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Abstract
We propose an enriched finite element formulation to address the computational modeling of contact problems and the cou-
pling of non-conforming discretizations in the small deformation setting. The displacement field is augmented by enriched
terms that are associated with generalized degrees of freedom collocated along non-conforming interfaces or contact surfaces.
The enrichment strategy effectively produces an enriched node-to-node discretization that can be used with any constraint
enforcement criterion; this is demonstrated with both multi-point constraints and Lagrange multipliers, the latter in a general-
ized Newton implementation where both primal and Lagrange multiplier fields are updated simultaneously. We show that the
node-to-node enrichment ensures continuity of the displacement field—without locking—in mesh coupling problems, and
that tractions are transferred accurately at contact interfaces without the need for stabilization. We also show the formulation
is stable with respect to the condition number of the stiffness matrix by using a simple Jacobi-like diagonal preconditioner.

Keywords Enriched FEM · IGFEM · Non-conforming meshes · Contact · Lagrange multipliers · Multiple-point constraints

1 Introduction

The computational modeling of problems in contact mechan-
ics requires careful considerations in order to prevent inter-
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penetration between contacting bodies and ensure a proper
transfer of contact tractions. A related problem arises in the
coupling of non-conforming finite element discretizations,
where the presence of hanging nodes, if not handled prop-
erly, yields a discontinuous displacement field. In this work
these problems are addressed by means of an enriched finite
element method that naturally leads to a simple computer
implementation and inherently avoids the emergence of lock-
ing due to an over-constrained interface.

The numerical analysis of many engineering problems
requires the coupling of meshes of different components.
These meshes are often non-conforming, i.e., the loca-
tions of their nodes do not coincide along the coupling
interface, resulting in hanging nodes that call for special
treatment. More importantly, the coupling procedure has to
avoid over-constraining the coupling interface—to prevent
locking—and ensure a proper transfer of tractions between
subdomains. Similar issues are shared by engineering appli-
cations that involve contact between bodies as, for instance,
forging processes, gear systems, and impact problems [1].
While coupling of non-matching meshes is enforced by
means of equality constraints, contact problems use inequal-
ity constraints, which makes modeling contact notoriously
challenging because of its intrinsic highly nonlinear nature.
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In general, numerical methods used to resolve contact prob-
lems are either incapable of accurately transferring tractions
between contacting bodies or require a very intricate com-
puter implementation.

Coupling of non-conforming interfaces and contact is
numerically handled by enforcing constraints, to guarantee
continuity for the former and avoid interpenetration while
allowing both bodies to slide or detach for the latter.Although
constraints can be enforced in several manners, their appli-
cation often leads to locking due to an over-constrained
interface. In the multi-point constraint (MPC) method, also
known as master/slave approach, non-conformity is handled
by constraining slave nodes on one side of the interface to
those on the master side. This method, however, has been
shown to be sensitive to the choice of master/slave sur-
faces insofar as guaranteeing continuity. A two-pass MPC
approach, where both sides are taken as master and slave of
each other [2,3], ensures continuity but suffers from locking
due to an over-constrained interface. Dual space methods,
such as finite element tearing and interconnecting (FETI) [4]
and the mortar method [5,6], use a Lagrange multiplier field
to enforce compatibility at the interface. In both methods, the
Lagrange multiplier field must be selected carefully to avoid
locking by satisfying the inf-sup condition, also known as
the Ladyzhenskaya–Babuška–Brezzi (LBB) condition [7,8].
A detailed account of several methodologies proposed in the
literature to enforce contact constraints is given in Sect. 2.

Enriched finite element methods, whereby the primal field
is enhanced or enriched by means of appropriate enrich-
ment functions, provide an elegant approach to dealing with
non-conforming meshes and contact. For instance, Haikal
and Hjelmstad [3] proposed an enriched stabilized discon-
tinuous Galerkin formulation for coupling non-conforming
meshes that recovers accurate tractions and is devoid of
locking. This was accomplished by modified finite ele-
ment (FE) shape functions and the addition of enriched
nodes, effectively recovering an node-to-node (NTN) type
of constraint enforcement. The eXtended/Generalized Finite
Element Method has also been applied to solve contact and
non-conforming interface problems [9–13]. Duarte et al. [9]
modified the FE partition of unity by means of clustering
and used X/GFEM to deal with non-matching interfaces. For
contact problems, Khoei and Nikbakht [13] and Dolbow et
al. [10] usedX/GFEMtomodel frictional contact,where con-
tact surfaceswere treated as embedded strongdiscontinuities.
Hirmand et al. [11] proposed an augmented Lagrangian-
based stabilization technique to model frictional contact
and thus obtain smooth contact tractions. Similarly, Akula
et al. [12] used the augmented Lagrangian method (ALM)
within the mortar method to model complex contact surfaces
as embedded discontinuities in a background mesh using
X/GFEM—a special stabilization technique was required
when contacting bodies have high contrast in stiffness and/or

mesh density. Nevertheless, X/GFEM is in general unre-
liable insofar as obtaining accurate interface tractions or
requires stabilization techniques. Aragón and Simone [14]
reported the oscillatory nature of the traction field recov-
ered by X/GFEM on a notched beam where a cohesive
formulation was used to model perfect bonding. It has also
been shown that X/GFEM cannot be used as an immerse
boundary (or fictitious domain) method since recovered trac-
tions in Dirichlet boundaries oscillate even when using the
Barbosa-Hugues stabilization [15]. The issue is caused by an
over-constrained interface (or boundary), and thus the inf-
sup condition is not satisfied [16]. Putting aside the issue of
oscillatory tractions, X/GFEM may be unstable with respect
to the condition number of system matrices, a problem that
has prompted recent efforts in pursuit of a stable GFEM
(SGFEM) [17,18]. Finally, X/GFEM may have poor accu-
racy in blending elements (elements containing both standard
and enriched nodes), prescribing non-homogenous Dirich-
let boundary conditions requires special techniques, and the
computer implementation is far from trivial [14].

Inspired by GFEM, another family of enriched FE formu-
lations seeks to solve problems with discontinuities by plac-
ing enrichments to nodes created along the discontinuities—
as opposed to X/GFEM, where enrichments are added to
the nodes of the original mesh. The Interface-enriched Gen-
eralized Finite Element Method (IGFEM) [19] was first
proposed to resolve weak discontinuities, i.e., situations
where the gradient of the primal field is discontinuous,
as in interface problems. The method later developed into
the Hierarchical Interface-enriched Finite Element Method
(HIFEM) [20], whereby multiple interfaces within a sin-
gle element are resolved via a hierarchical implementation
of enrichment functions. The Discontinuity-Enriched Finite
Element Method (DE-FEM) [14] later proposed a general-
ization of IGFEM/HIFEM for the treatment of bothweak and
strong discontinuities—e.g., fracture—in a unified formula-
tion. Because enrichments are placed along discontinuities,
this family of methods is devoid of many of the disadvan-
tages of X/GFEM: the implementation is straightforward,
the method is stable, i.e., the condition number grows with
the problem size as in standard FEM [21], and there are no
blending elements since enrichment functions are localized
to cut elements and vanish at all original mesh nodes. The
latter therefore keep the Kronecker-δ property, which sig-
nificantly simplifies the enforcement of non-homogeneous
essential boundary conditions [14,16]. Contrary tomost non-
standard FEMs in use today, in IGFEM/HIFEM/DE-FEM
Dirichlet boundary conditions can be enforced strongly as
in standard FEM. This is also true even along non-matching
Dirichlet boundaries, where HIFEM/DE-FEM is used as an
immerse boundary procedurewith smooth recovered traction
fields [22,23]. This is particularly interesting in the context
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of coupling non-conforming discretizations and contact and
has largely inspired the present study.

In this paper we adopt the IGFEM paradigm for cou-
pling non-conforming discretizations and contact problems.
To this end, we place enriched nodes along non-conforming
interfaces and contact surfaces, respectively, collocated at
the locations of the non-conforming mesh nodes on the
opposite surface. Their associated enriched functions areC0-
continuous and local to the enriched elements on one side of
the non-conforming interface/contact surface. Notably, since
the shape functions of the original mesh are kept intact, the
partition of unity property is therefore lost in enriched ele-
ments, i.e., at any point in the element the sum of shape
and enrichment functions does not add to unity. The formu-
lation yields an enriched NTN contact discretization, and
therefore we call it a node-to-node enrichment. It is there-
fore straightforward to enforce constraints by any procedure,
which we show in this paper with both MPC and ALM.
The proposed procedure is a two-pass method and there-
fore shows no bias on the choice of master/slave surfaces.
The procedure is applied to several examples with linearized
kinematics. Results show that the method passes Taylor and
Papodopoulos’ contact patch test [24] and avoids locking
due to an over-constrained interface; furthermore, traction
transfer is fairly accurate without the need of stabilization
techniques. This is advantageous over other methods such
as the two-pass mortar method which, although passes the
patch test and shows no locking, requires interpolation of
the pressure field that results in a complex formulation and
corresponding computer implementation. We also show the
stability of the method insofar as the condition number of the
stiffness matrix is concerned. Indeed, the condition number
grows with mesh size h asO (

h−2
)
—i.e., at the same rate as

that of the standard FEM—after the application of a simple
diagonal preconditioner.

2 Previous work on contact discretizations

We limit the scope of this survey to contact between
deformable bodies, i.e., deformable-deformable contact.
Many contact discretization procedures have been proposed
through the years. Node-to-node (NTN) [25] and node-to-
segment (NTS) [26–28] discretizations are widely used,
where constraints are enforced between a node pair or a
node-segment pair, respectively. Their applicability is, how-
ever, hindered by some intrinsic limitations: Even though
NTN can transfer tractions accurately, it can only be used
with conforming discretizations along master/slave surfaces
and only for infinitesimal sliding. The NTS approach over-
comes this restriction but a one-pass approach—where nodes
of one contacting surface are constrained to the segments of
the other surface—is biased insofar as the choice of mas-

ter/slave surfaces. A one-pass NTS approach not only fails to
prevent interpenetration at times, but it has also been shown
not to pass the contact patch test [24], i.e., correct contact
tractions cannot be recovered. Several works have attempted
to address this issue. Papadopoulos and Taylor [2] proposed
to enforce constraints in an average sense and integrate the
contact pressure using Simpson’s rule, thereby passing the
patch test. Later, Zavarise and De Lorenzis [29] improved
the one-pass NTS contact formulation to pass the contact
patch test at the expense of losing symmetry in the contact
contribution to the stiffness matrix.

A two-pass NTS approach could also be used to avoid
interpenetration of contacting bodies, but this approach leads
to an over-constrained contact interface and ultimately to
locking. As a result, the traditional two-pass NTS con-
tact discretization does not fulfill the LBB condition [2,30]
and therefore no convergence can be attained with mesh
refinement. Papadopoulos et al. [31] and Papadopoulos and
Solberg [32] proposed a method that enforces continuity of
tractions weakly, whereby nodes are divided into groups
in which the gap is constrained and pressure continuity is
enforced. Their approach avoids locking and passes the patch
test when the same interpolation for geometry and traction
field is used. The method was later extended to 3D by Jones
and Papadopoulos [33].

The idea of enforcing traction continuity or constraints
in a weak sense can be understood as a segment-to-segment
(STS) method, first proposed by Simo et al. [34], where the
displacement field is interpolatedwith linear shape functions,
and the pressure field is defined as piecewise constant over
the contact segment, so that the local variables (gaps) are
evaluated in an “average” sense. Another STS-based pro-
cedure by Zavarise and Wriggers [35] also enforces contact
constraints in a weak sense, whereby local variables are eval-
uated at integration points and then contact contributions to
the stiffness matrix and force vector are calculated based
on the integration of these local variables. El-Abbasi and
Bathe [36] proposed yet another STS method in which inte-
gration points are projected onto the opposite contact surface.
Although their formulation is capable of handling both lin-
ear and quadratic elements in contact, the LBB condition is
satisfied only when the pressure is interpolated with linear
continuous functions. In addition, a “composite” integra-
tion rule that combines Gaussian and Newton-Cotes rules
is required to pass the patch test. All these formulations
and their corresponding computer implementations are more
complex than those of NTS contact.

The mortar method was first used to handle domain
decomposition problems [5] and then contact [37–39].
The method also has single-pass and dual-pass versions. The
traction field is defined on a mortar surface, which is one of
the two contacting surfaces or an intermediate surface that
is introduced, and contact constraints are enforced in a weak
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sense. The single pass mortar method has been shown to pass
the contact patch test [40]. This method was later extended
to 3D and large deformations [40–48]. For large deformation
kinematics, gap functions interpolated by shape functions in
the mortar surface and nodally-averaged normal vectors are
used [44]. To avoid non-smooth normals, special techniques
are also employed to obtain smooth surfaces, for instance
by means of Hermite functions [41] or by other averaging
techniques [49]. Results of this method are generally much
more accurate than those of traditional NTS procedures—
but at the same time the computer implementation is more
involved and requires more computational resources [50].
Although some mortar-based methods satisfy the LBB con-
dition, they are biased insofar as the choice of contact surfaces
is concerned. Still, an appropriate choice of dual (Lagrange
multiplier) shape functions should be made. To avoid the
contact surface bias issue, Solberg et al. [51] proposed a
two-pass mortar method with contact constraints enforced
by means of Lagrange multipliers, where nodes are sepa-
rated into active and inactive sets; however, a penalty-based
stabilization is needed to avoid traction oscillations, and this
method is not guaranteed to work for arbitrary geometries,
particularly in 3D. Recently, this method was also extended
to solve plasticity and self-contact by Puso and Solberg [52].
Park et al. [53] and Rebel et al. [54] proposed a method,
different from the mortar method, where nodes from two
contact surfaces are also projected into an intermediate sur-
face, and an independent variable is defined to describe the
motion of this surface. By enforcing the traction continu-
ity weakly, constant stress can be transferred exactly in the
contact patch test. This method was also extended to handle
frictional contact by Gonzalez [55]. On the basis of the mor-
tar method, a dual mortar method was proposed by Flemisch
et al. [6] to solve contact problems with curved interfaces in
2D, where discontinuous shape functions for dual variables
are used because they are more stable and ensure more accu-
rate solutions. This method was then extended to 3D contact
problemswith large deformation by Popp et al. [56] and Popp
and Wall [57], and extended to frictional contact by Gitterle
et al. [58]. In general, the dual mortar method offers the pos-
sibility of condensing themultipliers out of the systemmatrix
(another advantage of using dual shape functions), resulting
in a symmetric positive definite matrix. In their overview,
Popp and Wall [57] highlight several advantages of the dual
mortarmethod for contact over the traditionalNTS approach.
They show that, although smooth interpolations of the contact
surfaces are needed (for instance using NURBS), especially
for large deformation contact, solving problems with dual
mortar can be more efficient than with the traditional single-
pass mortar procedure.

Because the smoothness of contact surfaces influences
the transfer of tractions greatly, several surface smoothing
techniques have been proposed over the years: Belytschko

et al. [59] suggested to compute gap functions based on a
least square fit of the original non-smooth surface, obtain-
ing a smooth signed distance function that reduces traction
oscillations; Padmanabhan and Laursen [60] and Sauer [61]
proposed to use Hermite functions to interpolate contact sur-
face and solution fields; El-Abbasi et al. [62] suggested to
use cubic splines; Krstulovic-Opara et al. [63] proposed a
Bézier formulation; Sauer [64] used high-order Lagrange
shape functions; and Stadler et al. [65] used a NURBS-based
formulation. These smoothing techniques aim at reducing
traction oscillations and improving convergence.

Contact constraints have also been enforced recently in
the context of isogeometric analysis (IGA), whereby CAD
features are used directly in the numerical analysis. Lu [66]
and De Lorenzis et al. [67] proposed IGA formulations
for frictionless and frictional contact, respectively; a simi-
lar approach to NTS was established in IGA, the so-called
knot-to-surface, where the main difference with respect to
the traditional NTS lies in that the knot is used instead of
mesh nodes and NURBS are used to describe contact sur-
faces. This method was later extended to 3D [68–70], and
a mortar-based IGA procedure was found to be more accu-
rate than the standard knot-to-surface method. Corbett and
Sauer [71,72] proposed to use a NURBS interpolation along
contact surfaces, while the rest is discretized using linear ele-
ments. This modification makes the approach more efficient.
For contact in large deformation, accurate results are still
generally hard to obtain without mesh refinement. Dimitri
et al. [73,74] proposed to use T-splines to refine the dis-
cretization. Similar to the dual mortar method with FEM,
a dual mortar method in IGA was also proposed by Seitz
et al. [75] and offers better efficiency than the mortar-based
IGA contact formulation [76]. An isogeometric collocation
method was also used to solve contact problems [77,78],
whereby contact forces are regarded as Neumann boundary
conditions, and contact constraints are enforced as Dirich-
let conditions. Since these conditions are fulfilled strongly,
quadrature of Neumann BCs is eliminated and efficiency
is improved greatly. Recently, Duong and Sauer [79] and
Duong et al. [80] proposed an IGA contact formulation based
on the surface potential method [81] and equipped with the
refined boundary quadrature method [82]. In this procedure
the “two-half-pass” method [83] is used, i.e., only tractions
on the slave surface are considered in each pass. XFEM is
also used in this method to capture weak/strong disconti-
nuities around contact boundaries [80]. With a smoothing
technique for post-processing, results are much more accu-
rate than those obtained with traditional two-pass methods.
However, IGA-based methods still suffer from locking, with
the exception of the two-half-pass method, and the proce-
dure requires a completely different discretization based on
NURBS—which may not be straightforward to implement
in general displacement-based FEM codes.
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Formostmethods above, it is still not trivial to obtain accu-
rate contact tractions for complex problems due to numerical
artifacts [29]. Even for mortar methods traction oscillations
are generated for curved contact interfaces—which are rela-
tively small and concentrated near the contact edge with the
correct choice of mortar surface [12]. These numerical errors
do not necessarily reduce with mesh refinement. Some STS
and mortar based methods [32,33,51–53,84] are quite accu-
rate in the definition of contact tractions, pass the contact
patch test, and avoid locking. Their formulations and imple-
mentations are, however, much more complicated than those
of traditional NTN or NTS procedures.

There are also procedures that aim at transforming
the contact problem into an equivalent NTN contact con-
straint enforcement. For instance, the virtual element method
(VEM) has recently been explored to solve problems in
contact mechanics [85]. In VEM non-conforming contact-
ing nodes are projected onto the opposite contact surface,
and new nodes are generated at those locations, transform-
ing the problem into a VEM-conforming mesh for which
NTN contact constraints can be enforced straightforwardly.
Besides, adding contact constraints to a general VEM code is
straightforward.Results show thatVEMpasses the patch test.
However, a penalty-based stabilization is needed to avoid
traction oscillations. This method was later developed to
solve frictional contact in large deformation kinematics by
Wriggers and Rust [86] and contact with curved contact sur-
faces by Aldakheel et al. [87].

Enriched formulations have also been used to convert
non-conforming contact discretizations into an equivalent
NTN enforcement. For instance, the enriched discontin-
uous Galerkin formulation for coupling non-conforming
discretizations by Haikal and Hjelmstad [88] was later
extended to solve frictionless contact with finite deformation
kinematics [3]. Masud et al. [89] further combined the ideas
put forward by Haikal et al. [3,88] with Nitsche’s method
in a variational multiscale framework that could be used
not only for coupling non-conforming meshes but also for
solving frictional contact problems. The methodology pro-
posed in this paper follows the enrichment strategy proposed
by Haikal and Hjelmstad [3] in which, instead of modify-
ing the shape functions of elements in contact, we keep the
standard basis intact. Both strategies could be understood as
a form of h-hierarchical refinement along contact surfaces
and thus share some similarities with the non-hierarchical h-
refinement approach used to handle non-conforming meshes
in 3D proposed by Jiao and Heath [90,91]. Their approach is
based on the concept of common refinement of two meshes
that is defined as “the intersections of the elements of the
input meshes”. The new discretization contains therefore
nodes that can be found in both non-matching meshes. Our
approach follows a similar strategy in that all standard nodes

from one contact surface are projected to the other and vice
versa.

3 Problem description and formulation

3.1 Governing equations

Figure 1 shows domain � ⊂ R
d composed of three d-

dimensional subdomains �i ⊂ � such that � = ∪i�i . The
subdomain boundaries are denoted ∂�i ≡ �i = �i \ �i

and their outer normals ni . Domains �1 and �2 are in fric-
tionless contact along the surface �12 = �1 ∩ �2 ≡ �c,
and domains �2 and �3 are perfectly bonded along the
interface �23 = �2 ∩ �3 ≡ �g . Such interface could be
physical (e.g., the interface between two different materi-
als), numerical (e.g., a non-conforming discretization with
hanging nodes), or a combination thereof. Boundaries �u

i
and �t

i denote regions with prescribed Dirichlet and Neu-
mann boundary conditions, respectively. These regions are
disjoint, i.e., �u

i ∩ �t
i = ∅. The displacement (primal) field

is denoted by u and the traction (dual) field by t . These are
composed by considering the fields within all domains �i .
We therefore denote ui the restriction of u to the i th domain.
The same notation applies to the traction field t i and to other
subscripted quantities.

We are interested in solving the elastostatics friction-
less contact boundary value problem whose strong form is
expressed as: Given body force bi : �i → R

d , prescribed
displacement ūi : �u

i → R
d , and traction t̄ i : �t

i → R
d

fields, find ui such that

n2

Γt
1

1

n1

Γc

n3

Γu
1

Γu
3

t̄3

Γg

t̄1

3

2

Fig. 1 Contact between domains �1 and �2 and coupling between
domains �2 and �3 (perfect bonding). Insets show the non-matching
meshes, with standard FEM nodes (black circles) and enriched nodes
(red circles) (Color figure online)
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∇ · σ i + bi = 0 in �i , (1)

with boundary conditions

ui = ūi on �u
i , (2)

σ ini = t̄ i on �t
i , (3)

interface conditions for perfect bonding

u2 = u3 on �g, (4)

σ 2n2 = σ 3n3 on �g, (5)

and contact conditions

pn = tc1 · n1 ≤ 0 on �c, (6)

gn = (x2 − x1) · n1 ≥ 0 on �c, (7)

pngn = 0 on �c. (8)

In Eq. (1), σ i = Di : εi is the Cauchy stress tensor which
obeys Hooke’s law, Di is a fourth-order constitutive ten-
sor, and εi = 1

2

(∇ui + ∇uᵀ
i

)
the linearized strain tensor

(small deformation theory). For the perfect bonding between
domains �2 and �3, equal displacements and tractions are
enforced through interface �g . Contact between domains�1

and �2 is enforced through the classical Hertz–Signorini–
Moreau conditions, also known as Karush–Kuhn–Tucker
conditions in the theory of optimization [1]; these consist
of a contact pressure pn , which can only be in compression,
and a gap function gn , which ensures that the contact surfaces
cannot penetrate one other. Finally, Eq. (8) ensures that pres-
sure vanishes when the gap between the two contact surfaces
is open, and the gap vanishes when they are in contact.

Equations (1)–(8) can be seen as the solution to a con-
strained optimization problem on the functional given by

�
(
u,λg,λc) =

3∑

i=1

�i (ui ) + �g (u2, u3,λg)

+ �c (u1, u2,λc) ,

(9)

where the first term represents the potential energy in all
domains. For the i th domain, the potential energy is

�i (ui ) = 1

2

∫

�i

ε (ui ) : σ (ui ) d� −
∫

�i

b · ui d�

−
∫

�t
i

t̄ · ui d�.

(10)

The other two terms in (9) are associated with constraints at
the perfectly bonded interface �g and at the contact interface
�c, enforced with Lagrange multipliers λg and λc, respec-
tively; their form varies depending on how the constraints

are enforced. In this work we use the standard Lagrange
multiplier method for the perfectly bonded interface, and
an augmented Lagrangian type of enforcement for contact
(which makes the saddle contact problem convex close to
the solution). Their forms are therefore respectively written
as

�g (u2, u3,λg) =
∫

�g
λg · (u2 − u3) d�, (11)

�c (u1, u2,λc) =
∫

�c

1

2εn

[〈
λ̂n
〉2 − λ2n

]
d�, (12)

where 〈•〉 denotes the Macaulay brackets, λn = λc · n the
normal component of the Lagrange multiplier (where we
could use either n1 or n2, as at this stage the choice is arbi-
trary), and λ̂n the augmented Lagrange multiplier given by
λ̂n = λn + εngn = pn , with εn the augmentation (penalty)
parameter in the normal direction.

3.2 Variational formulation

The solution of the boundary value problem makes the opti-
mization problem (9) stationary with respect to variations
of all arguments. These three equations are obtained by
taking the directional derivative along the directions of the
variations:

∇�
(
u,λg,λc) · δu

=
3∑

i=1

[∫

�i

εi (δui ) : σ i (ui ) d�

−
∫

�i

δui · bi d� −
∫

�t
i

δui · t̄ i d�

]

+
∫

�g
λg · (δu2 − δu3) d�

+
∫

�c

〈
λ̂n
〉
δg d� = 0, (13)

∇�
(
u,λg,λc) · δλg =

∫

�g

δλg · (u2 − u3) d� = 0, (14)

∇�
(
u,λg,λc) · δλc

=
∫

�c

1

εn

[〈
λ̂n
〉 − λn

]
δλn d� = 0, (15)

for all admissible variations δu, δλg , and δλc. For the vari-
ations of the displacement, we define the vector-valued
function space
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V (�) =
{
δu ∈

[
L2 (�)

]d
, δu|�i ∈

[
H1(�i )

]d
,

δu|�u
i

= 0
}

,

(16)

where H1 (�i ) denotes the first-order Sobolev space on �i .
The primal field is chosen from the set

U (�) =
{
u ∈

[
L2 (�)

]d
, u|�i ∈

[
H1(�i )

]d
,

u|�u
i

= ū
}

.

(17)

Lagrange multipliers λ and their variations δλ are taken
from a fractional Sobolev space, i.e., λa ∈ � (�a) ≡[H−1/2 (�a)

]d
, with a = g, c.

Multiple-point constraints (MPCs) are also investigated
in this work to enforce both perfect bonding and contact.
In such case, the enforcement works by writing simple con-
straint equations that describe the relationship between slave
degrees of freedom (DOFs) as a function of themaster DOFs.
As there is no need for Lagrange multipliers, the rightmost
two terms in (9) disappear.

Next we discuss the discretization of Eqs. (13) through
(15).We start with the enriched formulation used in elements
where constraints are to be enforced.

3.3 The finite-dimensional interface-enriched
generalized finite element formulation

It is not straightforward to couple meshes or simulate contact
when the discretizations of the domains are non-matching,
i.e.,when there are hanging nodes in the former or contacting
nodes do not occupy the same location in space in the latter
(no node-to-node contact). To alleviate the burden associated
with the lack of mesh conformity, we employ an enrichment
scheme inspired by the Interface-enrichedGeneralized Finite
Element Method (IGFEM) [19,21], whereby enriched nodes
are created along material interfaces to resolve weak dis-
continuities (those in the field gradient). Consequently, all
domains are discretized into non-overlapping finite elements
such that �h

i = ∪i ei , ei ∩ e j = ∅ (∀i �= j), with the entire
computational domain given by∪i�

h
i = �h ≈ �. In order to

solve numerically the finite-dimensional form of equations in
(13)-(15), the trial solution and the weight function are cho-
sen from the interface-enriched generalized finite element
space.

Se =
{
uh | uh(x) =

∑

i∈ιh

Ni (x) ui

︸ ︷︷ ︸
std. FEM

+
∑

i∈ιe

siψi (x)αi

︸ ︷︷ ︸
enrichment

,

ui ,αi ∈ R
d
}
.

(18)

1

x1

x2

(x)

x⊥
i

Γg
122

ψi

1

Fig. 2 Enrichment ψi associated with enriched node x⊥
i , which coin-

cides with a non-conforming standard node xi . The support of ψi
comprises integration elements only in �1

In (18) the first term represents the standard finite element
component and the second term the enrichment. In the for-
mer, ιh is the index set of all standard nodes in themesh, Ni is
the i th standard Lagrange interpolation function associated
with degrees of freedom ui (which physically represent the
nodal displacement at standard node xi ). In the enrichment
term, ιe is the index set of enriched nodes, ψi is the enrich-
ment function associated with enriched DOFs αi . Finally,
si is a scaling factor that is used to improve the condition
number of the system matrix after assembly. This factor,
which was studied thoroughly in a recent publication [21], is
required for a robust implementation that handles interfaces
getting arbitrarily close to standard mesh nodes.

The enrichment function ψi is constructed with the aid
of Lagrange shape functions in integration elements (see
enrichmentψi corresponding to enriched node x⊥

i in Fig. 2),
which not only form the supportψi , but, as the name implies,
are also used for the numerical quadrature of the local
stiffness and force arrays. Contrary to the original IGFEM
formulation, where the support of an enrichment comprises
integration elements at both sides of amaterial interface, here
the support comprises only integration elements on one side
of the non-conforming interface or contact surface. In our
implementation, a computational geometric engine creates
enriched nodes along non-conforming interfaces or contact
surfaces, so that each enriched node corresponds to a stan-
dard mesh node on the surface of the opposite domain. As
shown in Fig. 1, the location of mismatching mesh nodes
can be directly determined along the interface �g in mesh
coupling problems, whereas for contact problems the closest
node projection [1,92] to an element edge is used to deter-
mine the location of enriched nodes at either side of contact
surfaces.

3.4 Stiffness matrix contributions

In this section we derive the discrete expressions for the
stiffness contributions given by the first term in (13). The
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assembly of the local stiffness matrix ki and force vector f i
for finite elements that do not contain enriched nodes follows
standard procedures. For enriched integration elements, and
with reference to [14,19], local arrays can be expressed as

ki =
[
kuu kuα

kᵀ
uα kαα

]
, f i =

[
f u
f α

]
, (19)

with

kuu =
∫

�i

Bᵀ
u DBu d�, (20)

kαα =
∫

�i

Bᵀ
α DBα d�, (21)

kuα =
∫

�i

Bᵀ
u DBα d� = kᵀ

uα, (22)

f u =
∫

�i

Nᵀ
u b d� +

∫

∂�i

Nᵀ
u t̄ d�, (23)

f α =
∫

�i

Nᵀ
αb d� +

∫

∂�i

Nᵀ
α t̄ d�, (24)

where D is the constitutive matrix, and Bu and Bα are the
strain-displacement matrices of shape and enrichment func-
tions, respectively [22,93]. Finally, the global stiffnessmatrix
K and global force vector F are obtained by standard assem-
bly of their local counterparts. Denoting by A the standard
finite element assembly operator, global arrays are therefore

K =A
i

ki , F =A
i

f i , (25)

which, by making explicit the contributions of standard and
enriched components, can be expressed as

K =
[
K uu K uα

Kᵀ
uα Kαα

]

, F =
[
Fu

Fα

]
. (26)

3.5 Constraint enforcement

The enriched space alone does not ensure continuity across
non-conforming interfaces and does not avoid interpenetra-
tion of contact surfaces. To properly resolve the field at mesh
coupling and contact interfaces, constraints are imposed
between enriched and standard DOFs. Although the use of
discrete MPCs and the augmented Lagrange method (ALM)
is well established, their application in conjunction with this
enriched framework is different and both methods are there-
fore thoroughly discussed in this section.

Multiple-point constraint method

Conventionally, multiple-point constraints (MPCs) are used
in a “master and slave” situation to enforce some sort of

compatibility between nodes, e.g., for enforcing continuity
along an interface or to enforce periodicity at opposite sides
of a domain; an MPC can be simply regarded as an approach
to create a “tie” among nodes. This method can be used in
a single-pass or in a two-pass approach, which means that
either side is selected as the master surface, or that either
side serves as the master to its opposite side, respectively.
In both approaches, the constraint is expressed as a linear
combination of displacement vectors as in

us −
∑

i∈ιm

Ni (x)ui = g, (27)

where us is the displacement of the slave node xs , ιm is the
index set of the slave’s master nodes, and g is the gap vector.
In mesh coupling problems, as the objective is to ensure con-
tinuity across an interface, the homogeneous MPC is used,
i.e., g = 0. This constraint method is simple and straight-
forward to implement. However, as already discussed in the
introduction, continuity cannot be ensured in a single-pass
approach, and the system may become over-constrained in
a two-pass approach [3]. In the following, we provide an
alternative formulation ofMPCs combined with the enriched
approach outlined in the previous section for handling mesh
coupling and contact problems without slipping and separa-
tion. In the context of IGFEM, MPCs have been employed
in immersed domain problems [22] and in the enforcement
of Bloch-Floquet periodic boundary conditions [94]. Note,
however, that for general contact problems it is preferred
to adopt ALM (this will be explained in detail in the next
section). For the cases where MPCs work, the objective is
to ensure C0-continuity across non-conforming interfaces or
contact surfaces in a given direction.

For a standard hanging node xi , an enriched node x⊥
i is

created at the same location although placed in the adjacent
element (see Fig. 2). The constraint equation enforces that
the displacement of standard and enriched nodes, ui and u⊥

i ,
respectively, have to be equal. Referring back to (18), this
condition is expressed as

u⊥
i =

∑

j∈ι⊥h

N j (x⊥
i )u j + siαi = ui , (28)

where ι⊥h ⊂ ιh is the subset of mesh nodes with standard
shape functions whose supports intersect the support of the
enrichment function.Mathematically, if the support of a stan-
dard shape function is defined as ωi = {x| Ni (x) �= 0}, and
similarly for an enriched function ω⊥

i = {x| ψi (x) �= 0},
then ι⊥h = {i ∈ ιh | ωi ∩ ω⊥

i �= ∅}. Note that in Eq. (28) we
use ψi (x⊥

i ) = 1.
A similar constraint is enforced for every hanging stan-

dard node and enriched node pair at both sides of the
non-conforming interface, making the proposed procedure
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actually correspond to a two-pass approach. However, when
compared to just using Eq. (27), enriched DOFs render the
interface response less stiff. These constraints can be written
in matrix form for all enriched nodes in the system as

U = TŪ, (29)

whereU = [
u1 . . . α1 . . .

]ᵀ
is the vector containing all stan-

dard and enriched DOFs, Ū is the vector of independent
(unconstrained) DOFs, and T is a transformation matrix
storing coefficients Ni and si in Eq. (28). Following stan-
dard procedures for MPCs [22], the unconstrained system
KU = F, where K and F were given in (26), is trans-
formed into K̄ Ū = F̄, where K̄ = TᵀKT , F̄ = TᵀF, and
the transformation matrix T ties both standard and enriched
nodes.

Notice that only a few additional enriched DOFs need to
be added, and applying theMPCmethod betweenmaster and
slave DOFs is straightforward. Numerical examples for cou-
pling non-conforming discretizationswill be shown in Sect. 5
to illustrate the accuracy and robustness of the approach.

Augmented Lagrangemethod

For general contact problems where relative slip and sep-
aration occur, it is not convenient to use MPCs to enforce
constraints because the contact status needs to be detected
during the nonlinear iterative contact step. The augmented
Lagrangemethodcanbe regarded as a combinationof penalty
and Lagrange multiplier methods, whereby the inequality-
constrained minimization contact problem is transformed
into an unconstrained saddle point problem. Compared with
pure penalty and Lagrangemultiplier methods, this approach
decreases the conditioning number of the stiffness matrix
and is able to satisfy constraints exactly with finite penalty
parameters [95]. In this section we obtain the discrete form
corresponding to the weak form (13)-(15). When consider-
ing Lagrange multipliers, we seek a solution to the system
K̂ Û = F̂ with

K̂ =

⎡

⎢
⎢
⎣

K̂ uu K̂ uα K̂ uλ

K̂
ᵀ
uα K̂αα K̂αλ

K̂
ᵀ
uλ K̂

ᵀ
αλ 0

⎤

⎥
⎥
⎦ , F̂ =

⎡

⎢
⎣

F̂u

F̂α

F̂λ

⎤

⎥
⎦ . (30)

where Û = [
u α λ

]ᵀ
is the vector of unknowns in terms of

standard DOFs, enriched DOFs, and Lagrange multipliers.
The solution is found incrementally by making use of a gen-
eralized Newton loop [96,97], i.e., K̂�Û = �F̂, where K̂ is
mostly linear (we assume linear kinematics) and the nonlin-
ear components arise due to contact. In the above expressions,
a hat explicitly differentiates this system from that used in

the MPC method. Notice that a hat is also used for sub-
matrix components, implying that the original matrices are
modified by applying coupling terms. In other words, the
system arrays (26) are augmented with the contributions of
the Lagrange multipliers, which are obtained by assembling
the contributions of nλ constraints:

K̂ = K +
nλ

A
i=1

kci , F̂ = F +
nλ

A
i=1

f ci . (31)

The explicit expressions of the Lagrange multiplier contri-
butions kci and f ci are given next.

Contact contribution

Figure 3 shows three standard mesh nodes xi , x j , and xk .
Without loss of generality and with reference to mesh node
xi , we denote by x⊥

i the position of the corresponding
enriched node on the opposite surface. The position of x⊥

i
is determined by projecting xi using the unit normal vector
ni . The gap function gn,i along ni and between xi and x⊥

i is
expressed as

gn,i =
(
xi − x⊥

i

)
· ni =

(
ui − u⊥

i

)
· ni + g0,i , (32)

where g0,i = (
X i − X⊥

i

) · ni is the initial gap, X i and X⊥
i

represent the initial positions of standard and enriched nodes,
respectively, and ui = xi − X i and u⊥

i = x⊥
i − X⊥

i their
corresponding displacements. Referring back to Fig. 3, the
standard FEM shape functions attached to nodes x j and xk
are the only ones that contribute to the displacement field at
the location of enriched node x⊥

i . By using (18) to express

ni
x⊥
i

xi
xj

xk

Fig. 3 Node-to-node enrichment strategy with ALM. The locations of
enriched nodes are detected using the projections of mismatching mesh
nodes with the normal vector (e.g., n+

i for enriched node x+
i )
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its displacement, the gap reads

gn,i =
(
ui − N j (x⊥

i )u j − Nk(x⊥
i )uk

−siψi

(
x⊥
i

)
αi

)
· ni + g0,i

= (N i ⊗ I)U⊥
i · ni + g0,i ,

(33)

where ⊗ denotes the Kronecker product, N i =[
1 −N j (x⊥

i ) −Nk(x⊥
i ) −siψi

(
x⊥
i

)]
with ψi

(
x⊥
i

) = 1,
U⊥

i = [
ui u j uk αi

]ᵀ
, and I is the d × d identity matrix.

Since the initial gap is constant during the analysis, the vari-
ation of (33) is given by

δgn,i =
(
δui − N j (x⊥

i )δu j − Nk(x⊥
i )δuk − siδαi

)
· ni

= (N i ⊗ I) δU⊥
i · ni . (34)

The weak form of the contact contribution given by (15)
is approximated by a summation over the nλ active contact
nodes. Substituting gn,i and δgn,i with (33) and (34), respec-
tively, the total contact contribution reads

∫

�c

(λ̂nδgn + δλngn) d�

≈
nλ∑

i=1

λ̂n,i

[
(N i ⊗ I) δU⊥

i · ni
]

+
nλ∑

i=1

δλn,i

[
(N i ⊗ I)U⊥

i · ni + g0,i
]
.

(35)

Noteworthy, in the discretized right hand side of (35)
the Lagrange multipliers represent the force acting on the
enriched nodes. By introducing δÛ i = [

δU⊥
i δλn,i

]ᵀ
, (35)

can be expressed as:

∫

�c

(λ̂nδgn + δλngn) d� ≈
nλ∑

i=1

δÛ
ᵀ
i G

c
i (36)

with

Gc
i = [

λn,iC i + εn,iC iC
ᵀ
i U

⊥
i Cᵀ

i U
⊥
i + g0,i

]ᵀ
and

C i = Nᵀ
i ⊗ ni .

(37)

Equation (36) can be solved iteratively, and in this work we
use the generalizedNewtonmethod [96,97], where Lagrange
multipliers are updated together with the primal field in the
same iterative loop. In this method, which converges faster

than Uzawa’s algorithm, linearization of the contact contri-
bution is required, leading to

∂

∂Û i

[
nλ∑

i=1

δÛ
ᵀ
i G

c
i

]

�Û i =
nλ∑

i=1

δÛ
ᵀ
i k

c
i �Û i , (38)

where �Û i = [
�U⊥

i �λn,i
]ᵀ

and

kci =
[

εn,iC iC
ᵀ
i C i

Cᵀ
i 0

]

, f ci = −
[

λ̂n,iC i

gn,i

]

. (39)

Here kci and f ci refer to the contact contribution ofmesh node
i to the stiffness matrix and the load vector in a generalized
Newton loop.

It is worth noting that this formulation and its solution
procedure are similar to those of NTN contact (we refer the
reader to [1]). The only thing we needed to modify is the C i

vector, which is based on the vector N i of enriched node x⊥
i .

Inactive constraints

In an inactive state of contact, i.e., when λ̂n > 0, Eq. (15) is
approximated by

∫

�c

− 1

εn
λnδλn d� ≈ −

ni∑

i=1

1

εn,i
λn,iδλn,i , (40)

where ni is the number of inactive constraints, and the incre-
mental equation is therefore expressed as

∂

∂Û i

[

−
ni∑

i=1

1

εn,i
λn,iδλn,i

]

�Û i =

−
ni∑

i=1

1

εn,i
�λn,iδλn,i .

(41)

For the inactive constraints, the contributions

kci =
⎡

⎣
0 0

0 − 1

εn,i

⎤

⎦ and f ci =
⎡

⎣
0

λn,i

εn,i

⎤

⎦ (42)

are considered in (31),which practically implies the update of
the Lagrage multiplier as described in Algorithm 1. Similar
to the active case previously described, the solution incre-
ments are solved using the generalized Newton method. It is
worth noticing that, compared to the standard way of apply-
ing constraints, only the enriched part described in Sect. 3.4
needs to be added.
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Input: Solution U and Lagrange multiplier λ vectors from previous step, sets of standard finite nodesN and elements E , ordered treeH, contact
surfaces C, boundary conditions B, material properties P , and penalty parameter

function solveContactStep (U,λ,N , E,H, C,B,P )
Ne = i x

⊥
i ← findProjections(Uh,N , C) create enriched nodes

nλ ← |Ne| get number of Lagrange multipliers
H ← updateHierarchy(Ne,H) create/update element hierarchy
nd ← d × (|N | + |Ne|) + nλ get total DOFs, d ≡ DOFs per node
{U,λ} ← copy(Uold,λold) copy solution vector of previous step
for k = 1, 2, . . . do start generalized Newton loop

{K , F} ← 0nd×nd , 0nd×1 initialize global arrays
{K , F} ← assemble(U,N ∪ Ne, E ∪ H,B,P) assemble global arrays [14]
for i = 1, . . . , |Ne| do loop over index set of enriched nodes

xi , x⊥
i ← getContactPair(i,Ne,N ) get enriched segment

āi ← getSegment(x⊥
i ,H) get enriched node

ni ← getNormal(āi ) get normal vector to segment
gn,i ← gap(x, x⊥

i , ni ) calculate normal gap for node pair

λ̂n,i ← λn,i + n,i gn,i update augmented Lagrange multipler
C i ← N i ⊗ ni compute C i matrix

if λ̂n,i ≤ 0 then in case of contact

kci ← n,iC iC i C i
C i 0

compute kci

K ← K + kci assemble kci to global stiffness matrix
F ← F − λ̂n,iC i gn,i update global residual vector

else if λ̂n,i > 0 then
n,i ← −λn,i set the increment as−λn,i

U λ ← solve(K , F) compute increment in solution
U ← U + U update displacements
λ ← λ + λ update Lagrange multipliers
if U < tol and λ < tol then break

return U,λ

–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

–

–
–

–

–
–
–

4 Implementation

In this sectionwediscuss the implementationof themethod in
a displacement-based FEM framework. Since the calculation
of the element local arrays considering enrichment functions
has been detailed elsewhere [14,19], here we only focus
on the implementation of the constraints to enforce non-
conforming mesh coupling and contact. Because the use of
MPCs for coupling non-conforming meshes is standard [98,
pp. 325–340], we only provide the detailed pseudo-code for
handling contact problems (where the coupling using LMs
is also included).

4.1 Coupling of non-conformingmeshes

For each non-conforming node, an enriched node with the
same coordinates is created on the other side of the non-
conforming interface as shown in Fig. 2. The element that
contains this enriched node is then split into integration ele-
ments [93]. An ordered tree data structure is recommended to
store the associations among integration elements and their
mesh parent elements. Integration elements are used to per-
form the numerical quadrature of elemental local stiffness
and force arrays given by (19)–(24). The assembly of these

contributions into the corresponding global counterparts fol-
lows standard procedures. MPCs or LMs are then used to
enforce continuity constraints among non-conforming mesh
nodes and their enriched slaves; while the application of
MPCs is done according to standard procedures, the use of
LMs can be regarded as a simplified version of the contact
problem without a convergence test (more on this below).

4.2 Contact

We use a generalized Newton method to solve the nonlin-
ear contact load increment following the procedure outlined
in Algorithm 1 which is now described. At each load incre-
ment we create enriched nodes using the closest projection
method [1,92] to determined their location (refer to Fig. 3).
Integration elements are created afterwards, similarly to the
procedure just discussed for the coupling of non-conforming
meshes. Here, as the relative displacement between contact-
ing bodies can be neglected, we only determine the locations
of enriched nodes at the beginning of each contact step, in
analogy with the active set strategy in NTS contact [1]. For
simplicity, we first detect enriched nodes without checking
their gap in the normal direction; we then compute the gap
and, if it is larger than zero, these nodes make no contribu-
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tion to the stiffness or internal force calculation based on the
inactive constraint formulation described in Sect. 3.5. This
approach helps the convergence within a step in the case
where nodes are not in contact at the start of a step, but come
in contact during the iteration.

Once the number of enriched nodes is determined, the
number of required Lagrange multipliers is also determined
(the cardinality of set N is denoted |N | in Algorithm 1).
The total number of DOFs, which includes the DOFs for
displacement and Lagrange multipliers in the generalized
Newtonmethod, is used to initialize the global arrays. Notice
that in the displacement and Lagrange multiplier vectors,
only the elements that correspond to active constraints are
kept (and zeros are added for newly added enriched DOFs
and multipliers). The unconstrained global arrays are then
assembled considering also the enriched contributions [14].

The following loop over the index set of enriched nodes
adds the contribution of contact constraints to the global
arrays.AugmentedLagrangemultipliers are calculated based
on the gap and penalty parameter. Note that contributions are
added only if there is contact, i.e., λ̂n,i ≤ 0.

After the solution of the system of equations and the
update of the primal (displacement) and dual (Lagrangemul-
tiplier) fields, a convergence check is made. Whenever the
norm of both vectors is lower than a user-specified toler-
ance, the analysis continues to the next contact step. As
mentioned above, LMs can be used for the mesh coupling
problem, which can be regarded as a contact analysis where
the enriched positions (mismatching nodes) are known at the
beginning of the analysis; the solution to this problem can
then be obtained directly in one iteration.

5 Numerical examples

The accuracy and robustness of the proposed method is now
demonstrated by means of numerical examples. Homoge-
neous linearly elastic materials and plane strain conditions
are chosen. For convenience, no units are adopted so results
are valid for any consistent unit system. Constant strain tri-
angular elements are used with one point quadrature rule for
both standard and integration elements.

5.1 Contact patch test

The commonly used contact patch test of Taylor and
Papodopoulos [24] is used to study the ability of our method
to correctly transfer contact tractions. The problem consists
of an elastic substrate with a rectangular punch as illustrated
in Fig. 4. Both the punch and the substrate are subject to a
uniformly distributed vertical unit traction t̄ along their top
edges. The substrate and the punch have the same Young’s
modulus E = 10 and Poisson’s ratio ν = 0.3. The problem is
setup so that the punch comes into contact with the substrate

because of the applied pressure. Since the same material is
used for the punch and substrate, and the pressure is uni-
formly distributed on the top surfaces, the substrate should
experience a constant state of strain and stress.

The problem is then solved using the following discretiza-
tion methods: (a) Standard FEM using a single-pass MPC;
(b) Standard FEM with a two-pass MPC; (c) Our enriched
method using a two-pass MPC; and (d) Our enriched method
using ALM.

For the single-pass MPC example, we defined the top sur-
face of the substrate asmaster and the lower surface of the top
block as slave (switching master and slave surfaces leads to
an unconstrained system). Finally, the same strategy is used
to integrate the applied pressure in all cases.

Figure 5 shows the stress field on the deformed configu-
ration for all methods. The standard FEM single-pass MPC
method (panel (a)) is unable to ensure continuity and results
in a non-constant stress field; notice also the interpenetra-
tion between the substrate and the punch. The standard FEM
two-pass MPC method (panel (b)) ensures continuity along
the contact boundary and passes the patch test. The results
obtained with our enriched formulation (two-pass MPC in
panel (c) andALM in panel (d)) show that themethod ensures
C0-continuity and passes the patch test. In addition, exact
integration of the applied pressure is readily possible because
of the presence of integration elements with an enriched
node at the location where the applied pressure is discon-
tinuous.

5.2 Convergence study

The convergence of the proposed method is investigated
by means of the classical problem of a circular hole in an
infinite plate, for which the exact solution can be found in
Refs. [99,100]. As shown in the schematic of Fig. 6a, a square
computational domain of size L = 20 with a centered whole
of radius r = 4 is chosen. The material properties of the
plate are E = 10 and ν = 0.3. On the boundary of the

e1

e2
H = 5

h = 2

L = 10

l = 3

t t

t

E,

E,

ν

ν

Fig. 4 Geometry and boundary conditions of the contact patch test. The
top block is placed on the middle of the substrate
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Fig. 5 Deformed configurations
(4× magnification) for the
contact patch test showing the
element stress in the e2 direction
and the contact tractions plotted
at nodes with red arrows:
Standard FEM with single- (a)
and two-pass (b) MPC;
Enriched approach with a
two-pass MPC (c) and ALM (d)

(a) 22

−2 −1 0

(b)

(c) (d)

σ

r

e1
e2

L

∞

E

(a)

(b) (c)

ν

σ∞σ

Fig. 6 a Infinite plate with circular hole subjected to uniform traction
at x1 = ±∞. The square region indicates the computational domain;
b Typical conforming standard FEM mesh; c Typical mesh with a non-

conforming interface. Convergence results are shown for the cases of
horizontal and vertical interfaces (for the latter the mesh is rotated)

square domain we prescribe the exact displacement field cor-
responding to the uniform far-field traction t̄ = ±σ∞e1, with
σ∞ = 1.

Figure 6 shows the two discretizations for this problem:
a standard conforming FE mesh in panel (a) and a mesh
composed of two parts that are non-conforming along the
coupling interface in panel (b), where the ratio between the
the element sizes in the top and bottom domains is equal to
2 and is kept constant with mesh refinement. Four different
analysis approaches are compared: i) Standard FEM using
conforming meshes; ii) Two-pass MPC on non-conforming
discretizations; iii) Our enriched method using a two-pass
MPC; and iv) Our enriched method using LM. Since the
single-passMPCcannot ensure continuity along the coupling

interface, as demonstrated in the previous example, it has
been discarded in this analysis.

Convergence is studied via the standard, L2, and energy,
E , norms of the error defined as

‖ε‖L2 ≡
∥
∥u − uh

∥
∥L2(�)

‖u‖L2(�)

=
√∑

e∈�h

∫
e ‖u − uh‖2 d�

√∑
e∈�h

∫
e ‖u‖2 d�

, (43)

‖ε‖E ≡
∥∥u − uh

∥∥E(�)

‖u‖E(�)
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Fig. 7 Convergence results for
the horizontal (top row) and
vertical (bottom row)
non-conforming interface.
Figures show the error in
L2-norm (left column) and
energy norm (right column) as a
function of the total number of
DOFs nd . The curves for
enriched methods with MPC
and LM overlap
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=
√∑

e∈�h

∫
e

(
ε − εh

)ᵀ D
(
ε − εh

)
d�

√∑
e∈�h

∫
e εᵀDε d�

, (44)

where quantities with and without the superscript h refer to
approximate and exact solutions, respectively.

The plots in the top row of Fig. 7 show the convergence
results with the configuration shown in Fig. 6 (horizontal
interface). While the two-pass MPC method does not con-
verge due to locking originated from an overconstrained
interface [3,101], the curves of the two enriched approaches
overlap and achieve the same rate of convergence as that of
standard FEM with conforming discretizations: about 1 for
the L2 norm and 0.5 for the energy norm. Similar results,
reported in the second row of Fig. 7, are obtained when the
non-conforming mesh is rotated 90◦, resulting in a vertical
interface.

The energy norm of the error corresponding to the four
methods using the mesh with horizontal and vertical non-
conforming interfaces are shown in Fig. 8, plotted per
element (average value). The results corresponding to the
enriched methods and standard FEM are in good agreement,
whereas those obtained by the two-pass MPC (panel (b))
show some clear differences along the coupling interface.

This example shows that the performance of the proposed
method for mesh coupling is basically identical to that of
the standard FEM on conforming meshes. Because the same
convergence rates are obtained, it can be concluded that

the LBB condition is fulfilled. In contrast to the two-pass
MPC method, our method avoids interface locking because
enriching the primal field gives more kinematic freedom to
the interface. The enrichment therefore enables an accurate
representation of the mechanical behavior at the coupling
interface.

5.3 Stability

Following our previous work on enriched FEM [21,22,93],
we investigate the stability of the proposed method. Using
the same problem geometry of the contact patch test used in
Sect. 5.1, we examine the influence of punch location and
mesh size on the condition number of the system matrix.
We compute the condition number of the global system
matrix K as

cond (K ) ≡ κ (K ) = λmax

λmin
, λmin �= 0, (45)

where λmax and λmin denote, respectively, the highest and
lowest (non-zero) eigenvalues of the system matrix. No
Dirichlet boundary conditions are enforced on the system
and therefore we discard the lowest six eigenvalues, which
correspond to the rigid body modes of both blocks.

We investigate the condition number of the matrices with
MPC and ALM. For each approach three variations of the
enriched method are compared: ns) The enriched method
without scaling enrichment functions, i.e., si = 1 in Eq. (18);
os) The enriched method with the optimal scaling proposed
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10 2

0

(a)

(b) (c) (d)

(e) (f) (g)

E

Fig. 8 Contour plots of the error in energy norm, averaged per element: a Standard FEM; b Horizontal non-conforming interface with two-pass
MPC; c, d enriched FEMs with MPC (c) and LM (d); e Vertical non-conforming interface with two-pass MPC; f, g Enriched FEMs with MPC (f)
and LM (g)

in Ref. [21], i.e., si = √
2ζ (1 − ζ ), where 0 ≤ ζ ≤ 1

denotes the (relative) location of the enriched node in the
finite element side that contains it; and pc) The enriched
method without scaling, but using a diagonal preconditioner
such that K pc = �K�, where�i j = δi j/

√
Ki j is a diagonal

matrix with δi j denoting the Kronecker delta.

Effect of punch location

In the first test, the influence of the punch location on the
condition number as it moves on the substrate is evaluated
(see Fig. 9a). Both substrate and punch are discretized
with two triangular elements (see Fig. 9b). Their material

properties are, respectively, E1 = 10, E2 = 10,000 and
ν1 = ν2 = 0.3.

Figure 10 shows the condition number of the stiffness
matrix as a function of the punch location. For MPC, the
condition number for the unscaled enrichedmethod (labelled
κ(K̄ ns)) rises slightly when the punch approaches the sides
of the substrate. However, when using the optimal scaling
proposed in Ref. [21] (labelled κ(K̄ os)), the condition num-
ber is the same as that of unscaled method, showing that
the ineffectiveness of the scaling factor demonstrated in the
one-dimensional example in Appendix A holds also in this
case.Applying the diagonal preconditioner (labelledκ(K̄ pc))
improves the condition number. Overall, the condition num-
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Fig. 9 a Moving punch schematic; b Finite element mesh, where sub-
strate and punch are discretized with two triangular elements
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Fig. 10 Condition number as a function of punch location x1

ber remains bounded as enriched nodes are placed arbitrarily
close to standard finite element nodes when dealing with
MPCs.

For ALM, the condition number of the original stiff-
ness matrix without enrichment scaling (labelled κ(K̂ ns))
also overlaps the one that uses optimal enrichment scaling
(labelled κ(K̂ os)). However, with the diagonal precondi-
tioner (labelled κ(K̂ pc), the condition number improves
significantly, but is still higher than that of the MPC method.

Effect of mesh size

In this second test, which is illustrated schematically in
Fig. 11a, we study the influence of mesh refinement with
a fixed punch. The material properties are the same as those
used in the first test. The results of our enriched approach
are compared to those of standard FEM using conforming
node-to-node contact discretizations, as shown in Fig. 11b.
Figure 11c shows a typical finite element discretization used
for all other results.

The results in Fig. 12 show the condition number as a func-
tion of mesh size (left) and total number of DOFs (right). The
reference curve (labeled κ(K std)) is computed using the con-
forming mesh shown in Fig. 11b. It is well known that the
condition number in standard FEM scales as O (

h−2
)
with

mesh size h and O (nd) with the total number of DOFs nd .
For MPC, the condition number of the original enriched sys-
tem matrix indeed deteriorates with mesh refinement (curve
κ(K̄ ns)). Also in this case, the optimal scaling proposed in

H = 5

h = 2

L = 10

l = 3

x1 = 3 5

e2

e1
E1, 1

E2, 2

(a)

(b)

(c)

ν

ν

Fig. 11 a Fixed punch schematic; b Standard FEM conforming node-
to-node contact mesh used as reference; and c Non-conforming mesh
used for the enriched methods
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Fig. 12 Condition number of
the entire stiffness matrix as a
function of mesh size h (left)
and total number of
DOFs (right)
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Fig. 13 Geometry of the Hertzian contact example

Ref. [21] (curve κ(K̄ os)) has no effect on the condition-
ing. However, applying the simple diagonal preconditioner
improves the condition number significantly (curve κ(K̄ pc)).
Noteworthy, the condition number of the enriched system
matrices increases at the same rate as that of standard FEM
with node-to-node contact. Therefore, the enriched method
constrained using MPCs with a simple preconditioner is as
stable as standard FEM.

For ALM, the condition numbers are generally worse
than those obtained with MPCs. The condition number also
deteriorates with mesh refinement, and the magnitude with
and without scaling is also the same (curves κ(K̂ ns) and
κ(K̂ os), respectively). We find that the condition number of
the enriched system matrix with a simple pre-conditioner
(curve κ(K̂ pc)) is close to that of the preconditioned matrix
using MPCs and grows at the same rate as FEM with node-
to-node contact.

5.4 Hertzian contact problem

Figure 13 illustrates a Hertzian contact problem, where a
semi-circular punch with radius r = 10 and material prop-
erties E2 = 700, 000 and ν2 = 0.3 is subject to a uniformly

(a)

(b)

22

0 350

σ

Fig. 14 Stress σ22 for different discretizations (integration elements
are drawn with red edges): a substrate mesh coarser than punch mesh,
b similar mesh sizes for punch and substrate

distributed load t̄ = −25e2 and pushed against a substrate
with material properties E1 = 7000 and ν1 = 0.3. The sub-
strate has length l = 20 and height h = 10 and is simply
supported along the bottom edge. The solution to this prob-
lem is given in Ref. [85]:

pn = 4r t̄

πb2

√
b2 − x21 , b = 2

√
2r2 t̄

πE∗ ,

1

E∗ = 1

2

(
1 − ν21

E1
+ 1 − ν22

E2

)

,

(46)

where t̄ is the magnitude of applied traction, pn denotes the
contact pressure, b the contact area, and E∗ the effective
stiffness.
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The load is applied in twenty load increments of equal
magnitude. We used the enriched method with ALM, and
convergence (with a tolerance ‖�U‖/‖U‖ < 10−5) was
reached within four iterations per step. Two different meshes
are used in this numerical test: for the first one, the substrate
discretization is coarser than that of the punch, while in the
second one punch and substrate are discretizedwith elements
of similar sizes. In both cases, Fig. 14 shows the presence
of enriched nodes also far from the contact area. Enriched
nodes are actually added also far from the contact area for
convenience (in practice, all standard nodes from one contact
surface are projected to the other and vice versa). Enriched
nodes that do not come into contact with the corresponding
standardnodewill be regarded as inactive in the calculationof
stiffness matrix and force vector components. The results are
reported in terms of stress distribution σ22 in Fig. 14 and con-
tact pressure profile in Fig. 15. The stress field shows a typical
Hertzian contact distribution. Figure 15b shows the contact
pressure relative error, computed as e = |pn − phn |/|pn|,
where phn is the pressure obtained numerically. We find that
the steep pressure gradients in elements that transition from
contact to no contact are responsible of yielding inaccurate
contact tractions. The error in the interior region is within
7% for both discretizations studied. Therefore, in this region
the numerical contact pressure profile approximates the ana-
lytical solution closely.

6 Discussion

Compared to traditional contact and coupling formulations,
the proposed method has a number of advantages. As the
enriched formulation essentially transforms the problem
into a node-to-node discretization, it is possible to utilize

the most straightforward coupling and contact techniques.
This also facilitates the implementation in existing standard
displacement-based finite element packages. Furthermore, as
the tractions are properly transferred and over-constrained
locking is avoided, no contact stabilization techniques are
required. This important intrinsic property of the formu-
lation, which was first noticed while comparing DE-FEM
with X/GFEM in Ref. [14], relates also to the recovery
of smooth tractions in immersed analysis using IGFEM
and DE-FEM [16,22]. Noteworthy, our traction profiles are
on par with those obtained by the virtual element method
(VEM) [85], whereby a non-conforming problem is trans-
formed into a node-to-nodeVEM-conforming discretization;
in our procedure, however, formulation and computer imple-
mentation aremuch simpler thanVEM. It is important to note
that the shape functions of the original element are kept intact,
and enrichments are only nonzero in the elements along the
contact boundary (thus the partition of unity property in these
elements is lost). Because enrichment functions are local
by construction and vanish at the original mesh nodes, the
Kronecker delta property on those nodes is retained, and all
standard DOFs preserve their physical interpretation. As a
result, post-processing is only required to compute the solu-
tion at enriched nodes, and because every enriched node is
matched to a standard node, obtaining the DOFs of the latter
further reduces post-processing.

It has been acknowledged in previousworks that interface-
and discontinuity-enriched formulations may have difficul-
ties in properly reconstructing field gradients (strains and
thus stresses). This issue stems from the construction of the
enriched finite element space, which may use sliver integra-
tion elements that degrade the accuracy of field gradients (as
in standard FEM). While the issue is more pronounced for
material interfaces [102,103], it has been shown recently that
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Fig. 15 Traction profile for the Hertz contact problem: a Comparison of the numerical profiles obtained with the discretizations shown in Fig. 14;
b Relative error with respect to the analytical solution
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the issue is negligible near Dirichlet boundaries [22] and near
traction-free cracks [93]. In the context of contact and mesh
coupling problems, our numerical experiments indicate that
this issue is not present. As enriched nodes are only placed
along the contact/coupling interfaces, we conjecture that the
presence of sliver integration elements does not adversely
affect the gradient field accuracy and thus the method can
properly recover strains and stresses. It is worth noting that
there is work [104] that aims at improving the accuracy of
recovered gradient fields from enriched FEMs (and in fact
unfitted FEMs in general).

Although in this work we considered linearized kine-
matics and frictionless contact, the extension of the current
enriched framework tomore advanced problems such as fric-
tional contact, contact in 3D, and contact in large deformation
is relatively straightforward. The only drawbacks we see at
the moment are related to the non-symmetric global stiffness
matrix stemming from the frictional contact formulation, the
necessity of a more efficient way of contact detection in a
three-dimensional implementation, and the possible need of
smoothing techniques to achieve better convergence prop-
erties in large deformation problems. Finally, the proposed
method could also be applied to high-order approximations,
albeit high-order enriched functions would be needed to
properly describe curved edges (assuming that geometry is
described nonlinearly).
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Appendix A: An analytical 1D problem to
investigate the role of the optimal scaling
factor

A simple 1D problem is proposed to investigate the ineffec-
tiveness of the optimal scaling factor in the results reported
in Sect. 5.3. Figure A1 shows the problem, consisting of a 1D
rod (element 1) that is coupled somewhere along its length at

4

2

u0 u1

u2 u3

1

(1)(2)

Fig. A1 One-dimensional coupling problem

location ξ to another 1D rod (element 2) through an enriched
node.

To ease the presentation, both elements have unit lengths,
unit cross sections, and unit stiffnesses. Therefore, there is
no difference between the global coordinates and the local
coordinates of element 1. For element 2, the local coordinate
system is simply shifted with respect to the global coordi-
nates.

N0 = 1 − ηi , N1 = ηi i = 1, 2. (A1)

The enrichment function below, endowed with scaling factor
s, is defined in element 1:

sψ =
{ s

ξ
η1 0 ≤ η1 ≤ ξ

s
1−ξ

(1 − η1) ξ ≤ η1 ≤ 1
. (A2)

The element matrix for element 1, including the enrich-
ment function contribution, is computed as

k1 =
∫ ξ

0

[
Bᵀ
u

Bᵀ
α

]

D
[
Bu Bα

]
dη1

+
∫ 1

ξ

[
Bᵀ
u

Bᵀ
α

]

D
[
Bu Bα

]
dη1

= ξ

⎡

⎢
⎣

−1

1
s
ξ

⎤

⎥
⎦
[
−1 1 s

ξ

]

+ (1 − ξ)

⎡

⎣
−1
1

− s
1−ξ

⎤

⎦
[
−1 1 − s

1−ξ

]

=

⎡

⎢⎢
⎣

1 −1 0

−1 1 0

0 0 s2
1−ξ

+ s2
ξ

⎤

⎥⎥
⎦ ,

(A3)

while that for element 2 reads

k2 =
∫ 1

0
Bᵀ
u DBu dη2 =

[−1
1

] [−1 1
] =

[
1 −1

−1 1

]
. (A4)
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The assembled stiffness matrix of the entire system is then

K =

⎡

⎢
⎢⎢⎢⎢⎢
⎢
⎣

1 −1 0 0 0

−1 1 0 0 0

0 0 1 −1 0

0 0 −1 1 0

0 0 0 0 s2
1−ξ

+ s2
ξ

⎤

⎥
⎥⎥⎥⎥⎥
⎥
⎦

, (A5)

which clearly shows that standard and enriched elements are
decoupled. Coupling is achieved by means of the multiple-
point constraint relation

u (ξ) = N0 (ξ) u0 + N1 (ξ) u1 + s� (ξ) α4 = u3 (A6)

from which, since ψ (ξ) = 1,

α4 = 1

s
u3 − N0 (ξ)

s
u0 − N1 (ξ)

s
u1. (A7)

Considering that

U = TŪ =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

u0

u1

u2

u3

α4

⎤

⎥⎥⎥
⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎢⎢⎢
⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

− 1−ξ
s − ξ

s 0 1
s

⎤

⎥⎥⎥
⎥⎥⎥
⎦

⎡

⎢⎢
⎢⎢
⎣

u0

u1

u2

u3

⎤

⎥⎥
⎥⎥
⎦

, (A8)

the transformation matrix T for the multiple-point constraint
is therefore

T =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

− 1−ξ
s − ξ

s 0 1
s

⎤

⎥⎥⎥⎥
⎥⎥
⎦

, (A9)

from which one obtains the modified stiffness matrix

K̄ = TᵀKT =

⎡

⎢⎢⎢⎢
⎣

1
ξ

0 0 − 1
ξ

0 − 1
ξ−1 0 1

ξ−1

0 0 1 −1

− 1
ξ

1
ξ−1 −1 ξ(ξ−1)−1

ξ(ξ−1)

⎤

⎥⎥⎥⎥
⎦

. (A10)

Note that the scaling factor s does not appear in the modi-
fied stiffnessmatrix K̄ . The scaling factor, therefore, does not
have any influence on eigenvalues and condition number of
the systemmatrix. It can be concluded that scaling of enrich-
ment functions is ineffective towards the improvement of the
condition number of enriched coupling and contact problems
using MPCs.
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63. Krstulović-OparaL,Wriggers P,Korelc J (2002)AC1-continuous
formulation for 3D finite deformation frictional contact. Comput
Mech 29(1):27–42. https://doi.org/10.1007/s00466-002-0317-z

64. Sauer RA (2011) Enriched contact finite elements for stable peel-
ing computations. Int J Numer Methods Eng 87(6):593–616.
https://doi.org/10.1002/nme.3126

65. Stadler M, Holzapfel GA, Korelc J (2003) Cn continuous mod-
elling of smooth contact surfaces using NURBS and application
to 2D problems. Int J Numer Methods Eng 57(15):2177–2203.
https://doi.org/10.1002/nme.776

66. Lu J (2011) Isogeometric contact analysis: geometric basis and
formulation for frictionless contact. Comput Methods Appl Mech
Eng 200(5–8):726–741. https://doi.org/10.1016/j.cma.2010.10.
001

67. De Lorenzis L, Temizer I, Wriggers P, Zavarise G (2011) A large
deformation frictional contact formulation using NURBS-based
isogeometric analysis. Int J Numer Methods Eng 87(13):1278–
1300. https://doi.org/10.1002/nme.3159

68. Temizer I, Wriggers P, Hughes TJR (2011) Contact treatment in
isogeometric analysiswithNURBS.ComputMethodsApplMech
Eng 200(9–12):1100–1112. https://doi.org/10.1016/j.cma.2010.
11.020

69. Temizer I, Wriggers P, Hughes TJR (2012) Three-dimensional
mortar-based frictional contact treatment in isogeometric analysis
with NURBS. Comput Methods Appl Mech Eng 209–212:115–
128. https://doi.org/10.1016/j.cma.2011.10.014

70. De Lorenzis L, Wriggers P, Zavarise G (2012) A mortar for-
mulation for 3D large deformation contact using NURBS-based
isogeometric analysis and the augmented Lagrangian method.
Comput Mech 49(1):1–20. https://doi.org/10.1007/s00466-011-
0623-4

71. Corbett CJ, Sauer RA (2014) NURBS-enriched contact finite ele-
ments. Comput Methods Appl Mech Eng 275:55–75. https://doi.
org/10.1016/j.cma.2014.02.019

72. Corbett CJ, Sauer RA (2015) Three-dimensional isogeometrically
enriched finite elements for frictional contact and mixed-mode
debonding. Comput Methods Appl Mech Eng 284:781–806.
https://doi.org/10.1016/j.cma.2014.10.025

73. Dimitri R, De Lorenzis L, Scott MA, Wriggers P, Taylor RL,
Zavarise G (2014) Isogeometric large deformation friction-
less contact using T-splines. Comput Methods Appl Mech Eng
269:394–414. https://doi.org/10.1016/j.cma.2013.11.002

74. Dimitri R (2015) Isogeometric treatment of large deformation
contact and debonding problems with T-splines: a review. Curved
Layer Struct 2(1):59–90. https://doi.org/10.1515/cls-2015-0005

75. Seitz A, Farah P, Kremheller J, Wohlmuth BI, Wall WA, Popp
A (2016) Isogeometric dual mortar methods for computational
contact mechanics. Comput Methods Appl Mech Eng 301:259–
280. https://doi.org/10.1016/j.cma.2015.12.018

76. Dittmann M, Franke M, Temizer I, Hesch C (2014) Isogeometric
analysis and thermomechanical mortar contact problems. Comput
Methods Appl Mech Eng 274:192–212. https://doi.org/10.1016/
j.cma.2014.02.012

77. Kruse R, Nguyen-Thanh N, De Lorenzis L, Hughes TJR (2015)
Isogeometric collocation for large deformation elasticity and
frictional contact problems. Comput Methods Appl Mech Eng
296:73–112. https://doi.org/10.1016/j.cma.2015.07.022

78. De Lorenzis L, Evans JA, Hughes TJR, Reali A (2015) Isogeo-
metric collocation: Neumann boundary conditions and contact.
Comput Methods Appl Mech Eng 284:21–54. https://doi.org/10.
1016/j.cma.2014.06.037

79. Duong TX, Sauer RA (2019) A concise frictional contact formu-
lation based on surface potentials and isogeometric discretization.
Comput Mech 64(4):951–970. https://doi.org/10.1007/s00466-
019-01689-0

80. Duong TX, De Lorenzis L, Sauer RA (2019) A segmentation-
free isogeometric extendedmortar contact method. ComputMech
63(2):383–407. https://doi.org/10.1007/s00466-018-1599-0

81. Sauer RA, De Lorenzis L (2013) A computational contact formu-
lation based on surface potentials. Comput Methods Appl Mech
Eng 253:369–395. https://doi.org/10.1016/j.cma.2012.09.002

82. Duong TX, Sauer RA (2015) An accurate quadrature technique
for the contact boundary in 3D finite element computations. Com-
put Mech 55(1):145–166. https://doi.org/10.1007/s00466-014-
1087-0

83. Sauer RA, De Lorenzis L (2015) An unbiased computational
contact formulation for 3D friction. Int J Numer Methods Eng
101(4):251–280. https://doi.org/10.1002/nme.4794

84. Temizer I (2013) A mixed formulation of mortar-based contact
with friction. Comput Methods Appl Mech Eng 255:183–195.
https://doi.org/10.1016/j.cma.2012.12.002

85. Wriggers P, RustWT, ReddyBD (2016)A virtual elementmethod
for contact. Comput Mech 58(6):1039–1050. https://doi.org/10.
1007/s00466-016-1331-x

86. Wriggers P, Rust WT (2019) A virtual element method for
frictional contact including large deformations. Eng Comput
(Swansea, Wales) 36(7):2133–2161. https://doi.org/10.1108/EC-
02-2019-0043

123

https://doi.org/10.1002/nme.374
https://doi.org/10.1002/nme.374
https://doi.org/10.1002/nme.426
https://doi.org/10.1002/cnm.821
https://doi.org/10.1002/cnm.821
https://doi.org/10.1002/nme.2866
https://doi.org/10.1002/nme.2866
https://doi.org/10.1002/gamm.201410004
https://doi.org/10.1002/gamm.201410004
https://doi.org/10.1002/nme.2907
https://doi.org/10.1002/nme.568
https://doi.org/10.1016/S0168-874X(00)00029-9
https://doi.org/10.1007/s00466-012-0813-8
https://doi.org/10.1007/s00466-012-0813-8
https://doi.org/10.1002/1097-0207(20010210)50:4<953::AID-NME64>3.0.CO;2-P
https://doi.org/10.1002/1097-0207(20010210)50:4<953::AID-NME64>3.0.CO;2-P
https://doi.org/10.1007/s00466-002-0317-z
https://doi.org/10.1002/nme.3126
https://doi.org/10.1002/nme.776
https://doi.org/10.1016/j.cma.2010.10.001
https://doi.org/10.1016/j.cma.2010.10.001
https://doi.org/10.1002/nme.3159
https://doi.org/10.1016/j.cma.2010.11.020
https://doi.org/10.1016/j.cma.2010.11.020
https://doi.org/10.1016/j.cma.2011.10.014
https://doi.org/10.1007/s00466-011-0623-4
https://doi.org/10.1007/s00466-011-0623-4
https://doi.org/10.1016/j.cma.2014.02.019
https://doi.org/10.1016/j.cma.2014.02.019
https://doi.org/10.1016/j.cma.2014.10.025
https://doi.org/10.1016/j.cma.2013.11.002
https://doi.org/10.1515/cls-2015-0005
https://doi.org/10.1016/j.cma.2015.12.018
https://doi.org/10.1016/j.cma.2014.02.012
https://doi.org/10.1016/j.cma.2014.02.012
https://doi.org/10.1016/j.cma.2015.07.022
https://doi.org/10.1016/j.cma.2014.06.037
https://doi.org/10.1016/j.cma.2014.06.037
https://doi.org/10.1007/s00466-019-01689-0
https://doi.org/10.1007/s00466-019-01689-0
https://doi.org/10.1007/s00466-018-1599-0
https://doi.org/10.1016/j.cma.2012.09.002
https://doi.org/10.1007/s00466-014-1087-0
https://doi.org/10.1007/s00466-014-1087-0
https://doi.org/10.1002/nme.4794
https://doi.org/10.1016/j.cma.2012.12.002
https://doi.org/10.1007/s00466-016-1331-x
https://doi.org/10.1007/s00466-016-1331-x
https://doi.org/10.1108/EC-02-2019-0043
https://doi.org/10.1108/EC-02-2019-0043


Computational Mechanics (2022) 70:477–499 499

87. Bashir-ahmed M, Xiao-zu SU, Aldakheel F, Hudobivnik B,
Artioli E, Beirão da Veiga L, Wriggers P (2020) Curvilinear
virtual elements for contact mechanics. Comput Methods Appl
Mech Eng 372(September):113394. https://doi.org/10.1016/j.
cma.2020.113394

88. Haikal G (2009) A stabilized finite element formulation of
non-smooth contact. PhD thesis, University of Illinois at Urbana-
Champaign

89. Masud A, Truster TJ, Bergman LA (2012) A unified formula-
tion for interface coupling and frictional contact modeling with
embedded error estimation. Int J NumerMethods Eng 92(2):141–
177. https://doi.org/10.1002/nme.4326

90. Jiao X, HeathMT (2004) Overlaying surface meshes, part I: algo-
rithms. Int J Comput Geom Appl 14(6):379–402. https://doi.org/
10.1142/S0218195904001512

91. JiaoX,HeathMT (2004)Common-refinement-based data transfer
between non-matching meshes in multiphysics simulations. Int J
NumerMethods Eng 61(14):2402–2427. https://doi.org/10.1002/
nme.1147

92. Aragón AM, Yastrebov VA, Molinari J-F (2013) A constrained-
optimization methodology for the detection phase in contact
mechanics simulations. Int J NumerMethods Eng 96(5):323–338.
https://doi.org/10.1002/nme.4561

93. Zhang J, van den Boom SJ, van Keulen F, Aragón AM (2019)
A stable discontinuity-enriched finite element method for 3-D
problems containing weak and strong discontinuities. Comput
Methods Appl Mech Eng 355:1097–1123. https://doi.org/10.
1016/j.cma.2019.05.018

94. van den Boom SJ, van Keulen F, Aragón AM (2021) Fully
decoupling geometry from discretization in the Bloch–Floquet
finite element analysis of phononic crystals. Comput Methods
ApplMech Eng 382:113848. https://doi.org/10.1016/j.cma.2021.
113848

95. Simo JC, Laursen TA (1992)An augmented Lagrangian treatment
of contact problems involving friction. Comput Struct 42(1):97–
116. https://doi.org/10.1016/0045-7949(92)90540-G

96. Curnier A, Alart P (1988) A generalized Newton method for con-
tact problems with friction. Journal de Mécanique Théorique et
Appliquée 7:67–82

97. Kunisch K, Stadler G (2005) Generalized Newton methods for
the 2D-Signorini contact problem with friction in function space.
ESAIMMathModel Numer Anal 39(4):827–854. https://doi.org/
10.1051/m2an:2005036

98. Liu GR, Quek SS (2014) The finite element method: a practi-
cal course. Elsevier, Oxford. https://doi.org/10.1016/B978-0-08-
098356-1.00014-X

99. Kirsch G (1898) Die Theorie der Elastizität und die Bedürfnisse
der Festigkeitslehre. Zeitschrift des Vereines Deutscher Inge-
nieure 42(28):797–807

100. Jaeger JC, Cook NGW, Zimmerman RW (2007) Fundamentals of
rock mechanics, 4th edn. Blackwell Publishing, Malden

101. Szabó B, Babuska I (2011) Introduction to finite element anal-
ysis: formulation, verification and validation. Wiley, Chichester.
https://doi.org/10.1002/9781119993834

102. Soghrati S, Nagarajan A, Liang B (2017) Conforming to inter-
face structured adaptive mesh refinement: new technique for the
automated modeling of materials with complex microstructures.
Finite Elem Anal Des 125:24–40. https://doi.org/10.1016/j.finel.
2016.11.003

103. Nagarajan A, Soghrati S (2018) Conforming to interface struc-
tured adaptive mesh refinement: 3D algorithm and implemen-
tation. Comput Mech 62(5):1213–1238. https://doi.org/10.1007/
s00466-018-1560-2

104. Zhang J, Aragón AM (2022) An improved stress recovery tech-
nique for the unfitted finite element analysis of discontinuous
gradient fields. Int JNumerMethodsEng 123(3):639–663. https://
doi.org/10.1002/nme.6825

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1016/j.cma.2020.113394
https://doi.org/10.1016/j.cma.2020.113394
https://doi.org/10.1002/nme.4326
https://doi.org/10.1142/S0218195904001512
https://doi.org/10.1142/S0218195904001512
https://doi.org/10.1002/nme.1147
https://doi.org/10.1002/nme.1147
https://doi.org/10.1002/nme.4561
https://doi.org/10.1016/j.cma.2019.05.018
https://doi.org/10.1016/j.cma.2019.05.018
https://doi.org/10.1016/j.cma.2021.113848
https://doi.org/10.1016/j.cma.2021.113848
https://doi.org/10.1016/0045-7949(92)90540-G
https://doi.org/10.1051/m2an:2005036
https://doi.org/10.1051/m2an:2005036
https://doi.org/10.1016/B978-0-08-098356-1.00014-X
https://doi.org/10.1016/B978-0-08-098356-1.00014-X
https://doi.org/10.1002/9781119993834
https://doi.org/10.1016/j.finel.2016.11.003
https://doi.org/10.1016/j.finel.2016.11.003
https://doi.org/10.1007/s00466-018-1560-2
https://doi.org/10.1007/s00466-018-1560-2
https://doi.org/10.1002/nme.6825
https://doi.org/10.1002/nme.6825

	An interface-enriched generalized finite element formulation  for locking-free coupling of non-conforming discretizations  and contact
	Abstract
	1 Introduction
	2 Previous work on contact discretizations
	3 Problem description and formulation
	3.1 Governing equations
	3.2 Variational formulation
	3.3 The finite-dimensional interface-enriched generalized finite element formulation
	3.4 Stiffness matrix contributions
	3.5 Constraint enforcement
	Multiple-point constraint method
	Augmented Lagrange method
	Contact contribution
	Inactive constraints


	4 Implementation 
	4.1 Coupling of non-conforming meshes
	4.2 Contact

	5 Numerical examples
	5.1 Contact patch test
	5.2 Convergence study
	5.3 Stability
	Effect of punch location
	Effect of mesh size

	5.4 Hertzian contact problem

	6 Discussion
	Acknowledgements
	Appendix A: An analytical 1D problem to investigate the role of the optimal scaling  factor
	References




