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AN INTERFACE TRACKING ALGORITHM
FOR THE POROUS MEDIUM EQUATION1

BY
E. DI BENEDETTO AND DAVID HOFF

Abstract. We study the convergence of a finite difference scheme for the Cauchy
problem for the porous medium equation u, = («m)AV, m > 1.

The scheme exhibits the following two features. The first is that it employs a
discretization of the known interface condition for the propagation of the support of
the solution. We thus generate approximate interfaces as well as an approximate
solution.

The second feature is that it contains a vanishing viscosity term. This term permits
an estimate of the form ||(""i_1)a.vIIi.r < c/t.

We prove that both the approximate solution and the approximate interfaces
converge to the correct ones.

Finally error bounds for both solution and free boundaries are proved in terms of
the mesh parameters.

1. Introduction. In this paper we derive and analyze a finite difference scheme for
computing both the solution and the interfaces for the porous medium equation in
one space dimension. We demonstrate that the approximate solutions and the
approximate interface curves converge to the correct ones, and we obtain L00 bounds
for the error in terms of the mesh parameter.

Consider the laminar flow of a polytropic fluid of density (x, t) -* u(x, t) in a
porous medium which is assumed to occupy the whole space, and suppose that at
time t = 0 the fluid is contained in the slab £,(0) < x < fr(0). The phenomenon can
be modeled by

(1.1) u,= (um)xx,      (x,t)eST = Rx(0,T],   0<r<co,

(1.2) ii(-.0)-«o(.)    inR,

where m > 1 is a given constant, and w0 is a given nonnegative function such that
uo(x) > 0 if x g (f/(0), fr(0)) and u0(x) = 0 elsewhere. We assume u0 is continuous
inR.

Since the problem is degenerate, (1.1)—(1.2) is interpreted in a weak sense and the
solution possesses a modest degree of regularity. Precisely (x, t) -* u(x, t) is said to
be a weak solution of (1.1)—(1.2) if

u<=C(ST);       (um)x£L2(ST)
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464 E. DI BENEDETTO AND DAVID HOFF

and

(1.3) fu(x, •)</>(*, •) dx\'h + /'/[-"*» +("m)x«í>J dxdt = 0
R t0   R

for all <p satisfying

[<í)G//1(5'7-)nL0O(5r)and

(1-4) I x -* <t>(x, t) is compactly supported
\in R uniformly in t,

and for all intervals [t0,t]Q [0,T].
The pressure v in the fluid is connected to the density by

(1.5) v = um~l

up to some multiplicative constant, and it satisfies

(1.6) v, = mvvxx + -^—j- (vx)     inST,

(1.7) f0(-) = t;(-,0) = «r1.
The Cauchy problem (1.6)—(1.7) is also interpreted in the weak sense

veC(ST);       vxeL2(ST)

and
(1.8)

fv(x,-)<t>(x,-)\'lodx + ff
R tr,    R

w(m — 2) .    ,2
-v<p, + mvvx<t>x +     m _ 1    (vx) </> dxdt = 0

for all <i> satisfying (1.4), and all intervals [i0, i] c [0, T],
Existence and uniqueness of weak solutions of (1.1)—(1.2) was first proved by

Oleinik, Kalashnikov and Chzou Yui-Lin in [15], and the equivalence of (1.3) and
(1.8) is due to Aronson [2].

A consequence of the degeneracy is that u(-,t) and v(-,t) are supported in a
finite interval [$,(t), Çr(t)].

The curves (t,C¡(t)) and (t, fr(/)), which we refer to as the left and right
interfaces, are Lipschitz continuous and monotone decreasing and increasing respec-
tively (see [3]). The interface curves and the pressure v are connected by the
Stefan-like conditions (see [3,11])

nmvx(x,t) = -~— ?;(0.

hm)vx(x,t) = -n^rm.

It should be noted that conditions (1.9) are not part of the original problem, but
rather are known to be satisfied by the unique solution of (1.1)—(1.2). Nevertheless
our algorithm will be based upon suitable discretization of both (1.6) and (1.9).
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AN INTERFACE TRACKING ALGORITHM 465

We now give a detailed description of our algorithm. Let Ax and At denote
increments in x and t, and let

xk = kAx,   k g Z;       tn = nAt,   neNu{0}.

The approximations to v(xk, /„), f/(i„) and Çr(t„) will be denoted by v"k, f" and f "
respectively.

Actually we shall describe the computations only for the right-hand interface; the
computations near f " are completely analogous. We therefore suppress the subscript
and denote f " by f ".

To start the scheme let v°k = v0(xk) and f° = f(0). Next define K(l) = max{k:
xk+x < f °} and s0 = f° - X/¡:(1). Then in analogy with (1.9) we compute f1 from the
equation

f1 - f ° +
m '*(D

m - 1      Jn
Ai.

Observe that i0 S* Ax and f * > f °.
Now given f "+1 > f " and v" forj e Z, we proceed as follows. First define

K(n + 1) = max{fc:x¿+1 < Ç?},
K(n + 1) = min{k:xk_x >tf),(1.10)

'«+it

'„t

"w+l

•        •       •       • o   •        *

• • • Q    • • •

lAT(n+l)

—I-H-

Figure 1

Then for Ä"(« + 1) < k < /f(n + 1) compute v"k+1 from the finite difference equa-
tion

,2," + 1 _ i,"
Vk'^~Vk 1   „ \ü* + l _ 2üÄ + Vk-X(1.11)      *   A,    * = ffi(t;; + e)-* +At + m      v'k + x-v

(AxY m — 1
t+l        "*-!

2Ax

where e > 0 will be chosen later. Observe that we do not enforce the difference
equation across the interface.
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466 E. DI BENEDETTO AND DAVID HOFF

Next let

(1-12) sn+x = s       — xK(n+X),

and observe that

(1.13) Ax<iB+1.

Then for xK{n+X) < xk < f+1, compute t;£+1 from the linear interpolation

(1.14) «T1-*"*-1 "**«%,

Finally set i?¡¿+1 = 0 for xA > f " + 1 and compute f+2 from

(1.15) f^2.r+i+    m /^^Af.
m - 1    sB+1

We shall prove that p£ > 0 for all « and fc so that by (1.15) T + 2 > T+1- Thus the
support of the approximate solution increases monotonically in t.

In addition, the fact that s„ > Ax insures that numerical instabilities are avoided
in the computations (1.14) and (1.15).

Introducing the notations

ht
P " 77—2 ;       Avk = uk + x- 2vk + vk_x,

(Ax)

we can rewrite the difference scheme (1.11) in the form

(1.16) «r1 = Vk + mß(vk + e)Av"k + -¿g^0"*" ¡ ^ )'.

We shall assume throughout that

[Al] 0 < v0(x) < M   Vx e R;

[A2] \v0(x)-v0(y)\^y0\x-y\   Vx, >> g R;

[A3] e is of the order of Ax   and   e>9-rYnAx;m - 1

[A4] 2mß M + e +-TYnAxm — 1 O,

where M and Yo are given positive constants. Since e = 0(Ax), condition [A4] on ß
is seen to be a slight strengthening of the usual parabolic stability condition.

We let h denote the pair (Ax, Ai), and we construct approximate solutions vh and
approximate interface curves f* and £"* by piecewise linear interpolation. Our results
may be summarized as follows:

[I] \\vh-v\\œ<ST^C(T)(Ax)p,

[II] vx -» vx   in Lq(Sr), for all ? e [l, 00),

[m]                          ¡(S?,!;!) -(¡¡„DW^r^ C(T)(AXy/2,
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AN INTERFACE TRACKING ALGORITHM 467

where p is defined in terms of m in Theorem 4.1 below. Further comments will be
made in §6 about these rates of convergence, where we present and discuss the
results of some numerical experiments.

The idea of exploiting an interface condition such as (1.9) for computational
purposes seems to have been first used by Hiiber [10] in connection with the
one-phase Stefan problem (see also [7]).

We remark on the introduction of the vanishing viscosity e. If e were zero, the
continuous analog of (1.11)—(1.15) would be overspecified. The artificial viscosity e
thus seems to stabilize our finite difference scheme. More specifically, the presence
of the e allows us to derive a lower bound for vxx (in the sense of distributions). This
in turn yields a uniform modulus of semicontinuity for vx and, via the interface
condition, for f,\ It is this semicontinuity which is crucial in proving the convergence
of the approximate interface curves, as well as in estimating the rate of convergence.

We briefly comment on related, known results. In [9] Graveleau and Jamet
obtained solutions of the porous medium equation and related equations by employ-
ing a difference scheme similar to ours. However their scheme is applied in all of
{t > 0} so that approximate interfaces are not computed. Moreover numerical
evidence indicates that the supports of their approximate solutions spread out too
rapidly in time. Thus computing the interfaces by "shock capturing" seems to be
unsatisfactory.

While this paper was in preparation, Mimura and Tomoeda [13] informed us that
they have recently derived an interface tracking algorithm for the porous medium
equation. Numerical evidence suggests that the approximate interfaces computed by
their scheme are accurate, but they are unable to prove this result. In addition, their
scheme is somewhat complicated to implement, since it involves solving Riemann
problems for the Burgers equation at each mesh point. Both their scheme and ours
suffer from the parabolic stability condition Ai = 0[(Ax)2].

The paper is organized as follows. §2 contains the derivation of basic estimates.
Specifically we prove the finite difference analog of the following facts, which are
known to hold for the exact solution v of (1.6)-(1.7):

(1.17) O^v^M,

(1.18) IKIL,sr<Vo   (see [2]),

(1.19) \v(x,t2)-v(x,tx)\<C\t2-tx\1/2   (see [8,12]),

m - 1     1
vxx > —~i-i-¡T 7    andm(m + 1) t

ll»«(-.0. «>*(•. Olli** y    (see [5]).

In §3 we demonstrate the convergence of the approximate solutions and interfaces
to the correct ones by making use of various compactness arguments. The error
estimates are proved in §§4 and 5. Finally in §6 we present and discuss the results of
several numerical experiments.

(1.20)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



468 E. DI BENEDETTO AND DAVID HOFF

Throughout the paper we make the convention that C shall denote a generic
positive constant depending only on m, M, y0 and some specified time T.

2. Basic estimates. We begin the analysis by establishing maximum principles for
v"k and for the discrete space derivative

...»    4-K-x
k Ax      ■

We assume throughout that the initial function vQ satisfies assumptions [Al] and
[A2], and that the mesh parameters e and ß satisfy [A3] and [A4].

Lemma 2.1. The bounds

(2.1)
and

(2.2)
hold for all k and all n ^ 0.

0<o"k<M

iv : Yo

Proof. The results hold for n = 0 by hypothesis. Proceeding by induction on n,
we rewrite the last term in the difference equation (1.16) as

m Ai lw"k+x + w£_x
m-l\ 2

Rearranging, (1.16) thus becomes

Jk + X Jk-X

2Ax

(2.3)

v"k + l=[l-2mß(v"k + e)}v"k

m     ßAx+ mß(v"k + e)

mß(v"k + e)

m - 1    4
m     ßAx

m — \    4 «+1 + <)

Jk+1

Jk-X-

Using the induction hypotheses (2.1) and (2.2), we have that the coefficients of v"k
and v"k + x in this expression are bounded below by 1 - 2mß(M + e) and
mß(e - y0Ax/2(m - 1)) respectively. Since these quantities are nonnegative by
[A3] and [A4], (2.3) shows that v"k+l is a convex combination of v"k, v"k_x, and v"k+x.
This proves that 0 < v"k+x «s M for k < K(n + 1). When k > K(n + 1), these
bounds follow from (1.14).

We prove (2.2) first for k < K(n + 1). Rewrite (1.16) as follows:

(2.4)     v"k+x = v"k + mß(v"k + e)«+1 - <)Ax +
m Ai  {w"k + x + w"k\2

m 1

We subtract from this the equation corresponding to v"k+_\ and divide by Ax. Using
the discrete product rule

akbk - ak-Xbk-X =
ak + ak-i (ft* bk-x) +-Ï-(ak - ak-x)>
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AN INTERFACE TRACKING ALGORITHM 469

we obtain

,n+X wk + mß »k + «*-l + e)Aw£ + mßAxw^
Wx, - wk-X

+
m

m-\
ßAx >nk+1 + 2w"k + w"k_x «+i - K-i),

so that

(2.5)        wg+1 = w"k + mßi
"I + o*-i

+ e\Aw£

m - I    4
This equation has the form

* * ^K+i + 2mw"k + w"k_x)(w"k + x - w"k_x).

(2.6)
where

(2.7)

and

(2.8)

w. (1 - 2a)w"k +(a + b)w"k + x +(a- b)w^x,

a = mßi
v"k + v"k-X

+ £

m     ßAx,   „        „ „   ,
-V«+1 + 2»i< + wt»_1).m- 1    4

By the induction hypotheses (2.1) and (2.2), a and b satisfy

(2.9) mße ^ a ^ mß(M + e)
and

m(m + 1) /?y0Ax
(2.10) 1*1 < m - 1 2     "
Thus, using the mesh conditions [A3] and [A4], we obtain immediately that 1 - 2a
and a - \b\ are nonnegative. Hence (2.6) shows that wk + l is a convex combination
of w", wk_x and h>£+1, and so satisfies the bound (2.2).

Finally, we prove (2.2) for xk near the interface. Thus let k = K(n + 1) and let
s'„ = f" - xk, so that

<+x = -vl/s'n.
Using the difference equation (1.16), we then have that

,71+ 1

Wí.. i   —
1

v* + i
3 71 + 1 J7I+1

»2 + m/?K + e)(w"k + x - w"k)Ax

_^(Kti)>+(*^ ^) -w+,)2

= -^f(<-^T*.-)
+ (<+!-<)m■■« + 1

ßAx(v"k + e) - ^(
Ai    /3<+1 + <
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470 E. DI BENEDETTO AND DAVID HOFF

But in+1 = s'„ - mAtw"k + l/(m - 1) by (1.15). Therefore

(2.11) <:\ = <+x + c(w"k-w"k+l),

where

m
(2.12)

Again, using the induction hypotheses (2.1) and (2.2), we obtain that

t^-.^\ mßAxl        Yo^x \ J w Yo^x(2.13) —-    £ - —-r-     < C < mß ¡M + £ + —-r
s„+i   \       m-lj ^\ m - 1

The mesh conditions [A3] and [A4] then imply that 0 < c < 1. Thus (2.11) shows
that wk+l is a convex combination of wk+x and wk, and so satisfies the bound (2.2).

Finally, when k > K(n + 1) + 1, wk + l is between wk^x and 0, and so again
satisfies (2.2).   D

The bound (2.2) for wk, together with the interface condition (1.15), shows that
|(r+1 - D/Ai| < C. Since Ai = 0(Ax2) by [A4], it follows that sn < 2Ax +
0(Ax2) (see (1.10) and (1.12)). Combining this with (1.13), we therefore have

(2.14) Ax < s„ < 3Ax

for small Ax. Actually, any upper bound on sn/Ax will suffice for our purposes.
However, for the sake of simplicity, we shall make use of (2.14) without mentioning
the precise conditions on Ax which justify it.

In the next lemma we establish a lower bound for the second spatial differences of
v"k. This lower bound will provide a uniform modulus of semicontinuity for wk and,
via (1.15), for (f+1 - f)/Ai as well. This semicontinuity will be crucial later for
obtaining error estimates for the approximate interfaces.

Lemma 2.2. Define Kby K = (m - \)/m(m + 1). Then the bound

/-,rt Avk      vk + x - 2v"k + "k-i K(2-15) ZÊ- ¿* *-T.
holds for all k and all n > 0.

Proof. Denote the variable in question by Zk. That is,

7n _ Avl     <+1 - K
k     Ax2 Ax       •

Now, if 0 < t„ < KAx/2ya, then

<+il + Kl ^ 2yo ̂  K
Ax * Ax * t.|Z.|<.  * + ii     i  *^^^.

We proceed by induction, assuming that (2.15) holds at time level n, and that

(2.16) i„+1 > ATAx/2y0.
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AN INTERFACE TRACKING ALGORITHM 471

The first case is that in which k < K(n + 1) - 1, so that both wk + 1 and wk+{ satisfy
(2.5). Subtracting and dividing by Ax, we thus obtain

v"k+x + 2v"k + v"k_x
Z"k + 1 = Z"k + mß\ "K+1  • Y ' -"-1 + t\AZl

+ mß »;+i-«î-i\îm'+i+m'
2Ax

+ ^r^r [<+2+{2m + 1)(<+i + w"k) + <-iH^n+1 - z-k_x)

+ m    ßAx,
w- 1 (Z"k + X + 2mZ"k + Z"k_x)(wU2 - w"k + w-+1 - w"k_x).

We rewrite the third term on the right as

^K+i + ̂ Xz^-z^),
and the last term on the right as

m ^j(Zt"+1 + 2mZ"k + Z"k^x)(Z"k+x + 2Z"k + Z"k.x).

The result is that

(2.17) Zrl = (1 - 2p)Z"k +(p + q)Z"k+1 +(p - q)Z"k_x

+ r(Z"k + x + 2mZ"k + Z"k_x)(Z"k+1 + 2Z"k + Z"k_x),

where

,. "2+1 + 2v"k + v"k-x
p = mß\J^-¿-—+ e|,

q = ~n7^ï ^F [ w*+2 + (4w - l)«+i + O + wk-i\

and

r =
m     At

m-lï

We shall show that Z£+1 in (2.17) is an increasing function of each of the
quantities Zk, Zk_x and Zk+X. Using Lemma 2.1, we have

3Z£+1
dZ-=(l-2p) + r[(2m + 2)(Z"k + x + Z"k_x) + %mZ"k]

= (1 - 2p)+{-[(2m + 2)«+2 - <_0 +(6m - 2)(w"k + x - w"k)}Ax
m      At

>l-2mß(M + e)-—[^-16my0

1 - 2mß M + £ +

m- 1

w- 1 y0Ax >0

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



472 E. DI BENEDETTO AND DAVID HOFF

by [A4]. And similarly,

r)7"öz-k±X
= p±q + 2r[Z"k + x +(m+ \)Z"k + Z"k_x]

Ir
p±q + T" K"+2 - K-X + «K\i - <)]Ax

„ m     ßAx   n 2m     At    ,_        „,.* w/îe - ^^T~r • 8wY° - in. 8Â7 '(2w + 2)*>

mß
3m + 1

2(w - 1) >0

by [A3].
Thus Z"k + l is bounded below by the right side of (2.17) with Z"k, Z"k_x and Z"k + X

replaced by -K/t„. That is,
m(m + 1) K

t„ I i„ m - 1     n
„„+1       a:    m(m + 1)/ä"\\ A"Zr   > -7+ -^-1      I Ai-m - 1

Ä~n - 1        K     n
i„ n + 1

A"
?7I + 1

71+1

as required.
There are several cases to consider in order to establish the bound (2.15) for Z,

when xk is near f"+1. Now, when Zk + 1 > 0, (2.15) is automatically satisfied. We
may therefore assume that Zk + 1 < 0; that is, that

vît] + vl+lJk + X 'k-X < V71 + 1

2 -"*    •
But this shows that vk+1 is positive and that v"k+l is not computed from the linear
interpolation (1.14). Therefore it must be that k < K(n + 1). Since we already dealt
with the case that k ^ K(n + I) - I, v/e may therefore assume that k = K(n + 1).

Thus wk + 1 and wk+¡ satisfy (2.6) and (2.11) respectively. These equations may be
rewritten

»k+l = "í+i - c*xZ"k
and

,71 + 1  _ ,.,n + (a + b)AxZ"k-(a - b)AxZ"k_x,
where a, b, and c are as in (2.7), (2.8), and (2.12). Subtracting and dividing by Ax,
we thus obtain

(2.18) Zr* = (l-a-b- c)Z"k+(a - b)Z"k_x.
We checked in the proof of Lemma 2.1 that a - \b\> 0. Using (2.9), (2.10), and

(2.13), we have that
m(m + 1) ßYrjAxl-a-b-c>\- mß(M + e) -

= 1 - 2mß M + £ +

which is nonnegative by [A4].

m — 1
m + 3

4(w- 1)

2

Y0Ax

-mß(M+< + £±)
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AN INTERFACE TRACKING ALGORITHM 473

Finally, using (2.9), (2.10), (2.13), and (2.14), we have that the sum of the
coefficients in (2.18) is

m(m + 1)l-2b-c^l +
m

H). mßi        YpAx \—ßy0ax- -y^.-—-J.
Using the definition of K, this bound may be rewritten as

1 + /?Y0Ax
K 1 + 1

3(w + 1)

Using condition [A3], we then find that

1 - lb - c < 1 -
2)8y0Ax

a: i

mße

2Yo Ai
A"  Ax

On the other hand, we have from (2.16) that tn+x > A~Ax/2y0, so that

1 2y0 Ai
« + 1 ^   K  Ax'

Therefore l-26-c<l- l/(« + 1) = n/(n + 1), and (2.18) shows that

7-7T+1
>

K     n
t„ n + 1

K
'n + l

D

Remark. The Barenblatt-Pattle solution [6, 16] shows that the constant K =
(m — l)/m(m + 1) is the best possible (see also [5]).

We can improve the bound (2.15) by imposing additional regularity conditions on
v0.

Corollary 2.3. (a) Ifv0 is a concave function, then

(2.19) Av"k/Ax2 < 0
for all k and all n > 0.

(b) // there is a constant C0 such that

vQ(x + h) - 2í;0(x) -I- v0(x - h)
(2.20)

holds for all x and all h > 0, then

-Co

Av"k/Ax2 > -Cq(2.21)
for all k and all n > 0.

Proof. We showed in the proof of Lemma 2.2 that, in all cases, v4i;¡J+1/Ax2 is an
increasing function of Av"k/Ax2 and Av"k±l/Ax2. The bounds (2.19) and (2.21) then
follow easily from (2.17) and (2.18).   D

Next, we obtain a bound for the discrete time derivative near the interface.

Lemma 2.4. There is a constant C such that
„71 + 1 - VI

At <C

holds for n > 0 and k > K(n + 1).
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474 E. DI BENEDETTO AND DAVID HOFF

Proof. We use the symbol 0( ■ ) to denote dependence on mesh parameters. Let
k> K= K(n + 1) and let s'„ = ¿" - xK. Then from (1.14) we have that

Ai Ai
r ^v,+1 r

= 0(1)

■>7I+1

„71 + 1

Ai
4   IK

Ai
71+1 - xt r-**

JK
^71 + 1 ^71

The first term on the right can be estimated by using the difference equation, (1.16):
„71 + 1 - VI

m(v"K+e)- - + 0(1) = 0(1)
At v K      '       Ax

since v\ + e = O(Ax). And the second term on the right is
[r + o(Ai)-xj,;-k + o(Ai)](r-x,) =

V     ' s'ns„+At '
Lemmas 2.2 and 2.4, together with the difference equation (1.11), now imply the

following bound for the discrete time derivative.

Corollary 2.5. There is a constant C such that
„71+1

(2.22)

holds for all k and all n > 0.
Ai 1 + f

In the next lemma we use the one-sided bounds (2.15) and (2.22) to derive L1
estimates for Av\/Ax2 and (vnk+l - v\)/At.

Lemma 2.6. (a) For a given T > 0 there is a constant C such that

k

Av"k
Ax1

Ax,    £
k

„71 + 1

Ai Ax < C 1 +

holds for t„ < T.
(b) If the initial function v0 satisfies the hypothesis (2.20), then

k

Av"k
Ax2

Ax,    Z
k

„71+1

Ai Ax < C

(c) And ifv0 satisfies (2.20) and is concave, then

Av"k „71+1

Ax2
Proof. From Lemma 2.2 we have that

Ai « C.

Av"k
Ax1

Av"k      2A
< —T + —■

Ax2       t„

We multiply by Ax and sum over k. Since v"k is zero outside an interval of length
C(l + i„), we obtain that

E
k

Av"k
Ax2

Ax<-(l + i„).
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The other bounds in (a) and (b) are proved similarly, (c) follows from Corollary 2.3,
the difference equation (1.11), and Lemma 2.4.   D

In the final lemma of this section we establish the Holder continuity in time of the
sequence [v"k).

Lemma 2.7. Let T > 0 be given. Then there is a constant C such that the inequality

\v"k - uft < C(\t„ - tj'2 + Ax) < (C + r1/2)i'„ - tj/2

holds for tn and tm in [0, T] and for all k.

Proof. Fix a point (xk, t„ ) and let t„ > t   be given. Let Q be the rectangle

Q-[xko-p,xko + p]x[tHo,tni],

where p is a multiple of Ax to be chosen later. Define the quantities

(2.23) H=    max   \v"ko - oft],
7t0<n<n,

YYl
c = 2m(M + e) + —-r-Y0P,

m     i

V£ = v"k- u% - YoP - ~2 \(xk - XJ2 + c(tm - tj].

We shall show that Uk < 0 for (xk, i„) e Q by induction on n. When n = n0 and
\xk  ~ xk\ < P> we have, using Lemma 2.1, that Uk° < v"ka - v"k° - y0p < 0.

For the induction step we consider the following three cases: \xk - xk \ = p,
k > K(n + 1) and \xk- xk\< p with k < K(n + 1). In the first of these, we have
that

url « (v-k+1 - pj0+1) +(v%1 - on) - yop - B>

which is nonpositive by (2.2) and the definition of H. In the second case, we have
v"k+1 < Yo^+i < 3y0Ax, so that

Uk" + 1 < 3y0Ax - YoP,

which is nonpositive provided that

(2.24) p > 3Ax.
For the third case, we employ the linearized difference operator L, defined for a

given sequence Zk by
-711+1  _   yn a yn

LZ„+1 = A       A _    ( „     }^* Ai v *      ; Ax2

m    K+i-Pg-i.WZ;+i-Zj?-i
m - 1 \       2Ax 2Ax

Applying L to i/t" and using (1.11), we find that

Luri- 2// -c + 2m(v"k + e) +     m A
v *       '     m - 1 \

m    I v"k+x - v"k_, \ixk + , + x
2Ax

Vk+X   '   *k-X
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so that, by (2.1) and (2.2),

¿t4"+1<4-c + 2m(M + e) +
m

m 1YoP = 0

by the definition of c, (2.23).
On the other hand, we can rewrite the inequality LUk"+1 < 0 in the form

Uk" + 1^[l-2mß(v"k + e)]Uk"

ß     m
+

+

mß(Vk + e) -J-f^TÏ^Ui-vl-i) 11"Uk + X

II"uk-ï-

The coefficients of U" on the right-hand side of this inequality are exactly the same
as those of v" in equation (2.3). We showed in the proof of Lemma 2.1 that these
coefficients are nonnegative. We therefore have that Uk"+1 is a convex combination
of Uk_x, Uk" and Uk+1, and so is nonpositive by the induction hypothesis.

Setting k = k0 in the result Uk < 0, we thus obtain that

v vk0 < YoP + — s,

where s = t„ - i„ . In a similar way, we can establish the same inequality for
vnk° - v"k . Taking the maximum over n e [«0, nx], we thus obtain

(2.25)
He

H < YoP + —Ts-
P

We shall choose p so that cs/o2 < 1/2. Specifically, p should satisfy

Pj + 3Ax ^ p ^ px + 4Ax,

where px is the larger root of the quadratic equation

p  - 2cs 2m
m 1y0íp - 4m(M + e)s = 0.

An easy computation shows that px = 0(s + sl/2) = 0(s1/2) for i„ < T, and
p > 3Ax, as required by (2.24). Since cs/p2 < 1/2, (2.25) becomes

In particular,

H < 2y0p < 2y0(Pl + 4Ax) < C(s1/2 + Ax).

W0-v"ki\^c(\tn¡-tno\l/2 + Ax).  a

We remark that the proof of the above lemma is the discrete version of an
argument given by KruSkov [12] and Gilding [8].

3. Convergence of the approximate solutions. Let h denote a pair (Ax, Ai) whose
elements satisfy the mesh conditions [A3] and [A4]. We define approximate interface
curves i -» ?rA(i) and i •-» f/"(i) by piecewise linear interpolation: for tn < i < in+1,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



AN INTERFACE TRACKING ALGORITHM 477

tf(0 = tf + m        vK(n)
(t~tn),m-l    s„

where f", v"k, and 5„ are as in §§1 and 2; and similarly for f*(f). The estimate (2.2)
for i>£(„)/s„ then shows that the nets {f*(i)} and {£*(*)} are uniformly Lipschitz
and uniformly bounded in finite time.

'„+1 +

L +

•*fc Ak+1

Figure 2

We construct approximate solutions vh(x, t) in an analogous way, as follows. If
Tk" and Sk are the triangles in Figure 3.1, then

vh(x, t) = v"k+(x- xk)w"k + x +(t- t„)a"k+x,       (x, t) g Tk",

and

vh(x, t) = v"k++\ +(x - xk+l)w"k:¡ +(t- in+i)éï,       (x, t) € 5,".

Here

ü¿ - w „71 + 1

H',' *-l and   a*=-JL-^-

It follows immediately from Lemmas 2.1, 2.2, 2.6, and 2.7 that the functions vh
satisfy
(3.1) 0 «!;*(*, i) <M,

3</[
(3.2)

(3-3)

3x < Yo   a.e.,

2„A32t;

3x'
■(*.')

for t > 0 are finite measures in R with mass
l2„/i/• 3 « /■ a h i, i/ —7 ; / h-» < c i + -4 3x2      4 & \      t

and
(3.4) |p*(jc, t + s)-vh(x, i)|< C^s1/2,       0<i<i + j<r.
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Throughout this section we fix a time T and a rectangle Q = [a, b] X [0, T], where
[a, b] is large enough to contain the supports of vh(-, t) for all h and all i e [0, T]
(see (1.15) and (2.2)).

The properties of f *, f/1, and o* described above insure that, for every sequence In-
tending to 0 subject to the mesh conditions [A3] and [A4], there is a subsequence,
which we index simply by h, for which

vh -» v*   uniformly in Q,

tf,tf-»Í?,ff   uniformly in [0,7],
and

"* ~~* w*   weakly in L2(ö) ■

Our goal in this section will be to prove that v*, £*, and f* coincide with the exact
solution and interface curves for the problem (1.8). Actually, the convergence of vh,
f *, and f* also follows from the error bounds which we shall derive later in §§4 and
5. However, the arguments of the present section are much more direct. Moreover,
we obtain here the convergence of vx in LP(Q) for all p < oo. As a byproduct of
these arguments, we thus obtain in addition a constructive proof of the existence and
regularity properties of the solution of (1.8).

We begin by showing that vx -* w* strongly in LP(Q) and that, in fact, w* = v*.

Lemma 3.1. For any t > 0 the net {vx(■, i)) ¿sprecompact in Ll[a, b].

Proof. The proof consists of estimating the L1 difference between vx(-,t) and its
spatial translates. Given i > 0, choose n so that t„ < t < t„+v Then when h is
sufficiently small, 0 < i - Ai < í„.

If we take p = /Ax where / is a positive integer, then it is easy to see that

(3.5)    f\vhx(x + p,t) - vhx(x,t)\dx

c(EK"+/ - <|Ax + Ll</ - <+1|Ax).
\    Z- L I

^
*

The first of these sums is bounded by

* + '   \w" - w" ,\ > wy   - V^-^

Ax
^1*. .   cPAx2 = pY,—y Ax <
Ax2 ' - Ai

by Lemma 2.6. Dealing with the second sum in (3.5) in a similar way, we find that

(3.6) fjvhx(x + P,t)- vhx(x, t)\dx < j^

holds when p/Ax is a positive integer.
When pj < Ax, |t;*(x + px, t) - ox(x, t)\ will be zero except when x is within px

of the nonhorizontal sides of the triangles Tk" and Sk. Thus

f\vhx(x + Px, t) - vhx(X, t)\dx < cPx[zw+x - <\ + ek:í - <+1i)-
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But this expression is p,/Ax times the right side of (3.5) with / taken to be 1. The
computations we made above therefore show that

f\vhx(x + Px,t)-vhx(x,t)\dx^-t Cpx
'R < - Ai "

Combining this with (3.6), we see that (3.6) now holds for all p > 0. The conclusion
of the lemma now follows from [1].   G

Lemma 3.1 thus shows that ( vx } has strong L1 limit points. In the next lemma, we
prove that these limit points can be identified as the derivatives of limit points of
{</■}.

Lemma 3.2. Let vh denote a sequence of approximate solutions which converge to v*
uniformly in Q. Then vx -* v* in Lp(Q)for every p G [ 1, oo).

Proof. By Lemma 3.1, every subsequence of [vx(-, t)} has a subsequence which
converges in Ll(K). Thus let {h') ç {h ] and let vx(■, i) converge to a function £(x)
in Ll(R). We shall show that £(x) = v*(-, t) a.e.

First, if \j/ g H^(a, b), then

fb[vhx'(x, t) - ix(x, t)}[v"'(x, t) - *(x, /)] = 0.

We take \p = Vt> + (1 _ ij) «>*(•, 0 m this relation, where <¡> g Hq(o, b). Since vh' -*
v* uniformly and vx '( ■, t ) -» ^ in L1 we obtain, by letting h -» 0, that

lAi - M* -(1 - V)v;(-,t)][<f> - v*(-,t)] dx = 0.
Ja

Dividing by r¡ and letting tj -» 0, we then find that

f[i-«£(•,')] [*-»*(-, t)]dx = 0
Ja

for all 4> g Hl(a, b). This shows that £ = v*(-, t) a.e. Thus every subsequence of
[vx(-, t)) has in turn a subsequence which converges to v*(-, t) in L:(R). Therefore
the entire sequence converges to v*(-, t) in Ll(K). Finally, since H^IL < Yo f°r every
h, we have that

r i-T ~\x/p
H-v*\\p.Q^c(p) / i|ií(-,0-«?(-.0lliji*     ^o

by the dominated convergence theorem.   D
We remark that the proof of Lemma 3.2 is an adaptation of an argument given by

Minty in [14].
The next theorem contains the main results of this section.

Theorem 3.3. Let v, f,, and fr denote the exact solution and interface curves for the
problem (1.8). Then
(3.7) vh -* v   uniformly in Q,

(3.8) vhx-*vx   inLP(Q),p<cc,

and

(3.9) $,$-t„l   uniformly in [0,T].
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We prove (3.7) by showing that limits of converging sequences from ( vh} satisfy
the weak equation (1.8), and so agree with its solution v, which is known to be
unique. Thus let ( vh} denote such a sequence and let vh -» v* uniformly in Q, so
that vx(-, t) -* v*(-, t) in Ll(R) for every i > 0. It will be sufficient to show that
(3.10)

fv*(x,-)<f>(x,-)    dx+(T2[
JR r, JTi   JR

-v*<p, + mv*v*<t>x +
m(m — 2)

m — 1 («í)> dx dt = 0

for all C°° functions <t> satisfying (1.4) and for 0 < Tx < T2 < T
Given such a function <p, let <f>"k = <p(xk,tn) and consider the quantity

(3.11)
,V2-1

E {L
n = N, k   1

K+1 - "I
At

I    n \ÁV"km ("2 + e)7Í
Ax2

m
m- 1

Jk + X Jk-X

2Ax 4>"kAx)At

for appropriate Nx and N2. Now, the expression in brackets vanishes for K(n + 1) <
k < K(n + 1). And for other values of k, we have that (v"k+1 - v"k)/At = 0(1) by
Lemma 2.4, and

(v"k + e)^2 = 0(Ax)^^ = 0(l)

by Lemma 2.1. Thus the quantity (3.11) approaches 0 as h -> 0.
On the other hand, we can sum by parts in (3.11) and match the resulting terms

with the corresponding integrals in (3.10). We shall carry out the details only for the
most complicated term. Using Lemma 2.2, we may rewrite the second two terms in
(3.11) as follows:

(3.12)

-mEE K + «O*"*'Vk+X

Ax m - 1
,7i\2

** AxAi

= «EL w
j(og + c)^-(«*-i + e)^-i

Ax m ^Y«)2^

xAxAi + O(Ax)

= mzZlZwi
vi - Vk-X

Ax
xAxAt + O(Ax)

<>l+(v"k-x + e) Ax ^-(OV*

= E E^^^^^AxAi + mZ I,v"kwiïx(x"k, ijAxAi + O(Ax)

for some x"k g [xk_x, xk]. We shall show that the second sum here converges to the
second term on the right in (3.10). First note that, since vx(x, t) = wk on Tk_x U
571 — 1

wA"AxAi = f f vx(x, t) dx dt.

Since $ is smooth and vh is Lipschitz in x and Holder continuous in i,

»kw¡frx(Zk> IjAxAi = ff vhvhx<pxdxdt + 0(Ax + At^2)AxAt.
JJnLxuS£l\
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Therefore the second sum in (3.12) is

f 2 f mvhv^xdxdt + O(Ax),
JT,   JR

which approaches

/ 2 I mv*v*<j>xdxdt

as h -* 0, since vh -» v* in L°° and vx -» v* in L1, with vh and ü* uniformly bounded.
The other terms in (3.11) are handled in a similar manner. Thus u* satisfies (3.10) for
all appropriate test functions, and so coincides with the unique solution v of the
problem (1.8).

The proof of (3.9) is based upon the following technical lemma, which will be used
again in §4 for the derivation of error bounds for the approximate interface curves.

Lemma 3.4. Let {£*} be a subsequence such that f* -* f* uniformly in [0, T] as
h -* 0. Then for every i > 0 and for any positive numbers 8 and tj,

(3.13)  £+\(s(i) - «,.) ds > =j¡p{a[i?(« +1) - ffit)] - -jj^}

for 0 < i, i + tj < T. Moreover, if dÇ*/dt exists and is positive at t, then there are
positive numbers 80 and C such that

(3.14) v(tf(t)-8,t)^C8
holds for 0 < 8 < 50.

Proof. Let p, q, and N denote the largest integers in 8/Ax, t\/At, and í/Aí
respectively. Then

N+q-X N+q-l

(3.15) E  4<,,)-„A'=   E
n = N n = N

K{n)

Aln) - E ^x
j = K(n)-p + X

At.

Using Lemma 2.2 and the definition (1.15) of f *, we have that

K(n) K{n)

E <AX = D
y=/tr{«)-/7 + i y=7V(7i)-p + i

«■(n)-l
-W K(n) +       2^ Äx1

m - I
m

K<n)

E
7 = AT(n)-/7 + l L

-Ax—

tf('„+i)-tf(0

Ax

m
m

Ü{tm+i)-V(tn)
At

At

pAx

1     pAx
m + 1    i„

2 "

Ax

1      (pàx)
tm + 1

Substituting this into (3.15) and discarding the nonnegative term v"K(n), we obtain

— W.)-^)iM,-if^a^}.(3-16)       E    «£(„,-/'>
n-iV

m - 1
m   r."   ".J'        (™ + l)'/v /'

Now (3.13) follows by letting h -* 0 and using the uniform convergence of vh and f*.
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If dl*(t)/dt > 0, then there is a positive number p such that f*(i + tj) > f*(0
pTj for small tj. For such tj, then, (3.13) shows that

/ *\{Ç(,)-i,s)*>Z 1
m

-pr¡
Ô2tj

(m + l)i

Dividing by tj and letting tj -» 0, we thus obtain that

v(tf(t)-8,t)> m 1
m

ôp
2 (m + l)í

m
m

la
4

if 5 < 80 = (m + l)ip/4.   D
Proof of (3.9). Let {f/1} denote any subsequence converging to a curve f*

uniformly in [0, T], We shall show that f*(i) = fr(i) for every T. First observe that,
since vh(x, t) = 0 for x > ?*(/), e(*> i) must be 0 for x > tf(t); thus fr(i) « fr*(i).

Now suppose that fr < J* on (i, í+tj) with fr(i) = f*(i). Then since fr is
increasing, there must be a time i g (í, í +tj) at which dl*/dt exists and is positive.
But then (3.14) shows that v(l*(t) - 8, t) is positive for small 8. However, this
implies that fr(i) ^ f*(i), which is a contradiction. Therefore there is no maximal
time t for which f*(i) = £.(i) for 0 < i < i. Since ff and f* agree at i = 0, they
agree for all i. Similar arguments hold for f*(f ).   D

4. Error bounds for the approximate solution and interface curves. In this section
we prove the following theorem.

Theorem 4.1. Fix T > 0. Then there is a constant C such that, for 0 =§ i < T,

(4.1)     H«r*(-,f)-»(■•')

and

R < Cmin Ax>gAx|p^i/2 + ^-

(4.2) \S"(t) - £(0l < CtlAm+1)(Axa\\ogAx\)l/(2(/> + 3))

where f is either f, or fr. //ere

an</

1,
l/(w 1).

1 < m < 2,
2 < m,

= ((m + l)/(m- 1),    Km<2,
I w + 1, 2 ^ m.

We remark that, if the initial data v0 satisfies the hypothesis (2.20), then the term
[log Ax| may be omitted from the bounds in (4.1) and (4.2).

The proof of Theorem 4.1 will be given in a sequence of lemmas. First we
introduce the weak truncation error associated with an approximate solution. If <¡> is
a smooth function satisfying (1.4), define

(4.3) J(v,<f>,tx,t2)= p f   v,4> + mvvx<t>x +
t,      R -

m(m - 2)
m — 1 »> dxdt.
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Thus v is a weak solution of (1.6) if and only if J(v, </>, i,, i2) = 0 for all <i> and all
intervals (i,, i2). The weak truncation error associated with the approximate solution
vh is then the functional J(vh + e, ■, tx, i2). We have the following estimate for J.

Lemma 4.2. Let f satisfy (1.4) and assume that f, andfx are in L°°(R X [0, T]) with
f(x, T) = Oforallx. Then if<p = (vh + e)(2_«-Vt»-«/,
(4.4) \j(vh + e,<¡>,8,T)\^ C\\\f\\\Axa^og8\,

MÄerelll/lll-ll/IL + IWIL + ll/JL.
The proof of Lemma 4.2 is quite technical and lengthy. We therefore postpone it

to §5.
Next, we define functions u and uh by the relations

u = vU(m-X)     and     MA = (l,>. + £)1/(m-1).

In the following lemma we exploit the above estimate for J to obtain a bound for
uh - uinLm+1.

Lemma 4.3. There is a constant C such that

(4.5)     fTfh\uh-u\m+ldxdt+ f\fT((uh)m-um)xdt]\
Jci  J„ Ja  JciR|/0

dx

c[L(u,uh) Axa\logAx\+(Ax)mAm~l)\,

where

L(u, u") = \\(uT - OUrx^.t-, + 1 (T((»h)m - W)xd,
oo,RX[0, T]

Proof. Let <j> and / be as in Lemma 4.2. Then after integrating by parts in (4.3)
and substituting, we obtain

(4.6)       J(vh + e,*,8,T) = (m - 1) f Tf [u^f+ (uh)mxfx] dxdt

= (m-l) -fuh(x,8)f(x,8)dx- fTf{uhf,-(uh)mxfx)dxdt

We shall replace 8 in these integrals by 0. The resulting error in the second integral
on the right will be no more than C|||/|||5. To estimate the change in the first
integral, we use the fact that uh is Holder continuous in i, which may be established
as follows. When m g (1,2 ] we have from Lemma 2.7 that

|ii*(jc, i2) - uh(x, tx)\ < C\vh(x, t2) - v»(x, tx)\ < C\t2 - tx\y'2.

And when m > 2,

\uh(x, t2) - uh(x, tx)\-1 < \uh(x, t2)m-1 - uh(x, tx)m-l\

= \vh(x,t2)-vh(x,tx)\^C\t2-tx\^2.

Thus uh is Holder continuous in i with exponent a/2, and

\f [uh(x,8)f(x,8) - uh(x,0)f(x,0)] dx
\JR

< cill/HI«a/2
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We thus obtain from (4.6) and Lemma 4.2 that

(uh(x,0)f(x,0)dx+ fTf [uhf ~(uh)xfx] dxdt ^ C\\\f\\\(Axa\log8\ + 8a/2).
JR J0  JR

Now subtract from this the weak form of the original equation for u, (1.3), and take
5 = Ax2. The result is that

(4.7)       fTf[(uh - u)f,-{(uh)m - um)xfx] dxdt < C|||/|||Ax"|logAx|.
J0  JR

We have used here the fact that

||M(.,0)-M"(-,0)||oc,R<CAxa,

which follows directly from the definitions of u and uh and from the Lipschitz
continuity of v0.

In (4.7) choose

f(x, t) = f'\(uh)m - u"'](x, s) ds+(T-t)em^m'1).

It is clear that / satisfies (1.4) and the conditions of Lemma 4.2. Observe also that

r(v - «)/,= r7v - u)[(u»t - «« -JQ  JR J0  JR

> fTf)uh - u\m+l - Ceam,
Jn   J „

,771/(771-1)1

and that

so that

\{uT -um]jx = ^[fT{(uT ~^)x(x,s)ds

ff [(«*)" - „»] xfx = -U \fT((uT - W")x(x, s),^o •'r z ^rL-'o
dx.

Now (4.5) follows by making these substitutions into (4.7).   D
The next lemma contains the corresponding estimate for the error in vh.

Lemma 4.4. There is a constant C such that

f7YV - v\"dxdt^ C[L(u,uh)Axa\logAx\ + Axam],
J0 Ja

where L is as in Lemma 4.3 and a and p are as in Theorem 4.1.

Proof. When m > 2, we have

|(d* + e) - o\ = \(uh)m~x - um-l\ < (m - l)M(r"-2)Am~1)\uh - u\.

And if 1 < m < 2, then

\(vh + e) - v\lAm-l) < ](vh + e)1Am~1] - vl^m-l)\ = \uh - u\.

Since £ = O(Ax), we have in either case that

\vh - v\p ^ C(\uh - u\m + 1 + Ax?).

The conclusion then follows from Lemma 4.3.   D
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In order to deduce the L°° bound for v - vh from the above Lp bound, we shall
require the following interpolation inequality.

Lemma 4.5. Let z be a continuous function on ST = R X [0, T] with support
z(-, t) ç [a, b]for t g [0, T]. Assume also that

(a) zx g L"°(ST), and
(b)z,(-, t) G L\R) with \\z,(-, i)||liR « C0/t.
Let p g [ 1, oo) and I > 0 be given. Then there is a constant C independent of I such

that the inequality

II'O.OIU« ̂ ^WMW
holds for 0 < t < T - I. Here

*0O-IWl5fc+1)[  sup \\z(-,s)\\2pp^p^+C0\\zx\\^syp^
.tzíssíT

Proof. For t > 0 we have

(4.8) \z(x, t)\p+1 ^(p + l)f\z(x, t)\p\zx(x, t)\dxJR

< c\\zx\\„%Qy(ty t

wherey(t) = \\z(-, t)\\  R. Differentiating the definition of y(t), we obtain

l/(/> + 3)

(4-9) y(') p-X dy_
dt < C\\z(-, OW^WzX-, 1%*.

Combining (4.8) and (4.9), we thus obtain
dyyUY'1 f < cXO^'-^-'Vllíf^'^^í-./)!!!„

so that

(4.10) y(t)

Now let x(i) be the cut-off function

\(p-DAp + U
dt

x(0
i,

<C\\zJ\\>Z»A'+V\\z,(-,t)\\1M.

0<i< T-I,
1

1 --[t-(T- /)],     T-Kt^T.

Then for q > 1 and 0 < i < T - I, we have

ÊL
dty{t)q = (yx)%^qj\xy)"-\\xt\y + x

=    ̂       /"rj,?-l-(/7-l)/(^+l)[     yl+(p-l)/(^+l)    +   y(p-l)Ap+l)
dt
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Now choose q = p(p + 3)/(p + 1) > 1 and use (4.10) to estimate the second term
in the above integrand. The result is that

,/>(/> +3)/(;>+l)y(t)>

c^1 fTy(tYdt\  sup  \y(s) 2p/(p + X) + \zxe:si)Ap+1)\\zA-,s)\u,

Using hypothesis (b), this may be rewritten as
(4.11)  '

y(t) p(p + 3)Ap + l)       Çu.up sup iiz(.,i)n2^+l) + Coii^ii^;)/«^1)

Now by (4.8) we have that

(4.12) r(-»')l oo.R « c\\zx\\X%+Mt)pAp + V

The result then follows by substituting (4.11) into (4.12).   D
We can now prove the first half of Theorem 4.1 by applying the interpolation

inequality of Lemma 4.5 to the Lp error bound in Lemma 4.4 as follows.
Proof of (4.1). It is clear that vh - v satisfies the first hypothesis of Lemma 4.5.

In addition, hypothesis (b) is satisfied because of (3.3) and the results of [5].
(Alternatively, we can observe that the conclusion of Lemma 4.5 remains valid for
limits of functions which satisfy hypotheses (a) and (b) uniformly. And v is such a
function by the results of §3.) Replacing T - I and T by T and T + 1 respectively,
we therefore obtain that

\vh(-,t)-v(-,t)\
C

oo ,R ,!/(/>+ 3)
Il   h ||M/> + 3)
\]V    - V\\p,S'T       ,

where S'T = R X [0, T + 1] and p g [ 1, oo). But it we choose p as in the statement
of Theorem 4.1, then Lemma 4.4 shows that

vh-v\\p,s,T*iCAx°\logAx\

Therefore

\vh(-, t) - v(-, t)\\x„ ^ C

h

/Ax^log_Ax|\1/(í,+3)

On the other hand, the Holder continuity of v and v in time shows that

\\vh(-,t)-v(-,t)\\xM^C(t^2 + Ax)

for any i. The estimate (4.1) follows from these last two inequalities.   D
Next, we deduce the bound (4.2) for the error in the approximate interfaces from

the above bound (4.1) for the error in vh. Again we drop the subscripts and denote f *
andfrbyfandf.

Proof of (4.2). First we refine the result in Lemma 3.4. Divide (3.13) by tj and let
tj -» 0. The result is that

(4.13) v($(t)-y,t)>
m — 1 JÍ(') (m + l)í

a.e.
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A similar bound holds for vh: taking q = 1 in (3.16), we have that

m — 1
VK(n)-j > (/Ax)f(iJ (/Ax)2

(m + l)t„

Since vh is Lipschitz in x and Holder continuous in i, and since fh is piecewise linear,
we can conclude that

(4.14)       vH{Sh(t)-y,t)> m- 1
m

ïh(t)y- - CAx   a.e.
(m + l)t

Now let [vx, v2) = {v, vh) and let ^ and f2 be the corresponding interface
curves. Assume that, at time i, 0 < f2(i) - f,(i) = y. Then we have, using either
(4.13) or (4.14), that

(4.15)  ||t;A(-, i) - v(-, OIL.« > \(v2 - Vi)(Si(t), t)\
= v2(<;x(t),t) = v2{S2(t)-y,t)

>

3s

m- 1
m

w — 1

fc(O)'
yl

(m + l)i

m

-CAx

(*2 - fi)'
(fe        fl)(?2        fl) (m + 1), - CAx.

Now let

*') - [fc(0 - fi<012
and let E(t) be the bound in (4.1) for

||,/(.,i)-<;(-, i)|L,R.
Then (4.15) shows that

2F(i)- :F(i)<£(i),

5-2/(m+l)F(5) +   T  i-2/(m+l)£(Ä) &
Jr

(m + l)t'

where we have subsumed the CAx term into E(t). Integrating, we thus obtain that,
for any 8 > 0,

(4.16) F(i) < i2/C" + 1>   -

Now, since

F(8) = [£*(«) - f(á)]2 < (|f*(Ä) - í*(0)| + |f(0) - ?(6)|)2 < CS2,
the first term on the right of (4.16) approaches 0 as 8 -* 0. In addition, the integrand
in the second term of (4.16) is bounded by

a-(l/(m + l) + l/(P + 3))(A;ca|logAjc|)l/(^3)_

A short computation shows that the exponent of s here is greater than -1, so that
this term is integrable on [0, t]. We may therefore conclude that

lf*(0 - S(t)\ = Ht)1/2 < Cí1/""+1>(Axa|logAx|)1/2<,,+3).   D
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5. Estimate for the weak truncation error. This section is devoted to the proof of
Lemma 4.2. Since the arguments are technically involved, even though simple, we
begin by listing a few facts to which we will refer systematically. In the estimates to
follow we will use repeatedly the bounds established in §2 without specific mention.

Let Tk" and Sk be the triangles in Figure 3.1, and let vh be the piecewise linear
interpolation of v"k introduced in §3. In Tk, vh can be written in any one of the
equivalent forms

'»i + w*\i(* - xk)+»r+i(f - o,
(5.1) </(x, i) = I Vk+1 + w"k+x(x - xk + x) + <+1(i - t„),

KÎÎ + <+i(x - xk+1) + a"k + x(t - tn+1),

and in Sk it can be written in any one of the equivalent forms

(v"k + w"k:l(x-xk) + o"k(t-tn),

(5.2) vh(x, t) =    v"k+1 + w"k:¡(x - xk) + o"k(t - i„+1),

W+\ + <++.(* - **+,)+onk(t - tn+x).

Let <t> g HX(ST) be a test function satisfying (1.4), denote with <¡>h the piecewise
linear interpolation of the values <p"k = <t>(xk, i„) and set

n Ax      '      * Ai

In Tk", <¡>h can be written in any of the equivalent forms

(<i>k + n+i(x-xk) + n+Át-tn),
(5.3) <ph(x, t) = I <t>"k + l + Vk + x(x - xk+i) + n+x(t - tn),

UUi + Vk + x(x - xk + x) + ®k + x(t - tn + l),

and in 5^

U"k + yk+\x-xk) + <s>"k(t-tn),

(5.4) <¡>h(x, t) =    <p"k+1 + yk+\x - xk) + 9»k(t - t„ + x),

W+\+Vk+1(x-xk+l) + *k(t-tn+l)-

Remark. From (5.1)-(5.2) it follows that vh can be written as the value of vh at
any one of the corners of Tk (Sk respectively), plus terms of the order of Ax. An
analogous fact holds for <ph.

5.1. The basic identity. Consider the quantity

(5.5)
J{vh + £, <i>\ 8, T) = ff    U<¡>h + m(vh + e)vhx<px + m(m_~ 2) (ü*)V) dxdt,

St x \ '
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where 8 is a fixed positive number. We assume for simplicity that T = (N + l)At
and 8 = n0At for two positive integers nQ < N, and calculate the various parts of
(5.5) as follows:

(i) Jx = ff   (j,V dx dr = E E  // b»,V dx dr + ff vfrh dx dt
n o   Z  V      »*

N
= EE°«AxAi + EE|[^r+î - <^](Ax)2Ai,

"0   z "o   z

(ii)   y2 = m//    {(i;* + e)i;íí{+(l;í)V}^rfT
ST.S

= mff   vhx[(vh + e)^]xdxdr

ÍZ[¡S <,x[{vh + e)<ph\xdxdr + ¡j w"ktl\(vh + e)<ph]xdxdr\.
"o   z

On 7^" we have

[(vh + s)ïh]x = (v"k + e)yk+ï + w"k+x<?"k + x

+ <+l*t+l[(*-**)+(*-*A+l)]

+ K+i^+i + <+A\i)('-Ü-
Therefore

//r<+i[(^ + e)^]xdx¿T -1[(dJ + e)^+1 + w^+x<p"k+x]AxAt

+\[°;+m+i + <+i^'+i]<+iA^(Ai)2.
By direct calculation

+ wH^tf,^] = -(oí + e)
(Ax)
\Av]" w"     - w"

?+i[(«S + *)Vk + 1 + <+i« + i]      -(o! + e)1^^ +« + e)-*±L-_*^ + 1

+("i + «Kft+;/t+K+A+.

(Ax)2

This imphes that
N -,    A1

ÍtÍ(°*+i + £K+i</>I + i "(»A + «)«}■

ÍZff <+x[(vh + e)^)xdxdt=  .ltY.(v"k + e)^2<t>"kAxAt
Tio   Z "i? l n0   Z (Ax)

+ |lE<[^* + <**lAx(Ai)2.
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Analogous calculations on Sk give

îzfS<:\\^h^^\xdxdt = -\iz(vri + e)[^Ç^
7,0 zJJs£ z»0z (Ax)

-lLL<:i[onkn++\ + ̂ ++a]ax(aí)2.
710    z

Substituting there calculations in the expression of J2 we obtain

(ii)'     h=   E   Lrn(v"k + e)[-^2<t>l
7,0+i z (Ax)

-f AiEAx/^o + e)^f ^o +(^+i + ,)
ijV + 1

(Axr
\M'k    .v+i

(Ax)2   **    ,

+ ? EE<(^"« + <^")Ax(Ai)2
«o z

-? EE<i(«++i + w;;i»;)A*(A0a.
«o   Z

We finally transform the remaining integral in J(vh + £, </>\ 5, T).

--^eE{/¿K%i)V&*+/¿(wtó)VA*}.
7i0   Z   V       /* ¿a /

Using (5.3)-(5.4), by standard calculations we obtain

i-Z?T E  E«)V*AxAi
«„+1       7.

+

7>o+l    Z

££[(»T1),-(»i)2K"M4<)
71.      7.

m

*(*» - 1) S z

-|[«°)2^+«+1)2^+1]}a^.

We rewrite the first summand in /3 as

«)V* = (y^+i + H'n2   ,
2 ^ + «)2-(

2       / <+! + M>¿
2

7i\2

«.
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and  combine  the  expressions  of J¡,  i = 1,   2,   3,  so  obtained,   as  parts  of
J(vh + e, </>\ 8, T), to deduce the basic identity

J(vh + e,<t>h,8,T)

N ( .,« + ! _ „n
£    r     Vk       -<>k ,   n AMk=   E  E A/       -rn(v"k + z)±—f

,,„+! z Ai Ax 2

m - 1 \       2Ax
(5-6) +AiX>;°($Ax

'<+i     ^-i\2\^AxAi

_2
¿    z I (Ax) (Ax) j

Av  *+ ̂ EE[^r+í-^«]AxAi
«0 z

mAi "
6 EE<:í[a¿>*Íl + <í1>*n]AxAí

710     Z

wAxTrEEO
JVW ^    7!„     Z10

N
+ ^EE<[a^ + wA«^]AxAí

"o   Z

°ym    l) ti0 z

}[«°)2^+«+1)2^+1]}a^

10
= E h,.

1=1

From now on we will select test functions $ of the form

j.        I   h   i      \(2-7n)/(77i-l) /• ,<j> = (t;  + e) /,       m > 1,

where /satisfies (1.4). We will estimate the H¡, /' = 1,2,..., 10, in (5.6) in terms off,
fx and/,. For notational simplicity set \\f, fx, f\\^Sr = \\f, fx, f,\\ and |||/||| = ||/|| +
ll/JI + ll/fll- We start °y making elementary estimates of <i> and its first derivatives in
terms off.
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Denoting by <ph the piecewise linear interpolation of <p and recalling that e is of the
order of Ax we have

(5.7)

Also
(a)

*   •
(Q\f\\

Ax) (2-77l)/(771-l)

if 1 < m < 2,
if m > 2.

rk = ̂ x^1 -¿{(«* + *f-m"-»f! -(«*_, + Ef-^-^-i)Ax
=¿{[(^+£rm)/(m-i,-(^-i + e)(2-m)/(m-i)

\(2-m)Am-X)fk   ~ fk-1
Ax

xfk+i

1)
Ax

2 - m
m- 1 («*+«)

(2-77l)/(771-l)-l,
+ (»*-!+*)

(2-77l)/( 771-1) ll/JI;

(b)

where

*Z = ft*    - <t>k
At

+ (v"k + e)

m
m - 1

(2-77l)/( 771-1)

(»z + 0(2-77l)/(771-l)-l.

v}=min{v"k;v"k_x),       v* = mm{v"k+\v"k}

From (a)-(b) we deduce

'c(r|+e)_1||/ll + C||/x||
(5-8)     \Vk\ <

(5.9)    |*,-|<

c[(v"k + t)-l\\f\\ + \\fx\^(Axf-

C(rî+e)"V*"l 11/11 + C||/,||
C[{vl+ t)'l\o"k\ y/11 + ||/(||](Ax)

« )/( 771-1)

(2-77l)/(771-l)

if 1 < m < 2,

if m > 2,

if 1 < m < 2,

if m > 2.

5.2. y4n auxiliary lemma.

Lemma 5.1. For a// test functions </> o/ ifo form <¡> = (vh + e)(2~'n)/(,n~1)/, íAe
esiimaie

|/(i>* + £,<¡>\ó\ 7)| <C|||/|||(Ax)>gS|
WiZs, where a = min(l; l/(m — 1)}.

Proof. We estimate the //, on the right side of (5.6) separately. At points where
the difference equation (1.11) holds, the summand in Hx vanishes, and by virtue of
Lemma 2.4, the sum extended over the remaining (n, k) is of the order of Ax.

Therefore \HX\ < CiAx)^^ < C|||/|||(Ax)°. We have also easily \H2\ + \H3\ <
CHI/IIKAx)«.

In estimating //4 we only consider the term whose summand is ok4/kX\- The
estimate for the term whose summand is ak\j/"k is analogous, and in fact simpler.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



AN INTERFACE TRACKING ALGORITHM 493

We have

A*E E^niAxAi = Ax£ £ <«+ÏAxAi
«0     Z 710   [A</C(71+l)]U[/t>/i'(7,+ l)]

N
+ Ax£ £ a^lAxAi = k(1) + k(2).

"o K(n + l)^k*iK(n + l)

As for k(1), using Lemma 2.4 and (5.8),

|/c(1)| < C(Ax)2max|^| < C|||/|||(Ax)a.
Ti, k

We estimate k(2) by using the difference equation (1.11):

K<2> = Ax£ £
"0   /S:(7,+ l)<7VsSA"(7, + l)

N
< Ax£ £

«o K(n + \)^k^K(n + l)

N
+AxE        E

m(v"k + e)

m(v"k + e)

[Av]"k m    [ w"k + x + wk

(Ax)2     m~1

[Ml

n \ 2

«tiAxAi

(Ax)2
1^+ílAxAi

m    (wk+1 + wk

7i0 K(n + l)4;k*iK(n + l)
m H K i .i,n + i«:ïaxaî

=   K(2) +   K(2)
Ka    i" Kh   .

Estimate the summand in k(2) as follows

[MlmAx(v"k + e)
(Ax)2

i^r+n < cii/xii(Ax)a[Ml

+ c PJS + e
v"k + e

(Axf

ll/ll(Ax)a [^i;
(Ax)2

Now observe that

"I = "(kTx) + ^RIjAx = vfâX) + <J(fe)Ai + wyk~Xyàx,
where

W(Pî) =-¿x"-    and   a(nOT) =-^-.

By the estimates in §2 |i>"£"+ï) - v"rh)\ < CAx, and therefore

„71+J,     _L   Fü(í+l)   +  £

Consequently for k(2) we have

lKfKC|ii/ni(Ax)aEE
Tin    Z

[^]i

(Ax)2
AxAi.
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By Lemma 2.6
N
EE
7,0     Z

[Ml
(Ax)2

AxAt < c£ (l + y ) Ai < C(l + |log 8\),
«o   \ "   '

so that

|K<2>|<C|||/|||(Ax)>gS|.
We estimate |k{,2)| by performing a discrete integration by parts

m
m TA*£        E

710   /f(71 + lK/V«/i:(7!+l)

w:"       4- w" \2I thn+1  — th" + lk + x + wk\    fk+x      9k
Ax AxAt

< CAxI £
Tlo     Z

[Av\l |<#+1|AxAi + CAjc||4»||
(AxY

^C|||/|||(Ax)>gô|.
Combining these estimates we obtain |//4| < C|||/|||(Ax)a|log5|. By similar calcula-
tions involving the use of Lemma 2.6 we deduce

|//5| + |//7|<C|||/|||(Ax)a|logr3|.

In estimating H6 we first integrate by parts (discrete integration) and use the
techniques above to obtain \H6\ <; C|||/|||(Ax)a|log5|. Analogous techniques give the
desired estimates for H%, H9 and Hxo. The proof is complete.

Corollary 5.2. If -L < v0xx «s 0 for some positive constant L, then

|/((/ + E,<Î7\Ô,r)|<C|||/|||(Ax)a   V5>0.
5.3. Proof of Lemma 4.2. Since J(vh + e, <|>, 8, T) = J(vh + e, <j> - <¡>h, 8, T) +

J(vh + e, <f>h, S, T) and the last term has been estimated in Lemma 5.1, we have only
to estimate J(vh + e, <p - <ph, 8, T). To this end we will need the following pre-
liminary fact.

Lemma 5.3. There exists a constant C independent of n, k, Ax and <p such that

(Ax ■ At)-1 ff (<ph - <¡>) dxdt < C|||/|||(Axr[l +(v"k + e)_1],

where v"k = minr. vh.

Remark. An analogous statement holds for Sk.
Proof of Lemma 5.3.

ff (</>* - <p) dx dt = ff (<p"k - </>) dx dt

+ // [yk(x - xk) + *"k(t - t„)\ dxdt = z« + /<2'.

For /(2), using (5.8)-(5.9) we have

|/(2>| < C|||/|||(Ax)a[l +(v"K + e)-']AxAí.
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Estimating /(1),

7<1> = // J I** ~~ *<*' '«)J + M*'r) - *(*' '»^ } Jx *

< {||<yoo,7rAx + ||<yooT,,Ai}AxAi,

and the desired estimate follows from (5.8)—(5.9).

Corollary 5.4. For all n and k,ifv"k = maxr» vh then

^Axjrffr,^h - *)dxdt < cmk**)*.
Ax

//^-^¿x^ClII/IIKAx)".AxAí .7.7™

Remark. Corollary 5.4 holds if Tk" is replaced by S'k.
We are now in the position to estimate J(vh + e,<¡> - <¡>h, 8, T).

(5.10)

J(vh + e,* - $\ 5, J) = //   {«*(* - **) + m(î/ + «)(»*),(♦ - tf),

+ (^f - ^j(ohx)2)(4> -*)} dxdt
N

¿ZL
710       Z

iV

"o    Z
,v

m     / m£+1 + w
m - 1

71,2

jj (<?-$») dxdt

772 — 1

«       \2m    /<+2 + <+1 ff(<¡>-4>h)dxdt
Tk

+ \t E(3<+i + <+2)«+i - <+2)//> - 4>") ¿x*
tío    Z T'a"

£ E e(3<;î + HT'Hwr1 - <:í)/j> - <t>h) dxdt
n„    Z

+ «//     [(t;* + e)(vh)x(<¡> - *^), +(0*)2(* - <i>")] dxdt

= E *,.
1 = 1

Estimate of \PX\ + \P2\.
N

Px = L        E
«o K(n + l)^k^K(n + l) L

/V
+ E E

«o [A<Ar(«+l)]U[fV>A'(« + l)]

m     (wZ+l + wr
m - 1 ff (<p-^)dxdt

m    (w"x + wr:
m - 1

VA + 1    '    nk ff {<?-<!>») dxdt

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



496 E. DI BENEDETTO AND DAVID HOFF

For pî* by the estimates in §2 and Corollary 5.4 we obtain easily \p**\ <
C|||/|||(Ax)a. In estimatingp* we use the difference equation (1.11).

IKKcEE
7,n     Z

[Av]"k

(Ax)2
AxAi/^til

X  l\   AxAt ff (<f>- <t>h) dxdt
J J çn

<C|||/|||(Ax)>gS|.

The estimate of \P2\ is analogous.
Estimate of'\P3\ + \P4\.

\p*\ + \Pa\ < cj: e
ti„    Z

[Ml
(Ax)2

AxAt Ax
AxAt ff        (<;> - <ph) dxdt

JJSIUT£

By Corollary 5.4 and Lemma 2.6, |/»3| + |P4| < C|||/|||(Ax)°|log 8\.
Estimate of P5.

P, = «I E   //„[("* + *K(* - <í»"), +{vt)\* - lf)\ dxdt
n0    Z   \       Tk

+ ffs\(vh + «K(* - <*>") +(P.v)2(<í' - <!>")}  <&<*]
= ô(1) + ô(2).

We estimate (?(1> by performing an integration by parts in x over each Tk.

I ' ^Ti + 1 ' xk + 1 )

('n- *fc)
Ax,

** + x;(f - OAiv (*«' ^fc+l)

Figure 3
We have

// (v" + „)«,;(* - 4>>)xdxdt=f'"+1 f t+I (d* + e)(^)(0 - 4f)xdx
JJn' Jt„   Jxk+àx(t-t„)/At

= f'"+\v" + t)vhM-4>h)(t,xk + x)dt

-ff (ohx)2(<p-<t>h)dxdt.

dt

dt
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Therefore

dt

dt

Qa) = mZL{ f"+V + eK\t(* - **)(', **+i)
710      Z    ^'«

-jT^V + eK+t^r^^ + ̂ íí-',))
Similar calculations for Q(2) give

g(2) = w£  W-/'"+V + e)<|(i - **)(,, Xj <ft
7,0      Z    ^      %

+ /'"+V + eK;i(* - *^)('. ** + ̂ (< - *.)) <*}•
hi '

For all k g Z and i g [rn, ín+1],

|(^-^)(í,xJ|<C|||/|||(Ax)°(|a,"| + l)Ax
so that

LLp+\v" + e)w^-^)(t,xk)dt
Tío      Z        '»

<C|||/|||(Ax)aEE(l + K"l)AxAi
7,0      Z

<C|||/|||(Ax)>gô|.
Consequently

|ô<1> + ç2(2»|<C|||/|||(Ax)>gô|

+ m E E /'""[w^i1 - w"k + x](vh + e)(* - Ht, Xk + ^U- Ü (ft
7i„    Z

Now from calculations analogous to the ones leading to (5.8)-(5.9), we have in Tk"
(and in St")

Ko* + e)(* - **)| < (vh + eXll^H^A* + I^U^Ai)
< C(vh + E)[l +(v"k + e)~l +(v» + e^III/IIKAx)"

< C|||/|||(Ax)a.

Moreover

w " + l - w" =
ß

„" + 1    _    j," „71 + 1     _    „«H_        vk   ,    Vk-X       vk
At At Ax = ß-i[o"k+o"k_x].

Hence

|ô(1) + ß<2>| < C|||/|||(Ax)>gS| + C|||/|||(Ax)aE EKIAxAi
»o    Z

^C|||/|||(Ax)a|logô|.
This completes the proof of Lemma 4.2.
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6. Numerical results. In this section we discuss briefly the results of our numerical
experiments with the scheme (1.11). All computations were carried out on the CDC
6600 at Indiana University. In each case we specify only the value of Ax used. The
values of e and Ai were always chosen to be the smallest and largest convenient
values, respectively, consistent with the mesh conditions [A3] and [A4].

Not surprisingly, the condition [A4] on Ai/Ax2 is in fact necessary in practice.
But the condition [A3] on £ is probably overly restrictive. For example, for the
specific problems discussed below, [A3] requires that £ > 13.8Ax, which is not
"small" when, say, Ax = .05. Indeed, for the second problem discussed below, we
found that the accuracy increased noticeably as e decreased. A practical (but not
theoretically justified) alternative to [A3] is the condition

(6.1) £ > m + 1
2(m - 1)

Y0Ax.

Such a condition is sufficient for the bounds (2.1) and (2.2) for vh and dvh/dx to
remain in effect. (The more stringent condition [A3] was required only for bound
(2.15) for 9V/3x2.) For the specific problems discussed below, condition (6.1)
requires only that e ^ .58Ax.

For purposes of comparison, we used the Barenblatt-Pattle solution v, which for
m — 2 is defined by (see [16])

1
(6.2) v(x,t) = i at)

lo.
1 - f(0 M<f(0>

\x\>S(t),

where f(i) = [12(< + 1)]1/3-
First, we applied the scheme (1.11) taking u°k = v(xk, 0), f,° = -f(0), and f ° = f(0).

The computations were performed with three different sets of mesh parameters.
Comparing the exact and computed solutions, at i = í, we found the following:

Ax

.05

.025

m) - ?*(h<h)
.0202
.0106
.00551

\v(-A)-oh(-,\) loc.R

.00666

.00340

.00173

Quite clearly, the observed errors in both fA and vh are O(Ax). This is signifi-
cantly better than the rates predicted by Theorem 4.1, which are 0(|Axlog Ax|1/12)
and 0(| Ax log Ax|1/6) for lh and vh respectively. These discrepancies are explained
by the fact that the solution (6.2) has derivatives of all orders which are uniformly
bounded on its support, whereas the bounds (4.1) and (4.2) were derived under the
minimal smoothness conditions which all solutions are known to satisfy. Another
difference between the observed and theoretical results is that the observed rate of
convergence for fh is the same as that for vh, whereas Theorem 4.1 predicts roughly
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that |f - fA| = 0(||f - i^H^2). However, the computation (4.15) shows that, as long
as|f(iW(i)|issmall,

lf(0-f*(Ol c
Ut) \o(-,t)-vh(-,t)\\mJt-rCAx.

Thus when the interfaces are known to be moving with speeds bounded away from
0, the rate of convergence of fh will in fact coincide with that of vh.

In the second example we took the same initial function v0 as before, but now with
f,0 = -3 and £r° = 3. Thus v0 is neither concave nor continuously differentiable on
Ko' fol- The results were as follows:

Ax

.05

.025

lf(ï) - £*(*)!
.1107
.1073
.1055

!*(•,*)-»*■(•,*) loo.R

.06905

.06697

.06592

We are uncertain as to whether meaningful comparisons can be made between
these data and (4.1) and (4.2). Nevertheless, it is clear that, at least qualitatively,
Theorem 4.1 gives the correct result: in the absence of smoothness, the convergence
may be quite slow.

The scheme (1.11) is thus seen to have two shortcomings. The first is that the
parabolic stability condition [A4] makes it impractical to apply the scheme with
small values of Ax. This difficulty can probably be overcome by employing instead a
suitable implicit variant of (1.11). We intend to discuss such a scheme elsewhere. The
other shortcoming of the present method is the unsatisfactory rate of convergence.
While this phenomenon is partly due to the coarseness of the exact solutions
themselves, it may be possible to effect some improvement by a more sophisticated
treatment near the interfaces.
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