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ABSTRACT

The last several years have seen the development of a number of new satellite-derived, globally complete,

high-resolution precipitation products with a spatial resolution of at least 0.258 and a temporal resolution of

at least 3-hourly. These products generally merge geostationary infrared data and polar-orbiting passive

microwave data to take advantage of the frequent sampling of the infrared and the superior quality of the

microwave. The Program to Evaluate High Resolution Precipitation Products (PEHRPP) was established to

evaluate and intercompare these datasets at a variety of spatial and temporal resolutions with the intent of

guiding dataset developers and informing the user community regarding the error characteristics of the

products. As part of this project, the authors have performed a subdaily intercomparison of five high-

resolution datasets [Climate Prediction Center morphing (CMORPH) technique; Tropical Rainfall Mea-

suring Mission Multisatellite Precipitation Analysis (TMPA); Naval Research Laboratory (NRL) blended

technique; National Environmental Satellite, Data, and Information Service Hydro-Estimator; and Precip-

itation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN)] with

existing subdaily gauge data over the United States and the Pacific Ocean. Results show that these data are

effective at representing high-resolution precipitation, with correlations against 3-hourly gauge data as high

as 0.7 for CMORPH, which had the highest correlations with the validation data. Biases are relatively high

for most of the datasets over land (apart from the TMPA, which is gauge adjusted) and ocean, with a general

tendency to overestimate warm season rainfall over the United States and to underestimate rainfall over the

tropical Pacific Ocean. Additionally, all the products studied faithfully resolve the diurnal cycle of precipi-

tation when compared with the validation data.

1. Introduction

The measurement and analysis of precipitation pre-

sents multiple challenges for describing and under-

standing its role in the climate system. Although

precipitation is a vital element of the global hydrologi-

cal and energy cycles, it is discontinuous and highly

variable in both space and time and is intimately asso-

ciated with the changes of phase of water between va-

por, liquid, and solid. Comprehensive coverage of the

entire surface of the earth can only be obtained with

observations from meteorological satellites. This capa-

bility, combined with the need for near-global precipi-

tation data, has led to numerous attempts to estimate

precipitation from remotely sensed information and to

use the estimates in large-scale analyses. However, re-

mote sensing of precipitation from satellites relies for

the most part on inferring amounts from observing

properties of cloud tops in visible or infrared imagery,

or from the effects of raindrops or large ice particles on

microwave radiation. Such inferences can be even more

difficult, and large and complex errors are typical. Sat-

ellite-derived estimates also suffer from gaps in tem-

poral sampling. The most successful space-based

precipitation products at present are based on combi-

nations of infrared and microwave observations (Ebert

et al. 2007).

There are two broad categories of satellite precipi-

tation estimates: 1) those based on geosynchronous in-

frared (IR) measurements and 2) those derived from

polar-orbiting microwave observations. The geosyn-

chronous nature of the IR observations permits a high

sampling frequency (full globe scans are currently

available every 15 min), but their relationship to pre-

cipitation is indirect—outgoing longwave radiation is

Corresponding author address: M. R. P. Sapiano, Earth System

Science Interdisciplinary Center, University of Maryland, College

Park, 5825 University Research Court, Suite 4001, College Park,

MD 20740-3823.

E-mail: msapiano@essic.umd.edu

FEBRUARY 2009 SAP IANO AND ARK IN 149

DOI: 10.1175/2008JHM1052.1

� 2009 American Meteorological Society
Unauthenticated | Downloaded 08/25/22 04:56 PM UTC



used to infer the position, and cloud-top temperature of

cloud masses and precipitation rates are inferred from

these attributes (Arkin and Meisner 1987). Microwave

imagers and sounders afford a more direct inference of

precipitation, although they suffer from poor temporal

sampling—most polar-orbiting satellites provide a near-

complete full scan of the earth fewer than once per day.

Reviews of methodology and specific examples of esti-

mation of precipitation are provided by Arkin and

Ardanuy (1989) and Levizzani et al. (2007). The best

precipitation datasets for scientific applications requir-

ing broad, complete, and consistent coverage in space

and time have been merged IR/microwave (MW) rec-

ords, such as the Climate Prediction Center (CPC)

Merged Analysis of Precipitation (CMAP; Xie and

Arkin 1997a) and the Global Precipitation Climatology

Project (GPCP; Huffman et al. 1997; Adler et al. 2003)

analyses. Initially, these datasets were available as 2.58

monthly and pentad (Xie and Arkin 1997b; Xie et al.

2003) versions. These analyses are relatively coarse in

time and space but have proven extremely useful for a

wide range of climate studies, enabling comprehensive

descriptions of oceanic precipitation variability for the

first time. A 18 daily version of the GPCP (Huffman

et al. 2001) has been produced that uses data from the

Tropical Rainfall Monitoring Mission (TRMM).

More recently, several new merged high-resolution

(at least 0.258 and three hourly) precipitation products

have emerged. In general, these datasets strive to use

the high-quality (but poorly sampled) microwave esti-

mates in tandemwith the high-frequency IR data, with a

variety of approaches for combining the MW with the

IR. An ad hoc international collaboration called the

Program to Evaluate High Resolution Precipitation

Products (PEHRPP) was established under the auspices

of the International Precipitation Working Group

(Turk et al. 2008) to evaluate, intercompare, and vali-

date the various high-resolution precipitation algo-

rithms currently available and is intended to build on

previous intercomparison studies, such as The WetNet

(Dodge and Goodman 1994) Precipitation Intercom-

parison Projects (PIPs; Barrett et al. 1994; Kniveton

et al. 1994; Smith et al. 1998; Adler et al. 2001) and the

Global Precipitation Climatology Project (GPCP) Al-

gorithm Intercomparison Projects (AIP; Arkin and Xie

1994; Ebert et al. 1996; Ebert and Manton 1998).

Data produced from five high-resolution precipitation

product (HRPP) algorithms are used in this study: the

TRMM Multisatellite Precipitation Analysis (TMPA),

the CPC morphing technique (CMORPH), the Na-

tional Environmental Satellite, Data, and Information

Service (NESDIS)Hydro-Estimator, the Naval Research

Laboratory (NRL) blended technique, and Precipitation

Estimation from Remotely Sensed Information using

Artificial Neural Networks (PERSIANN). In particu-

lar, we will examine the performance of an ensemble

HRPP derived from the original products available

for this study. We will also compare the performance

of numerical weather prediction model forecasts to

see whether there is any indication that they could

be used as an estimate of precipitation in the regions

examined.

Short algorithm descriptions are provided in section

2. The high-resolution precipitation products will be

evaluated with respect to several 3-hourly rainfall ob-

servation datasets from gauges that are discussed in

section 3. Results from the intercomparison of the

HRPPs are presented in section 4, with results from

model data in section 5. Finally, conclusions and dis-

cussion are in section 6.

2. High-resolution products

The five high-resolution gridded datasets used in this

study have a spatial resolution of at least 0.258 latitude/

longitude and a temporal resolution of at least every

three hours. Table 1 lists these datasets and summarizes

their inputs. For data at higher resolutions, simple totals

are taken over a standard grid and over standard 3-h

periods as defined by the data providers, although the

definition of the 3-h periods used by TMPA differs from

that used by the others by 1.5 h, which is accounted for

by using the same averaging period for the validation

data. All of the HRPPs use roughly the same inputs as

described in Table 1, and most combine passive micro-

wave (PMW) data from the Special Sensor Microwave

Imager (SSM/I), TRMM Microwave Imager (TMI),

Advanced Microwave Sounding Unit (AMSU), and

Advanced Microwave Scanning Radiometer for Earth

Observing System (AMSR-E) PMW, with precipita-

tion estimates obtained using the Goddard profiling

(GPROF; Kummerow et al. 1996) algorithm, except for

AMSU, which uses an operational algorithm based on

Zhao and Weng (2002) and Weng et al. (2003). This

is augmented by the higher-frequency estimates from

geosynchronous IR estimates. Most HRPPs use the

CPC merged IR data of Janowiak et al. (2001).

The TMPA (also known as 3B42; Huffman et al. 2003;

Huffman et al. 2007) is a gauge-adjusted combination

of two interim products: the PMW and the PMW-

calibrated IR. The PMW data are first calibrated using

the combined TMI and precipitation radar (PR) pro-

duct and then used to calibrate the IR input. The PMW

and IR are thus considered comparable with each other

and are combined by using the PMW data where avail-

able and IR elsewhere. The TMPA is unique among the
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HRPPs, in that a gauge correction is applied over land.

The 3-hourly PMW/IR estimate is summed to monthly

resolution and merged with the monthly gauge data

following the techniques described in Huffman et al.

(1997). This ratio of this product and the nongauge-

adjusted monthly average is used to define scaling factors

between 0.2 and 2, which are used to scale the three-

hourly real-time data and obtain the 3B42 version-6

precipitation estimates. Note that a real-time version

of TMPA (referred to here as TMPA-RT) is also

available without the gauge correction and is often

referred to as 3B42-RT. The highest resolution of the

TMPA (3B42) data is three hourly at 0.258 spatial res-

olution between 608N and 608S, and the record starts in

January 1998.

A number of recent studies have used the TMPA for

different applications. Hong et al. (2006, 2007) discussed

the establishment of a real-time system for the predic-

tion of landslides based on real-time precipitation esti-

mates from the TMPA and surface characteristics

related to landslide susceptibility. Curtis et al. (2007b)

used the TMPA to investigate daily extremes associated

with ENSO. Harris et al. (2007) used the real-time IR

component of the TMPA for flood prediction over a

single river basin in Kentucky. Several studies have fo-

cused on the regional validation of the TMPA against

other sources. Katsanos et al. (2004) compared a single

year of the TMPA-RT (which lacks the gauge adjust-

ment) with a 12-hourly rain gauge network over the

Mediterranean region. They found that the TMPA-RT

tended to overestimate the gauge values, particularly

for heavier rainfall amounts. Curtis et al. (2007a) ex-

amined the total precipitation from the TMPA associ-

ated with Hurricane Floyd over three river basins in

North Carolina versus that obtained from a gauge net-

work and radar estimates and found that the TMPA

overestimated the total precipitation of extreme events,

although the overestimation was much smaller for very

heavy events. Villarini and Krajewski (2007) compared

a single 0.258 grid box of the TMPA with a dense rain

gauge network over Oklahoma. They found that the

TMPA had higher correlations with the gauge data

during the warm season but tended to underestimate

low precipitation values.

The CMORPH (Joyce et al. 2004) is constructed from

similar inputs as TMPA, but the original product is

created on an 8-km grid at half-hourly time resolution.

The different PMW records are calibrated to match the

TMI using a histogram matching technique. At times

and locations when PMW data are unavailable, the

PMW estimates are propagated/interpolated using

motion vectors derived from the IR data (see Joyce

et al. 2004). A consequence of this combination method

is that the analysis does not rely on the IR data for

rainfall estimates. CMORPH data is available at the

half-hourly, 8-km (0.72778) spatial resolution between

608N and 608S fromDecember 2002. The 3-hourly, 0.258

averages are also distributed and are used in this study.

The Hydro-Estimator (Scofield and Kuligowski 2003)

is based on the NESDIS Auto-Estimator algorithm de-

scribed in Vicente et al. (1998). In the Hydro-Estimator,

pixels are defined as raining if their value is below

the average value for the surrounding area. A standard

rainfall distribution derived from more than 6000 col-

located radar and satellite pixels is adjusted according

to the difference between the pixel and the surrounding

area, so that the highest rain rates are assigned to areas

that are coldest relative to their surroundings. Atmo-

spheric information from NWP model output is used to

make two adjustments: 1) the estimation of precipita-

tion from stratiform events is improved using model-

estimated precipitable water to adjust the rain-rate

curve based on moisture availability and 2) relative

humidity to derive a bulk bias adjustment. The highest

TABLE 1. Summary of the high-resolution precipitation products used in this study with input data types and a summary of the com-

bination method. Geo-IR stands for geosynchronous infrared.

Product name Input data Combination method

3B42 Geo-IR, microwave from SSM/I,

TRMM, AMSU, AMSR, and gauges

Merged microwave and microwave-calibrated

IR calibrated to global gauge network

CMORPH Geo-IR, microwave from SSM/I,

TRMM, AMSU, and AMSR

PMW rain rates advected and evolved

according to IR imagery

Hydro-Estimator Geo-IR and NWP Brightness temperature in geo-IR,

modulated by cloud evolution, stability,

total precipitable water, etc.

NRL blended Geo-IR, microwave from SSM/I,

TRMM, AMSU, and AMSR

Histogram-matching calibration of

geo-IR to merged microwave; weighted

combination

PERSIANN Geo-IR and TRMM microwave Adaptive neural network calibration of

geo-IR to PMW
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resolution of this data is every 15 min, with a 4-km

spatial resolution between 608N and 608S. The record

starts in 2003 over the United States only; global esti-

mates are only available from 2008 onwards, so com-

parisons are limited to stations over the United States

for this study. It should also be noted that the algorithm

has been continuously improved; however, no repro-

cessing of older data has been performed, so that older

data is likely to be of lower quality than data for more

recent periods.

The NRL blended technique (NRL blended; Turk

and Miller 2005) is constructed by calibrating the PMW

to the PR between 408S–408N and the SSM/I outside

this range. Then histogrammatching is used to make the

IR consistent with the PMW data. Winds of 850 hPa are

used from the Navy Operational Global Atmospheric

Prediction System (NOGAPS) along with topographic

information to correct for orographic effects. Then the

PMW and calibrated IR are combined according to a

weighted mean at each grid box. Weights are constant

for the PMW, whereas weights for the IR data are

smaller when closer to a PMW overpass. The record

starts in January 2003, although there are missing pe-

riods (notably September–December 2003). As with the

Hydro-Estimator, reprocessing of the historical series

has not been carried out, so the older parts of the da-

taset were produced with older versions of the algo-

rithm and might be of lower quality.

The PERSIANN (Hsu et al. 1997; Sorooshian et al.

2000) dataset uses a neural network technique to esti-

mate rainfall rates from IR data. The neural network is

calibrated with TMI, SSM/I, and AMSU data and used

to obtain precipitation estimates using the Janowiak

et al. (2001) IR data as a basis. Surface type is also in-

cluded in the neural network, and an adaptive process is

used to iteratively adjust network parameters based on

the error of the output compared to observations. Data

are produced globally at a 4-km resolution for every

30 min and were aggregated to 0.258, 3-hourly resolution

for this study. Sorooshian et al. (2000) compared pre-

cipitation estimates from PERSIANN (trained with

TMI data) with gauges and radar (as well as several

TRMM products) between 308S–308N and 908E–308W.

Over land, they report relatively high correlations

against gauges and radar when aggregated to coarse

resolutions (18 and 58 grids). PERSIANN also was used

by Gupta et al. (2002) to predict flash floods over the

United States. They used a combination of remotely

sensed precipitation, runoff, land surface, and model

data. They found the satellite data were useful in the

identification of features, but they do not have adequate

lead time required for flash flood forecasting from large,

convective thunderstorm systems.

3. Methodology

Obtaining suitable validation data for subdaily pre-

cipitation is challenging because most standard obser-

vations are daily at best. The first issue is that suitable

data must be at least three hourly, although higher time

resolutions are preferred because the start times of the

HRPPs are not uniform; for example, the TMPA mea-

surements are centered on 0000 UTC, 0300 UTC, and so

on, which is 1.5 h offset from the other products, and

higher-resolution validation data allows for the calcu-

lation of different 3-h periods that are coincident with

all the HRPPs. A second issue is that the validation data

were required to have undergone quality-control checks

before being used. This is crucial for subdaily data be-

cause they are subject to many sources of error, which

are normally eradicated through averaging for lower-

frequency time scales. Most datasets with sufficient

quality control and subdaily sampling cover a very

limited period, which is a problem for precipitation

validation because there is high natural variability

(noise), and results can be variable when taken from

short periods. Therefore, at least half-hourly quality-

controlled gauge data are required over several years.

Matched HRPP series were constructed for each gauge

location by combining the surrounding four grid points

using bilinear interpolation. Statistics are presented

using these 3-hourly matched series.

Applying these principles, two precipitation valida-

tion datasets were employed in this study: 1) precipita-

tion from the Atmospheric Radiation Measurement

Program (ARM) sites over the southern Great Plains

(SGP) and from the Tropical Atmosphere Ocean

(TAO)/Triangle Trans-Ocean Buoy Network (TRI-

TON) Autonomous Temperature Line Acquisition

System (ATLAS) II buoy gauges over the tropical Pa-

cific Ocean. The locations of the validation gauges used

in this study are shown in Fig. 1. Both of these validation

datasets are available at a sub 3-hourly resolution and

have been aggregated to 3-hourly totals corresponding

to the periods available from the high-resolution pre-

cipitation products. Figure 2 shows the data coverage

time series for each of the sites used in the study. We

required sites to have at least one year of data, although

all of the SGP sites have data for nearly the whole 3.5-yr

study period, and most of the TAO buoy data have two

years or more of coverage.

The SGP site was established in early 1992 and was

the first field site under the ARM project (Stokes and

Schwartz 1994; Ackerman and Stokes 2003). The fa-

cility is made up of a number of sites in Oklahoma

and Kansas that were chosen for their homogeneity.

Most of the sites have surface measurements including
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precipitation from tipping-bucket rain gauges measur-

ing every minute that were aggregated to give a half-

hourly accumulation that was downloaded for use in this

study.

The TAO/TRITON network is maintained by the

NOAA Pacific Marine Environmental Laboratory

(PMEL) and provides a range of real-time and archived

data from a set of moored buoys in the tropical Pacific

Ocean, primarily used for monitoring El Niño–Southern

Oscillation (ENSO) conditions (Hayes et al. 1991). In

addition to collecting information on oceanographic

variables, many of the buoys also record meteorological

variables, including precipitation. Serra et al. (2001)

describe the instrument and processing procedures re-

quired for these data. A further correction to remove

noise in the data was applied based on the work of

Huffman and Lehman (2006), who suggested using only

values over a threshold of 2 mm h21 to remove some

residual noise from the 10-minute data. A second cor-

rection for gauge undercatch also was applied. Serra

et al. (2001) summarized some of the factors that might

lead to errors in the TAO buoy gauges and found that

the only significant problem was undercatch as a result

of wind effects around the gauge. They discussed a

number of studies that examine the gauge undercatch

issue and ultimately suggested using the correction

outlined by Koschmieder (1934), which corrects the

precipitation amount according to a polynomial rela-

tionship with wind speed.

Two further datasets are included in the analysis in

the same manner as the HRPPs. First, the National

FIG. 1. Map mean GPCP precipitation (mm day21) from December 2002 to March 2006 with locations

of gauges used in this study overlaid. Circles (in the central United States) show the locations of the

gauges from the SGP site. Squares (in the tropical Pacific Ocean) show the sites from the TAO/TRITON

buoys. The dashed line shows the 1508W meridian, which is used to split the TAO gauges into west and

east blocks.

FIG. 2. Periods with data coverage for SGP (gray) and TAO/

TRITON (black) sites.
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Centers for Environmental Prediction (NCEP) stage IV

(Baldwin and Mitchell 1998; Lin and Mitchell 2005)

radar–gauge product is used over the United States. The

stage IV data is available on a 4-km grid from January

2002, so results are shown for the native grid as well as

from an aggregated version on a 0.258 grid. Second, to

evaluate the PEHRPP hypothesis that NWP forecast

precipitation might be a useful estimate of precipitation

in some cases, forecast precipitation from the NCEP

Global Forecast System (GFS) NWP model was been

obtained and compared to the gauge observations. The

model is run every 6 hours, and the 12- and 15-h pre-

cipitation forecasts are used to avoid model spin-up

issues. GFS model data are available globally at 18 res-

olution starting in March 2004. It is expected that this

coarser resolution might leave the GFS at a slight dis-

advantage compared to the HRPPs because of the in-

creased spatial smoothing, therefore the HRPPs are

degraded to 18 resolution for the comparison with GFS

precipitation.

4. Results from product comparisons

A number of other comparisons of the HRPPs have

been conducted (Gottschalck et al. 2005; Brown 2006;

Ebert et al. 2007; Ruane and Roads 2007; Tian et al.

2007), although none have examined the performance

of the datasets over the oceans, and most have not as-

sessed the subdaily performance. Here, we focus almost

exclusively on the subdaily time scale although some

results for daily data are shown for reference.

a. Correlations

Comparisons between the SGP gauges and the

high-resolution datasets were performed separately

for 6-month warm and cold seasons (October–March

and April–September). The high-resolution data were

matched with the validation data and any missing data

were removed (as was the case with the TAO buoy

data, see Fig. 2), and the correlation of the three-

hourly pair for each site was obtained. Figure 3 shows

box plots of these correlations between each three-

hourly SGP gauge and the matched 3-hourly HRPP

series (e.g., there are 16 SGP stations, hence the box

plots depict 16 three-hourly correlations). The box

plots show the distribution of the correlations over all

sites, and the mean correlation is included as a refer-

ence. Overall, the HRPPs are better correlated with

the validation data in the warm season (Fig. 3b) than

in the cold season, (Fig. 3a) as shown by the generally

higher mean values and smaller spread of correlations.

There are also minor differences in the skew of the

distributions, but these are very small compared to the

spread of correlations. (CMORPH has the highest

3-hourly correlations in both seasons, and NRL blended

has the lowest mean correlations.) In the cold season

(Fig. 3a), TMPA, the Hydro-Estimator, and PERSIANN

are similarly correlated, with the validation data with

mean values around 0.45 compared with about 0.55

for CMORPH. In the warm season, however (Fig. 3b),

the correlations for TMPA exceed those for the Hydro-

Estimator and PERSIANN and are almost as large as

those for CMORPH, indicating greater skill for convec-

tive precipitation over the Great Plains, a phenomenon

also observed by Villarini and Krajewski (2007) over

Oklahoma. Perhaps, unsurprisingly, the spread of the

correlations is somewhat similar for each of the HRPPs,

with the exception of the Hydro-Estimator in winter.

This general similarity suggests that differences be-

tween the HRPPs and the gauge data are systematic

over these geographically close sites and that they are

similar to each other.

FIG. 3. Box plots of 3-hourly correlations of the HRPP with the

SGP sites for (a) October–March and (b) April–September. The

circles show the mean correlation over all sites obtained using daily

accumulations. Each box represents the 25th and 75th percentiles

of the correlations, and the line in the middle of the box represents

the median correlation (50th percentile). The ‘‘whiskers’’ extend

to the farthest outlying correlations that are no more than 1.5 times

the interquartile range (difference between the 75th and 25th

percentiles) away from the median. The plus symbols beyond the

whiskers denote observed correlations, which are farther than 1.5

times the interquartile range from the median. The crosses rep-

resent the mean of the 3-hourly correlations.

154 JOURNAL OF HYDROMETEOROLOGY VOLUME 10

Unauthenticated | Downloaded 08/25/22 04:56 PM UTC



The circles in Fig. 3 indicate the mean of the corre-

lations between daily accumulations of the SGP gauges

and the HRPPs, and the crosses indicate the mean of the

correlations based on the 3-hourly accumulations. In all

cases, the daily correlations are higher than those ob-

tained from the 3-hourly data, although the improve-

ment is smaller in the warm season when more short-

lived convection is dominant. These daily results are

similar to those obtained by Ebert et al. (2007) and Tian

et al. (2007).

The stage IV data is included as a benchmark, and

correlations are shown for estimates at 0.258 and 4-km

spatial resolution. The latter exhibits excellent agree-

ment with the validation data and has mean correlations

of around 0.8 in both seasons. Correlations are slightly

lower for the 0.258 resolution at around 0.7 in the both

seasons, which shows the effect of the larger averaging

area. The daily analysis of Tian et al. (2007) showed that

correlations against gauge and radar data for the whole

United States were highest east of the RockyMountains

and were slightly lower over the West Coast during the

warm season. In the cold season, they showed that daily

correlations in the midwest and southeast United States

were still high, but they were extremely low in the west

and at all points north of about 408N. These three-

hourly results are consistent with those of Tian et al.

(2007) and show that the HRPPs are still inferior to the

stage IV data at this resolution.

Figure 4 shows similar box plots of 3-hourly correla-

tions but with the TAO/TRITON buoys as the valida-

tion data. Note that the Hydro-Estimator has not been

processed over this area for this period and is excluded.

There were a number of remaining issues in using these

data, the most significant of which is that the gauges

cover a large area and are quite inhomogeneous. They

have, therefore, been split into two groups: gauges west

and east of 1508W, as indicated by the dashed line in

Fig. 1. This split was arbitrarily chosen, as it is approx-

imately in the middle of the gauges, but the rain-

fall characteristics on either side are quite different.

Figure 1 includes the mean annual precipitation over

the study period from the GPCP (Adler et al. 2003) 2.58-

resolution dataset and shows that locations west of

1508W generally receive more precipitation than loca-

tions east of 1508W. As with the SGP gauges, the TAO

buoy gauges show that CMORPH generally exhibits the

highest correlations of the HRPP on both sides of the

Pacific and NRL blended lags behind the other HRPPs

with a far larger spread. West of 1508W (Fig. 4a) the

spread of correlations is small, reflecting the homoge-

neous nature of these gauges. There is a larger spread of

correlations east of 1508W (Fig. 4b), and some of these

even have correlations close to zero. The heterogeneity

of the sites east of 1508W is because of the mix of sites

receiving heavy rainfall under the ITCZ and those re-

ceiving very little rainfall under the subtropical high-

pressure zone south of the equator. Once again, the

daily correlations (indicated on the figure by circles) are

higher than the 3-hourly correlations, and those for the

TMPA are as high as those for CMORPH, indicating

the TMPA has higher daily skill (even in the absence of

the gauge correction). This suggests the improvement in

skill is related to issues in the detection of 3-hourly

events, which are remedied by the smoothed daily res-

olution.

The validity of the gauge undercatch correction is

unknown, so it is important to compare the results using

the correction with those obtained from the data with-

out the undercatch correction. Triangles in Fig. 4 show

the mean of the correlations against the TAO/TRITON

buoy estimates without the undercatch correction.

Generally, similar results are found with the uncor-

rected data and the CMORPH, NRL blended, and

PERSIANN datasets. However, the TMPA now yields

higher 3-hourly correlations that are of a similar mag-

nitude to those obtained with CMORPH. The exact

reasons for this are unclear, but the improvement is

FIG. 4. Box plots of 3-hourly correlations of the HRPP with the

TAO sites for site (a) west of 1508W and (b) east of 1508W. Tri-

angles denote the mean of the correlations obtained using the

gauge data without the undercatch correction.
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likely to be in the estimation of amounts under windy

conditions because the undercatch correction does not

change the probability of precipitation and is larger

under windy conditions.

b. Biases

Of all of the HRPPs considered in this study, only

TMPAhas a gauge bias correction (applied as amonthly-

mean correction over land only). The rest of the datasets

simply rely on the satellite estimates of precipitation

amount. The efficacy of this bias adjustment is clear in

both seasons from Fig. 5, which shows that the TMPA

performs as well as the gauge-adjusted stage IV data and

has less spread in the warm season. There is still some

spread in the gauge-adjusted datasets because the SGP

gauges were not used in the gauge adjustment and

also as a result of the differences between point and

area-averaged estimates already discussed. Studies by

Katsanos et al. (2004), Gottschalck et al. (2005), and

Harris et al. (2007) all found biases in the unadjusted

TMPA, so it is clear that the gauge correction is of great

benefit.

In the cold season (Fig. 5a), CMORPH, NRL

blended, and PERSIANN have small positive biases

mostly below 50% of the mean (which is relatively low

for noisy satellite estimates). However, these three da-

tasets have large positive biases in the warm season

(Fig. 5b) as a result of the overestimation of convective

events. In particular, CMORPH overestimates precipi-

tation at all sites by between 50% and 175%, despite

having the highest 3-hourly correlations with these

data. Conversely, the U.S.-only version of the Hydro-

Estimator has a small positive bias in the warm season

(with a median value of 25%) and a larger bias than

the other datasets in the cold season (median ;40%).

This may reflect that the Hydro-Estimator was con-

structed for flood nowcasting and is tuned for accuracy

in the summer months. Clearly, the bias correction of

the TMPA offers a significant advantage compared to

the other datasets, implying that this sort of correction

be considered where possible for all HRPPs. These re-

sults are similar to those obtained for the whole of the

United States by Tian et al. (2007), who showed that

the CMORPH summer bias extends over much of the

central United States but also found a slight negative

bias in the winter for CMORPH (particularly over the

West Coast).

Figure 6 shows the bias of the HRPPs compared to

the TAO buoys with the wind undercatch correction

(triangles indicate the mean percentage bias without the

correction). The TMPA (which is not gauge corrected

over the ocean) and CMORPH both underestimate

precipitation by about 25% in the west Pacific (Fig. 6a)

and by 40%–80% in the east Pacific (Fig. 6b). Distinctly

different results are obtained for NRL blended and

PERSIANN; both underestimate precipitation in the

east Pacific, but NRL blended has a smaller underesti-

mate of precipitation in the west Pacific and PERSIANN

has a near-zero median bias. Both NRL blended and

PERSIANN have far larger spreads of percentage biases

in the west Pacific than TMPA and CMORPH.

Figure 7 is similar to Fig. 6, but it shows absolute

values of the bias rather than percentage biases. As

would be expected, the broad patterns are very similar.

However, the mean bias over all sites is somewhat

smaller in the east Pacific, and the percentage bias is

inflated because of the small mean value at most of the

sites. There is still substantial spread in Fig. 7b as a re-

sult of some sites in the east Pacific being located under

the ITCZ, which has higher mean rainfall and is more

disposed to higher biases. This is illustrated by Fig. 8,

which shows the absolute biases from the east Pacific

sites plotted against the mean at each site for each

HRPP. There is a very strong relationship, with larger

(smaller) biases occurring at sites with larger (smaller)

mean values for all HRPPs, which indicates that the

spread in Figs. 6b and 7b is due to the heterogeneity of

the sites rather than errors with the HRPPs or the buoy

gauges. The two squares in the top left represent small

FIG. 5. Box plots of the bias (as a percentage of the mean of the

validation data) of the HRPP relative to the SGP sites for (a)

October–March and (b) April–September.
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positive biases in NRL blended at two of the sites. These

small values occurred at locations with a particularly

small mean rainfall. When expressed as percentage

biases, they become extremely large values and cause

the strange behavior of NRL Blended seen in Fig. 6b.

The triangles in Fig. 6 show the median percentage

bias of the TAO buoy gauges without the undercatch

correction. In the east Pacific, similar results are ob-

tained regardless of the use of the undercatch correction

because the rainfall amounts are generally smaller than

in the west and thus have less influence. However, in the

West Pacific (Fig. 6a), the median percentage biases are

all much smaller than in the east. For CMORPH and

TMPA, the median percentage bias in the west Pacific is

near zero, with a similar spread as obtained from the

corrected data. In the case of NRL blended and PER-

SIANN, the median percentage bias is greater than

zero, suggesting that they overestimate western Pacific

precipitation.

Bowman (2005) used the TAO gauges to evaluate the

long-termmean rainfall rates from the TMI as well as the

TRMM PR and found that the TMI was in good agree-

ment with the corrected gauges, whereas the PR under-

estimated the corrected gauges. Despite this result, it is

likely that the bias in the HRPPs comes from the PMW

sensors because the IR is tuned to match the PMW data,

and several of the datasets match estimates to TMI.

The results show that the HRPPs underestimate pre-

cipitation in the east Pacific, but the conclusion is less

clear in the west Pacific (under the ITCZ and the South

Pacific Convergence Zone). There are some questions

regarding the adequacy of the gauge correction, but there

is little doubt that some correction is required, even if the

magnitude of the correction is uncertain. Given this, both

TMPA and CMORPH seem to underestimate precipi-

tation in the west Pacific, and PERSIANN and NRL

blended might be closer to the buoys, although it should

be noted that NRL blended has a larger spread of per-

centage bias values than the other datasets.

c. Other statistics

Several statistics based on contingency tables are

commonly used in the verification of precipitation. To

do this, the data are reduced to binary form, with an

event defined as a nonzero 3-hourly rainfall total. Here,

we show the probability of detection (POD), the false

FIG. 6. Box plots of the bias (as a percentage of the mean of the

validation data) of the HRPP relative to the TAO sites for sites (a)

west of 1508W and (b) east of 1508W. The triangles indicate the

mean of the correlations obtained using the gauge data without the

undercatch correction.

FIG. 7. Box plots of the absolute bias of the HRPP relative to

the TAO sites for sites (a) west of 1508Wand (b) east of 1508W. The

triangles indicate the mean of the correlations obtained using the

gauge data without the undercatch correction. Units are mm h21.
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alarm ratio (FAR) and the Heidke skill score [HSS;

refer to Jolliffe and Stephenson (2003) for further de-

tails].

Figure 9 shows the POD, FAR, and HSS for the SGP

sites for the cold and warm seasons. The POD gives the

number of correctly identified events as a proportion of

the total number of observed events. The FAR gives the

number of events falsely identified as raining as a pro-

portion of the total number of identified events (both

correctly and incorrectly identified). A high POD and a

low FAR are desirable. The TMPA has a lower POD

and lower FAR than the other HRPPs in both the warm

and cold seasons, which is indicative of fewer total

raining events (in simpler terms, there were fewer to get

wrong but also fewer to get right). Of the other HRPPs,

CMORPH has a high POD in both seasons but also has

the highest combined FAR with PERSIANN and the

Hydro-Estimator. The values of the FAR are similar in

each season for all HRPPs, but the POD is generally

higher during the convective warm season. This suggests

the HRPPs do indeed capture these events, even if they

tend to overestimate the rainfall (as in Fig. 5b). Inter-

estingly, the 4-km stage IV product has a slightly lower

POD than the 0.258 version, reflecting issues with spatial

sampling at such high resolutions.

The HSS gives an estimate of the number of correctly

identified hits or misses as a proportion of the total

number of events. This ‘‘proportion correct’’ estimate is

adjusted to use a random forecast as a baseline: an HSS

of unity indicates a perfect forecast, and an HSS of zero

indicates a forecast that is no better than random

chance. The Hydro-Estimator gives the highest HSS in

the cold season, which is surprising given the skill

exhibited in the warm season. The TMPA gives the

highest in the warm season and is slightly superior to the

stage IV data at 0.258 resolution. The other HRPPS

have broadly similar HSS.

Over the tropical Pacific (Fig. 10), there is much

higher spread in the POD, FAR, and HSS than ob-

served over the SGP sites, which reflects heterogeneities

caused by the large area covered by these data. As with

the SGP sites, the TMPA has lower POD and FAR in

the west Pacific but is more in line with the other

HRPPs over the east Pacific, although there are fewer

rain events in the east Pacific. The differences between

the HRPPs are surprisingly small for POD, FAR, and

HSS. The daily statistics (an event is a rainy day) are far

superior for POD and FAR, showing the advantage of

averaging. However, the daily and 3-hourly estimates

have very similar HSS because they are both assessed

relative to random chance.

d. Representation of the diurnal cycle

The diurnal cycle of precipitation is currently poorly

represented by numerical models and is unavailable

from most gauges because they lack subdaily measure-

ments. This is, therefore, a crucially important trait for

the HRPPs because they provide one of the few possi-

ble sources of real data for the global diurnal cycle.

Janowiak et al. (2005) studied the mean seasonal diur-

nal cycle of CMORPH and pointed out that IR esti-

mates alone are not well suited to the study of the

diurnal cycle as a result of the lag between the detection

of clouds and the occurrence of rainfall at the surface.

Sorooshian et al. (2002) evaluated the diurnal cycle of

PERSIANN (which is IR based but trained with PMW

data) against gauge, radar, and other data sources in

the tropics and found lags in the tropics of no more than

1–2 h. However, they also admitted that contamination

from cold anvil cirrus might degrade the performance of

the PERSIANN with respect to the mean performance

and the diurnal cycle. Additionally, Hong et al. (2005)

presented a version of PERSIANN that was adjusted

using TMI data to enhance the accuracy of the diurnal

cycle. They reported improvements in the time lag of

the diurnal cycle from PERSIANN reporting time lags

of 2–3 h without the adjustment and 1–2 h with the

adjustment as well as improvements in bias.

Passive microwave estimates also have some diffi-

culties in estimating the diurnal cycle, although these

are more direct measurements so the lag is expected to

be shorter. Sanderson et al. (2006) studied methods for

detecting the diurnal cycle using TRMM data (because

this satellite has a precessing orbit that makes it suitable

for the assessment of the mean diurnal cycle without

FIG. 8. Scatterplot of the absolute biases of each HRPP at each

TAO site sites east of 1508W as a function of the mean at the val-

idation site. Circles represent TMPA, crosses CMORPH, squares

NRL blended, and triangles PERSIANN. Units are mm h21.
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any other sensors given a sufficiently long averaging

time). They found that significant differences can be

found between algorithms, and that a careful approach

to combination is required.

Figure 11 shows the mean seasonal diurnal cycle av-

eraged over all sites for the cold and warm seasons for

the SGP sites. The diurnal cycle is quite flat in the cold

season (Fig. 11a) with low rainfall values, and all of the

HRPPs capture this pattern. There is some sign that

the Hydro-Estimator has a higher mean value than the

gauges, as was seen in the percentage bias summaries

(Fig. 5a). In the warm season, there is a strong diurnal

cycle, and all HRPPs capture the basic shape of the cycle

quite accurately with a nocturnal maximum as would be

expected in this region (Balling 1985). Both the TMPA

and the Hydro-Estimator provide very accurate esti-

mates of the amplitude of the diurnal cycle. In the case of

the TMPA, this is probably due to the monthly correc-

tion. Assuming that the TMPA overestimates the warm

season precipitation in a similar fashion to the other

datasets, which preferentially use passive microwave es-

timates, the scaling factors would reduce all 3-hourly

estimates within the summer months and would hence

reduce the amplitude of the estimate. For the Hydro-

Estimator, this is probably related to tuning for flood

forecasting. CMORPH, NRL blended, and PERSIANN

all overestimate the amplitude of the warm-season di-

urnal cycle, which is consistent with their large positive

biases (Fig. 5b). There is some indication that all

HRPPs, aside from the Hydro-Estimator, are slightly

FIG. 9. Box plots of the (a),(b) POD; (c),(d) FAR; and (e),(f) HSS of the HRPP relative to the SGP sites for (a),(c),(e)

October–March and (b),(d),(f) April–September.
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out of phase with the gauges (and the stage IV esti-

mates). NRL blended is the worst of these and seems to

be several hours out of phase, which might explain its

lower 3-hourly correlations. This possible lag requires

further investigation using hourly or half-hourly data,

which is beyond the scope of this investigation.

e. Prospects for ensembles of existing datasets

The satellite products being evaluated in this study

generally use similar inputs, so differences between

them are most likely related to the way in which they

combine the different datasets. One of the prime goals

of PEHRPP is to explore ways in which the HRPPs can

be improved—perhaps by combining different tech-

niques or even products. The latter would be of use if

differences between the HRPPs were systematic rather

than simply random error. For example, the Hydro-

Estimator uses only IR data to estimate precipitation,

whereas CMORPH uses only PMWdata for its estimate

(the IR is only used to morph the PMW). If the infor-

mation contained in these two datasets is sufficiently

different, then a simple combination might yield extra

FIG. 10. Box plots of the (a),(b) POD; (c),(d) FAR; and (e),(f) HSS of the HRPP relative to the TAO sites for sites (a),(c),(e)

west of 1508W and (b),(d),(f) east of 1508W. The triangles indicate the mean of the correlations obtained using the gauge data

without the undercatch correction.
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overall skill in the same way as is obtained by monthly

2.58, merged datasets, such as GPCP (Adler et al. 2003)

and CMAP (Xie and Arkin 1997a). Figure 12 shows the

mean correlation for each month for CMORPH and

the Hydro-Estimator over all SGP sites. CMORPH usu-

ally has higher correlations against the validation data,

although there are months when the Hydro-Estimator

is superior. Additionally, the Hydro-Estimator had a

lower bias in the summer months (without the use of

gauge corrections), although it performed relatively

poorly in the winter with lower correlations and a higher

absolute bias than the other datasets.

As an example, CMORPH and the Hydro-Estimator

are relatively dissimilar, and it is possible that some

combination of these two datasets could yield an im-

provement compared to the Hydro-Estimator. Figure

12 also shows the mean monthly correlation of a mixture

of the Hydro-Estimator and CMORPH. CMORPH

was used to identify the occurrence of precipitation for

each 3-hourly period at each of the validation sites.

Then the precipitation amount was taken directly from

the Hydro-Estimator for the 3-hourly periods with

rain. This approach simply applies a rain/no rain mask,

derived from CMORPH, to the Hydro-Estimator. The

use of this mask slightly improves the correlation of

the Hydro-Estimator with the validation data, but it still

has lower correlations in most places than the original

CMORPH data. One notable exception is during Febru-

ary 2006,whichwas a very drymonth inwhich themixture

gives a higher correlation. This improvement in skill is

probably mostly due to a reduced probability of precipi-

tation in the combined dataset. Both CMORPH and the

Hydro-Estimator tend to overestimate the probability of

precipitation (not shown).

Our results indicate that differences between the

HRPPs are minor and that they are somewhat interde-

pendent. A consequence of this is that the combination

FIG. 11. Mean diurnal cycle (in local time) of the HRPP compared to the SGP sites for (a)

October–March and (b) April–September.

FIG. 12. Time series of monthly-mean 3-hourly correlations av-

eraged over all SGP sites for CMORPH, the Hydro-Estimator,

and a mix of these two datasets.
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of existing techniques is unlikely to lead to noticeable

improvement. This does not imply that the application

of different techniques would lead to no skill. The

TMPA, for example, currently uses a simplistic merging

technique and might benefit from a more complex

technique, such as the weighted combination employed

by NRL blended. However, because the datasets all

have similarly high correlations against the validation

data, it seems unlikely that a combination of techniques

would lead to more than only minor improvements in

performance.

5. Performance of GFS model data

One PEHRPP hypothesis posits that a possible al-

ternative or complement to using satellite precipitation

estimates with high time and space resolution is to use

atmospheric model forecasts of precipitation, which can

be produced on fine time and space scales. Such fore-

casts are derived from atmospheric observations of

temperature, pressure, winds, and moisture using the

physical laws governing the behavior of the system, and

thus might be considered quasi observations. Studies

have shown that in some circumstances, model-derived

precipitation may be more accurate than any routinely

observed or estimated values (Serreze et al. 2005).

Several of the validation efforts organized by the IPWG

and included in PEHRPP regularly evaluate NWP

forecasts in addition to satellite-derived estimates

(Ebert et al. 2007). Additionally, Gottschalck et al.

(2005) found that daily model-based estimates of pre-

cipitation performed well over the United States com-

pared with satellite data and gauges during the cold

season, although satellite estimates (including TMPA

and PERSIANN) were slightly superior in the warm

season on the daily time scale and they speculated that

the satellite estimates would be superior at subdaily

time scales. Numerous practical issues must be con-

fronted before any such use can be made; however,

among them, the question of whether the skill of model

forecasts is comparable to satellite-derived estimates in

situations such as those discussed in this paper.

Although a full evaluation of the performance of

model data is beyond the scope of this study, we will

examine the performance of 3-hourly precipitation

forecasts from the GFS model from March 2004 to

September 2006 in comparison to the performance of

the HRPPs as an example of model performance.

Figure 13 shows correlations and percentage bias of

the GFS precipitation with the SGP data along with

similar summaries for TMPA, CMORPH, and stage IV

during the same restricted period and 18 resolution. The

GFS precipitation has lower correlations than the

TMPA, CMORPH, and stage IV in both warm and cold

seasons. In the cold season (Fig. 13a), the GFS has a

mean correlation of around 0.3 compared to ;0.4 for

CMORPH. The circles indicate the mean correlation

obtained using daily data and show that the GFS out-

performs the other datasets in the cold season at the

daily resolution, which reflects the common model is-

sues with correctly capturing the diurnal cycle. In the

warm season (Fig. 13b), the GFS data has far lower

correlations, indicating that it poorly resolves the con-

vection that dominates precipitation during those

months. This is most likely due to effective spatial scale

imposed by the parameterizations in the GFS, as was

noted by Janowiak et al. (2007). The percentage bias of

the GFS precipitation is relatively low in both seasons,

although it is more often positive than negative. A sig-

nificant success is that it does not hugely overestimate

warm-season convective precipitation (like CMORPH

does), although this is likely because it fails to correctly

forecast large events at all, as is suggested by its poor

warm-season correlation with the SGP sites.

A common use of satellite precipitation estimates is in

the validation of model output over the ocean, so a

comparison of the performance of model data with sat-

ellite estimates has useful ramifications. The GFS model

precipitation performs quite poorly over both the west

and east Pacific (Figs. 14a and 14b), with median corre-

lations around 0.15 and daily correlations around 0.3–0.4.

Three-hourly correlations this low are indicative of ex-

tremely poor performance, even with the high levels of

noise present. There is more skill in the daily precipita-

tion, but it is still far inferior to both TMPA and

CMORPH. In contrast to the TMPA andCMORPH, the

GFS precipitation tends to overestimate the precipitation

in both the west and east Pacific and has a generally large

spread in values of percentage bias. These results suggest

that the GFS data performs generally poorly over the

tropical Pacific, although it performs surprisingly well

over the SGP area—particularly in the cold season when

large-scale precipitation dominates.

6. Conclusions

In this study, we have examined the performance of

five independently developed high-resolution precipi-

tation products against quality-controlled, subdaily

gauge estimates from two geographically distinct areas

of the globe for four years between 2003 and 2006.

Generally speaking, CMORPH shows the highest cor-

relations with the validation data with 3-hourly, 0.258

correlations averaging around 0.55. The other data-

sets are also well correlated with the validation data.

Results between the sites in the United States were
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relatively consistent with each other, whereas greater

disparity was shown among the ocean buoy gauges as a

result of their much larger spatial spread. Over the U.S.

land, the TMPA had the lowest biases as a result of the

application of a monthly gauge correction, whereas

the other HRPPs overestimated precipitation amount

by as much as 125% in the warm season. However, the

TMPA exhibits similar biases to CMORPH over the

tropical Pacific. In this region, CMORPH, TMPA, and

NRL blended underestimate the precipitation, whereas

PERSIANN has a near-zero percentage bias on aver-

age. Without the gauge wind correction, PERSIANN

and NRL blended overestimate the mean precipitation,

whereas CMORPH and the TMPA both have a near-

zero mean bias. Questions remain regarding the suit-

ability of the wind correction (which is based on land

measurements with a different gauge type) for the buoy

gauge data, but it seems likely that some kind of cor-

rection is required, implying that CMORPH and TMPA

probably underestimate the true mean of precipitation

in the western tropical Pacific.

A natural question for users of these data would be

which of the HRPPs should be used for practical ap-

plications. This is a challenging question because the

available datasets have different strengths and weak-

nesses. Furthermore, the correlations reported in this

study are only marginally different from each other, and

this should be remembered when interpreting results.

We have attempted to maximize the validation period

so as to avoid spurious results and believe that our re-

sults are stable (in fact, several other data sources were

excluded because of insufficient record length). This

analysis shows that CMORPH and the TMPA appear to

offer slightly greater accuracy than the other three-

hourly datasets when compared to this limited set of

observations. The monthly bias correction used in the

TMPAmakes it a good candidate for use in studies over

land, where the precipitation amount is of primary

FIG. 13. Box plots of (a),(b) 3-hourly correlations and (c),(d) bias (as a percentage of the

validation data mean) of TMPA, CMORPH, stage IV radar, and GFS forecasts (all at 18 spatial

resolution) with the SGP sites for (a),(c) October–March and (b),(d) April–September. The

circles show the mean correlation over all sites obtained using daily accumulations.
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interest. CMORPH, however, yields slightly higher

correlations at the 3-hourly resolution with comparable

biases over the ocean, and it might be a better choice

of dataset for use in studies in which the variations

of precipitation are more important. There are also

other attributes that must be considered, such as the

large-scale patterns or the representation of precipita-

tion during severe precipitation events. Efforts to

evaluate the performance of these data under these

situations are ongoing through the PEHRPP project

and will provide further useful information for inter-

ested users.

A goal of the PEHRPP project is to understand dif-

ferences between similar algorithms so as to improve

the datasets, and we have a number of suggestions that

arise from this study. First, our two validation sites show

that HRPPs, which use more PMW data, are generally

more accurate than those that rely more heavily on the

frequently sampled IR data. It is becoming increasingly

clear that the advantages gained because of the quality

of PMW estimates outweigh the disadvantages of its

sampling. The methods that incorporate PMW data will

most likely continue to thrive as the available data in-

creases with the upcoming Global Precipitation Mission

FIG. 14. Same as Fig. 13 but with the TAO sites for sites (a),(c) west of 1508Wand (b),(d) east

of 1508W. Circles show the mean correlation over all sites obtained using daily accumulations.

Triangles indicate 3-hourly correlations obtained using the gauge data without the undercatch

correction.
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(GPM). Second, it is also clear from this work that the

gauge adjustments of the TMPA are a significant ad-

vantage over land and that such an approach would be a

boon for all of the HRPPs, particularly those used for

hydrology. However, it should be remembered by users

that the advantage of gauge adjustments exists only over

land, not over the ocean.
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