plane, there is an incident EM �eld in free space. Two
slots of equal width on the conducting plane are inter-
connected to a microwave network behind the plane.
The microwave network represents the load of waveg-
uides, for example, a microwave receiver. The inci-
dent EM �eld penetrates the two slots which are �lled
with insulation materials such as air or oil. Connected
by the microwave network, the EM �elds in the two
slots interact with each other, creating two equiva-
lent magnetic current sources in the two slots. A new
scattered EM �eld is then formed above the slots. We
simulate this phenomena and calculate the strength
of the scattered EM �eld under various physical cir-
cumstances. The presence of the two slots and the
microwave load in this application requires simulation
models with high performance computation and com-
munication. Visualization is very important in helping
scientists to understand this problem under various
physical conditions.

In previous work, data parallel and message passing
algorithms for this application were developed to run
e�ciently on massively parallel SIMD machines such
as Connection Machine CM-2 and DECmpp-12000,
and MIMD machines such as the Connection Machine
CM-5 and iPSC/860. The data parallel algorithms
run approximately about 400 times faster than sequen-
tial versions on a high-speed workstation [11]. Parallel
models on high performance systems provides a unique
opportunity to interactively visualize the EMS simula-
tion in real-time. This problem requires response time
of a simulation cycle that is not possible on conven-
tional hardware.

3 Parallization of the EMS Simulation

Model

3.1 A Distributed Computing Model

In [3], a simple and feasible performance model of a
remote visualization environment for a �nancial mod-
eling application was developed. This model can be
generalized as follows, shown in Figure 3 in which dis-
tributed I/O is not considered. A simulation cycle is
started from a GUI module running on the local ma-
chine, with simulation parameters are represented as
slide buttons and dials to provide real-time instrumen-
tation of the simulation's progress as well as simula-
tion steering (changing simulation parameters before a
new simulation cycle). Source data for the simulation
can also be read in by the GUI module from databases

or data �les. The computational task of the simulation
is decomposed into a set of computationally relatively
independent subtasks, which are represented as com-
puting modules distributed to di�erent remote ma-
chines. Input data are collected from the GUI by user
runtime interaction, from disk �les, or both sources,
and broadcasted to computing modules on the remote
machines. There is no data transfer among modules
on di�erent remote machines. A remote machine may
be a workstation or a supercomputer, whichever ar-
chitecture and computational power best suited to
the decomposed subtask. The simulation ends with
some kind of GUI rendering/viewing modules that run
on the local machine and use results generated from

remote modules. Fundamentally, this is a data
ow
(data-driven) programmingmodel, in which activation
of a module process is triggered solely by availability
of input data from another module process on either
the same or a di�erent machine.

This general model is well suited to rapid-
prototyping certain simulation and modeling appli-
cations that require both scienti�c data visualization
and high performance computing. At the software en-
vironment level, this model only requires support of
high level data visualization and networking facilities.
Most importantly, this data
ow based model is well
supported by most commercially available DVEs, such
as AVS[1] from AVS Inc. and Explorer[17] from Sili-
con Graphics Inc..

Components of our distributed model for simula-
tion and visualization are:

1. Decomposition of visualization computation,

2. Selection of simulation parameters,

3. Design of a graphical user interface,



4. System integration and synchronization, and

5. Interstage communication and performance anal-
ysis.

Using the EMS simulation, we next examine de-
composition of visualization computation and selec-
tion of simulation parameters. The remaining compo-
nents are discussed in later sections.

3.2 Computational Task Decomposition

Control parallelism and data parallelism are used to
target at the distributed computing model illustrated
in the preceding section and a MIMD parallel machine

along with a number of high-speed workstations. We
use the following guidelines for the decomposition of
our model's control parallelism:

1. Hardware architecture and computational power
best suited to decomposed subtasks.

2. Logical components of the application's compu-
tational model.

3. Performance balance among decomposed mod-
ules, and

4. Communication requirements.

The moment method [8, 9, 12] is used as the nu-
merical model for the EMS problem, which can be



represented as:

f
�
Y a

�
+

�
Y b

�
g~V = ~I

�
H

�
= Lff (~V ; ~M;

�
H2

0

�
)g

where,�
Y a

�
: equivalent admittance matrix of the free

space;�
Y b

�
: equivalent admittance matrix of the mi-

crowave network;
~V : coe�cient vector;
~I : the excitation vector;
~M : a vector of mode functions;�
H2

0

�
: matrix of Hankel functions;

f : a function;

L : a linear operator on f;�
H

�
: �nal matrix of the simulated EMS �eld

strength.

From the previous parallel algorithm design, we ob-
served that:

1. Calculations of
�
Y a

�
,

�
Y b

�
, ~I , ~M , and�

H2

0

�
can be done independently;

2. Computation of
�
Y a

�
,
�
H2

0

�
, and the linear

solver for ~V have signi�cant communication re-
quirements and are computationally intensive;



3.
�
Y b

�
is a sparse matrix and calculation of ~M

requires little time. Calculation time for
�
Y a

�
,

�
Y b

�
and ~I are relatively balanced.

Thus, we partition computations of this application
into four loosely coupled computing modules(they are
named as 'EM-1-SUN', 'EM-2-SUN', 'EM-3-CM5' and
'EM-all-CM5' in the AVS module network of Figure
6). Three modules can run simultaneously in the dis-
tributed computing environment(see Figure 4).

At the second level, i.e., data decomposition,
because most computations of

�
Y a

�
, ~V (a linear

solver),
�
H2

0

�
, and

�
H

�
are matrix manipulations,

data parallel algorithms are developed in Fortran90
and tailored to run on the Connection Machine 5,
to take the advantages of CM5's balanced data net-
work and control network. The CM Scienti�c Sub-
routine Library (CMSSL) is used in the data parallel
implementation[13].

At a more general level, we can view the entire sys-
tem a 'metacomputer' that makes use of both func-
tional parallelism and pipelining. In this applica-
tion, functional parallelism consists of graphical I/O
(i.e., user interaction, 3D rendering) and decomposed
simulation computations which are handled concur-
rently by di�erent components of the metacomputer.
Pipelining combines calculations and communications
among di�erent processors or groups of processor(e.g.
the CM5) that are carried out simultaneously in con-
secutive stages of the simulation. We will discuss
pipelining execution of the system in later sections.

3.3 Selection of Simulation Parameters

Simulation parameters are implemented as control

widgets within a graphical user interface to provide a
visual medium for the user to interact with the sim-
ulation and visualization at runtime. We choose pa-
rameters representing the physical foundation of the
EMS problem and the computational model that the
user can manipulate in order to visually understand
the problem.

As shown in Figure 2, the following parameters are
graphically represented to allow user's runtime input:

1. � : angle of the incident EM �eld(wave);

2. i : i � i is the simulated area of the EMS �eld;

3. w : width of the slot;

4. d : distance between the two slots;

5. � : permittivity of the media in the slot;

6. � : permeability of the media in the slot;

7. h : height of the slots;

8. y11; y12; y21; y22 : admittance parameters of a
given microwave network.

In addition, there are four parameters representing
characteristics of the equivalent magnetic current orig-
inally formed by the penetrating incident EM �eld.
These parameters are used as mode function expan-
sions and the number of pulse functions in the mo-
ment method. Another parameter used for visualiza-
tion purposes is the number of grid points for discretiz-
ing the visualized EMS area. All the �ve parameters
have direct impact on the computational requirements
and simulation resolution of the moment method. Us-
ing di�erent combinations of the parameters, we can
visualize the EMS simulation under a large number of
real application circumstances. We also use visualiza-
tion of typical parameters to verify the EMS computa-
tional model and some well-known theories about this
physical phenomena.

4 Implementation of the Remote Visu-

alization Environment

4.1 System Con�guration and Integra-
tion Using AVS

Figure 5 illustrates the system con�guration and
module components distributed over the network to
three high-end workstations and a supercomputer
Connection Machine 5. The network is a 10 MBit/s

Ethernet-based local network. Commercially available
AVS software is used to provide sophisticated 3D data
visualization and system control functionality required
by the simulation. We use AVS to facilitate high
level networking and data transfers among visualiza-
tion and computational modules on di�erent machines
in the system. AVS provides a data-channel abstrac-
tion that transparently handles type-conversion and
module connectivities. This software system is opti-
mized for data movement by using techniques such
as shared memory message passing among modules
on the same machine. Message passing occurs at a

high level of data abstraction in AVS. This approach
helps to make optimal use of both the high perfor-
mance computing resources and the rendering capabil-
ities of the local graphical workstation. The transpar-
ent networking capabilities of AVS open up possibil-



ities for visualization far beyond traditional graphics
capabilities[1, 2].

The local machine in our system is a IBM RS/6000
with a 24-bit color GTO graphics adaptor. An AVS
coroutine module (in C) on the local machine serves
as a graphical input and system control interface to
monitor and collect user runtime interaction with the
simulation through keyboard, mouse and other I/O
devices. The AVS kernel also runs on the local ma-
chine, coordinating data 
ows and control 
ows among
AVS (remote) modules in the network.

We use an AVS system module called 'geometry
viewer' along with other system modules('generate
colormap', 'color range' and '�eld to mesh') for 3D
rendering operations.

The computationally intensive modules of this ap-

plication are distributed to the CM5[20], a MIMD su-
percomputer which is con�gured 32 processing nodes
at NPAC. Each processing node(PN) of the CM5 con-
sists of a SPARC processor for control and non-vector
computation, four vector units for numerical compu-

tation and 32 MB of RAM. It also includes a Network
Interface chip which gives the node access to the CM5
internal Data Network and Control Network. The two
internal networks connect all the PNs with a control
processor(CP) which runs a custom version of SunOS
on a SPARC host.

Two Sun SPARC workstations are used in our dis-
tributed visualization environment to run the compu-
tational modules with modest communication require-
ments.

All modules other than those on the local ma-
chine are implemented as AVS remote modules. Their
input/output ports are de�ned by speci�c AVS li-
braries for receiving/sending data from/to other (re-
mote) modules via socket connections. This con�gu-
ration allows the interrupt driven user interface input

mechanisms and rendering operations to be relegated
to the graphical workstation, while the computation-
ally intensive components run on the CM5 coupled
with the two workstations. This distributed simu-
lation environment implemented in AVS provides a



transparent mechanism for using distributed comput-
ing resources along with a sophisticated user inter-
face component that permits a variety of interactive,
application-speci�ed inputs.

The 
ow-chart diagram in Figure 6(lower right) is a
module network con�gured by the AVS Network Edi-
tor for this application.

4.2 The Graphical User Interface

The graphical user interface includes a main con-
trol panel, three individual input panels, and a 3D
rendering window.

The main control panel provides the user parame-
ters input and simulation control at runtime. There
are seven dial widgets representing simulation param-
eters used by all computing modules on the three re-
mote machines, and a control button for starting a
new simulation cycle(see lower left in Figure 6). The
rest of simulation parameters discussed in Section 3.3
are implemented as dial widgets in individual panels
associated with the modules only requiring them, to
minimize redundant data transfers between the input
interface module on the local machine and computa-
tional modules on remote machines. They can also be
turned on from the AVS Network Control Panel(not
shown in Figure 6).

Using the AVS Geometry Viewer, 3D simulation

data can be rendered in various forms such as move,
rotate, scale, move the eye point and perspective view,
and with sophisticated rendering techniques such as
lighting and shading, multiple camera, Z-bu�ering, 2D
and 3D texture mapping, automatic removal of hidden
surfaces, sphere rendering, etc. The geometry viewer
also takes advantage of the hardware rendering capa-
bilities of the GL library and the GTO graphics adap-
tor of the IBM RS/6000. Figure 6(upper) shows a
typical AVS Geometry Viewer window with two cam-
eras from two di�erent angles.

In addition, the AVS Network Editor provides a vi-
sual programming interface enabling the user to inter-
actively recon�gure and reuse network modules. The
Layout Editor in AVS allows easy and complete cus-
tomization of the control panels in the GUI. Figure 6
illustrates this interface.

4.3 Interstage Communication and Syn-
chronization

Using the data-
ow programming model in AVS,
message passing among modules on the same ma-
chine and on di�erent machines are identical and com-
pletely transparent to module programmer. AVS ker-

nel(protocol) supervises data transfer which is eventu-
ally carried out by TCP/IP at a lower level. The mod-
ule programmer needs only to de�ne module input and
output ports in AVS prede�ned data types. Message
passing among AVS modules occurs only through I/O
ports. A set of routines for initializing and describing
modules to AVS, as well as parameter handling, ac-
cessing data, error handling and coroutine event han-
dling are provided. Data sources and destinations can
be 
exibly de�ned by visually connecting module in-
put and output ports using the Network Editor.

In most cases, we use an AVS '�eld' as the trans-
ferred data type which is actually a C structure. In
the module network shown in Figure 6, data trans-
missions are overlapped with simulation computa-
tions(pipelining). For example, the computation of
'EM-3-CM5' can be pipelined with the data trans-
fer between 'Input-interface-IBM' and 'EM-2-SUN' or
'EM-1-SUN'. Message passing within a machine is im-
plemented in AVS by copying pointers to the same
memory (shared memory). Thus, there is no network
communication cost for transferring the matrix

�
Y b

�

between the two modules, i.e.,'EM-3-CM5' to 'EM-all-
CM5', on CM5's control processor. Instead of generat-
ing a complete 3D data on the CM5 and sending them
to rendering modules on the local machine, we use
a computing module 'EM-3D-IBM' on the local ma-
chine to generate the X-Y coordinate data. Only the
Z-coordinate data(i.e.,

�
H

�
) and two scalar param-

eters for de�ning the X-Y data are transferred from
the CM-5 to the local machine.

Simulation parameters are de�ned as input ports
and connected to widgets on control panels supervised
by the X-window manager on the local machine. By
distributing parameter only to the modules that re-
quire them, we minimize recomputation of modules
in a new simulation cycle. For example, changing of
a parameter on the control panel of `EM-1-SUN' will
not activate the `EM-3-CM5' and `EM-2-SUN'.

This system is designed to work under a complete
resource and time sharing environment(shared Ether-
net, CM5 and all remote workstations) thus wall-clock
time for computation and communication of all mod-
ules is di�cult to predict. Concurrent control in the
module network plays an extremely important role in
assuring correctness, robustness and reliability. We
issue concurrent controls in three di�erent places:

1. In the main control panel of the GUI, a one-shot
control button is set to allow the end-user to con-
trol the start of a new simulation cycle.

2. Broadcast of parameters from the module `input-
interface-IBM' to the computing modules on the



Figure 6: The Graphical User Interface on the Local Machine

remote machines is performed only when all the
other module processes in the network are inac-
tive.

3. Module `EM-all-CM5' is implemented as a corou-
tine such that computations of the linear solver
for ~V and

�
H

�
will not be activated until all

the required input data for
�
Y a

�
,
�
Y b

�
and

~I have been recieved (
�
Y a

�
if only parameters

on control panel of `EM-1-SUN' are changed).

4.4 Experimental Results

A preliminary performance requirement analysis of
this general performance model shown in Figure 3 can

be found in [3]. Our experiments show that under a
typical working environment(only 0.5 MBits/s of the
Ethernet's 10 MBits/s capacity are available), a com-
plete simulation cycle for a set of typical EMS pa-
rameters takes about 8 seconds. This response time
is quite satisfactory for this application. Table 1 lists
timing data of major system components. For compar-
ison, timings of sequential implementation on a SUN4
workstation of the two parallel modules are also given
in the table.



5 Conclusion and Future Work

The performance limiting factors in this system are
the sequential rendering operations on the local ma-
chine, and high-latency data transfer over the local
area network due to multiple communication protocol
layers. We focus here on the feasibility of applying a
high-level distributed programming environment to a
real application problem which requires both sophis-
ticated 3D data visualization and high performance
computing. This work shows that the DVE like AVS
can be used not only for data visualization tasks (as
primarily with on uniprocessor machines), but also as
a general-purpose high level distributed programming
tool. We will further examine this approach and com-
pare this data-
ow model with those employed by For-
tran M[4], CC++ and PVM[19].

Future work in this environment will integrate some
low-level message passing mechanisms to allow more

exible and multiple message passing programming
paradigms. For example, we could use PVM[19] or
FortranD[6] to implement one of the parallel AVS
modules on networked workstations. We will also
investigate the feasibility and issues concerned with
developing a DVE-based programming environment
on a MIMD machine. For instance, on a CM5, an
extended DVE kernel can take advantages of CM5's
high-bandwidth and low-latency internal networks,
while many system modules(e.g. 3D rendering) are
developed as parallel modules(similar work in CMAVS
is being under development at Thinking Machines
Corporation[15]). We view this data-
ow model as
a general, high-level programming environment which

integrates data parallelism with control parallelism,
and sequential programming with parallel program-
ming.

References

[1] Advanced Visual Systems Inc. AVS 4.0 Devel-

oper's Guide, May 1992.

[2] Advanced Visual Systems Inc. AVS 4.0 User's

Guide, May 1992.

[3] G. Cheng, K. Mills and G. Fox, An Interactive

Visualization Environment for Financial Model-

ing on Heterogeneous Computing Systems, Proc.
of the 6th SIAM Conference on Parallel Process-
ing for Scienti�c Computing, March 1993, Nor-
folk, VA.

[4] I. Foster and K. M. Chandy, Fortran M:

A Language for Modular Parallel Program-

ming, Preprint MCS-P237-0992, Mathematics
and Computer Science Division, Argonne Na-
tional Laboratory, Argonne, Ill., 1992.

[5] G. Fox, Parallel Computing in Industry: An Ini-

tial Survey, in Proc. of Fifth Australian Super-
computing Conference, World Congress Centre,
Melbourne, Australia, December, 1992.

[6] G. Fox, S. Hiranadani, K. Kennedy, C. Koelbel,
U. Kremer, C-W Tseng, and M-Y Wu, Fortran D



Language Speci�cation, Syracuse Center for Com-
putational Science-42c, Rice COMP TR90-141,
37 pps, 1991.

[7] R. F. Harrington, Time-Harmonic Electromag-

netic Fields, McGraw-Hill Book Company, New
York (1961).

[8] R. F. Harrington, Field Computation by Moment

Methods, the Macmillan Co., New York (1968).
Reprinted by Krieger Publishing Co., Malabar,
FL (1982).

[9] R. F. Harrington, Matrix Methods For Field

Problems, Proc. IEEE, vol. 55, No. 2, pp. 136-
149, Feb. 1967.

[10] E. C. Jordon and K. G. Balmain, Electromagnetic

Waves and Radiating Systems, Second Edition,
Prentice-Hall, Inc., Englewood Cli�s, New Jersey
(1969).

[11] Y. Lu, A. G. Mohamed, G. Fox and R. F. Har-
rington, Implementation of Electromagnetic Scat-

tering from Conductors Containing Loaded Slots

on the Connection Machine CM-2, Proc. of the
6th SIAM Conference on Parallel Processing for
Scienti�c Computing, March 1993, Norfolk, VA.

[12] Y. Lu and R. F. Harrington, Electromagnetic

Scattering from a Plane Conducting Two Slots

Terminated by Microwave Network(TE Case),
Technical Report, TR-91-2, ECE Department,
Syracuse University, August 1991.

[13] Y. Lu, A.G. Mohamed, R.F. Harrington, Im-

plementation of Electromagnetic Scattering From

Conductors containing Loaded Slots on the Con-

nection Machine CM-2, Technical Report, Syra-
cuse Center for Computational Science 270,
March, 1992, also CRPC-TR92209.

[14] G. A. Mohmad, G. Fox, G. Laszewski, M.
Parashar, T. Haupt, K. Mills, Y. Lu, N. Lin,
and N. Yeh, Applications Benchmarking Set for

Fortran-D and High Performance Fortran, Tech-
nical Report, Syracuse Center for Computational
Science 327, June, 1992, also CRPC-TR92260.

[15] G. Oberbrunner, Parallel Networking and Vi-

sualization on the Connection Machine CM-5,
the Symposiumon High Performance Distributed
Computing HPDC-1, September, 1992, pp. 78-84,
Syracuse, NY.

[16] G. M. Parulkar, et al, Remote Visualization:

Challenges and Opportunities, in Proc. of the 2nd
IEEE Conference on Visualization, San Diego,
CA, October, 1991.

[17] Silicon Graphics Inc. Iris Explorer User's Guide,
1992.

[18] L. L. Smarr, Scienti�c Visualization from inside

the Metacomputer, keynote speak, in Proc. of
the 2nd IEEE Conference on Visualization, San
Diego, CA, October, 1991.

[19] V. Sunderam, PVM: A Framework for Paral-

lel Distributed Computing, Concurrency: practice
and experience, 2(4), Dec. 1990.

[20] Thinking Machines Corporation, The Connec-

tion Machine CM-5 technical summary, Technical
Report, Cambridge, MA, pp. 340-353, October
1991.

[21] J. Van Bladel and C. M. Butler, Aperture Prob-

lems, (Proc. NATO Adv. Study Inst. on Theo-
retical Methods for Determining the Interaction
of Electromagnetic Waves with Structures,) Ed.
by J. Skwirzynski, Sytho� and Noordho� inter-

national Publishers, 1979.


