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Abstract: We propose a new interest rate dynamics model where the interest rates fluctuate in a bounded
region. The model is characterised by five parameters which are sufficiently flexible to reflect the prediction of
the future interest rates distribution. The interest rate converges in law to a Beta distribution and has transition
probabilities which are represented by a series of Jacobi polynomials. We derive the moment evaluation formula
of the interest rate. We also derive the arbitrage free pure discount bond price formula by a weighted series of
Jacobi polynomials. Furthermore we give simple lower and upper bounds for the arbitrage free discount bond
price which are tight for the narrow interest rates region case. Finally we show that the numerical evaluation
procedure converges to the exact value in the limit and evaluate the accuracy of the approximation formulas for

the discount bond prices.
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1 Introduction

In this paper, we study a new interest rate dynamics model which is defined by the following Markov

type stochastic differential equation :
dry = o(r, —rt)dt—i—ﬁ\/(rt — ) (rar — 1) dWh. (1.1)

W = {W;;0 < t} is a standard Wiener process on the probability space (Q, F, P) equiped with the
natural filteration {F;;0 < t} generated by W, i.e. {F;;0 < t} satisfies the usual assumptions. We

assume that a, 3 > 0 and r,, < r, < rpr which will garantee the existence of stationary distribution.

This type of diffusions (called Jacobi processes) have been well studied in genetics (see Ethier-Kurtz
[3] and Karlin-Taylor [5]). Also Warren-Yor [8] studied the law of functionals of Jacobi process through
Girsanov and time-change techniques. Here we use this model to study the interest rate process {r; } which
fluctuates in the bounded region [r,,rar]. The same model was studied by Fujita, see [4]. The methods
used are (of course) related but also at the same time different. Fujita essetially uses the perturbation
method whereas we use a spectral method. In our model, the parameter « reflects the speed of reversion

to the longrun mean r, and [ represents the scale of variance caused by the random process W. Let

o(z) = B\/(x — 1) (rm — x). Then for any z, y € [rm, rul,

0% (@) = o*()| = Blrm +rar — (@ + y)llw =yl < Blrar — rm)|z = yl.
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This means that the diffusion coefficient function o(x) is Holder 1 continuous. Since the drift function
p(z) = a(r, — ) is Lipschitz continuous, the pathwise uniqueness of the stochastic differential equation
(1.1) is guaranteed by the general uniqueness theorem ([6], Theorem 4.5, p.360). The object of this paper
is to evaluate the arbitrage free discount bond price for the Jacobi-type interest rate processes. The use
of such models could be questionable. In particular it is not clear how the upper and lower bounds, 7,
and 7, can be fixed or derived from data. However in risk management of portfolios of interest related
instruments, we might be interested in the influence of high and low interest rates. As an example we
could ask whether the value (under a certain model) of the position is due to the probability that the
interest rate reaches a high level. In such a case we might want to evaluate the value under a model
that does not allow for such higher values of the interest rate. In risk management it is quite normal to
analyse the value of a portfolio under alternative models. The model that we describe leads to tractable
expressions and therefore might be of some use in practice. By carefully adapting the coefficient 5 we
can see the CIR-model, [2] as a limit of the present model. More precisely one can easily show that if we
put r,, = 0, if we take [Bj; so that ﬁMr]lV/[2 = 0¢ and if rp; — 400, the law of the process (1.1) tends to
the CIR-model.
Let’s consider the following variable transformation :

Tt — T'm

(1.2)

2 = —
™ — Tm

Then z; follows
dzy = a(y — zp)dt + B/ 2z (1 — z)dWy, (1.3)

where v = ;ﬁ Equation (1.3) is a special case of equation (1.1). However we can derive the properties
of {ry;t > 0} from those of {z;;¢ > 0} through the inverse transformation r, = r, + (rar — rm)2:. Hence
we shall consider (1.3) to study the equation (1.1).

This paper is organized as follows. In Section 2, we summarize the basic properties of the process
{r} defined by (1.1), e.g. the hitting probability of boundaries, transition probability density and the
moment evaluation. In Section 3, we study the arbitrage free pure discount bond price and give a spectral
representation by a weighted series of Jacobi polynomials. Then we consider the approximate evaluation
of the bond prices by the trancated sum of a series representation and we derive lower and upper bounds
in Section 4. Finally in Section 5, we show that the numerical computation scheme which enables us to

evaluate the exact bond prices, converges.

2 Basic Properties of Model

2.1 Hitting Probability

First we derive the hitting probability for the boundaries 0 or 1. Suppose that the process is stopped
when it hits the boundaries 0 or 1. Let 7, be the stopping time :

Ty =inf{t > 0;2, =y}, 0<y<L (2.1)

Warren-Yor [8] have already derived the Laplace transform of 7, using the Jacobi process representation
by Bessel processes. Here we consider the standard argument to get the hitting probabilities in simple
and easy way. Let p, , be the probability that z; hits y in finite time when it starts from x,

Pay = Plry < 00|Zy = x]. (2.2)

Then by the general result for one dimensional diffusions, p, , is given by (see e.g., Proposition 9.4, [1,
p.419]) :

Bm,z(pa q) (23)



By (p,q)

. - lim ’ N
Px,1 y—0,2—0 Byyz(P,Q) -
where
po= 1=
o w (2.5)
Byy(uw,v) = [J27H1—2)""tdz.

For z € (0,1), limy, o By, < 00 < p >0 and lim, ,; B, , < 00 < ¢ > 0. Hence from (2.3) and (2.4), we

have the following conditions for the attainability of the boundary.

. 2ay
Pz >0& gli%By@(p, q) <oco& — <1, (2.6)

20(1 — )
62

From (2.6) and (2.7), the boundary {0, 1} is inaccessible if and only if % <y<1- %

Pz1>0& lim1 B, .(p,q) < o0 & <1 (2.7)
zZ—

2.2 Transition Probability

We can derive the transition probability for (1.1) or (1.3) by spectral methods. Let p(z, s;y,t) be the
transition probability density for process {z;;t > 0},

0
p(z, s;y,t) = B_yp[zt < ylzs = ). (2.8)

Then p(z, s;y,t) is given by [1, p.410] :

p(@,5:y,t) = > dn(@)gn(y)m(y)e A7), (2.9)
n=0
Here 7 is the nonnegative function which is proportional to the stationary distribution of (1.3),
2K
m(z) = 72— 1) exp{I(c,x)}, K >0, (2.10)
where s o )
v —z
I = —d 0,1). 2.11
()= | Gz e (0.1 (211)
{(¢n, A\n);n > 0} are the normalized orthogonal eigenfunctions and associated eigenvalues such that
! 1, m=n,
/ G ()b () () = (2.12)
0 07 m 7& n,
and
Lon + Ao =0, n>0, (2.13)
where L is the differential operator :
0 22(1 —1x) 02
Lf(z)=a(y—1z) f(@) + Fra(l—z) f(x) (2.14)

Ox 2 Ox?

The complete orthogonal basis {(¢y,, An); n > 0} for the operator L is given by Jacobi polynomials. That
is:

- n o\ (u+n)k g
Jp(x;u,v) = —1)k ——x" n>0, 2.15
(#i00) = 31 <k> o (2.15)
where (z), = Fgfc(:)k) The properties of Jacobi polynomials are summarized as follows [7].



Proposition 2.1 (1) For each n > 0, J,(x;u,v) is the solution of the differential equation,

n(u+n)

z(1—2)y" +[v—(u+Dzly +n(u+n)y =0, y(0)=1, y(0)=— ”

(2) Let u —v > —1 and v > 0. Then the following properties hold for each m, n > 0.

1
(7) / TR — )Y T (2w, v)de = 0, for k=0,1,---,n—1,
0

1

(i%) /x”_l(l—x)“_”Jm(m;u7v)Jn(m;u,v)dw
0

{ D (n+u—v+1)I'?(v)

(u+2n)T (u+n)T (v+n)’ Zf m =n,

0, if m#n. O

From these we can easily check the following explicit representation for (2.9) :

Theorem 2.2 N
Py 59,8) = D Fnton (@) ((y)e ),
n=0
where
a = 21>0
Ao = ant San—1)
k _ (a+b+2n—1)T'(a+n)I'(a+b+n—1)
no n!T'(a)20(b+n)
n n a+b+n—
OIS I G
wz) = =z H(1—x)t

Especially, the stationary and limit distribution is given by the Beta distribution with density :

T'(a+0b)

Tar) W) -

2.3 Moment Evaluation

From the transition probability (2.19), we can deduce the moments of z;. That is
Elz}|zs = 2]

1
= / 2"p(z, s;x,t)dx
0

> 1
= Zkvﬂjv(z)ei)\v(tis)/ m"wv(x)w(z)d:c
v=0

0

N (e Sy (0 Y Dlat bt k- DD
— ;lmﬂ/fu() A kZ:O( 1)k<k>1“(a+b+v_1)1"(a+k)/o o (z)d

n v v (Cl +b+2v— 1)(a)v(a + k)n N
= Z {Z(—l)k < k ) vl(b)y(a+b+v+k— 1)nv+1}¢v(z)e Av(t—s)

v=0 (k=0

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

The third equality follows from (2.15), (2.17) and the last equality follows from (2.20) and By 1(p,q) =

L) pyom (2.15), (2.20) and (2.22), we can derive the moment formulas explicitly for n=1, 2.

T(p+q)



Proposition 2.3 The first and second moments of z; are given as follows.

Blatlzs=2] = v+ (z—7)e 079, (2.23)
@ 2 o —a(t—s
E[ZtQ|Zé = Z] (223122)7 + (2 J:ﬂ% )’Y( 'Y) (t=s) (224)
2 2ay+43° ay(2ay+67) —(2048%)(t—s
+ (Z B alﬂ? z+ (20;-/%-52 W(a-&-[??)) g (Bak ), .

Next we shall consider the moments of r;. From (1.2) and the binomial theorem,
Bl = 1)

= El(rm + (rar — mm)20)" |25 = 2]

n k
= ( Z ) <M> E[2f|zs = 2], (2.25)
k=0 f'm

where z = === Substituting (2.23), (2.24) to (2.25), we get the following formulas for the moments

of r;.

Corollary 2.4 The first and second moments of vy are given as follows.

E[Tt|7as = 7"] = Tu + (’I" — TM)B_a(t_S)7 (226)

2
E[rt2|7“s =r] = 24 JTﬁQ(r” — ) (A — )

+2(Oj_:gg) <ﬁ2(rm2+ rur) + aru) eo(t=s) (2.27)
1 2a(r —ry,) o ((Tm + T
+2a+ﬁ2 < a—i—ﬁ; (O‘( —ru) =B <42 7"))
—B2(r — 1) (rar — 7))e” A=), O

3 Arbitrage Free Pure Discount Bond Price

We assume that the probability measure P is already the risk neutral measure. Then the arbitrage

free pure discount bond price at time ¢ which pays $ 1 at maturity T, is given by:

T
exp (—/ Tudu>
t

In general, it is difficult to get the exact evaluation of (3.1). However using the transition probability

B(r,t,T)=E

Ty = 7"1 . (3.1)

(2.19), we can represent (3.1) by a weighted series of Jacobi polynomials.
Theorem 3.1
B(r,t,T)

— (Tt T+ (rar = )" ) - (3.2)
Z(vn,n-,’vl)evn wvn (TZ/[_I.:I,L) Hj:n k'UJ q('Uj7 ’Uj_l)It7T ()\Un7 T A'Ul)

where
V' ={(vn, -+ v1) € ZY; Jvj —vj—1| <1, 1< j <, v =0}, (3.3)
(2v(a+b+v—1)4a(a+b—2))I'%(a)v!T(b+v) f L
( o ) _ (a+b+2v)(a+b+2v—1)(a+b+2v—2)'(a+v)'(a+b+v—1)" Yy V5= Uj-1,
q\v;j,Vj-1) = oIT2 ()T (b4-v) ) ‘ ‘ 1
- (a+b+2v—1)(a+b+2v—2)(a+b+2v—3)'(a+v—1)T'(a+b+v—2)" Zf |U] - UJfll )
UV =0y \Y Vj—1, (34)

It(?,}( Ay oty A / / / exp{— Z Aj(sj — sj+1)}ds1 -+ -dsy, Spp1 =t (3.5)



Proof. From (1.2),

B(r,t,T) E

exp {—/tTrudu} Ty = r‘|
exp {—(rM —Tm) /tT zudu}]
R, {1 . i ()" ras =) </T Zudu) "] }

n!
and E, ;[ - | = E[ - |z, = z|. Substituting the equality :

e 'm (T_t)EZ,t

— _r=Tm
where z = Frve—

T n T /T T
E,, / Zudu =n! / / e / E. (|26, 25, 1 Zs,)dS1 -+ - dsp_1dsp,
t t Sn S2

we get

o) T T
B(r,t,T) = e (T=9 {14—2(—1)"(7“1\/[—7",”)”/ / Ez,t[zsn~-~zsl]d51---dsn}.
t S2

n=1

For the given (sp, -+, 1),

1 1 1
E.ilzs, 26, = / / Zn 21 HP(Zj+17$j+1;Zj»8j)dZ1 e dzy,
0 0 ion

where s,41 =t, 2,41 = 2. Since the probability density in (3.7) is given by

1
[ G si152085)
Jj=n
1 0
TI D koo, (254000, (2)w(zg)e e (i masn)

j=n vj:0

1
= ST W (2) T Koyt (29000, (z5)w(zy)e 2097900 g = g,

(Vn,+v1) €LY Jj=n

we have

1

1
Boglze, o 2a) = Y.t (2) [] by st moaw0) / 210, (25 )hu, s () w(z5)dz;.

(vn,-v1)€EZY j=n 0

Furthermore as shown in Lemma A.1,

1 .
q(U<,U'_1)’ lf U'_U'_l §17
/(; ijvj (Zj)"/]v],l(zj)IU(Zj)dzj = { R l J J |

0, if |”Uj - ’Uj_1| 2 2.
Then from (3.8) and (3.9), we get

1
Eoplze, 2] = Y, %o (2) | J] Bvya(vi,via) [ expq =D Ao, (s; — s541)
Jj=n

(Vn,erv1) EV™

Combining (3.6) and (3.10), we obtain (3.2). O

(3.8)

(3.9)

(3.10)



4 Approximate Evaluation

From Theorem 3.1, we can approximate the arbitrage free pure discount bond price by the trancated
sum of series (3.2). Let

B (ryt,T)

_ ) LT > (rar = )" 1 o 0<;
T—Tm n ’ — J*
Z(Un7-‘~7U1)EV" (2 (rM—rm) Hj:n kv, q(v;, vjfl)It,T (Avs o5 Awy)
(4.1)

After the “tedious” but elementary calculation, we get the following results for 0 < j < 2. The proof is
left to the reader.

Proposition 4.1 The truncated sums of (3.2) up to second order are given as follows.

BO@rt,T) = e {0, (4.2)
1— efa(Tft)
BWY(r t,T) = e ™T=H (1 —(rp =) (T —t) — (r — m)4> , (4.3)
«
B3 (r,t,T)
_e—a(T—1)
L= (ry —rm)(T —t) — (r —ry) = + 5(rp — ) 2(T — t)?

+ (g (= ) (rag = 1) (1 = v = 7)) Tt

2 \2
. ( 2= +2 () (=) (B4R =) | e

—7rm (T —t) a?

- af_m (rp —rm)(rm — 1)

2 7l e—e(T—1)
_ (afﬁg (ry—rm)(r—ry) + %52(7" —ry)(rm — Tu)) %
2
ﬁﬁz%ﬁw(rﬂ — Tm)(TM — ’I"u) 1_6—(2a+ﬁ2)(T—t)
- 2 T et
e G MEE (GREICTE I A

0(4.4)

From (4.2) through (4.4), we see that the volatility coefficient 5 appeared only for j = 2. This means
that we should use at least B()(r,¢,T) to take into account the volatility effect in the approximation.
Also BO is an obvious upper bound of the discount bond price for any initial interest rate. However we
can derive more sophisticated upper bounds as will be shown in Theorem 4.2.

We proposed the approximation formula (4.1) assuming that the higher order terms are negligible.
Hence we should consider the lower and upper bounds to evaluate the error magnitude. Since the interest

rate distribution has bounded support [r.,, 5], we can derive both the lower and upper bounds.

Theorem 4.2 (1) Lower bound :

1 _ e—(X(T—t)
exp {_TM(T —t) = (r—rpu) } < B(r,t,T). (4.5)
@
(2) Upper Bound :
BrT) < (17~ (=) ) eorel= (o
4 ('Y + (Z _ 7)%) e—TM(T—t)’
where z = T=Tm_,
™M —Tm



Proof. Let X be arandom variable with mean x,, and with a distribution supported by [z, zas]. Then
for any convex function f, the following inequalities are obvious consequences of Jensen’s inequality.
Ty — @ Ty — Ty,
flzp) S BIf(X)] £ ———F fam) + —F—f(zum). (4.7)
Ty — T TM — Tm
The left hand side is attained when X is degenerated to the mean x, and the right hand side is attained
when X follows two point distribution such that X € {zp,,z)} and E[X] = x,. Since f(z) =e " is a
convex function, we can apply (4.7) for X = ftT rydu. From (2.26),

T
/ rudu
t

E

T
T = r] = / (rp+ (r— ru)efa(uft))du
t

1— e—a(T—t)

= (T —t)+(r— ru)f- (4.8)

Furthermore since r,, € [rp, ry] for all u, v, (T —1t) < ftT rydu < rp (T —t). This together with (4.7)
and (4.8), we get (4.5) and (4.6). O

Remark 4.3 The lower bound (4.5) is valid for all the linear mean reversion type interest rate models,
e.g. [2]. However (4.5) is expecially useful in our model since the lower bound seems to be close to the
exact value for reasonable parameters. This comes from the boundedness of the fluctuation. We will study

this effect numerically in the next section.

5 Numerical Computation

For the sophisticated approximate evaluation of discount bond price (3.1), we can use a numerical
computation method. Let us define the discrete state space S(&:€:cm-cm) — {r%A’E’Cm’CM); n € [(Aeemen)y
and the indices set I(A&ecmen) = {_ Nideen) _yleen) g g N{ee) g yideeny g
(A€, cm,cnr) € Ri by

ru+ (ra —rp)(1— aA)Nqu'E’CML”, if 1<n< ]\fJ(MA7E’CM)7
p(Aeemsenr) — s if n=0, (5.1)
Ty — (rp —rm)(1 — aA)Nv(nA'E’CM)JF", if — NT("A’E’C’") <n<-1,
where
1 1 A
NéA’E’C) Og{( + 6)607718\/_} . x=m, ]\47 (52)
log(1 — aA)
,/ﬁ, if =M, 53)
Ne = 5.3
1777, if z=m,
[] = inf{n € Z;n > z}.
We can easily check that
lima o N2 = oo, (5.4)
. Aj€,Cm,,C J€,Cm,,C.
BN A—0 SUP_ e 2y i)y [Tigd ) = i eeme)] < o, (5.5)

Let us define the drift and diffusion term for this discrete time state space :

i eemen) = a(r, —p{Boem D) Al{|n| > 2}
—aA(1 — oAV "M ey — ), i > 2,
= 0, if |n| <1, (5.6)
aA(l — aA)Nr(nA’E’Cm)'*‘"(rM —Tm), if n<-2,



and

(Ae,cmcnr)
o‘n m

_ ﬁ\/(T’SLA,E,cm,cM) . rm)(TM . ry(lA,e,cm,cM))A

(Ae,ear)
(1= + (1 =91 —ad)¥u ")
Ae,c 9
(1= (1= aA)Nir "M =myA
= B(rv —rm)y/ (1 —7)A, if n=0, (5.7)
(1 =y 4 y(1 — aA)Nm 7 +n)
(1= (1= aA)Na im0

B(TM *Tm) if n > ]-a

/6'(TM - rm) lf n S —1.

(5.6) and (5.7) correspond to the discretized value of the drift and diffusion coefficient functions p, o for

all n € I(&&cmem) oxcept for pyq. From the definition of state space, we can easily deduce

Ae,Com, Ae,Cm, :
T( J€,C CM)_T'SL €,C cM)7 if 7122,

n—1
H%A,E,Cm,cM) — 0, if |n| <1, (5.8)
r;ﬁ"f’c’"’cm — T%A’E’CM’CM), if n<-2.

This together with the next lemma play a key role to construct a sequence of Markov chains which

converge to (1.1).
Lemma 5.1 For sufficiently small A > 0, there exist (n1,ny) for n € I(&6emem) sych that

Case I:n>0; 0<n;<n<nsg SN](V[A,E,CM)’

1—
T%A,e,cm,cM) + ((1)[(—"_ e)g) O’ﬁLA’C’Cm’CM) < T-’Elé’E,CTmCM)’ (59)
Eﬁfiicicf\l) _ CnggAwE)C'rrLyCM) > T.’EL?’E)CWL’CM)' (5’10)
Case II: n < 0; —N,(nA’“C’”) <nyg<n<n; <0,
Tgffl,;\n,_clzu) + CmO'T(ALA’E’Cm’CM) < 7,£L?,e,cm,cM)7 (511)
Aecm, VAT _(Aecm, Aeem,
T'EL €,Cm,CM) __ (1 +E)ﬂa.7(l €,Cm ,CM ) > ,r.T(12 €,c CM). (5.12)
Case IIl :m=0; ny=-1, ng =1,
TéA@cm,CM) + CMU£LA7€1CWL7CA1) < r;ﬁ,e,cm,CM)’ (5.13)
TglAveycmch) _ Cmo—’gAafvcmaCM) 2 717(1?7670771)01\/1). (514)

Proof. Since the proof is similar, we prove only (5.9) and (5.10). If n = ]\f](\/[A’E’CM)7 then oo mex) —
and hence there exist n; = n — 1 and ny = n which satisfy (5.9) and (5.10). Let us assume 0 < n <
N9 Then

Oé(l _ "}/) 0_7(’LA7€7C7TI,7CM)

lim sup
A0 0<n< Ny M) (L+)B gy —p{eemenn)
1 1
= lim sup —— — (1 =7) ] A
A0 e @ 1H¢ (1 — (1= aa)Nr
= i 1—-(1- A
Alino 1+e ( e
1
= <1
1+e€

Hence (5.9) holds. On the other hand,
CMU§LA,67C7H,Cm) + T’ELA@yCm’CJ\l) _ rgﬁ;el,;yl,tw)

T’SLAvivach) _ T‘(()A-ﬁ’cquM)

iim sup
0 e
- 0<n<N](V[A’ o)



’Y €,C + 1
((1—w>(1—am”3?’ e

= AimO sup e B + aAl{n > 1}
- O<n< N o) % 1 _1lA
N(Bsesenr)
(1—alA) "M

. o 1
= lim cyp — +1 — —-1|A
A—0 ((1 -1 - aA)Nz(wA’ ) > ((1 — aA)N&A’ -1 )

- AITOCM/B\/l—v((HEWCMW‘/Z °
1

= < 1.
14+e€

In the third equality, € € [0, 1) is determined by the truncation operator [ - ]. Hence (5.10) holds. O

Let us now for each given A > 0, define a Markov chain . Let € > 0 and

o= max{l,%}, (5.15)

chr max{l,%}. (5.16)

Then we can construct the discrete time Markov chain X&) = {X&A);u = 0,A,2A,---} on the state
space S(A-¢¢m:cM) with the indices set I(A€¢m¢M) The transition probability is stationary and is defined
by

(A) _ (a) _ (A,e,ch,Chr) (a) _ (Ase,ch,5¢hr)
b = PT[Xt-s-A =Ty X~ =7y ]
Ti() "1 () o? e e g
if j=73(¢
Tis =T @) (T2 =T () (T () = T52(1))? J = 3s(0),
— i if §=72(¢
= () =71 () (T () ~Tja () J = J2(1); (5.17)
Tig(i) ~Tia () i s s (s
if j=71(0¢
iz (1) ~T31 () (Tig(i) ~Ti1 (1)) (Tig (1) ~Tig (1))’ 7 =50),
0 elsewhere
b) b
where
(Aecqy) . x Ae,ck o
log (lfocA)NM 7z+17”;]\7/[m a: €5 CmChr)
(Ase,enmr) . .
y: — Toa(T—aA) Vo, if 1< Z(A )
y€,CM
< Ny, )
i) = { —1fi=o}, it Jif <1,

(Aseey) * (Aye ek,
log{ (1—ap)Nm i r‘:—"im 9; "

”RN}
— NSO LA, i N

log(1—aA)

<< -1,

i—1, if 1<i<NPo),
g = < i if |i] <1,
i+ 1, if = NBee) << 1,
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Boch)_ Jaamy (Bl
( ) log{(l_aA)NM /+(7'1\4*7“Ll)(1’y—4)’5)50i M
A,C,Cz\/[ . .
NM - log(1—aA) ’ if 1< z(A )
y€,CM
< Ny, ,
Ja(i) = 1, if i=0,
(A,s,c}‘w) s (A,e,c* c* )
log{ (1—aA)Nm Vb eeearossi M
N(A7E’Cer) f N(Avevcfn)
log(1—aA) —Ym ’ 1 —aYm
lz] = sup{ne Z;n <z} (5.18)

From Lemma 5.1, (5.18) is well defined on T(Aecnch) | We can easily check that the following properties
hold for the transition probabilities (5.17).

(1) S =1, (5.19)

jeI(A,e,C:n,c*Iw)

(2) Z (T§A;€7C:nxC*M) _ T£A7E’C:n7c}k\4))p§§) — MEA’E’C:TL’C?W)7 (5.20)
Ger®ecierp)
. - NN NN
(3) Z (T§A)€7cm)CM) _ T£A7€’CWL7CM))2PE§) — (MZ(_A7€’C’"L7CM)> + (U§A76’CTIL7CM)) .
jeI(A,e,c;‘n,c’;\/])
(5.21)
Furthermore we can show that for sufficiently small A, the p; ; are nonnegative.
Lemma 5.2 There exists § > 0 such that
Py 20, forall i,j e el 0 <A<, (5.22)
Proof. From (5.17),
pfﬁ) >0
(Ae,cr,Chr) (Ae,cr,Car) (Ase,crycar) (Ae,cr,Chr) (Ae,cr,Chr) 2
g (%(i) M ) (%(i) Mre ) = (Ui . ) . (5:23)
. (Aechr)
Suppose 1 <i < N, . Then
(Aechy,enr)  (Aecr,.chr) (Aechy,enr)  (Aecr,.chr)
(73‘2@) i1 (0) ) (Tjs.(n T2 (i) )
(Biechy) (Aech)
= (ru—r)? ((1—ad)Na RO (1 — o)V _Jl)
(Aye,c® ) L. (Aye,c* ) X
<(1 —alA)Nu M —ja (i) _ (1 —aA)Nu M 32)
= (rm—7)2(1—alA)~
(Aye,e® ) (Aye,c® ) . * e.ct c* ,
(1 —aA)Nu Mi—it1 (1 - aA)Nu MI—itl —mjj‘_lm UZ(A’ i Chr) (1—-aA)* >

(err,L)(que)ﬁai

((1 _ aA)NZ(WA’G'CL)_i + v a(l—7y) (A,e,cﬁ,,c?u)) —(1- aA)NJifA’E’E&)_H'l'*'S”) .

In the last equality, €, ¢” € [0,1) are determined by the truncation operators [ - ] and | - |. From Lemma
5.1, we deduce
(8,6, Chr ) x o(Bsechich) _ N i M (Dechch)
i1 =T = C\O; =(rm—7r) | 1—al)Mm - M5 > 0.
™ —Tpu
Therefore

(Ase,c,,¢h) _ (Ase,cn,,chy) (Ase,cy,chr) _ (Ase,cq,,¢h)
(’"jz(i) NG Tja(i) Tja (i)
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1- €,c’ .ch 2
2 CM Oé( 7) (U(A7 "mo M))

(1+e¢p \°
(U(A,e,c:n,c}‘w))z .

K2

Y

This together with (5.23) gives (5.22). We can handle the cases —N{&em) < i< —1 and |i| <1 in the
same way. U

The Markov chain X(A) converges to the process {ry;0 < t} defined by (1.1).

Theorem 5.3 Consider the continuous time Markov chain X(A) defined by

(A A
X =x3) (5.24)
where n; = L%J Then
(X®0<3 ™ Gi0<t) as Ao (5.25)

Proof. From (5.20) and (5.21), we see that the mean and the quadratic variational process of Xt(A)

converge to those of {r;}. Also the transition jump size goes to 0 as A — 0. Hence from the martingale
central limit theorem ([3], Theoremb5.1, p.354), (5.25) holds. O

A Appendix

Lemma A.1 Foranym,n€ Z,0<m<nandu,veE R, u>0,u—v>-—1,

1
/ 2’ (1 — )" J (s u, v) Jp (25w, v)de
0

0, if 0<m<n-—2,
o IT(n+u—v+1)I2(v) . _
o (u+2n)(u+2nﬁ1)(u2+2n32)1—‘(u+n71)1“(v+n71)’ Zf 0<m=n-—1, (Al)
2n(u+n)+v(u—1))I"*(v)n!I'(n+u—v+1) . _
(u+2v+1) (u+2n) (u+2n—1)T'(u+n)T(v+n)? Zf 0<m=n.

Proof. From (2.15) and (2.17), we deduce
1
/ (1 — )" I (250, v) Jy (25w, v)de
0

mn L—’_m)k 1:c”+k — )" I, (z;u,v)de
(3) g o s

m \ (u+m)g
k (V)

I
NE
S
ol

1
/ TR (1 — 2) VT, (2 u, v)de, (A.2)
0

Il
(]
T
=
ol
N

where >0 =0 for n>m+ 2.
Case I: 0 <m <n —2. (A.1) follows from (A.2) directly.

Case II: 0 < m = n — 1. First we prove the following equation.

Y n\ (ut+n) Tv+n+k)I(u—-v+1)

k:z—o(l)k< k > (V)k Tu+n+k+1) (A.3)
(=)™ (u—v+n+1DI(v)
- Fuimin o U0 ume oL

From (2.15), (2.17) and (2.18) for m = n,
1
/ 27 1 = ) VT (2w, v)de
0
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= Z(—l)k ( Z > (u(:}_):)k/o x”+k—1(1 — )" I (z;u,v)de
_ _1\n (U’+ n)’ﬂ ! xv-{—n—l — Uu—v z . v)dr
= (et | (1= 2)*~"J, (w0, v)d

_1\k n (u+n)k 11}” ntk—1({ _ 2)4=V
ORP= (k)—m [ty

_1)k n \ (u+n)v+n+k)l(u—v+1)
k (V)k T(u+n+k+1)

I
|
=
3
Q
+
S
3
(-

. Tu+2n)T()
= 1) F(u—|—n)F(v+n)Z

—~

n!T(u—v+n+1)I?2
(u+2n)T(u 4+ n)T(

(A4)

Rearranging the last equality, we obtain (A.3). Next we shall show (A.1) for Case II. From (A.2),

1
[ a0 = ) e e
0

o o1 (uw+n—1),_ 1xv+n—1 — VT (e v)d
=yt [t gy, )

_1\n—1 (u+n_1)n*1 _1\k n (u+n)/€ 1$v ntk—1(1 _ )=V,
R R P <k> Gl
et utn =1 B n\(u+n)pv+n+ k)l (u—v+1)
= e (©)n—1 E:(Dk<k> () T(utn+k+1)
ner@+n—1),_1 (-1)"nl(u—v+n+1)I'(v)
(V)n—1 I(u+2n+1)

B !l (u—v+n+ 1DI2(v)

(u+2n)(u+2n—1)(u+2n—2)T'(u+n— D' (v+n—1)

- (-1

where the fourth equality follows from (A.3).

Case III : 0 < m = n. First we prove the following equation by induction with respect to n.

n n\ (w+n)pTw+n+k+1)C(u—v+1)
z:o(il)k ( ) (V)k C(u+n+k+2) (A.5)
(=D"(n+ DY v+ n)T'(u —v+n+ HI'(v)

= >0, u—v>—-1
T(u+2n + 2) Uy

We can easily check that (A.5) holds for n = 0. Suppose that (A.5) holds for n. Then

”ZH( (nJrl) utn+1)p Plo+n+k+2)T(u—-v+1)

pars (v)k I'u+n+k+3)

n+1

_ S (n 1

k=0

u+n+1kI‘(v+n+k+1)F(u—v+l) 1 u—v+1
IFu+n+k+2) u+n+k+2

— T(u+n+k+2)

B

From (A.3) and the assumption of induction for n,

- S ( 1) (wbnt De Bt nt b DTG ot

(u+n+1)pTv+n+k+ 1) (u—v+2)
( )) (v)k T(u+n+k+3) : (A.6)

(=) (n+ DT (u —v+n+2)C(v)

(4.6) = T(u+2n +3)
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- n\(u+n+ ) Tov+n+k+1)(u—v+2)
_Z(_l)k<k:) ()k I(u+n+k+3)

- n\ (u+n+1)aDo+n+k+2)T(u—v+2)
+Z(1)’“< ) (V)41 Fu+n+k+4)
(=)™ (n+ D)IT(u—v+n+2)0(v)

I(u+ 2n+ 3)

(=)™ (n+ D!(v+n)T(u—v+n+2)(v)

I'(u+2n+ 3)

utn+1 g n\ (u+n+2pTn+k+v+2)(u—v+2)
L §(1)k<k> CE T(utn+k+4)
(=)' (n+ )T (u—v+n+2)L(W)(v+n+1)
I'(u+2n+ 3)
+u+n+1(—1)”(n—|—1)!(v+n+1)F(u—v—|—n—|—2)l“(v—|—1)
" T(u+ 2n 1 4)

(=) (n+2)l(v+n+ DI (u—v+n+2)T(v)
I'(u+2n+4) '

+

Hence (A.5) holds for n + 1. Next we shall show (A.1) for Case III. From (2.15), (A.2) and (A.4),

1
/ V(1 — )" J2 (25 u, v)d
0

_ _ n—ln(u—’_n)’ﬂ*l
- ( 1) (U)n—l

1
%/0 21— 2)“ " T, (2 u,v)dz

= (-1)"In (u+n)p—1 (=1)"nT(u —v+n+1)I'(v)
(V)n—1 T(u+2n+1)

u n v - n u n !
+(_1)nFF( +2 )F( ))Z(_l)k< ) ( + )kA iL’ernJrk(l—l')uivd{E

1
/ 2T — 1) T T, (2w, v)dae
0

(1)

(u+n)T(v+n prs k (v)k
B nl(u—v+n+ 1)I%(v)n!
Fu+n)T'(v+n—1)(u+2n)(u+2n—1)

T(u+2n)(v) < n\(u+n)p Tlv+n+k+1)I(u—v+1)
(u+n)L(v+n) Z(_1>k< k ) (V)k T(u+n+k+2)

dxr

He
k=0
nl(u—v+n+ 1)I2%(v)n!
"Tu+n)T(w+n—1)(u+2n)(u+2n—1)
Fu+2n)T(w) ()" (n+ D (v+n)T(u—v+n+1)T(v)
I(u+n)T(v+mn) ['(u+ 2n + 2)
2n(u+n) +v(u—1))I2W)nTn+u—v+1)
(u+2v+1)(u+2n)(u+2n—1)C(u+n)l(v+n)

+(-1)"

where the fourth equality follows from (A.5). O
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