
An Interactive Visual Language for Term Subsumption Languages

Brian R Gaines
Knowledge Science Institute

University of Calgary
Calgary, Alberta, Canada T2N 1N4.

gaines@cpsc.ucalgaryxa

Abstract
A visual language is defined equivalent in expressive
power to term subsumption languages expressed in
textual form. To each knowledge representation
primitive there corresponds a visual form expressing it
concisely and completely. The visual language and
textual languages are intertranslatable. Expressions in
the language are graphs of labeled nodes and directed or
undirected arcs. The nodes are labeled textually or
iconically and their types are denoted by six different
outlines. Computer-readable expressions in the
language may be created through a structure editor that
ensures that syntactic constraints are obeyed. The
editor exports knowledge structures to a knowledge
representation server computing subsumption and
recognition, and maintaining a hybrid knowledge base
of concept definitions and individual assertions. The
server can respond to queries graphically displaying the
results in the visual language in editable form.
Knowledge structures can be entered directly in the
editor or imported from knowledge acquisition tools
such as those supporting repertory grid elicitation and
empirical induction. Knowledge structures can be

-exported to a range of knowledge-based systems.

1 In t roduc t i on

Visual presentation of knowledge structures has been an
attractive feature of semantic networks since their inception.
In knowledge acquisition, in particular, the presentation of
formal knowledge to those from whom it has been elicited is
important to its validation. There are many techniques for
such acquisition but they ultimately result in an operational
knowledge base with formal semantics. However, the
expression of this knowledge base in the formal language
used by the system is usually not very comprehensible to
non-programmers [Nosek & Roth, 1990]. A visual language
that is both comprehensible and formal offers attractive
possibilities not only for comprehension but also for editing,
and for parts of the knowledge acquisition process itself.

The early development of semantic nets resulted in
criticisms that the semantics of particular diagrams was not
well-defined [Woods, 1975; Brachman, 1977]. Nodes, arcs
and their labels could be used very freely and ambiguously
and diagrams were subject to differing interpretations. In
the 1970s there were proposals for network formalisms with
well-defined semantics [Cercone & Schubert, 1975;
Fahlman, 1979; Brachman, 1979]. However, these preceded

two important developments in computing: f irst, the
ubiquity of personal workstations with high resolution
graphics supporting visual languages as operational editors
[Glinert, 1990]; second, the studies of complexity issues in
knowledge representation leading from the complexity of
KL-ONE [Brachman & Schmolze, 1985] through the logical
universality of KRYPTON [Brachman, Gilbert & Levesque,
1985] to the simplified and tractable semantics of CLASSIC
[Borgida et al, 1989].

In the light of these developments it is timely to re
examine semantic networks as formal visual languages from
two perspectives:
• Cognitive Ergonomics: is it possible to create visual

languages that are simple and natural to use in operational
form as interactive structure editors?

• Formal Semantics: is it possible to intertranslate (that is,
translate unambiguously in both directions) between these
languages and knowledge representation formalisms with
well-defined semantics?
Note that the second question is deliberately phrased to

avoid mixing the issues of knowledge representation, logic,
intensional and extensional semantics, and so on, that cast
doubt upon the utility of early semantics networks, with the
issues of visual representation. It leaves the deep semantic
issues in the province of formal knowledge representation
where they belong, and assesses the semantic validity of a
visual language by its intertranslatibility with established
formalisms [Mackinlay & Genesereth, 1984]. This is not to
say that the requirements for visualization might not in
themselves lead to insights relating to the formalisms and
semantics—diagrams and notation play an important role in
scientific thinking—but this is not the primary criterion for
judging a visual knowledge representation language.

Computer production of visual forms of knowledge
represented in a computer has been a topic of research since
the early days of knowledge representation research
[Schmolze, 1983] and a feature of many research systems
[Kindermann & Quantz, 1989] and commercial products.
Some expert system shells and knowledge acquisition tools
have used the power of modern workstations to provide
continuously updated graphs of some aspects of a
knowledge structure being entered textually. Abrett and
Burstein's [1988] KREME system graphically displays the
computed subsumption relations between concepts so that
those entering knowledge structures can see the
consequences of definitions and detect errors due to
incorrect or inadequate definitions. However, KREME does
not support graphic knowledge entry or editing.

Gaines 817

This paper presents the visual syntax and underlying
semantics of a visual language for term subsumption
languages. It focuses on the use of the language to enter and
edit knowledge visually, and on its application in a highly
interactive graphic structure editor. However, the language
is aJso well-suited to the display of knowledge structures,
and the system includes a grapher using Watanabe's [1989]
heuristics for the layout of complex graphs.

2 A Formal Visual Language
The approach to language definition taken in this section is
to define each construct in the visual language in terms of its
visual appearance, basic semantics, and intertranslation with
CLASSIC expressions [Borgida et al, 1989].

The visual language provides the means to represent
knowledge structures as graphs of labelled nodes and arcs.
The visual primitives of the language are:
• Nodes, identified and typed as specified below.
• Two arc types l inking nodes—a directed arc and an

undirected arc—for this paper they are taken to be a line
with, and without, an arrow.

• Text labels for the nodes—with an associated equivalence
relation, which may take into account case, embedded
spaces, and so on, but otherwise based on lexical identity.

•S ix distinctive text surrounds defining the node types—
again subject to choice—for this paper they are taken to
be ovals (concepts), marked ovals (primitives), rectangles
(individuals), no surround (roles or annotation), rounded
corner rectangles (rules), and marked rounded corner
rectangles (constraints, e.g. cardinality and set inclusion).
The node labels for concepts and primitives form one

equivalence class and those for individuals, roles and rules
each form additional separate equivalence classes so that the
same string may be used to label nodes of different types
without ambiguity. The text in the constraint nodes is
restricted to be an allowable constraint, typically on
cardinality, set membership or numeric range, but the text in
the other f ive node types is unconstrained. The
implementation allows an icons to be made equivalent to a
text label and substituted for it visually, but the knowledge
representation semantics arc unaffected by this substitution.

2.1 Primit ive Concepts
Primitive concepts, and the relations between them, are the
foundations for knowledge representation schema. A
primitive concept is represented in the visual language as its
text label in an oval with marks at either end. For

example, signifies the primitive concept

"company"—something may be asserted to be a "company"
but cannot be recognized to be one because no sufficient
definition has been given. This translates to and from
CLASSIC terminology as:

define-conceptfeompany, (PRIMITIVE company)].
In the visual language, the basic relation of subsumption

between concepts is represented by an arrow. For

signifies that "company" is subsumed by "legal entity"—
asserting something to be a "company" commits us to
asserting that it is also a "legal entity", the strict ' is-a'
relation. The concept "company" encodes all the properties
encoded by "legal-entity" together with, possibly, others.
This translates to and from CLASSIC terminology as:

define-concept[legal-entity, (PRIMITIVE legal-entity)),
define-concept[company, (PRIMITIVE (AND legal-entity) company)).
The basic relation of disjointness between concepts is

represented by an undirected line between each pair of

signifies that "company" is disjoint wi th "person"—
asserting something to be a "company" commits us to
asserting that it is not also a "person". This translates to and
from CLASSIC terminology as:

define-concept[person, (DISJOINT-PRIMITIVE gensym-0 person)],
define-concept[company, (DISJOINT-PRIMITIVE gensym-0 company)).

The gensym is necessary for translation to CLASSIC to
allow linkage between the related definitions. It is lost on
translation back from CLASSIC but this is not important
since it is used only as a tag, not as a significant component
of the knowledge base.

These basic definitions do not in themselves define the
semantics of larger graphs of primitive concept nodes and
subsumption or disjoint arcs. This becomes fully defined by
stating that the visual language parser defines the semantics
of a node in such a graph (of concept nodes only) in terms
of outgoing or undirected arcs to its immediate connections
only, and generates definitions as above. For convenience a
single gensym is generated for each group of mutually
disjoint nodes, but this docs not result in different semantics
from pairwise generation. Where there is a single node
subsuming one group of mutually disjoint nodes, its label is
used in preference to the gensym. For example, the graph:

intertranslates w i t h the C L A S S I C def in i t ions:
define-concept[legal-entity, (PRIMITIVE legal-entity)]
define-conceptpiving_being, (PRIMITIVE living__being))
define-concept[person, (DISJOINT-PRIMITIVE (AND legal-entity

living _being) legal-entity person)]
define-ncept[government-institution, (DISJOINT-PRIMITIVE (AND

legal-entity) legal-entity government-institution)]
defirne-concept[company, (DISJOINT-PRIMITIVE (AND legal-entity)

legal-entity company)]
define-concept[manufacturing_company, (PRIMITIVE (AND company)

manufaturingcompany)]

818 Learn ing a n d K n o w l e d g e Acqu is i t ion

Note that the import-export module for the visual
language makes the trivial changes necessary to the syntax
of the target language, such as replacing spaces by
underline. It also performs the non-trivial task of sorting the
concept definitions so that terms are defined before they are
used. If this cannot be done an error message is generated
and the loops are visually highlighted.

2.2 Individuals
Individuals represent r ig id designators in knowledge
representation systems. They capture the notion of an entity
having an existence in its own right such that its identity
remains unchanged even if its properties are redefined. An
individual is represented in the visual language as its text

Acme
C o r p o r a t i on label in a rectangle. For example

signifies the individual "Acme Corporation" and w i l l
continue to signify that corporation whatever properties are
asserted of it and no matter how these assertions are
changed. This intertranslates with CLASSIC terminology:

create-ind[Acme__Corporation].
In the visual language, the assertion that an individual

exhibits a property is represented by an arrow from the
individual node to a concept node encoding the property.

signifies that the concept "company" is asserted to hold for
"Acme Corporation"—it exhibits the property of being a
"company'. This intertranslates with CLASSIC as:
define-ind[Acme_Corporation), assert-ind[Acme_Corporation, company].

As with concepts, these basic definitions extend simply
to ful l graphs. Examples w i l l be given as the remaining
components of the visual language are defined.

2.3 Concepts
Non-primitive concepts represent concepts that are fully
defined within the knowledge representation system. They
capture the notion that some concepts are fully defined by
their relation to other concepts and hence do not necessarily
have to be defined as subsuming other concepts or asserted
as a property of an individual, but can instead be recognized
as doing so because other definitions or assertions comply
with their definition. Such a concept is represented in the
visual language as its text label in an oval without marks at

either end. For example signifies the concept
"large company". This intertranslates with CLASSIC as:

define-concept[company].
However, this definit ion is inadequate because no

properties have been defined—anything wi l l be recognized
as a "large company". A more meaningful example is:

something is a "large company" if it is both "large" and a
"company". This intertranslates with CLASSIC definitions:

define-concept[company, (PRIMITIVE company)],
define-concept[large, (PRIMITIVE large)],
define-concept[large_company, (AND company large)].
The assertion of the properties def in ing " large company"

as exhibi ted by an ind iv idua l , for example

enables it to be recognized that the property of being a
"large company" is also exhibited even though this has not
been explicitly asserted.

2.4 Rules
Rules represent contingencies by using the recognition of an
individual as exhibiting a concept to imply that another
concept should also be asserted to apply to the individual.
They capture those connotations of a concept that are not
deemed necessary to its definition but are deemed to apply
to individuals exhibit ing the properties defining that
concept A rule is represented in the visual language as its
text label in a rounded corner rectangle with an arrow in
from the concept to be recognized and an arrow out to the
concept to be asserted. For example, the rule

signifies that when an individual is recognized as satisfying
the definition of "large company" it should be asserted that
it also has "high expenses". This translates to CLASSIC
terminology as:

assert-rule[large_company, high_expenses].
Note that the name of the rule is lost in the translation to

CLASSIC. This is because CLASSIC has a simple rule
scheme that does not require rules to be identif ied.
Sufficient intertranslatability can be achieved for CLASSIC
by making the rule name a generated symbol on import, e.g.
"Rule-123". The visual language also supports a more
complex rule scheme that does have a use for rule identifiers
and wil l be discussed later.

Rule translation extends simply to multiple input arrows
from concepts which arc treated as alternative conditions for
the application of the rule, and multiple output arrows which
are treated as defining a concept

2.5 Roles
Roles provide a shorthand for expressing a group of related
concepts. They capture the notion of attributes where the
related concepts express disjoint alternatives, and relations
where the concepts express a relation to another individual.
A role is represented in the visual language as its text label
without any surrounding enclosure—this corresponds to the
common convention of representing roles as arc labels but
gives more flexibility as roles may have multiple input and
output arrows. For example, the term "high expenses" in
the previous example might be better defined in terms of an

Gaines 819

"expenses" role which is constrained by the concept "high"
or filled by the individual "high":

The first intertranslates with the CLASSIC definition:
define-concept[high_expenses, (ALL expenses high)],

and the second with:
define-concept[high_expenses, (FILLS expenses high)].
Arrows coming into roles from other entities have the

same semantics as arrows into concepts. Arrows out of
roles define constraining concepts in the same way as
arrows out of concepts define concept definitions.

2.6 Constraints
Constraints support the residual concept-forming constraints
common in term subsumption languages, such as cardinality
constraints and set-inclusion constraints. They are
represented in the visual language as a textual definition of
the constraint surrounded by a marked rounded corner

rectangle. For example, signifies that a role has

exactly 5 f i l lers, signifies that a role has a

minimum of 1 and a maximum of 4 fillers, signifies
that a role has fillers in a set of individuals specified by

outgoing arrows to those individuals, signifies
that a role has a minimum of 2 and a maximum of 10 fillers
in a set of individuals specified by outgoing arrows to those

individuals, signifies that a role has exactly one

filler in a set is an alternative).
Constraints are used primarily as constraints on roles,

and may be used anywhere a concept would be so that they
can form part of named concept definitions, for example:

intertranslates with the CLASSIC definition:
define-c»ncept[specialist_company, (ALL facilities (AND (AT-LEAST 1)

(AT-MOST 2) (ONE-OF manufacturing sales marketing)))].

To support the open-world semantics, the constraint
1 is used to specify explicitly that all the fillers of

a role are shown. The following are equivalent:

3 Composition
The semantics of the visual language are compositional and
large knowledge structures are built up by composing
smaller ones. The basic interpretation and translation
mechanism is to group concept nodes with the same label
together and define the concept in terms of paths along
outgoing arrows from the node or nodes. This also
establishes the dependencies between concepts that are used
in sorting the concept definitions and detecting cycles.
Individuals are analyzed in the same way except that the
assertions do not need to be sorted or cycles detected. Rules
are primarily analyzed as part of their incoming concepts—
there is also a separate rule analysis that is not relevant to
CLASSIC which is discussed later. Roles and constraints
have no significance except as part of concepts and
individuals, and do not need separate analysis. As a result
'role' text with no arrows can be used as annotation.

This 'arrow chasing' allows a node with the same label
to occur as often or as little as is appropriate when laying
out a knowledge structure to avoid crossing lines or to
emphasize certain aspects of it in the visual appearance.
The implementation takes advantage of this to allow
knowledge structures in several different windows to be
translated together so that definitions of one part of the
knowledge structure can be in one window and used in
another. This allows visual libraries to be developed
supporting the re-use of knowledge from one application to
another. It also allows knowledge bases to be split into
components that can be separately validated and maintained.

4 Additional Features
Intertranslatability with CLASSIC has been used to
illustrate this paper since its KL-ONE-l ike syntax and
semantics are well-defined and widely available. The visual
language goes beyond CLASSIC in expressiveness in
certain areas as already noted. The extensions in general are
minor ones put in for logical completeness while preserving

tractability. The complementary constraint to is
included since it adds to expressiveness while not causing

intractability— has similar outgoing arrows to a set
of individuals but expresses the constraint that fillers are not
in that set. Reasoning with complementary sets is simply
implemented wi th a f lag on set constraints—union,
intersection and inclusion are al l well-defined. It is
particularly useful in systems having open-world semantics
such as CLASSIC since it allows a true open world negation
to be expressed—"not red" and "one-of green or blue"
express the same thing in a closed world with just those
three colors but are very different concepts in an open world
where more colors may be defined.

Inverse roles are also supported. In the example below
"member of" and "member" are inverse relations, and the
knowledge structure captures the axiom of comprehension
that a concept defines a set. It is also a useful technique for
collecting instances of a concept. Since the concept is non-
primitive it is also defined by the set forming its extension.
" I n d - 1 " becomes a "member" of the "set of x" by being

820 Learning and Knowledge Acquisition

asserted to be an instance of "concept x" and " Ind-2" is
recognized as an instance of "concept x" by being asserted
to be a slot fil ler of "member" of the "set of x".

The visual language is designed to al low the
representation of rules with exceptions, not only to support
default reasoning, but because this form of representation
usually leads to smaller, simpler and more comprehensible
rule sets. It is easier to understand "when X do Y except
when rather than when do Y and
when and when do Y and when
do Z" . If this representation is being used for compactness
rather than to provide defaults, one does not want R, S or T
being open to be valid reasons for either doing Z or for not
preventing Y—they have to be tested and shown to fail
first—one is not attempting to solve the frame problem but
rather accepting the need for ful l exception-checking.

To represent exceptions, the visual language uses an
arrow from one rule to another to specify that the second
rule should be executed only if its premise succeeds and the
first rule's premise fails (or, in default reasoning, the first
rule's premise is open as to success/failure). This requires
the recognition logic in the associated reasoning engine to
be capable of distinguishing recognition success, failure
(impossibility of success without retraction) and openness
(possibility of success with further assertions), but this does
add significantly to the computational requirements [Gaines,
1991a). The graph below represents the example given:

Queries are expressed in the language using as a
query node requesting information about a concept or
individual. When the results of a query are graphed

inferences are separated by an infer node, . This
is informative to the user and also enables the resultant
knowledge structure to be edited and re-entered since the
infer node adds as a block when knowledge structures are
entered. An example is given in the next section.

Integer, float and date individuals are directly supported,
together with corresponding conceptual constraints such as:

The inherited type constraint then makes it unambiguous
that "1.75" is a numeric value rather than the name of an
individual in a knowledge structure such as:

5 Knowledge Acquisition and Edit ing
An interactive structure editor for the visual language has
been implemented as part of a knowledge acquisition
toolkit. Its human-computer interaction is modeled on
Apple's MacDraw with additional features appropriate to
the language such as arcs remaining attached to nodes when
they are dragged. The syntax of possible node
interconnections and constraint expressions is enforced—it
is not possible to enter a graph that is syntactically incorrect.
Cut-and-paste of graphs and subgraphs is supported, and
popup menus allow nodes to be connected with the
minimum of effort. Updates are efficient and graphs with
several hundred nodes can be manipulated interactively.
Scroll, zoom and fit-to-sizc facilities allow large data
structures to be navigated easily. However, partitioning data
structures over several screens is encouraged and has proved
practical in managing large knowledge structures.

Figure 1 shows the part of the knowledge acquisition
toolkit immediately associated with the structure editor.
The editor is tightly coupled to a knowledge representation
server [Gaines, 1991b] that supports CLASSIC-like features
extended as noted in this paper. In particular, the server
computes subsumption relations between concepts and
recognition of individuals by concepts. These in turn
support an inference engine that fires the rules efficiently
based on the subsumption structure and the rule-to-rule
links. This is coupled to a truth maintenance system which
detects contradictions and supports the retraction of
assertions. The server can export complete knowledge
structures and the results of queries back to the graphic
structure editor with automatic layout in editable form.

Fig. 1 Graphic language editor and related sub-systems
The editor exports to a number of expert system shells

and to the textual language of the knowledge representation
server. The server also imports knowledge structures from
other tools such as the repertory grid elicitation and
induction tools in KSSO [Gaines & Shaw, 1991] and the text
analysis tools in Cognosys [Woodward, 1990], and, hence,
these may be displayed for inspection, validation and editing
in the graphic structure editor.

Figure 2 shows a solution to Michic's [1989] "shuttle
autolander" problem generated from exemplary cases
entered through KSSO, exported to the knowledge
representation server, graphed in the visual language, and
reorganized and annotated for perspicuity in the structure
editor.

Gaines 821

At the top of the screen a descriptive concept is defined
which characterizes possible shuttle situations in terms of
seven attributes and their possible values. The popup menu
has been activated at one of its nodes to show how arcs are
entered. Below this is a set of six default rules that solve the
problem of recommending the class for a particular case. At
the bottom of the screen two cases are defined with queries
for the recommended values of the class role. When this
query is answered graphically for the one at the bottom left,
it produces the graph:

It is apparent in Figure 2 that the freedom to use the same
item in several different places allows knowledge structures
to be laid out informatively without visual confusion. For
example, the concept "Shuttle Autolander Decision" occurs
three times. It is defined at the top and the definition is used
in the rules and instances. However, this separation is a
matter of style—even the definition could be fragmented if
the person drawing the structure felt this to be appropriate.

Similar choices have been made in the layout of the
rules. For example, "exception not auto" is shown as an
exception to "use auto" at the lower left, and this is itself
shown as an exception to "default not auto" at the upper
right. The concept forming the conclusion of "use auto" is
defined at the upper right and used twice again at the lower
left and right. At the lower right it is visually sensible to
have two distinct concepts both connected one instance of
the rule "use auto".

Freedom in such issues of style is very significant for
human understanding but has no influence on the formal
interpretation of the knowledge structures.

6 Conclusions
A visual language has been presented for the representation,
acquisition and editing of knowledge structures in term
subsumption languages. It is a formal language in that it is
syntactically and semantically well-defined and inter-
translates with textual knowledge representation languages.
The language is supported by an interactive graphic
structure editor offering a simple and natural interface which
has proved attractive to a wide variety of users.

Acknowledgements
This work was funded in part by the Natural Sciences and
Engineering Research Council of Canada. I am grateful to
Ron Brachman and Rob McGregor for access to their
research on term subsumption languages, and to Mildred
Shaw for joint research on knowledge-based systems.

References
[Abrett & Burstein, 1988] Abrett, G. & Burstein, M.H. The
KREME knowledge editing environment. In Boose, J.H. &
Gaines, B.R., Eds. Knowledge Acquisition Tools for Expert
Systems, pp. 1-24. London, Academic Press, 1988.

[Brachman, 1977] Brachman, R J . What's in a concept:
structural foundations for semantic nets. International
Journal of Man-Machine Studies 9,127-152, 1977.
[Brachman, 1979] Brachman, R J . On the epistemological
status of semantic nets. In Findler, N.V., Ed. Associative
Networks: Representation and Use of Knowledge by
Computers, pp.3-50. New York: Academic Press, 1979.
[Borgida et al, 1989] Borgida, A. , Brachman, R.J.,
McGuiness, D.L. & Resnick, L.A. CLASSIC: a structural
data model for objects. Clifford, J., Lindsay, B. & Maier, D.,
Eds. Proceedings of 1989 ACM SIGMOD International
Conference on the Management of Data, pp.58-67. New
York: A C M Press, 1989.
[Brachman, Gilbert & Levesque, 1985] Brachman, R. J.,
Gilbert, V.P. & Levesque, H. J. An essential hybrid
reasoning system: knowledge and symbol level accounts of
KRYPTON. Proceedings of IJCAI85. pp.547-551. Morgan
Kaufmann, 1985.
[Brachman & Schmolze, 1985] Brachman, R J . &
Schmolze, J. An overview of the KL-ONE knowledge
representation system. Cognitive Sci. 9(2) 171-216, 1985.
[Cercone & Schubert, 1975] Cercone, N. & Schubert, L.
Towards a state-based conceptual representation. Proc.
AAAI75. pp.83-90. Morgan Kaufmann, 1975.
[Fahlman, 1979] Fahlman, S.E. NEIL: A System for
Representing and Using Real-World Knowledge.
Cambridge, Massachusetts: M I T Press, 1979.
Gaines, B.R. (1991a). Integrating rules in term subsumption
knowledge representation servers. AAAI'9I: Proceedings of
the Ninth National Conference on Artificial Intelligence.
Menlo Park, California: A A A I Press, to appear.
[Gaines, 1991b] Gaines, B.R. Empirical investigation of
knowledge representation servers: design issues and
applications experience with KRS. SIGART, to appear.
[Gaines & Shaw, 1991] Gaines, B.R. & Shaw, M.L.G.
Elicit ing knowledge and transferring it effectively to a
knowledge-based systems. IEEE Transactions on
Knowledge and Data Engineering to appear.
[Glinert, 1990] Glinert, LP., Ed. Visual Programming
Environments: Paradigms and Systems. Los Alamitos,
California: IEEE Computer Society Press, 1990.
[Kindermann & Quantz, 1989] Kindermann, C. & Quantz, J.
Graphics-oriented user interfaces for KL-ONE. K IT Internal
Report 23. Technical University of Berlin, 1989.
[Mackinlay & Genesereth, 1984] Mackin lay, J. &
Genesereth, M.R. Expressiveness of languages. Proc.
AAAI84. pp.226-232. Morgan Kaufmann, 1984.
[M ich ie , 1989] M i c h i e , D. Problems o f computer-
a ided concep t f o r m a t i o n . Q u i n l a n , J.R., E d .
Applications of Expert Systems Volume 2. pp.310-333.
Sydney: Addison-Wesley, 1989.
[Nosek & Roth, 1990] Nosck, J.T. & Roth, I. A comparison
of formal knowledge representations as communication
tools: predicate logic vs semantic network. International
Journal of Man-Machine Studies 33, 227-239, 1990.

822 Learning and Knowledge Acquisition

[Schmolze, 1983] Schmolze, J. KLONEDRAW—a facility
for automatically drawing pictures of KL-ONE networks.
Research in Knowledge Representation for Natural
Language Understanding, pp.41-44. Report No.5421,
Cambridge, Mass.: Bolt Beranek and Newman, 1983.
[Watanabe, 1989] Watanabe, H. Heuristic graph displayer
for G-BASE. International Journal of Man-Machine
Studies, 30(3) 287-302,1989.

[Woods, 1975] Woods, W.A. What's in a link: Foundations
for semantic networks. Bobrow, D.G. & Collins, A .M. (Eds)
Representation and Understanding: Studies in Cognitive
Science, pp.35-82. New York: Academic Press, 1975.
[Woodwan l , 1990] Woodward , B. (1990) Knowledge
engineer ing at the f ront -end: de f in ing the domain .
Knowledge Acquisition, 2(1) 73-94, 1990.

Fig. 2 Graphic language structure editor in use

Gaines 823

