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Abstract 
A visual language is defined equivalent in expressive 
power to term subsumption languages expressed in 
textual form. To each knowledge representation 
primitive there corresponds a visual form expressing it 
concisely and completely. The visual language and 
textual languages are intertranslatable. Expressions in 
the language are graphs of labeled nodes and directed or 
undirected arcs. The nodes are labeled textually or 
iconically and their types are denoted by six different 
outlines. Computer-readable expressions in the 
language may be created through a structure editor that 
ensures that syntactic constraints are obeyed. The 
editor exports knowledge structures to a knowledge 
representation server computing subsumption and 
recognition, and maintaining a hybrid knowledge base 
of concept definitions and individual assertions. The 
server can respond to queries graphically displaying the 
results in the visual language in editable form. 
Knowledge structures can be entered directly in the 
editor or imported from knowledge acquisition tools 
such as those supporting repertory grid elicitation and 
empirical induction. Knowledge structures can be 

-exported to a range of knowledge-based systems. 

1 In t roduc t i on 

Visual presentation of knowledge structures has been an 
attractive feature of semantic networks since their inception. 
In knowledge acquisition, in particular, the presentation of 
formal knowledge to those from whom it has been elicited is 
important to its validation. There are many techniques for 
such acquisition but they ultimately result in an operational 
knowledge base with formal semantics. However, the 
expression of this knowledge base in the formal language 
used by the system is usually not very comprehensible to 
non-programmers [Nosek & Roth, 1990]. A visual language 
that is both comprehensible and formal offers attractive 
possibilities not only for comprehension but also for editing, 
and for parts of the knowledge acquisition process itself. 

The early development of semantic nets resulted in 
criticisms that the semantics of particular diagrams was not 
well-defined [Woods, 1975; Brachman, 1977]. Nodes, arcs 
and their labels could be used very freely and ambiguously 
and diagrams were subject to differing interpretations. In 
the 1970s there were proposals for network formalisms with 
well-defined semantics [Cercone & Schubert, 1975; 
Fahlman, 1979; Brachman, 1979]. However, these preceded 

two important developments in computing: f irst, the 
ubiquity of personal workstations with high resolution 
graphics supporting visual languages as operational editors 
[Glinert, 1990]; second, the studies of complexity issues in 
knowledge representation leading from the complexity of 
KL-ONE [Brachman & Schmolze, 1985] through the logical 
universality of KRYPTON [Brachman, Gilbert & Levesque, 
1985] to the simplified and tractable semantics of CLASSIC 
[Borgida et al, 1989]. 

In the light of these developments it is timely to re
examine semantic networks as formal visual languages from 
two perspectives: 
• Cognitive Ergonomics: is it possible to create visual 

languages that are simple and natural to use in operational 
form as interactive structure editors? 

• Formal Semantics: is it possible to intertranslate (that is, 
translate unambiguously in both directions) between these 
languages and knowledge representation formalisms with 
well-defined semantics? 
Note that the second question is deliberately phrased to 

avoid mixing the issues of knowledge representation, logic, 
intensional and extensional semantics, and so on, that cast 
doubt upon the utility of early semantics networks, with the 
issues of visual representation. It leaves the deep semantic 
issues in the province of formal knowledge representation 
where they belong, and assesses the semantic validity of a 
visual language by its intertranslatibility with established 
formalisms [Mackinlay & Genesereth, 1984]. This is not to 
say that the requirements for visualization might not in 
themselves lead to insights relating to the formalisms and 
semantics—diagrams and notation play an important role in 
scientific thinking—but this is not the primary criterion for 
judging a visual knowledge representation language. 

Computer production of visual forms of knowledge 
represented in a computer has been a topic of research since 
the early days of knowledge representation research 
[Schmolze, 1983] and a feature of many research systems 
[Kindermann & Quantz, 1989] and commercial products. 
Some expert system shells and knowledge acquisition tools 
have used the power of modern workstations to provide 
continuously updated graphs of some aspects of a 
knowledge structure being entered textually. Abrett and 
Burstein's [1988] KREME system graphically displays the 
computed subsumption relations between concepts so that 
those entering knowledge structures can see the 
consequences of definitions and detect errors due to 
incorrect or inadequate definitions. However, KREME does 
not support graphic knowledge entry or editing. 
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This paper presents the visual syntax and underlying 
semantics of a visual language for term subsumption 
languages. It focuses on the use of the language to enter and 
edit knowledge visually, and on its application in a highly 
interactive graphic structure editor. However, the language 
is aJso well-suited to the display of knowledge structures, 
and the system includes a grapher using Watanabe's [1989] 
heuristics for the layout of complex graphs. 

2 A Formal Visual Language 
The approach to language definition taken in this section is 
to define each construct in the visual language in terms of its 
visual appearance, basic semantics, and intertranslation with 
CLASSIC expressions [Borgida et al, 1989]. 

The visual language provides the means to represent 
knowledge structures as graphs of labelled nodes and arcs. 
The visual primitives of the language are: 
• Nodes, identified and typed as specified below. 
• Two arc types l inking nodes—a directed arc and an 

undirected arc—for this paper they are taken to be a line 
with, and without, an arrow. 

• Text labels for the nodes—with an associated equivalence 
relation, which may take into account case, embedded 
spaces, and so on, but otherwise based on lexical identity. 

•S ix distinctive text surrounds defining the node types— 
again subject to choice—for this paper they are taken to 
be ovals (concepts), marked ovals (primitives), rectangles 
(individuals), no surround (roles or annotation), rounded 
corner rectangles (rules), and marked rounded corner 
rectangles (constraints, e.g. cardinality and set inclusion). 
The node labels for concepts and primitives form one 

equivalence class and those for individuals, roles and rules 
each form additional separate equivalence classes so that the 
same string may be used to label nodes of different types 
without ambiguity. The text in the constraint nodes is 
restricted to be an allowable constraint, typically on 
cardinality, set membership or numeric range, but the text in 
the other f ive node types is unconstrained. The 
implementation allows an icons to be made equivalent to a 
text label and substituted for it visually, but the knowledge 
representation semantics arc unaffected by this substitution. 

2.1 Primit ive Concepts 
Primitive concepts, and the relations between them, are the 
foundations for knowledge representation schema. A 
primitive concept is represented in the visual language as its 
text label in an oval with marks at either end. For 

example, signifies the primitive concept 

"company"—something may be asserted to be a "company" 
but cannot be recognized to be one because no sufficient 
definition has been given. This translates to and from 
CLASSIC terminology as: 

define-conceptfeompany, (PRIMITIVE company)]. 
In the visual language, the basic relation of subsumption 

between concepts is represented by an arrow. For 

signifies that "company" is subsumed by "legal entity"— 
asserting something to be a "company" commits us to 
asserting that it is also a "legal entity", the strict ' is-a' 
relation. The concept "company" encodes all the properties 
encoded by "legal-entity" together with, possibly, others. 
This translates to and from CLASSIC terminology as: 

define-concept[legal-entity, (PRIMITIVE legal-entity)), 
define-concept[company, (PRIMITIVE (AND legal-entity) company)). 
The basic relation of disjointness between concepts is 

represented by an undirected line between each pair of 

signifies that "company" is disjoint wi th "person"— 
asserting something to be a "company" commits us to 
asserting that it is not also a "person". This translates to and 
from CLASSIC terminology as: 

define-concept[person, (DISJOINT-PRIMITIVE gensym-0 person)], 
define-concept[company, (DISJOINT-PRIMITIVE gensym-0 company)). 

The gensym is necessary for translation to CLASSIC to 
allow linkage between the related definitions. It is lost on 
translation back from CLASSIC but this is not important 
since it is used only as a tag, not as a significant component 
of the knowledge base. 

These basic definitions do not in themselves define the 
semantics of larger graphs of primitive concept nodes and 
subsumption or disjoint arcs. This becomes fully defined by 
stating that the visual language parser defines the semantics 
of a node in such a graph (of concept nodes only) in terms 
of outgoing or undirected arcs to its immediate connections 
only, and generates definitions as above. For convenience a 
single gensym is generated for each group of mutually 
disjoint nodes, but this docs not result in different semantics 
from pairwise generation. Where there is a single node 
subsuming one group of mutually disjoint nodes, its label is 
used in preference to the gensym. For example, the graph: 

intertranslates w i t h the C L A S S I C def in i t ions: 
define-concept[legal-entity, (PRIMITIVE legal-entity)] 
define-conceptpiving_being, (PRIMITIVE living__being)) 
define-concept[person, (DISJOINT-PRIMITIVE (AND legal-entity 

living _being) legal-entity person)] 
define-ncept[government-institution, (DISJOINT-PRIMITIVE (AND 

legal-entity) legal-entity government-institution)] 
defirne-concept[company, (DISJOINT-PRIMITIVE (AND legal-entity) 

legal-entity company)] 
define-concept[manufacturing_company, (PRIMITIVE (AND company) 

manufaturingcompany)] 
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Note that the import-export module for the visual 
language makes the trivial changes necessary to the syntax 
of the target language, such as replacing spaces by 
underline. It also performs the non-trivial task of sorting the 
concept definitions so that terms are defined before they are 
used. If this cannot be done an error message is generated 
and the loops are visually highlighted. 

2.2 Individuals 
Individuals represent r ig id designators in knowledge 
representation systems. They capture the notion of an entity 
having an existence in its own right such that its identity 
remains unchanged even if its properties are redefined. An 
individual is represented in the visual language as its text 

Acme 
C o r p o r a t i on label in a rectangle. For example 

signifies the individual "Acme Corporation" and w i l l 
continue to signify that corporation whatever properties are 
asserted of it and no matter how these assertions are 
changed. This intertranslates with CLASSIC terminology: 

create-ind[Acme__Corporation]. 
In the visual language, the assertion that an individual 

exhibits a property is represented by an arrow from the 
individual node to a concept node encoding the property. 

signifies that the concept "company" is asserted to hold for 
"Acme Corporation"—it exhibits the property of being a 
"company'. This intertranslates with CLASSIC as: 
define-ind[Acme_Corporation), assert-ind[Acme_Corporation, company]. 

As with concepts, these basic definitions extend simply 
to ful l graphs. Examples w i l l be given as the remaining 
components of the visual language are defined. 

2.3 Concepts 
Non-primitive concepts represent concepts that are fully 
defined within the knowledge representation system. They 
capture the notion that some concepts are fully defined by 
their relation to other concepts and hence do not necessarily 
have to be defined as subsuming other concepts or asserted 
as a property of an individual, but can instead be recognized 
as doing so because other definitions or assertions comply 
with their definition. Such a concept is represented in the 
visual language as its text label in an oval without marks at 

either end. For example signifies the concept 
"large company". This intertranslates with CLASSIC as: 

define-concept[company]. 
However, this definit ion is inadequate because no 

properties have been defined—anything wi l l be recognized 
as a "large company". A more meaningful example is: 

something is a "large company" if it is both "large" and a 
"company". This intertranslates with CLASSIC definitions: 

define-concept[company, (PRIMITIVE company)], 
define-concept[large, (PRIMITIVE large)], 
define-concept[large_company, (AND company large)]. 
The assertion of the properties def in ing " large company" 

as exhibi ted by an ind iv idua l , for example 

enables it to be recognized that the property of being a 
"large company" is also exhibited even though this has not 
been explicitly asserted. 

2.4 Rules 
Rules represent contingencies by using the recognition of an 
individual as exhibiting a concept to imply that another 
concept should also be asserted to apply to the individual. 
They capture those connotations of a concept that are not 
deemed necessary to its definition but are deemed to apply 
to individuals exhibit ing the properties defining that 
concept A rule is represented in the visual language as its 
text label in a rounded corner rectangle with an arrow in 
from the concept to be recognized and an arrow out to the 
concept to be asserted. For example, the rule 

signifies that when an individual is recognized as satisfying 
the definition of "large company" it should be asserted that 
it also has "high expenses". This translates to CLASSIC 
terminology as: 

assert-rule[large_company, high_expenses]. 
Note that the name of the rule is lost in the translation to 

CLASSIC. This is because CLASSIC has a simple rule 
scheme that does not require rules to be identif ied. 
Sufficient intertranslatability can be achieved for CLASSIC 
by making the rule name a generated symbol on import, e.g. 
"Rule-123". The visual language also supports a more 
complex rule scheme that does have a use for rule identifiers 
and wil l be discussed later. 

Rule translation extends simply to multiple input arrows 
from concepts which arc treated as alternative conditions for 
the application of the rule, and multiple output arrows which 
are treated as defining a concept 

2.5 Roles 
Roles provide a shorthand for expressing a group of related 
concepts. They capture the notion of attributes where the 
related concepts express disjoint alternatives, and relations 
where the concepts express a relation to another individual. 
A role is represented in the visual language as its text label 
without any surrounding enclosure—this corresponds to the 
common convention of representing roles as arc labels but 
gives more flexibility as roles may have multiple input and 
output arrows. For example, the term "high expenses" in 
the previous example might be better defined in terms of an 
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"expenses" role which is constrained by the concept "high"  
or filled by the individual "high": 

The first intertranslates with the CLASSIC definition: 
define-concept[high_expenses, (ALL expenses high)], 

and the second with: 
define-concept[high_expenses, (FILLS expenses high)]. 
Arrows coming into roles from other entities have the 

same semantics as arrows into concepts. Arrows out of 
roles define constraining concepts in the same way as 
arrows out of concepts define concept definitions. 

2.6 Constraints 
Constraints support the residual concept-forming constraints 
common in term subsumption languages, such as cardinality 
constraints and set-inclusion constraints. They are 
represented in the visual language as a textual definition of 
the constraint surrounded by a marked rounded corner 

rectangle. For example, signifies that a role has 

exactly 5 f i l lers, signifies that a role has a 

minimum of 1 and a maximum of 4 fillers, signifies 
that a role has fillers in a set of individuals specified by 

outgoing arrows to those individuals, signifies 
that a role has a minimum of 2 and a maximum of 10 fillers 
in a set of individuals specified by outgoing arrows to those 

individuals, signifies that a role has exactly one 

filler in a set is an alternative). 
Constraints are used primarily as constraints on roles, 

and may be used anywhere a concept would be so that they 
can form part of named concept definitions, for example: 

intertranslates with the CLASSIC definition: 
define-c»ncept[specialist_company, (ALL facilities (AND (AT-LEAST 1) 

(AT-MOST 2) (ONE-OF manufacturing sales marketing)))]. 

To support the open-world semantics, the constraint 
1 is used to specify explicitly that all the fillers of 

a role are shown. The following are equivalent: 

3 Composition 
The semantics of the visual language are compositional and 
large knowledge structures are built up by composing 
smaller ones. The basic interpretation and translation 
mechanism is to group concept nodes with the same label 
together and define the concept in terms of paths along 
outgoing arrows from the node or nodes. This also 
establishes the dependencies between concepts that are used 
in sorting the concept definitions and detecting cycles. 
Individuals are analyzed in the same way except that the 
assertions do not need to be sorted or cycles detected. Rules 
are primarily analyzed as part of their incoming concepts— 
there is also a separate rule analysis that is not relevant to 
CLASSIC which is discussed later. Roles and constraints 
have no significance except as part of concepts and 
individuals, and do not need separate analysis. As a result 
'role' text with no arrows can be used as annotation. 

This 'arrow chasing' allows a node with the same label 
to occur as often or as little as is appropriate when laying 
out a knowledge structure to avoid crossing lines or to 
emphasize certain aspects of it in the visual appearance. 
The implementation takes advantage of this to allow 
knowledge structures in several different windows to be 
translated together so that definitions of one part of the 
knowledge structure can be in one window and used in 
another. This allows visual libraries to be developed 
supporting the re-use of knowledge from one application to 
another. It also allows knowledge bases to be split into 
components that can be separately validated and maintained. 

4 Additional Features 
Intertranslatability with CLASSIC has been used to 
illustrate this paper since its KL-ONE-l ike syntax and 
semantics are well-defined and widely available. The visual 
language goes beyond CLASSIC in expressiveness in 
certain areas as already noted. The extensions in general are 
minor ones put in for logical completeness while preserving 

tractability. The complementary constraint to is 
included since it adds to expressiveness while not causing 

intractability— has similar outgoing arrows to a set 
of individuals but expresses the constraint that fillers are not 
in that set. Reasoning with complementary sets is simply 
implemented wi th a f lag on set constraints—union, 
intersection and inclusion are al l well-defined. It is 
particularly useful in systems having open-world semantics 
such as CLASSIC since it allows a true open world negation 
to be expressed—"not red" and "one-of green or blue" 
express the same thing in a closed world with just those 
three colors but are very different concepts in an open world 
where more colors may be defined. 

Inverse roles are also supported. In the example below 
"member of" and "member" are inverse relations, and the 
knowledge structure captures the axiom of comprehension 
that a concept defines a set. It is also a useful technique for 
collecting instances of a concept. Since the concept is non-
primitive it is also defined by the set forming its extension. 
" I n d - 1 " becomes a "member" of the "set of x" by being 
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asserted to be an instance of "concept x" and " Ind-2" is 
recognized as an instance of "concept x" by being asserted 
to be a slot fil ler of "member" of the "set of x". 

The visual language is designed to al low the 
representation of rules with exceptions, not only to support 
default reasoning, but because this form of representation 
usually leads to smaller, simpler and more comprehensible 
rule sets. It is easier to understand "when X do Y except 
when rather than when do Y and 
when and when do Y and when  
do Z" . If this representation is being used for compactness 
rather than to provide defaults, one does not want R, S or T 
being open to be valid reasons for either doing Z or for not 
preventing Y—they have to be tested and shown to fail 
first—one is not attempting to solve the frame problem but 
rather accepting the need for ful l exception-checking. 

To represent exceptions, the visual language uses an 
arrow from one rule to another to specify that the second 
rule should be executed only if its premise succeeds and the 
first rule's premise fails (or, in default reasoning, the first 
rule's premise is open as to success/failure). This requires 
the recognition logic in the associated reasoning engine to 
be capable of distinguishing recognition success, failure 
(impossibility of success without retraction) and openness 
(possibility of success with further assertions), but this does 
add significantly to the computational requirements [Gaines, 
1991a). The graph below represents the example given: 

Queries are expressed in the language using as a 
query node requesting information about a concept or 
individual. When the results of a query are graphed 

inferences are separated by an infer node, . This 
is informative to the user and also enables the resultant 
knowledge structure to be edited and re-entered since the 
infer node adds as a block when knowledge structures are 
entered. An example is given in the next section. 

Integer, float and date individuals are directly supported, 
together with corresponding conceptual constraints such as: 

The inherited type constraint then makes it unambiguous 
that "1.75" is a numeric value rather than the name of an 
individual in a knowledge structure such as: 

5 Knowledge Acquisition and Edit ing 
An interactive structure editor for the visual language has 
been implemented as part of a knowledge acquisition 
toolkit. Its human-computer interaction is modeled on 
Apple's MacDraw with additional features appropriate to 
the language such as arcs remaining attached to nodes when 
they are dragged. The syntax of possible node 
interconnections and constraint expressions is enforced—it 
is not possible to enter a graph that is syntactically incorrect. 
Cut-and-paste of graphs and subgraphs is supported, and 
popup menus allow nodes to be connected with the 
minimum of effort. Updates are efficient and graphs with 
several hundred nodes can be manipulated interactively. 
Scroll, zoom and fit-to-sizc facilities allow large data 
structures to be navigated easily. However, partitioning data 
structures over several screens is encouraged and has proved 
practical in managing large knowledge structures. 

Figure 1 shows the part of the knowledge acquisition 
toolkit immediately associated with the structure editor. 
The editor is tightly coupled to a knowledge representation 
server [Gaines, 1991b] that supports CLASSIC-like features 
extended as noted in this paper. In particular, the server 
computes subsumption relations between concepts and 
recognition of individuals by concepts. These in turn 
support an inference engine that fires the rules efficiently 
based on the subsumption structure and the rule-to-rule 
links. This is coupled to a truth maintenance system which 
detects contradictions and supports the retraction of 
assertions. The server can export complete knowledge 
structures and the results of queries back to the graphic 
structure editor with automatic layout in editable form. 

Fig. 1 Graphic language editor and related sub-systems 
The editor exports to a number of expert system shells 

and to the textual language of the knowledge representation 
server. The server also imports knowledge structures from 
other tools such as the repertory grid elicitation and 
induction tools in KSSO [Gaines & Shaw, 1991] and the text 
analysis tools in Cognosys [Woodward, 1990], and, hence, 
these may be displayed for inspection, validation and editing 
in the graphic structure editor. 

Figure 2 shows a solution to Michic's [1989] "shuttle 
autolander" problem generated from exemplary cases 
entered through KSSO, exported to the knowledge 
representation server, graphed in the visual language, and 
reorganized and annotated for perspicuity in the structure 
editor. 
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At the top of the screen a descriptive concept is defined 
which characterizes possible shuttle situations in terms of 
seven attributes and their possible values. The popup menu 
has been activated at one of its nodes to show how arcs are 
entered. Below this is a set of six default rules that solve the 
problem of recommending the class for a particular case. At 
the bottom of the screen two cases are defined with queries 
for the recommended values of the class role. When this 
query is answered graphically for the one at the bottom left, 
it produces the graph: 

It is apparent in Figure 2 that the freedom to use the same 
item in several different places allows knowledge structures 
to be laid out informatively without visual confusion. For 
example, the concept "Shuttle Autolander Decision" occurs 
three times. It is defined at the top and the definition is used 
in the rules and instances. However, this separation is a 
matter of style—even the definition could be fragmented if 
the person drawing the structure felt this to be appropriate. 

Similar choices have been made in the layout of the 
rules. For example, "exception not auto" is shown as an 
exception to "use auto" at the lower left, and this is itself 
shown as an exception to "default not auto" at the upper 
right. The concept forming the conclusion of "use auto" is 
defined at the upper right and used twice again at the lower 
left and right. At the lower right it is visually sensible to 
have two distinct concepts both connected one instance of 
the rule "use auto". 

Freedom in such issues of style is very significant for 
human understanding but has no influence on the formal 
interpretation of the knowledge structures. 

6 Conclusions 
A visual language has been presented for the representation, 
acquisition and editing of knowledge structures in term 
subsumption languages. It is a formal language in that it is 
syntactically and semantically well-defined and inter-
translates with textual knowledge representation languages. 
The language is supported by an interactive graphic 
structure editor offering a simple and natural interface which 
has proved attractive to a wide variety of users. 
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