
                          Durand, M., Gleason, C. J., Garambois, P. A., Bjerklie, D., Smith, L.
C., Roux, H., Rodriguez, E., Bates, P. D., Pavelsky, T. M., Monnier, J.,
Chen, X., Di Baldassarre, G., Fiset, J. M., Flipo, N., Frasson, R. P. D.
M., Fulton, J., Goutal, N., Hossain, F., Humphries, E., ... Vilmin, L.
(2016). An intercomparison of remote sensing river discharge
estimation algorithms from measurements of river height, width, and
slope. Water Resources Research, 52(6), 4527–4549.
https://doi.org/10.1002/2015WR018434

Publisher's PDF, also known as Version of record

Link to published version (if available):
10.1002/2015WR018434

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via American
Geophysical Union at http://doi.org/10.1002/2015WR018434. Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1002/2015WR018434
https://doi.org/10.1002/2015WR018434
https://research-information.bris.ac.uk/en/publications/89e64b45-1679-4ed6-b830-ff00827b1a7a
https://research-information.bris.ac.uk/en/publications/89e64b45-1679-4ed6-b830-ff00827b1a7a


RESEARCH ARTICLE
10.1002/2015WR018434

An intercomparison of remote sensing river discharge

estimation algorithms from measurements of river height,

width, and slope

M. Durand1, C. J. Gleason2, P. A. Garambois3, D. Bjerklie4, L. C. Smith5, H. Roux6,7, E. Rodriguez8,

P. D. Bates9, T. M. Pavelsky10, J. Monnier11, X. Chen12, G. Di Baldassarre13, J.-M. Fiset14, N. Flipo15,

R. P. d. M. Frasson1, J. Fulton16, N. Goutal17, F. Hossain18, E. Humphries10, J. T. Minear19,

M. M. Mukolwe20, J. C. Neal9, S. Ricci21, B. F. Sanders22, G. Schumann9,23, J. E. Schubert22, and

L. Vilmin15

1School of Earth Sciences and Byrd Polar and Climate Research Center, Ohio State University, Columbus, Ohio, USA,
2Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, Massachusetts, USA, 3ICUBE,

Fluid Mechanics Team, Department of Civil Engineering, INSA Strasbourg, Strasbourg, France, 4Connecticut Water Science

Center, USGS, Hartford, Connecticut, USA, 5Department of Geography, University of California, Los Angeles, California,

USA, 6Universit�e de Toulouse, INPT, UPS, Institut de M�ecanique des Fluides de Toulouse, Toulouse, France, 7CNRS, IMFT,

Toulouse, France, 8Jet Propulsion Laboratory, NASA, Pasadena, California, USA, 9School of Geographical Sciences,

University of Bristol, Bristol, UK, 10Department of Geological Sciences, University of North Carolina, Chapel Hill, North

Carolina, USA, 11INSA, Institut de Mathematiques de Toulouse, Toulouse, France, 12NOAA/NWS/Ohio River Forecast

Center, Wilmington, Ohio, USA, 13Department of Earth Sciences, Uppsala University, Uppsala, Sweden, 14Environment

Canada, Qu�ebec, Canada, 15Centre de G�eosciences, MINES ParisTech, PSL Research University, Paris, France, 16USGS

Colorado Water Science Center, Lakewood, Colorado, USA, 17St Venant Lab Hydraul and EDF R&D, University of Paris-Est,

France, 18Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA,
19USGS Geomorphology and Sediment Transport Lab, Golden, Colorado, USA, 20UNESCO-IHE Institute for Water

Education, Delft, Netherlands, 21CECI, CERFACS/CNRS, Toulouse, France, 22Department of Civil and Environmental

Engineering, University of California, Irvine, California, USA, 23Remote Sensing Solutions, Inc., Monrovia, California, USA

Abstract The Surface Water and Ocean Topography (SWOT) satellite mission planned for launch in 2020

will map river elevations and inundated area globally for rivers >100 m wide. In advance of this launch, we

here evaluated the possibility of estimating discharge in ungauged rivers using synthetic, daily ‘‘remote

sensing’’ measurements derived from hydraulic models corrupted with minimal observational errors. Five

discharge algorithms were evaluated, as well as the median of the five, for 19 rivers spanning a range of

hydraulic and geomorphic conditions. Reliance upon a priori information, and thus applicability to truly

ungauged reaches, varied among algorithms: one algorithm employed only global limits on velocity and

depth, while the other algorithms relied on globally available prior estimates of discharge. We found at least

one algorithm able to estimate instantaneous discharge to within 35% relative root-mean-squared error

(RRMSE) on 14/16 nonbraided rivers despite out-of-bank flows, multichannel planforms, and backwater

effects. Moreover, we found RRMSE was often dominated by bias; the median standard deviation of relative

residuals across the 16 nonbraided rivers was only 12.5%. SWOT discharge algorithm progress is therefore

encouraging, yet future efforts should consider incorporating ancillary data or multialgorithm synergy to

improve results.

1. Introduction

Rivers link atmospheric, terrestrial, and oceanic processes and route approximately two fifth of the global

total rainfall over land back into the ocean [V€or€osmarty et al., 2000; Oki and Kanae, 2006]. In doing so, they

represent an important resource for agriculture and urban development as well a major hazard during flood

events. In these contexts, accurate estimation of river discharge (also ‘‘streamflow’’ or ‘‘runoff,’’ units of vol-

ume per unit time) is vital, as it quantifies the amount of water resources available for human consumption,

defines the quantity of water that must be routed during a flood event, and indicates overall watershed

response to atmospheric forcing. Despite its importance, our knowledge of global river discharge is
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surprisingly poor. This lack of knowledge represents an acute problem, given the possible acceleration of

the water cycle due to global warming [Huntington, 2006]. Improved river discharge estimates, with greater

spatial coverage of the global system of rivers, are needed to develop process-based scientific understand-

ing of runoff at large spatial scales (i.e., how water is routed into and through rivers) and to calibrate and

constrain hydrologic models to forecast effects of future changes in the terrestrial hydrologic cycle. The

forthcoming Surface Water and Ocean Topography (SWOT) mission measurements of river water surface

elevation (WSE), top width, and free-surface slope may allow periodic estimation of river discharge for all

rivers wider than 100 m, with a goal of estimating discharge for rivers wider than 50 m [Biancamaria et al.,

2015; Pavelsky et al., 2014]. Accurate discharge estimates from these measurements would enable tremen-

dous advances in global hydrologic studies.

Given that discharge is the product of flow area and velocity, in situ measurement of river discharge

requires spatially explicit measurements of the vertical velocity profile using a current meter in a transect

orthogonal to river flow [Turnipseed and Sauer, 2010]. While in situ measurements of discharge can be

highly accurate, they are time consuming and impractical for continuous monitoring. Such monitoring is

often achieved via river gauges that leverage periodic, simultaneous measurements of river stage (height

above some arbitrary datum) and discharge to develop a ‘‘rating curve.’’ With this rating curve defined, mea-

surement of river stage is performed (usually) by pressure transducer, allowing for nearly continuous predic-

tion of river discharge via the rating curve.

SWOT-based discharge will never be a replacement for in situ discharge measurements. SWOT overpasses

have a 21 day cycle, and will sample midlatitude locations irregularly in time approximately 3 times per

cycle [Biancamaria et al., 2015], rather than nearly continuously, as in a gauge estimate. While this is

adequate for addressing scientific questions related to the global water cycle, it is inadequate for many

local-scale questions on rivers where SWOT may not fully observe temporal dynamics [Biancamaria et al.,

2010], and for which data are often required at subhourly time scales. Additionally, SWOT discharge esti-

mates are not expected to be as precise as gauged discharge. On the other hand, the spatially continuous

nature of the SWOT measurements will provide data in currently ungauged basins as well as measurements

of spatially distributed phenomena such as the propagation of floodwaves along rivers [Durand et al., 2010;

Pavelsky et al., 2014; Paiva et al., 2015]. SWOT will also complement river discharge modeling. Global water

balance models use climate forcings to determine river runoff, but rely on gauges for parameter tuning

[Hunger and Doell, 2008]. SWOT can provide discharge estimates at continental scale in order to help reduce

current model annual runoff errors that range from 10 to 80%, and are commonly 40% [Oki et al., 1999; Raw-

lins et al., 2003; Widen-Nilsson et al., 2007; Gosling and Arnell, 2011]. SWOT will complement both gauges

and water balance modeling and can form a key component in understanding the global water budget—if

discharge algorithms with sufficient accuracy can be developed.

River discharge estimation from satellite remote sensing of river hydraulic variables including width, stage,

slope, surface velocity, and channel pattern has been explored and discussed in recent decades [Smith et al.,

1996; Smith, 1997; Bjerklie et al., 2003; Kouraev et al., 2004; Bjerklie et al. 2005a; Dingman and Bjerklie, 2006; Bjer-

klie, 2007; Birkinshaw et al., 2010; Michailovsky et al., 2012]. In some of these studies, altimetry measurements

were utilized to estimate discharge with a rating curve available from an in situ discharge gage [e.g., Kouraev

et al., 2004]. Other studies envisioned estimating discharge in ungauged rivers, and utilized traditional flow

laws where only a subset of the hydraulic quantities specified by the flow laws were observed remotely, and

pointed to the need for estimating the unobserved variables, such as roughness coefficient or river bathymetry

[e.g., Bjerklie et al., 2003]. Roux and Dartus [2005, 2008] proposed methods for estimating unobserved hydraulic

parameters from water surface width observations, on a synthetic case and using observed maximum flood

extents. Roux and Dartus [2006] estimated a synthetic flood hydrograph by minimizing the distance between

flood extent observations and 1-D model outputs, assuming the channel geometry and roughness are known

with a given uncertainty. Lai and Monnier [2009] assimilated water levels into a 2-D model and demonstrated

that the inflow hydrograph could be estimated. The anticipated SWOT data have sparked development of new

efforts to develop discharge estimation methods (discussed in detail, below), which draw from these previous

studies and decades of heritage in the fields of hydraulics, remote sensing, and fluvial geomorphology.

Despite the future promise of the SWOT mission, discharge algorithms designed to utilize its data have not

been systematically tested across a range of river types. Bonnema et al. [2016] have made one such test, but

only for three rivers in the same basin. In this paper, we compare six discharge algorithms designed for
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SWOT output (averaged observations of WSE, slope and inundation area over �10 km reaches [Fjortoft

et al., 2014]) to estimate river discharge. Algorithms include the previously published at-many-stations

hydraulic geometry (AMHG) method [Gleason and Smith, 2014; Gleason et al., 2014], GaMo [Garambois and

Monnier, 2015], MetroMan [Durand et al., 2014], and the novel mean flow and geomorphology (MFG) and

the mean flow and constant roughness (MFCR) algorithms, in addition to an ensemble median product. We

use synthetic daily observations of WSE and width generated from hydrodynamic models for 19 rivers cov-

ering a wide range of hydrologic regimes as a stand-in for SWOT data. We first describe each of the algo-

rithms in detail and then compare their estimation results before concluding with a summary of algorithm

strengths and weakness and a prognosis for the future SWOT mission.

2. Experiment Design

We used hydrodynamic model output from 19 rivers to assess algorithm performance in this study (Figure

1). For each river, daily synthetic measurements of water surface slope, elevation, and top width

Figure 1. Map showing hydraulic model locations. The rivers shown are those estimated to be greater than 50 m in width, slightly adapted from the analysis of Pavelsky et al. [2014]. (a)

Platte. (b) Tanana. (c) Seine. (d) Severn. (e) Garonne—Upstream. (f) Garrone—Downstream. (g) Cumberland. (h) Kanawha. (i) Sacramento—Upstream. (j) Sacramento—Downstream. (k)

Connecticut. (l) Wabash. (m) Ohio. (n) Mississippi—Upstream. (o) Mississippi—Downstream. (p) Saint Lawrence—Upstream. (q) Saint Lawrence—Downstream. (r) Po. (s) Ganges.

Table 1. Modeling Platform and Reference for Each Hydraulic Model, Along With the Dates Simulated in Each Model

River Name Model Reference Dates Simulated

Connecticut HEC-RAS 31 May 2011 to 27 Dec 2011

Cumberland HEC-RAS Adams et al. [2010] 1 Jan 2012 to 30 Jun 2012

Ganges HEC-RAS Siddique-E-Akbor et al. [2011] and Maswood

and Hossain [2015]

1 Jan 2002 to 31 Dec 2002

Garonne (DS) Mascaret Besnard and Goutal [2008] and Larnier [2010] 1 Jan 2010 to 31 Dec 2010

Garonne (US) HEC-RAS 1 Jan 2010 to 31 Dec 2010

Kanawha HEC-RAS Adams et al. [2010] 1 Jan 2012 to 30 Jun 2012

Mississippi (DS) HEC-RAS Adams et al. [2010] 1 Jan 2012 to 30 Jun 2012

Mississippi (US) HEC-RAS Adams et al. [2010] 1 Jan 2012 to 30 Jun 2012

Ohio HEC-RAS Adams et al. [2010] 1 Jan 2012 to 30 Jun 2012

Platte BreZo (2-D) Schubert et al. [2015] 13 Sep 2013 to 7 Oct 2013

Po HEC-RAS Di Baldassarre et al. [2009] 2 Feb 2002 to 3 Feb 2003

Sacramento (DS) HEC-RAS Rogers [2014] 1 Feb 2009 to 4 Jul 2009

Sacramento (US) HEC-RAS Rogers [2014] 1 Jan 2009 to 12 Sep 2009

Seine ProSe Vilmin et al. [2015] 1 Aug 2009 to 31 Jul 2009

Severn LISFLOOD-FP Neal et al. [2015] 2 Jun 2007 to 31 Aug 2007

St. Lawrence (DS) H2D2 (2-D) Heniche et al. [2000] 27 Apr 2013 to 16 Oct 2013

St. Lawrence (US) H2D2 (2-D) Heniche et al. [2000] 27 Apr 2013 to 16 Oct 2013

Tanana LISFLOOD-FP (2-D) Humphries et al. [2014] 24 May 2013 to 30 Oct 2013

Wabash HEC-RAS Adams et al. [2010] 1 Jan 2012 to 30 Jun 2012
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corresponding to different flows were generated by a hydraulic model forced by in situ bathymetry, simu-

lated or gauged inflows at the top of the reach, and downstream water elevation boundary conditions. The

philosophy of the experiment design was to evaluate discharge estimation under essentially ideal condi-

tions: e.g., daily observations were utilized, although SWOT will measure less frequently—see Biancamaria

et al. [2015] for discussion of SWOT space-time coverage. Moreover, only minimal random measurement

errors were added to the height, width, and slope time series. Future studies will build upon what is shown

here to examine the effect of SWOT measurement errors, and space-time sampling.

In some cases, multiple models on the same river have been used (e.g., an upstream and downstream reach

of the Garonne River are both included); each of the 19 is hereafter referred to as ‘‘rivers’’ as each is an inde-

pendent set of data representing a different range of hydraulic conditions that can be used to evaluate

algorithm performance. Outputs from six different modeling platforms were used in this study, including

HEC-RAS (12 rivers) [Brunner, 2010], LISFLOOD-FP (2 rivers) [Bates et al., 2010], H2D2 (2 rivers) [Heniche et al.,

2000], BreZo (1 river) [Kim et al., 2014], Mascaret (1 river) [Goutal and Maurel, 2002], and ProSe (1 river) [Vil-

min et al., 2015]. Table 1 provides references for each individual model, and Table 2 summarizes simulation

time, reach lengths, and hydraulic characteristics for the 19 rivers in this study.

The models used here were developed for purposes other than those in this study, and so each uses differ-

ent procedures to generate the hydraulic variables of interest and each is run with different spatial and tem-

poral resolutions. A full discussion of the differing model solution schemes and solvers is outside the scope

of this paper, and the interested reader is referred to the citations for each model given above and in Tables

1 and 2 for further information. However, there are a number of core similarities across all of the models. All

of the models represented study reaches with discrete units: either cross sections perpendicular to flow or

2-D grid elements. At each of these units, the models solve for conservation of energy or momentum, using

variants of either the 1-D or 2-D St. Venant or shallow water equations. Note that all models were built using

field measurements of bathymetry. In all cases, flow boundary conditions from a stream gauge were

imposed at the top of the reach and a water surface elevation or ‘‘free-surface slope’’ boundary condition

imposed at the downstream of the reach, allowing the models to apply their particular solver to attain a sta-

ble solution for the hydraulics of each solution unit. Models were calibrated by adjusting the roughness

coefficient in order to match water surface elevation and discharge measurements. These numerical solu-

tions to the conservation equations, coupled with the model’s geometric representation of the river chan-

nel, yield the hydraulic parameters of interest for this study at each unit: water surface elevation, top width,

and water surface slope. In the case of multiple channels, hydraulic quantities were summed across chan-

nels to derive a single value, which matches Schubert et al.’s [2015] ‘‘integrated’’ form for multiple channels.

Table 2. Summary of the Hydraulic Model Output Used for Each River

River Name

Reach Average

Max

Width

(m)

Max a-a-s

WSE Range

(m)

Flow

Range

(cm)

Simulated

River

Length (km)

Number of

Stations

Simulation

Length

(days)

WBM Mean

Annual Flow

Estimate (cm)

True

Average

Flow (cm)

WBM

Drainage

Area (km2)

Froude Nunber,

Mean (Min-Max)

Kinematic Wave

Number, Mean

(Min-Max)

Connecticut 0.24 (0.11–0.45) 122.3 (119.9–124.5) 1,382 4.3 3,490 11 8 209 394.1 634.9 26,569

Cumberland 0.06 (0.06–0.07) 7.9 (7.5–8.7) 688 8.4 2,290 43 21 162 511.4 903.4 41,176

Ganges 0.14 (0.12–0.18) 8.9 (6.0–12.5) 11,813 8.7 41,208 103 246 365 12,160 10,950 948,028

Garonne (DS) 0.17 (0.12–0.22) 16.8 (3.6–30.6) 311 5.6 1,601 49 463 365 528.5 475.9 80,049

Garonne (US) 0.21 (0.14–0.25) 58.4 (28.6–91.5) 1,384 4.5 881 75 1158 365 54.7 155.8 13,001

Kanawha 0.06 (0.05–0.08) 3.8 (2.9–4.9) 334 3.5 2,280 18 66 162 305.0 629.3 29,823

Mississippi (DS) 0.15 (0.12–0.17) 14.1 (4.1–18.6) 6,297 8.9 20,772 173 39 162 8928 15,310 2,369,369

Mississippi (US) 0.14 (0.12–0.16) 8.2 (5.0–14.2) 1,868 5.6 6,906 56 74 162 3383 5412 1,841,226

Ohio 0.08 (0.06–0.11) 15.8 (11.4–21.0) 4,488 8.2 13,181 223 161 220 2460 4084 247,984

Platte 0.28 (0.22–0.31) 426.6 (311.6–696.7) 1,917 2.0 357 138 275 24 56.9 150.3 156,800

Po 0.17 (0.09–0.22) 8.5 (2.3–17.4) 5,515 9.5 8,216 98 68 367 841.8 1499 76,497

Sacramento (DS) 0.09 (0.07–0.11) 7.5 (4.5–12.3) 763 6.4 940 36 93 154 377.0 272.6 36,558

Sacramento (US) 0.13 (0.11–0.17) 94.2 (80.6–120.8) 1,957 6.8 1,441 75 194 305 377.0 205.2 36,558

Seine 0.04 (0.03–0.05) 33.9 (15.4–54.3) 510 3.2 787 119 195 365 205.5 304.1 44,201

Severn 0.12 (0.09–0.17) 31.7 (20.0–54.9) 98 10.8 460 65 843 75 104.8 112.8 7,495

St. Lawrence (DS) N/A N/A 15,673 2.3 5,404 22 27 139 9587 9607 931,534

St. Lawrence (US) N/A N/A 4,256 2.1 5,404 38 45 139 7753.7 9607 774,054

Tanana N/A N/A 785 1.5 1,716 94 316 161 344.8 1445 49,692

Wabash 0.08 (0.07–0.09) 68.7 (52.4–106.0) 11,791 6.5 2,724 42 13 162 565.3 979.0 76,133
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Reaches on the order of 5–10 km were defined based on inflection points in the water surface elevation

data; methods to automatically identify optimal reach boundaries are needed, and are currently in develop-

ment. Reach-averaged hydraulic quantities were utilized in the Manning’s-based discharge algorithms,

while cross-section data were used directly in the hydraulic geometry-based approach. Time series of simu-

lated river height, width, and slope for all rivers were produced by adding Gaussian errors with standard

deviations of 5 cm, 5 m, and 0.1 cm/km, respectively; time series of height, width, and slope are shown in

Figures (2 and 3), and 4, respectively. The error standard deviations are admittedly somewhat arbitrary, but

were chosen to be small enough to resolve temporal variations visible in Figures 2–4.

Hydraulic regime of each river reach was characterized by two nondimensional numbers: the Froude

number and the kinematic wave number, as defined by Vieira [1983], and used, e.g., by Trigg et al. [2009].

These nondimensional numbers were calculated for each day for each reach, then averaged in time for

each reach. The mean Froude and kinematic wave numbers across all reaches, as well as the minimum

and maximum values across all reaches, are shown in Table 2 for each river. Based on comparison with

the regime diagram shown in Vieira [1983], the hydraulics of nearly all reaches can, perhaps unsurpris-

ingly, be considered to be diffusive. The only river that can be considered kinematic is the Platte River,

which exhibited both the highest average Froude and kinematic wave numbers (0.28 and 426.6, respec-

tively). All reaches exhibit subcritical and gradually varied flow, and no reach showed fully dynamic wave

behavior.

While each data set corresponds to a particular reach of a real-world river, our use of simulated inflows

and often sampled (rather than acquired via side-scan sonar) or simplified channel and floodplain

geometry results in model outputs that may not necessarily represent true hydrologic conditions for

each reach: these data are model-simulated representations of fluvial behavior rather than observations.

This is an important distinction for this study, as using these model outputs allowed us a large degree of

control over algorithm inputs and allowed us the ability to test algorithm performance without consid-

ering the effect of measurement error or noise on the data. Further studies utilizing field data and air-

borne swath altimetry are in process. Despite this caveat, validation and benchmark tests of hydraulic

models built, calibrated, and validated using field and remotely sensed observations do show surpris-

ingly good and consistent performance [e.g., Hunter et al., 2008], with water elevation predictions accu-

rate to <10 cm [e.g., Jung et al., 2012] and inundation extent prediction accuracies up to 90% [Bates

et al., 2006].

The experiment here is purposefully highly restrictive, as every algorithm under consideration was required

to use the exact same input data and no river-specific assumptions or ancillary data (aside from mean

annual flow, as described below) were allowed. All the discharge algorithms (reporting on a given river)

employed identical station data and reach lengths over the same period of record (although note that

AMHG operated on station data, whereas the other algorithms utilized reach-averaged data). For the future

SWOT mission, and in other river discharge studies, ancillary data will form one of the pillars of discharge

estimation: it is foolish to not leverage all available information. However, in this study, we seek to answer

the most basic of questions regarding discharge algorithm performance, and therefore to make a fair com-

parison all methods are restricted to the same input data. This enables an honest assessment of the base

principles of discharge estimation solely from remotely sensed data.

We assessed discharge estimation performance according to a suite of nine error metrics proposed by

Bjerklie et al. [2005b]. Of these, we found that the RRMSE, mean of the relative residuals (MRR), and the

standard deviation of the relative residuals (SDRR) to be of greatest value in discriminating algorithm per-

formance. These metrics allow fair comparison between rivers and allow us to assess how much total dis-

charge error was due to bias; e.g., a large MRR with low SDRR indicates that an algorithm correctly

matched river dynamics but exhibits an offset from true flow. We computed all three of these metrics by

first computing a spatial average of discharge across all reaches, for each time step, and in each algo-

rithm. We compute these three statistics as follows: relative residuals are first computed via: relative resid

ual5 estimate2truthð Þ=truth at each time step, and then take the mean, standard deviation, and RMSE of

the relative residual across the total number of times (which are given in Table 2). When defined in this

way, RRMSE25MRR21 SDRR2, which allows discussion of the proportion of the RRMSE due to bias versus

time-varying errors.
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Figure 2. Modeled river water surface elevation. The water elevation data used in this study are shown, for all reaches on each of the 19 rivers. The legend indicates reach numbers,

which increase in the downstream direction.
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Figure 3. As Figure 2, but modeled river width.
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Figure 4. As Figure 2, but modeled river slope.
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3. Discharge Algorithms

Beginning approximately a decade ago, several approaches were developed using virtual SWOT observa-

tions to test discharge estimation schemes under the aegis of the SWOT virtual mission. Andreadis et al.

[2007] and Biancamaria et al. [2011] assimilated virtual SWOT observations into a hydraulic model, assuming

that river bathymetry and the Manning’s friction n were known. In further developments, Durand et al.

[2008] and Yoon et al. [2012] used assimilation approaches to estimate river bathymetry and discharge

simultaneously; n was assumed to be known a priori [Yoon et al., 2012] or known to vary within a relatively

small range [Durand et al., 2008]. The computational burden of these data assimilation schemes and diffi-

culty in estimating bathymetry, roughness, and discharge within the assimilation scheme led to a search for

simpler methods, which would be more amenable to global application, despite the continued importance

of assimilation in regional and local-scale applications. Durand et al. [2010] first showed that river bathyme-

try and depth could be estimated without running a hydraulic model via analysis of a virtual SWOT observa-

tion time series, if n were assumed known. This represented the first demonstration of river discharge

estimation with minimal a priori data requirements. Mersel et al. [2013] then demonstrated that SWOT

observations could be used to estimate channel bed elevation, provided observations were made at

enough different stages, yielding another means of obtaining prior information. Following these early

developments, there are now five proposed algorithms for use in the SWOT mission; the median of these

five is evaluated as a sixth algorithm herein. The basics of the algorithms are summarized in Table 3; each

algorithm is described below.

3.1. At-Many-Stations Hydraulic Geometry (AMHG)

At-a-station hydraulic geometry (AHG), equations (1)–(3), where a, b, c, f, k, and m are empirical best fit

parameters, were first described by Leopold and Maddock [1953], and are an often-used framework in river

remote sensing [e.g., Smith et al., 1996; Smith and Pavelsky, 2008; Pavelsky, 2014]. AMHG is a recently discov-

ered geomorphic phenomenon holding that the coefficients and exponents in traditional AHG are stably

and predictably related for a given river, thus linking individual cross sections to one another along a river

[Gleason and Smith, 2014]. Gleason and Smith found that the relationship between these quantities takes a

semilog form, and used in situ measurements of width (w), depth (d), velocity (v), and discharge (Q) to dem-

onstrate the phenomenon. Gleason and Wang [2015] further showed that AMHG arises because individual,

independent rating curves all pass through the same values of w and Q, given in practice by the spatial

modes of time mean w and Q at each cross section.

Table 3. Summary of Discharge Algorithms

Algorithm Theoretical Basis Applied Variables From Observation Estimated Variables Variable Estimation Method

AMHG At-many-stations

hydraulic geometry

Water surface width (W) a, b a and b are optimized to preserve

continuity between stations

using a genetic algorithm

GaMo Manning flow

resistance equation

(equation (4))

Change in cross-sectional

area of flow (dA) computed

from the mean width and

change in water surface

height (dH, stage), water

surface slope (S) for several reaches

Flow resistance (n) and

cross-sectional area of

channel at zero flow (A0)

A0 and n are both optimized to

preserve continuity between

the observed reaches using a

constrained, nonlinear

steepest-descent optimization

MetroMan Manning flow

resistance equation

(equation (4))

Change in cross-sectional area of flow

(dA) computed from the mean

width and change in water surface

height (dH, stage), water surface slope

(S) for several reaches

Flow resistance (n) and

cross-sectional area of

channel at zero flow (A0)

A0 and n are both optimized to

preserve continuity between

the observed reaches (must be

three or more) using the

Metropolis algorithm

MFG Manning flow

resistance equation

(equation (5))

Water surface width (W), water surface

slope (S), and water surface height

(H, stage) for the reach

Flow resistance (n) and

height (stage) of zero flow (B)

n is estimated from an empirical

relation between its mean value

and slope, and then adjusted based

on an empirical relation between the

change in river cross section. B is

calibrated to an estimate of the mean

annual discharge for the time series

MFCR Manning flow

resistance equation

(equation (4))

Water surface width, water surface

slope, water surface height

(stage) for the reach

Cross-sectional area of

channel at zero flow (A0)

Flow resistance is assumed constant

at 0.03, an estimate of the mean annual

discharge is used to calibrate A0 for the time series
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w5aQb (1)

d5cQf (2)

v5kQm (3)

The AMHG discharge algorithm’s base assumptions are that AHG parameters are constant in time and that

mass is conserved in a reach. Discharge is calculated by estimating a and b in equation (1) and inverting to

solve for Q in a pairwise permutation assuming that Q is constant across all pairs. Thus, this algorithm only

requires inputs of remotely sensed width at-a-station, which differentiates it from the other methods in this

study. From a remotely sensed standpoint, this system is underconstrained even in a mass conserved reach:

there are four variables per cross section (i.e., w, Q, a, and b), and only one of them can be remotely sensed

(w). Thus, when assuming cross sections share a common discharge given a time series of width observa-

tions, there are always 2Nc1 1 unknowns for Nc cross sections. Since AMHG relates a and b for a given river,

it simplifies the AHG system, and results in two unknowns per cross section: Q and the a/b tuple. While this

system is still underconstrained, it lends itself to heuristic optimization as it leaves only Nc 1 1 unknowns

per Nc cross sections. Gleason and Smith [2014] found a remotely sensed proxy that approximates the

AMHG for a river given a time series of remotely sensed river widths, thus allowing AHG simplification with-

out any a priori knowledge, and solved for discharge by minimizing flow residuals via genetic algorithm

optimization of AHG parameters. Gleason and Wang 2015] have since shown that this proxy is spurious and

give proposals for its replacement, but Gleason and Smith [2014] still reported discharge estimations to

within 20–36% relative Root-Mean-Squared Error (RRMSE) for three rivers in their initial demonstration, and

Gleason et al. [2014] performed a thorough sensitivity analysis of the AMHG method for 34 rivers, yielding

discharge accuracies between 26 and 41% for most river morphologies using the originally proposed proxy.

In this paper, we use the original proxy of Gleason and Smith [2014] to estimate discharge.

Importantly, Gleason et al. [2014] recommended ‘‘global’’ parameterizations of the AMHG method for use in

ungauged basins, and we follow these parameters here. Gleason et al. [2014] also showed that rivers in arid

regions, braided rivers, and low-b rivers (where all AHG b exponents are less than 0.1) reliably resulted in

poor discharge inversion. We expect that these same exclusions will apply here, so we also include some

‘‘blind’’ data filters intended to improve AMHG performance. Since equation (1) breaks down during over-

bank/floodplain flow, we first filter any widths that are 1–3 standard deviations above the mean, depending

on the shape of the distribution of input width data. Second, in order to increase the amount of rivers avail-

able to AMHG, we filter out cross sections that have a coefficient of variation (standard deviation divided by

mean) in observed widths less than 10%; this is a much less stringent filter than is typically used, although it

still results in exclusion of 8 of the 19 rivers by AMHG. Thus, we are able to estimate discharge for some riv-

ers whose width data would suggest that they are unsuitable for AMHG estimation (as they are low b).

3.2. The GaMo Algorithm

Both the GaMo and MetroMan algorithm described later utilize the following form of Manning’s equation:

Q5
1

n
A01dAð Þ5=3W22=3S1=2 (4)

where n is the Manning’s roughness coefficient, A0 is reach-averaged cross-sectional area at the time of the

lowest observed river elevation, dA is the change in cross-sectional area with respect to A0, W is the

observed channel top width, and S is the slope of the water surface elevation. All quantities represent reach

averages, where reaches range from 5 to 10 km in length. The n and A0 are unknown, while the other three

terms are observed; n is assumed to be a constant in both space and time, while A0 varies in space (but not

in time). All of the observable quantities, as well as river discharge vary in both space and time, though sub-

scripts are suppressed here for brevity. Garambois and Monnier [2015] showed that including inertia terms

in the inverse hydraulic model would require high spatial resolution (i.e., subreach) knowledge of the river

bathymetry profile.

The GaMo algorithm described by Garambois and Monnier [2015] invokes continuity among reaches,

assumes that flow is constant in space (@Q=@x50), and shows that this is an underdetermined nonlinear

system with NR3NP equations and NR NP11ð Þ11 unknowns, where NR and NP are the number of reaches

and observation times, respectively. Garambois and Monnier [2015] utilized the Levenberg-Marquardt solver;
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hence, the computed optimal solution satisfies the NR3NP Manning equations in the least squares sense.

First guess, minimum, and maximum bounds for discharge were derived from the MFCR discharge esti-

mates (described below). Specifically, the mean, minimum, and maximum MFCR discharge values across

both time and space were utilized. First guess, minimum, and maximum bounds for n were chosen to be

0.03, 0.025, and 0.05, respectively. Minimum and maximum bounds for A were chosen as the smaller of the

minimum dA across the time series at each reach, and 100 m2, and the maximum dA across the time series,

respectively. The first guess A0 was calculated as half the range of dA across the time series, at each reach.

Garambois and Monnier [2015] highlighted the equifinality problem between n and A0: multiple combina-

tions of n and A0 satisfy Manning’s equation. Garambois and Monnier [2015] also found that if a minimum of

three distinct flow regimes are observed, then the algorithm can be expected to converge to effective

parameters (n, A0).

3.3. Metropolis-Manning (MetroMan)

MetroMan begins with the same governing equation as GaMo, equation (4), and is similar to GaMo in that it

analyzes a time series of height, width, and slope in order to optimally estimate n and A0, which are

assumed to be temporally invariant [Durand et al., 2014]. A difference between the two comes in the formu-

lation of the set of equations to be minimized, where equation (4) is substituted into the reach-averaged

continuity equation @Q=@x1@A=@t5q, where q represents lateral inflows into the reach; for all cases consid-

ered herein, q is zero. Note that @A=@t is observable, as it can be calculated directly from measurements of

river WSE and W. This formulation leads to a set of equations with more constraints than unknowns when

Manning’s equation is substituted into the mass balance equation.

To solve for the optimal n and A0, a Metropolis algorithm [Metropolis et al., 1953; Gelman et al., 2004] is

invoked, to obtain both an optimal parameter estimate and an estimate of uncertainty. A Markov Chain

Monte Carlo (MCMC) approach is utilized. MetroMan was demonstrated on the Severn River using water

elevation measured at three gauges and cross-sectional area measured in situ [Durand et al., 2014]. Several

experiments with different assumptions regarding q led to relative RMSE ranging from 10% to 36%. A

follow-on study compared and contrasted algorithm performance on the Sacramento and Garonne Rivers

with synthetic data and demonstrated that discharge can be estimated to within 9% and 15% RMSE with

MetroMan, and also demonstrated different sensitivity to measurement errors [Yoon et al., 2016]. The Metro-

Man approach has been tested on a small range of rivers with good success in previously published litera-

ture, so success was expected here. Note that no roughness coefficient variability with stage is included

within the algorithm, so when those conditions exist (e.g., during out-of-bank flow events), the algorithm is

not expected to perform well.

We changed two relatively minor components of the algorithm for this study. First, MetroMan was adapted

to utilize a prior estimate of mean annual flow and n; previous studies utilized prior estimates of A0 and n,

directly. A prior n value of 0.03 was assumed for each reach. The prior mean and standard deviation of A0

were calculated for each reach using the same approach as the MFCR (described in section 3.6). This was

done using a Monte Carlo method, assuming that uncertainty in the mean annual flow estimate followed a

lognormal distribution with coefficient of variation equal to one. Possible mean flow values were simulated

from this distribution; for each possible mean flow value, a corresponding A0 value was calculated by solv-

ing equation (4), yielding a mean and standard deviation for A0. Values of A0 are furthermore limited to be

greater than the minimum dA values, such that cross-sectional flow area is positive. The second change

made to the MetroMan framework was to perform Markov Chain iterations on an estimate of base flow,

rather than on A0; this has the nontrivial advantage that base flow is the same for all reaches within a given

river, and therefore many fewer iterations are required to explore a wide range of flow values. The prior for

base flow is calculated from the prior on mean flow, using similar methods to those described for A0.

3.4. Mean-Annual Flow and Geomorphology (MFG)

The MFG algorithm uses the so-called wide-channel approximation [Tinkler, 1982], leading to a form of

Manning’s equation that approximates river depth as the difference between WSE (H) and the cross-

sectional average river bathymetry (B):
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Q5
1

n
H2Bð Þ5=3WS1=2 (5)

MFG assumes that an

acceptably accurate esti-

mate of mean annual flow

will be available for SWOT

rivers. Mean annual flow

values are calculated by

averaging daily streamflow

predictions of the water

balance model (WBM) [e.g.,

Wisser et al., 2010] at a spa-

tial resolution of 6 min,

from 1961 to 2010. Grid

resolution is on the order of

100 km2, and thus this

model is adequate to pro-

vide a mean annual flow

estimate for rivers SWOT

will observe, which typically

have a drainage area on the order of 10,000 km2 or greater [Pavelsky et al., 2014]. An estimate of the rough-

ness coefficient is computed from a relation that scales a mean value of the roughness from observations of

width and stage. The relation, given by equation (6), was derived from analysis across a number of USGS

field data and gauges:

n5c0n0
HW
�H �W

� �x

(6)

where c0 and x are empirical coefficients, n0 is a static, reference value of n, and the overbar indicates time

averages. The value of x is typically less than zero, such that n increases at low flow, in agreement with

expectations. The MFG algorithm is not applicable during overbank flows, and does not allow, e.g., n to

increase at high flow to account for out-of-bank conditions. Values of x are calculated from time series

observations of w and H; B is calculated in order to match the time series of discharge estimates with and

expected value of the mean annual flow, derived in this study from WBM.

MFG relies on a series of observations of width and stage that covers a range of flow conditions such that

mean values of the flow dynamics begin to be approximated. n0 is estimated from the channel slope as

n050:22S0:18 (7)

Equation (7) was developed from data base of streamflow measurement data published in Bjerklie et al.

[2003]. With these relations, the variable Manning n and cross-section shape are estimated and the value of

B is calibrated by fitting the mean of the observed time series estimates of discharge to the mean discharge

obtained from a water balance model or some other independent source.

3.5. Identification Window for MetroMan and Gamo

Both the MetroMan and GaMo algorithms perform optimization not on the entire time series, but rather on

a subset. This is done in general to reduce the computation costs of matrix inversions [see Garambois and

Monnier, 2015; Durand et al., 2014]. In this paper, the identification periods for both algorithms for each river

are chosen in order to include significant changes in stage, and to avoid extreme out of bank events. Identi-

fication periods are given for each algorithm in Table 4. For a given river, A0 and n inverted from the identifi-

cation period are then used to calculate Q over the whole time series.

3.6. The MFCR and Ensemble Median Algorithms

The ‘‘mean flow with constant roughness’’ (MFCR) approach simply assumes that n is 0.03 and uses the

WBM mean annual flow estimate described in the previous section. Then, the MFCR algorithm estimates A0
in equation (4) such that Manning’s equation applied to the average height, width, and slope gives

Table 4. Parameter Identification Windows (With Units of Days and Referenced From Initial

Simulation Date; See Table 1) Utilized for GaMo and MetroMan, and the Number of Reaches

Used for the Four Manning’s-Based Algorithms

River GaMo ID Window MetroMan ID Window Number of Reaches

Connecticut 85–95 85–115 3

Cumberland 87–92 55–85 4

Ganges 200–220 181–201 6

Garonne (DS) 10–19 180–210 9

Garonne (US) 10–19 2–32 16

Kanawha 8–31 116–146 4

Mississippi (DS) 11–46 12–42 6

Mississippi (US) 105–119 12–42 5

Ohio 10–40 115–145 5

Platte 1–20 3–23 14

Po 33–55 90–108 16

Sacramento (DS) 14–21 10–40 9

Sacramento (US) 42–52 10–40 7

Seine 64–75 143–165 4

Severn 14–21 43–73 8

St. Lawrence (DS) 200–220 2–32 9

St. Lawrence (US) 16–45 2–32 7

Tanana 20–30 4–34 9

Wabash 16–45 17–47 4
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discharge mean to equal the WBM prior mean, subject to the constraint that the sum of A0 and any of the

dA measurements (i.e., the river cross-sectional area) is greater than zero. This algorithm represents the

simplest possible approach to estimating discharge, and is limited by the accuracy of the WBM estimate.

This approach is conceptually similar to that of Smith et al. [2015]. The second additional approach is an

ensemble product, calculated by taking the median of the flow produced by each of the five algorithms at

each time step. We hypothesize that this ensemble product will be more stable than any single algorithm,

and discharge estimated this way should be the most consistent from river to river.

4. Results

Time series of river discharge estimated on each river are shown in Figure 5. Table 5 summarizes the per-

formance of each of the six algorithms for every river according to each of the three metrics described in

section 2. RRMSE is perhaps the most important assessment metric, as this error determines how well each

algorithm performed across the entire time series of observations. Thus, RRMSE can be considered the cen-

tral ‘‘accuracy’’ metric in this study, and is directly comparable across scales for the 19 rivers here. We use an

RRMSE of 35% as a threshold for algorithm performance; this number is admittedly arbitrary, but was cho-

sen to improve upon the accuracy values cited for global models (40%) in the introduction. RRMSE values

ranged from 5% to greater than 100% across all rivers and all algorithms. Viewed collectively, at least one

algorithm had an RRMSE less than 35% for 14/19 rivers, and the grand median RRMSE (across all six algo-

rithms and 19 rivers) was 55%; note that some of the algorithms yielded highly biased results, such that the

mean across all rivers and algorithms is 87%. Five of the six algorithms had the best estimation RRMSE for

at least one river, with MetroMan having the best performance for eight rivers, MFCR performing best for

four rivers, GaMO and MFG performing best for three rivers each, and AMHG giving the best estimate on

one river. Interestingly, the ensemble median algorithm did not give the best result on any river, despite

selecting the median flow value of the other five algorithms at every point in time. At least one algorithm

had an RRMSE greater than 100% in 9/19 rivers. Figure 6 summarizes and compares the performance of

each algorithm.

Braided rivers were particularly difficult to estimate, as none of the Ganges, Platte, or Tanana Rivers had an

algorithm register an RRMSE less than 35%. In addition, the Ganges and Platte Rivers each had three algo-

rithms record an RRMSE greater than 100%. This mirrors the findings of Gleason et al. [2014], and further

confirms the difficulty of estimating discharge via remote sensing in braided rivers. Removing these braided

rivers from consideration results in 14/16 rivers having at least one discharge RRMSE less than 35%.

The Cumberland and Kanawha Rivers are the two nonbraided rivers for which no algorithm hits the 35%

RRMSE mark or better. The case of the Cumberland River highlights the unforgiving nature of the RRMSE

metric in characterizing algorithm performance in periods of low flows. As can be seen in Figure 5, begin-

ning from approximately day 90, discharge was reduced to less than 250 m3/s, though discharge had aver-

aged 1481 m3/s from days 1 to 90, and all of the algorithms capture this rapid drop in flow. For example,

from days 1 to 90, MetroMan performance (characteristic of other algorithms for the Cumberland) was argu-

ably quite good: MRR was 221.8%, and SDRR was 2.8%, giving an RRMSE of 22.0%. From days 91 to 162,

MetroMan performance was quite poor: MRR was only 25.2%, but SDRR was 62.5%. Indeed, from days 91

to 162, low-head dams on the Cumberland constrained the slope to less than 1 cm/km, as shown in Figure

4: the average slope from days 91 to 162 was 0.4 cm/km. These low-slope conditions generally were still

handled fairly well by Manning’s equation; note that the upstream reaches (e.g., reach 1 on the Cumberland

in Figure 4) have steeper slopes than downstream, a fact that the algorithms can exploit. However, for a

period of 20 days (days 125–144), the slope dropped to below 0.1 cm/km for all four reaches, and was

sometimes negative; the average during this time was 0.07 cm/km. Recall that a slope error of 0.1 cm/km

was added to all slope observations. Manning’s equation led to very high relative errors, as both slopes and

flows approached zero, even though absolute errors were quite minor, during this time. This combination

of hydraulic conditions meant that overall RRMSE for MetroMan was 44.6%. In contrast to the Cumberland,

the SDRR for the Kanawha was generally negligible for all algorithms; the RRMSE is dominated by bias, with

MetroMan again representative, with an MRR of 259.6%. The reason for this poor performance can likely be

attributed to a poor prior estimate of flow. The MFCR in this case has an MRR of 260.2%; this is the most

negative estimate except for the Tanana River. Sensitivity tests have shown that the MetroMan estimation
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Figure 5. Output hydrographs. Output hydrographs from each of the six proposed algorithms are shown for each of the 19 rivers as compared to true discharge. Note that all algorithms

match observed river dynamics quite well, and most of the error reported in Table 2 is here shown to be bias. AMHG was not run for 7/19 rivers in this study, as these violated previously

published restrictions on that methodology.
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ability is especially impacted by low-biased prior estimates of mean streamflow. Thus, MetroMan estimation

accuracy is expected to be better for a prior with a positive bias than for a negative bias. AMHG was not run

for the Kanawha, as only 1.5% of cross sections passed the low-b filter. This combination of a poor, negative

bias in the prior, and the inability to use AMHG, highlights a weakness in the overall set of algorithms.

In addition to overall performance, the stability of the algorithms across rivers is of critical importance to

the SWOT mission and to discharge inversion more generally. Stability is assessed by SDRR and its relation-

ship to the MRR per river, and also by summarizing RRMSE across rivers. For all 19 rivers, at least one algo-

rithm had an SDRR less than 31%. We had hypothesized that the ensemble median would be the most

stable algorithm, and indeed it had an SDRR less than 30% in 13 cases, tying for best SDRR performance

with GaMo, which also had 13 rivers less than 30% SDRR. For the ensemble median algorithm, the median

SDRR value across the 16 nonbraided rivers was 12.5%. Considering the summary metrics in Table 5, MFG

and MFCR, two approaches that require an a priori flow, performed quite well; one of these two had the

lowest SDRR for 8/19 rivers.

Overall, most algorithms had an even distribution of negative and positive residual bias across rivers, as

indicated by MRR. However, AMHG had a positive bias for 7/11 rivers (note that eight rivers were considered

unsuitable for AMHG estimation as they were either braided or did not pass the width variability filters

described in section 3.1), and MFG had a strong negative bias, overestimating flow in 16/19 cases. The dif-

ference between the WBM mean annual flow estimate and the mean true flow for each river (see Table 2)

can be compared with the MRR results in Table 5. Across all 19 rivers, the median WBM bias is 237.9%. Five

of the six algorithms (AMHG, GaMo, MetroMan, MFCR, and the median) have a median MRR that is less than

WBM.

Figure 5 shows that certain rivers were more easily estimated than others. In particular, all algorithms had

an RRMSE less than 45% for the Seine, confirming it as the most easily estimated river. In addition, we might

expect that the MetroMan and GaMo algorithms would perform similarly from river to river, as each is based

on solving for unknown parameters in Manning’s equation. This is confirmed in our results, as these two

algorithms both had an RRMSE less than 35% for the Downstream Sacramento, Seine, Po, Upstream Missis-

sippi, and Ohio Rivers (Figure 6). Also, while estimations from the Cumberland and Kanawha rivers were

poorer than other rivers, all algorithms but AMHG had very similar estimation accuracies in these rivers.

Beyond predictably poor performance in braided rivers, there are no apparent trends in algorithm perform-

ance based on river size, flow range, WSE variability, latitude, or hydraulic regime. A possible exception here

Table 5. Summary of Discharge Estimation Output According to Three Metricsa

RRMSE (%) MRR (%) SDRR (%)

River Name AMHG GaMo MetroMan MFG MFCR Median AMHG GaMo MetroMan MFG MFCR Median AMHG GaMo MetroMan MFG MFCR Median

Connecticut n/a 29.2 696.5 43.6 161.3 93.9 n/a 19.7 571.5 243.0 149.7 84.7 n/a 21.6 399.1 6.9 60.1 40.6

Cumberland 175.6 47.9 44.6 50.6 45.5 47.2 246.5 22.7 214.5 242.6 227.3 218.8 169.9 48.0 42.3 27.5 36.5 43.5

Garrone (DS) 80.5 128.8 70.4 16.3 87.6 86.8 264.6 95.4 59.2 13.9 73.6 71.7 48.1 86.7 38.2 8.7 47.5 49.0

Mississippi (DS) 98.3 35.7 72.8 58.8 28.4 59.2 98.3 235.6 271.7 250.9 228.2 257.1 0.4 2.9 12.5 29.5 3.3 15.8

Sacramento (DS) 58.6 26.8 4.8 50.4 42.0 6.0 55.3 22.5 22.1 7.0 41.1 0.1 19.6 14.6 4.3 50.0 8.7 6.0

St. Lawrence (DS) n/a 77.4 61.3 63.6 23.4 61.3 n/a 71.2 260.5 25.8 217.1 260.5 n/a 30.5 9.7 63.6 16.0 9.7

Ganges 93.2 279.8 152.8 36.8 133.2 133.3 93.2 214.2 122.9 220.1 101.8 103.8 1.2 180.2 91.0 30.8 86.0 83.7

Kanawha n/a 46.7 59.7 51.5 60.4 55.5 n/a 246.4 259.6 251.3 260.2 255.4 n/a 4.9 4.0 4.5 4.1 3.7

Ohio n/a 42.7 33.5 41.4 42.8 41.8 n/a 241.5 231.5 239.3 241.9 240.6 n/a 9.9 11.5 13.2 8.8 10.0

Platte n/a 347.7 215.9 77.0 223.0 219.3 n/a 174.3 106.0 274.5 106.0 104.7 n/a 307.9 192.6 20.1 200.8 197.3

Po 66.4 29.8 13.9 73.6 43.4 28.1 66.3 229.6 3.3 266.1 35.7 228.1 3.4 3.9 13.5 32.3 24.6 1.8

Seine 33.9 22.5 9.1 45.3 42.1 22.2 227.4 221.7 22.6 241.7 241.7 221.2 19.9 5.9 8.8 17.7 5.8 6.6

Severn n/a 17.6 1028.7 22.5 89.6 48.9 n/a 24.1 799.3 217.9 75.1 37.8 n/a 17.3 651.6 13.7 49.1 31.2

Tanana n/a 83.6 54.5 76.0 73.6 73.0 n/a 283.4 254.3 276.0 273.4 272.9 n/a 5.8 4.7 1.7 5.3 4.2

Garrone (US) 86.2 28.9 153.1 63.2 10.4 29.5 280.9 22.4 145.3 262.7 1.4 24.8 29.7 18.4 48.2 7.9 10.3 15.9

Mississippi (US) 88.2 35.1 5.9 41.4 36.3 36.4 88.2 234.9 25.8 240.4 235.8 235.9 2.1 3.8 1.0 8.8 5.9 6.1

Sacramento (US) 11.0 69.1 383.7 87.4 128.7 69.7 1.2 64.7 374.7 41.6 125.0 67.1 10.9 24.5 82.9 77.0 30.4 18.8

St. Lawrence (US) n/a 63.6 36.7 39.9 30.8 37.9 n/a 263.4 236.6 222.6 230.7 237.4 n/a 4.7 3.0 32.9 2.9 6.2

Wabash 98.4 146.1 26.2 92.2 134.9 27.9 28.0 99.1 22.5 274.4 117.6 23.5 94.6 107.7 13.5 54.7 66.4 15.0

Median 86.2 46.7 59.7 50.6 45.5 48.9 28.0 22.7 22.1 241.7 1.4 218.8 19.6 17.3 13.5 20.1 16.0 15.0

Mean 80.9 82.1 164.4 54.3 75.7 62.0 19.2 22.1 98.2 235.1 24.8 4.8 36.4 47.3 85.9 26.4 35.4 29.7

Standard Deviation 40.0 87.0 261.2 20.0 54.9 46.9 63.2 77.9 228.5 31.4 69.7 57.1 49.9 75.8 162.6 20.9 46.0 44.4

aBold typeface indicates best performer among algorithms for each river and each metric.
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is the Platte, for which algorithms performed quite poorly, and was the only kinematic river analyzed. Note

that kinematic rivers show no time variability in water surface slope, which for some algorithms similar to

those tested here leads to poor performance [Durand et al., 2010]. However, since the Platte is also braided,

and other kinematic rivers were not included, no firm conclusion can be drawn; further work is required.

Given that the data here are models of rivers forced with imposed flows, comparison of algorithm perform-

ance against morphology is inappropriate. However, Gleason et al. [2014] found no apparent trends in esti-

mation accuracy for the AMHG algorithm based on river morphology in their study, so the lack of clear

physical controls on discharge estimation accuracy is perhaps unsurprising.

5. Discussion

This discharge algorithm intercomparison has highlighted both successes and failures of algorithms thus

far. First, we have seen that there is always an algorithm that estimates discharge to within 35% or less

RRMSE for 14/16 nonbraided rivers. Second, bias has proven itself to be a significant component of these

errors; the median algorithm had an SDRR less than 30% for 13/19 rivers, but an RRMSE less than 30% for

only 5/19 rivers. Third, we have seen that one single algorithm has not emerged as the ideal approach.

Instead, we hypothesize that the community will likely require moving forward with multiple approaches.

These results can be used to map future algorithm developments within the SWOT community.

Simply put, the addition of more a priori data and site-specific assumptions should make each of the algo-

rithms more effective. However, this study was truly blind. Thus, in all cases, there was information we knew

about certain rivers that we purposefully did not include in our algorithms: all methods received the same

data and were forced to make the same blind assumptions. Some prior estimate of roughness, AHG, dis-

charge, or some other variable is available for every measured or modeled river on the planet. Leveraging

these data should improve the performance of the methods here, as will using these methods in conjunc-

tion with hydrologic models in assimilation schemes, which is the likely way forward for using SWOT to esti-

mate global river discharge.

The variable nature of algorithm performance in this study confirms the difficulty of the problem and the

value of such a large-scale comparison. Each of the AMHG, GaMo, and MetroMan algorithms performed

worse than their previously published accuracies in some cases, although Gleason et al. [2014] also found

varied performance for the AMHG algorithm in their study of 34 rivers. These mixed results occur despite

the fact that inputs to the algorithms were ‘‘perfect,’’ i.e., not degraded to match expected temporal

Figure 6. RRMSE for each river. Note that the y axis is truncated to 100% RRMSE for readability: RRMSE exceeds this limit in 18/114 cases.
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sampling and observation error likely from SWOT. Yoon et al. [2016] found that MetroMan accuracy was not

significantly affected by using SWOT temporal sampling and expected measurement errors on the Sacra-

mento River as compared with daily sampling, but this result will likely vary among algorithms and rivers.

When faced with real-world data, these algorithms will behave differently, and likely worse, than they have

here if algorithms are not improved or ancillary data as described above are not included.

Our results strongly point to the need for algorithm synergy when conceiving of a SWOT discharge product

that will be viable for all of the world’s rivers. We have tested the easiest likely approach for this synergy

(the ensemble median), but each of these algorithms should be able to inform and constrain one another.

For example, we may find that some algorithms tend to perform poorly for certain kinds of rivers, and in

these cases, we ought to exclude those algorithms from the ensemble. As another example, it may be bene-

ficial to create hybrid approaches built by combining components of the various algorithms. For example,

the variable n of MFG could be combined with MetroMan or GaMo. Exploring these kinds of synergy should

be a key goal of future algorithm development, together with identification of the best ancillary data for

use with these methods.

It is critical to begin to be able to predict algorithm performance based on river characteristics. Perhaps surpris-

ingly, the hydraulic regime analysis (Froude and kinematic wave numbers shown in Figure 2) did not correlate

with algorithm performance, except that the one truly kinematic river (the Platte) performed quite poorly. We

continue to explore this by discussing several of the cases included in the test cases: floodplain flow, low-head

dams, and multiple channels. It had been hypothesized prior to this algorithm intercomparison that perform-

ance would suffer during floodplain flow. An interesting case in this regard is the Po River. Figure 3 clearly

shows out-of-bank flows: some reaches increase their width by an order of magnitude during the high flow

event following day 300 of the simulation. The MFG algorithm is formulated with the assumption of in-bank

flow, and overestimates flow by a large margin during this period; this leads to an underprediction of flow dur-

ing the low-flow periods and an overall MRR of266.1%, and an RRMSE of 73.6%. However, the GaMo and Met-

roMan algorithms perform well, with RRMSE of 29.8% and 13.9%, respectively. Thus, even the simple Manning

formulations appear in-and-of-themselves to be adequate even in the presence of significant floodplain flow.

This is in spite of the fact that the calibrated hydraulic models used to generate the synthetic observations in

this study typically used different values of n in the floodplain versus the channel, a fact not accounted for in

the discharge algorithms. As a caveat to this point, it should be noted that the Po River model is built in 1-D;

thus, we can really only conclude that 1-D floodplain flow is resolved by these algorithms.

Performance in the presence of low-head dams and human management was an open question prior to

this study. Significant dams are present on the Ohio River, leading to quite low slopes, as shown in Figure 4.

However, the MetroMan algorithm performs adequately on the Ohio, with RRMSE5 33.5%, and

SDRR5 11.5%. Manning’s equation captured the friction losses, even in this case with low slopes, and signif-

icant backwater profiles. Performance in the case of multiple channels was also expected to degrade per-

formance. The Seine is an example of a multichannel river; throughout the domain utilized here, the river is

often two channels. The simplest solution of merging the top widths and averaging the water surface

heights [Schubert et al., 2015]) led to adequate performance, here: AMHG, GaMo, and MetroMan had RRMSE

of 33.9%, 22.5%, and 9.1%, respectively. Thus, the presence of multiple channels is not necessarily a cause

of a great deal of algorithm performance degradation.

Finally, one source of error not considered or evaluated here is error in the hydraulic models themselves. As

each model is comprised of approximate hydraulic solutions imposed on in situ data of varying quality at

varying spatial sampling and with simplified physics compared to real-world flows, it is quite likely, indeed

almost certain, that reported widths and WSE values corresponding to reported discharges contain some

error. How this error contributes to discharge estimation will vary by algorithm and by river, and assessing

this effect on our estimations is well outside our purposes here. However, to the extent that the flow laws

as implemented in the algorithm represent reality (such as with the empirical components of MFG), this

effect should contribute little to discharge algorithm error.

5.1. Algorithm-Specific Discussion

5.1.1. At-Many-Stations Hydraulic Geometry

AMHG performed much more poorly in this study than in previous publications of the method, and this can

be almost exclusively attributed to issues caused by the greatly increased number of observations used
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here. Previously, the method had only been tested with a maximum of 20 observations, and the increase to

yearly or longer periods of observations caused significant issues with both AHG and AMHG. This increased

number of observations also rendered the previous remotely sensed proxy for AMHG [Gleason and Smith,

2014] ineffective at adequately characterizing AMHG, as it is mathematically constrained to a value of 0.5

when there are order-of-magnitude changes in observed widths, which occurred in numerous study rivers.

An incorrect AMHG proxy gives an incorrect relationship between AHG parameters, and therefore inverted

AHG curves are constrained to a hydraulic space outside observed values. In addition, the minimum and

maximum imposed flows in the AMHG algorithm were developed and tested on rivers other than those

here (Gleason and Smith [2014] give ‘‘global’’ values of Qmin5minimum observed width 3 0.5m depth 3

0.1 m/s velocity, Qmax5maximum observed width 3 10m depth 3 5m/s velocity). As before, using river-

specific estimates of maximum and minimum depth and velocity will improve the AMHG method.

There are also hydrologic and geomorphological reasons why more observations lead to poorer AMHG per-

formance. For example, Bonnema et al. [2016] show that for the Ganges River, AMHG exhibits a sharp

improvement in accuracy when wet and dry seasons are estimated separately, while Gleason and Hamdan

[2015] show the same result for the Ganges (using different data from Bonnema et al. [2016]), noting a

reduction from 56% to 28% RRMSE when considering dry-season flows only. This is because these wet and

dry flows (or flood and nonflood regime for temperate rivers) exhibit different AHG behavior and have

much different time mean w and Q values, leading to a situation where discharge cannot be inverted [Glea-

son and Wang, 2015]. Additionally, when flows vary widely, AHG breaks down and must be represented

with multiple power laws: one for each distinct channel geometry. Thus, it is recommended that AMHG be

performed in a stepwise manner when many observations are available, as binning observations into those

with similar magnitude widths should assure a single AHG curve per bin. As with all other algorithms,

including these kinds of river-specific constraints will improve AMHG performance.

5.1.2. Garambois and Monier

The GaMo algorithm relied upon QMFCR (which in turn relied upon the WBM mean annual flow estimate) for

defining a first guess and minimum and maximum bounds for discharge. First guess and identification

bounds are also defined for n given usual values found in the literature [e.g., Chow, 1959], and for low flow

cross-sectional area from observed cross-section variations. Presumably, it is because of the use of these

bounds that some of the very large RRMSE values observed with MetroMan are not observed with GaMo

(compare Table 5), even though they are based on similar hydraulic flow laws. Note too, that despite relying

on QMFCR, the GaMo algorithm resulted in better or comparable performances than MFCR for 16/19 rivers

(Table 5). This suggests that the GaMo approach can take some advantage of the hydraulic information

from SWOT-like data to constrain river discharge estimation.

Future improvements to GaMo could involve adding additional constraining equations, or adding additional

prior information, for example, to reduce the optimization zone in hydraulic parameter space. If discharge

was supposed constant in space, the number of unknowns is NR3NP 11 and there are still NR3NP equa-

tions, making the inverse problem more tractable [Garambois and Monnier, 2015]. This approach could be

of interest for (large) rivers with small changes in flow between several reaches. Garambois and Monnier

[2015] also derived a robust and accurate inference method in the case that one in situ water depth mea-

surement is available. Indeed, in this case, an explicit expression for the channel bed elevation is available

as a function of the water surface slope and width, independent of n. Next, given this channel bed eleva-

tion, an approach similar to GaMo allows accurate computation of the inflow discharge.

5.1.3. Metropolis Manning

This study highlighted one limitation of MetroMan in its current formulation, namely its sensitivity to the

prior estimate of discharge. From a Bayesian point of view, this is not a drawback, but a philosophical deci-

sion: if prior information about the river is available, it ought to be used, as in any of the algorithms. How-

ever, this does represent a limitation in this study; if the prior estimate of discharge is poor, then the

MetroMan discharge estimate will also be poor. This places MetroMan in a middle ground of the algorithms,

as AMHG utilizes no prior information and MFG and MFCR completely rely on the prior estimate of flow.

Having these different philosophies as part of the overall algorithm suite is important at this point in dis-

charge algorithm development. Interestingly, MetroMan appears to be more sensitive to an underestima-

tion of the prior mean annual flow than to overestimation. Sensitivity tests on the Po, Sacramento

Downstream, and the Tanana indicated that MetroMan performs far better for a 50% overestimation of

mean annual flow than it performs for a 50% underestimation. The cause of this behavior will be explored
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in future work, and could in principle be addressed by running several MCMC chains with different mean

values.

An additional drawback of MetroMan (and indeed MFCR and GaMo, as well) is that it assumes that n (or

AHG in AMHG) does not change in time, i.e., with flow depth. Thus, any changes in bed or bank material,

increases in debris, or reorganization of channel geometry will lead to suboptimal discharge estimation.

This decision was originally made in algorithm formulation in order to limit the number of unknowns, but it

agrees with the hydraulic models in this study. In most of these models, n does not vary in time at each

cross section, except for marginal changes during out of bank flow. Therefore, this assumption is secure for

these model data where debris and changes in substrate are generally not considered, but less secure for

future observational data.

An additional drawback is that MetroMan invokes Manning’s equation at a river reach, not at a cross section.

It is possible that Manning’s equation does not hold for reaches, even when using the true reach-averaged

roughness coefficient, and even if Manning’s equation holds at each cross section. To analyze this, we esti-

mated the ‘‘effective’’ reach average roughness coefficient for each river by calculating it at each time step

from reach-average hydraulic quantities:

~n5Q21A5=3W22=3S1=2 (8)

In Figure 7 (left), the effective roughness ~n is compared to the reach average roughness coefficient n; the

former is calculated from (8), while the latter is calculated as the average value of the roughness coefficient

across all cross sections in a given reach. As flow decreases, ~n increases dramatically, while n remains con-

stant. Analysis of this phenomenon revealed this behavior was due to the increase at low flow of within-

reach spatial variability of the cross-sectional area, width, and slope, combined with the nonlinear nature of

Manning’s equation. While it is tempting to analyze this in terms of fluvial geomorphology or the physics of

open channel flow, this finding is completely mathematical: ~n diverges from n due to averaging of within-

reach spatial variability.

Figure 7. Importance of time-variable roughness coefficient. (left) The average roughness coefficient (red) and effective roughness coefficient (blue) are shown. (right) Relationship

between the roughness coefficient variability (expressed through j, see equation (7)), and MetroMan bias.
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Figure 7 (right) shows that the more ~n diverges from n, the worse MetroMan’s bias. Here the divergence of

~n from n is characterized by a factor j5 n=~nð Þ 21. Therefore, j50 means that there is no within-reach

hydraulic variability as n5~n, and the more negative the j, the more variability there is (note that j < 0,

since ~n > n). Of particular interest is the situation described above at low flow, where j becomes more and

more negative as ~n increases but n stays constant. Figure 7 plots the minimum j for each river versus Met-

roMan MRR, and for minimum j values less than 20.5, MetroMan MRR often becomes very large. Thus, the

more within-reach variability of stream hydraulics, the worse MetroMan’s performance. Future work must

consider how to include time-varying n in MetroMan, and presumably other algorithms; work to incorporate

the time-varying n from MFG into MetroMan framework is ongoing.

It would be reasonable to assume that the significant increase in ~n at low flow would impact GaMo in the

same way that it impacts MetroMan, as both use reach-averaged quantities, require n to be temporally

invariant, and solve for A0 and n by requiring continuity among reaches. However, the GaMo discharge

results do not diverge for high values of j. The reason for this is presumably because GaMo specifies rela-

tively restrictive minimum and maximum values of discharge, while MetroMan invokes prior information

utilizing a cost function. Because MetroMan assumed a relatively high uncertainty in the prior mean annual

flow estimate, and very precise observations with no allowance for error in Manning’s equation itself, unre-

alistic discharge estimates were produced in the cases with large variations in n. GaMo did not allow these

unrealistic discharge estimates because it was limited to the range of discharge estimated by MFCR.

5.1.4. Mean Flow and Geomorphology

Due to the empirical determination of some parameters, this method is not expected to work well for

braided rivers and tidal reaches, where the controls on the flow resistance (and thus Manning n) are very

different than in single or slightly anastomosed channels. Additionally, the accuracy and applicability of the

algorithm is expected to be limited by the need for the prior mean annual flow. By design, the MRR for the

MFG algorithm is highly correlated (R25 0.86) with the WBM bias. For example, the WBM mean annual flow

estimate for the upstream Garonne underestimates the flow during the experiment by 65%, while the MFG

MRR is 263%. One additional limitation of MFG is that it is not expected to work well for floodplains, since

out-of-bank flow was not used in deriving the relations. Indeed, MFG performs relatively poorly for the Po

(RRMSE5 73.6%) due in part to significant overestimation of high flows (see Figure 5).

For the application of this algorithm, future efforts should focus on improving the empirical aspects of the

method with additional site-specific information, and over time with more observations. This is particularly

important in reaches that are braided or tidally influenced where unique more specific relations may be

developed. It is also possible that other geomorphologic information about the channel planform (including

meander length, sinuosity, and channel type) can inform the estimation of Manning n, as indicated by Bjer-

klie [2007]. Additionally, the Manning equation, which forms the physical basis for this method, also forms

the basis for the MetroMan, GaMo, and MFCR algorithms and as such the three independent methods

should eventually converge to similar values provided the assumptions and relations used in both corrobo-

rate each other. For example, the optimization scheme used in MetroMan or GaMo to optimize A0 and n

could also be used to optimize the value of B, and the value of n in MetroMan and GaMo could be esti-

mated a priori from various empirical relations and channel morphology.

5.1.5. Mean Flow and Constant Roughness

The philosophy of the MFCR algorithm was to preserve the mean flow estimated by WBM, while simply

assuming a default n value of 0.03. Any error in WBM flow should propagate directly in error in the MFCR

algorithm. However, there are cases where the WBM estimate is too low but the MFCR is biased too high,

e.g., in the case of the Connecticut River. The mean HEC-RAS flow for the Connecticut in this study (June–

December, 2011) was 1208 m3/s, whereas the WBM estimated flow for this time was 394.1 m3/s. Therefore,

the MFCR method should have resulted in a lower estimated discharge, but this was not the case as MRR

for the Connecticut was 150%. This resulted because a stage invariant roughness coefficient of 0.03 was

applied to all cross sections in the MFCR. However, there was dramatic variability among the cross sections

being averaged together to create river reaches, leading to issues like those described above for MetroMan.

Moreover, there were relatively few cross-sections available: for the first reach of 3.7 km in length, only three

cross sections were used to build the reach with time-averaged top width varying from 241 to 608 m, fur-

ther increasing the within-reach hydraulic variability. This resulted in maximum ~n peaking at greater than

0.3, an order of magnitude greater than the specified roughness coefficient of 0.03. Therefore, given the
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constraints of a roughness coefficient of 0.03 and a nonnegative flow area, flow is estimated as far higher

than specified mean annual flow.

Intriguingly, there is a slight dependency of the overall MFCR bias on the average Froude number of each

river; lower Froude numbers had more tendency to have a low bias, and vice versa; the mean Froude num-

ber explains approximately 53% of the variance in the bias of the median estimate. In general, larger higher

Strahler order streams have lower slope and lower Froude numbers, and these rivers generally had more

negative bias. Presumably, this has to do with the WBM simulations used to estimate the MFCR mean

annual flow.

These results highlight interesting conclusions about simple ‘‘prior’’ type flow estimations that point to the

need for the more complex algorithms discussed before. First, the low value of mean flow from WBM did

not agree with the large observed cross-sectional area changes, underscoring the dangers of relying on

prior conditions to estimate discharge. Second, discharge estimation via the prior resulted in the opposite

bias as WBM, pointing to how critical it is to develop a better understanding of how ~n behaves. Finally, our

results suggest that using only a few cross sections cannot be used to represent a reach average.

5.1.6. Ensemble Median

Thus far, it is difficult to predict which algorithm will perform best on each river; thus, the ensemble median

is a highly attractive option. It is somewhat unexpected that the ensemble median is not the top performer

on any of the 19 rivers, on the basis of RRMSE. However, it is quite encouraging that overall, the median is

the least biased of any of the six estimates; the ensemble median algorithm has a mean MRR across the 19

rivers of just 4.8%. However, the standard deviation of the ensemble median algorithm’s MRR is 57.1%, sug-

gesting that variation in algorithm performance at each river was varied enough to render the ensemble

median unreliable. It is expected that this issue will be addressed in the future, as the described major issues

with reach averaging are explored, and prior and/or river-specific information is incorporated in discharge

estimation. As individual algorithms improve, so too will their ensemble products.

6. Conclusion

We are encouraged by the current state of SWOT discharge algorithms: 14/16 nonbraided rivers had an

algorithm estimate discharge within 35% RRMSE of true flow. These results include rivers with complex real

world hydraulics like 1-D floodplain flow, low-head dams, and simple multichannel rivers. Some of these

complex hydraulics and geomorphologies can have a strong effect on the methods discussed here: extreme

flood events, braided rivers, and two-stage AHG all lead to decreased performance. Discharge algorithms

must be improved to handle these cases, and methods to quantitatively predict algorithm performance

based on river morphology must be developed. Moreover, the experiments conducted in this study used

idealized synthetic daily observations with minimal noise; future studies designed to test SWOT’s ability to

estimate discharge need to use SWOT-like temporal sampling and error characteristics and work with

observed field and airborne data sets when possible. Our results from this experiment also indicate that

algorithm improvement is needed if a robust, global discharge product is to be delivered from SWOT, as no

single algorithm or their ensemble median performed with consistently accurate results. The MetroMan

algorithm comes closest, as it was the most accurate algorithm in 9/16 nonbraided rivers, but even this

algorithm is subject to very large discharge errors in other cases. We conclude that our restrictive experi-

ment design, where no ancillary data or river-specific assumptions were allowed is a likely cause of many of

the poor results, substantiated by previous studies using each of the AMHG, GaMo, and MetroMan algo-

rithms. Future work seeking to estimate discharge from remotely sensed platforms should include as much

ancillary data as are available, and also seek to develop multialgorithm synergy to improve stability and

accuracy of derived discharge retrievals.
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