
An Interference-Free Programming Model
for Network Objects

Mischael Schill1(B), Christopher M. Poskitt2, and Bertrand Meyer3,4,5

1 Department of Computer Science, ETH Zürich, Zürich, Switzerland
mischael.schill@inf.ethz.ch

2 Singapore University of Technology and Design, Singapore, Singapore
chris poskitt@sutd.edu.sg

3 Politecnico di Milano, Milan, Italy
4 Innopolis University, Kazan, Russia

5 Université Paul Sabatier, Toulouse, France
bertrand.meyer@inf.ethz.ch

Abstract. Network objects are a simple and natural abstraction for dis-
tributed object-oriented programming. Languages that support network
objects, however, often leave synchronization to the user, along with its
associated pitfalls, such as data races and the possibility of failure. In
this paper, we present D-Scoop, a distributed programming model that
allows for interference-free and transaction-like reasoning on (potentially
multiple) network objects, with synchronization handled automatically,
and network failures managed by a compensation mechanism. We achieve
this by leveraging the runtime semantics of a multi-threaded object-
oriented concurrency model, directly generalizing it with a message-based
protocol for efficiently coordinating remote objects. We present our path-
way to fusing these contrasting but complementary ideas, and evaluate
the performance overhead of the automatic synchronization in D-Scoop,
finding that it comes close to—or outperforms—explicit locking-based
synchronization in Java RMI.

1 Introduction

Inter-device communication is becoming ubiquitous, and the number of con-
nected devices is growing everyday. With this ubiquity comes an increasing
demand for programmers to be able to write reliable distributed software, yet
this is no simple task. Challenging errors such as data races and deadlocks can
arise from subtle mistakes in synchronization code; and the failure of individual
devices can block whole systems in the absence of appropriate recovery protocols.

Various language abstractions have been proposed to make it easier to write
distributed programs. One such abstraction, natural for the object-oriented par-
adigm, is that of network objects [2]: objects whose methods can be invoked over
a network. By handling communication in method calls, network objects allow for
local and remote objects to be treated uniformly, without regard to where they are

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
A. Lluch Lafuente and J. Proença (Eds.): COORDINATION 2016, LNCS 9686, pp. 227–244, 2016.
DOI: 10.1007/978-3-319-39519-7 14



228 M. Schill et al.

physically located. In principle an elegant generalization; in practice, languages
supporting them are often lightweight on synchronization, leaving the user to man-
age it explicitly, and potentially exposing them to the aforementioned errors.

Many of these pitfalls of synchronization are not unique to distribution: they
occur in multi-threaded concurrent programming too. Several languages and
libraries attempt to make it easier and safer to write concurrent programs,
providing their users with high-level abstractions as diverse as transactional
memory [23], block-dispatching [10], actors [1], and active objects [14]. Given
the many shared synchronization challenges, a number of these abstractions
have been successfully applied across novel distributed programming approaches,
exemplified by languages such as Creol [12], JCoBox [21], and AmbientTalk [6].

A family of concurrency abstractions that (until the present paper) had not
been generalized to distributed programming were those provided by Scoop [25],
despite their potential to naturally complement the network objects abstrac-
tion and to address some of its shortcomings. Scoop is an object-oriented con-
currency model that provides data-race freedom by construction, and strong
guarantees about the order in which requests are executed by concurrently
running processes. The synchronization provided by its runtime automatically
excludes interfering calls, making it possible to reason independently about dif-
ferent blocks of code over multiple concurrent objects, almost as if each block is
“sequential”. The ethos of the Scoop approach—stick to the mental models pro-
grammers already know well (in this case sequential programming)—is aligned
with that of the network objects abstraction, and challenged us to explore how
they could complement the strengths of each other.

Our Contributions. The main outcome of this paper is D-Scoop, a distrib-
uted programming model resulting from the fusion of the network objects abstrac-
tion with the runtime of the Scoop concurrency model. The strong reasoning
guarantees of the latter are directly generalized to provide interference-free and
transaction-like reasoning on (potentially multiple) network objects, without the
programmer having to worry about how to achieve it. The basis of this fusion
is a message-based protocol for coordinating remote objects, which includes an
efficient and novel two-phase locking algorithm for establishing the Scoop order
guarantees without prolonged periods of blocking. Furthermore, we adapt from
transactional memory the recovery technique of compensations, in order for D-
Scoop to be able to restore consistency when clients fail mid-computation. This
paper presents our pathway to fusing these independent, but complementary ideas.
We furthermore evaluate a prototype implementation of D-Scoop to investigate
the performance overhead of its automatic synchronization mechanisms, finding
that they come close to—and in some circumstances outperform—explicit locking-
based synchronization in the Java RMI realization of network objects.

For the distributed programming community, this paper presents a program-
ming model with interference-free and transaction-like reasoning for distributed
objects, and a runtime that effectively handles the synchronization. For the
Scoop community, it presents a generalization of the classical Scoop concur-
rency model to distribution in a way that maintains the guarantees of the core



An Interference-Free Programming Model for Network Objects 229

abstractions. For language designers, it presents a simple yet effective distributed
programming abstraction (and descriptions of how we realized it) that could be
transferred to other object-oriented languages.

Plan of the Paper. After introducing the necessary technical background of net-
work objects andScoop (Sect. 2),we showhowthey fuse together inD-Scoop, our
distributed programming model (Sect. 3). We go into more depth on how objects
are controlled to avoid interference (Sect. 4) and how compensation helps in man-
aging failure (Sect. 5). Our prototype is then evaluated against Java RMI (Sect. 6),
before we review some related work (Sect. 7) and conclude (Sect. 8).

2 Background: Network Objects and Scoop

Our work combines networks objects—a distributed programming abstraction—
with Scoop, a concurrency model that handles synchronization in its runtime
and provides strong reasoning guarantees. We present the necessary technical
background of these concepts in the context of a running example.

Network Objects. A network object is an object whose methods can be invoked
over a network. The abstraction is a simple but natural generalization of stan-
dard objects to distributed contexts: the programmer interacts with their inter-
faces in the sameway as before, andwithout regard towhere the object is physically
located. Communication is handled in the method calls, and is typically synchro-
nous tomimic regularmethod calls.Network objects first appeared inModula-3 [2],
and have since strongly influenced Java’s Remote Method Invocation (RMI) API
as well as the Common Object Request Broker Architecture (CORBA) standard.

While implementations of network objects vary, the abstraction is typically
light-weight on synchronization, leaving this difficulty to the user, to the point
that multiple clients can concurrently execute the same method (introducing the
possibility of data races). Simple mechanics such as synchronized in Java are
not always sufficient to ensure atomicity. Consider for example the simple bank
account transfer method in Listing 1, which allows some client to transfer an
amount (am) of money from a source (s) account to a target (t) account. If the
system is single-threaded and the accounts are local, then the method is correct.
If the accounts can be accessed concurrently, then locks or other measures are
required to ensure the atomicity of transfer. If however the accounts are remote
and can be accessed concurrently as network objects, then we must adapt again.



230 M. Schill et al.

One solution is to use locks and expose them as network objects, but this
poses risk, e.g. if a client loses its connection before having a chance to release its
locks. Another solution is to hide the synchronization within additional methods
in the account class, but this is still challenging to implement without introduc-
ing concurrency errors such as races or deadlocks. Either way, the simplicity
of the network object abstraction suffers with the complexity of synchronizing
correctly; hence our aim to elegantly integrate it with a concurrency model that
can manage such complexity in its runtime.

SCOOP. Scoop [25] is a concurrent object-oriented programming model that
aims to preserve the well-understood modes of reasoning enjoyed by sequential
programs, such as pre- and postcondition reasoning over blocks of code. Program-
mers are provided with simple abstractions for expressing concurrency, with the
runtime itself responsible for correctly handling synchronization. We describe
Scoop in the context of its principal implementation for Eiffel [8], but remark
that the ideas generalize to other object-oriented languages (e.g. Java [24]).

In Scoop, every object is associated with a process (which we call its han-
dler), a concurrent thread of execution with the exclusive right to call methods
on the objects it handles. In this context, object references may point to objects
with the same handler (non-separate objects) or to objects with distinct handlers
(separate objects). Method calls on non-separate objects are executed immedi-
ately by the shared process. To make a call on a separate object, however, a
request must be sent to the handler of that object to process it: if the method
is a command (i.e. it does not return a result) then it is executed asynchro-
nously, leading to concurrency; if it is a query (i.e. a result is returned and must
be waited for) then it is executed synchronously. Note that processes cannot
synchronize via shared memory: only by exchanging requests.

The possibility for objects to have different handlers is captured in the type
system by the keyword separate. To request method calls on objects of separate
type, programmers simply make the calls within separate blocks: these are the
bodies of any methods that have separate objects as formal parameters. Scoop
provides guarantees about the order in which calls in these blocks are executed, so
as to help programmers avoid concurrency errors. In particular, method calls on
separate objects will be logged as requests by their handlers in the order that they
are given in the program text; furthermore, there will be no intervening requests
logged from other handlers. These guarantees exclude data races by construction,
and allow programmers to apply sequential reasoning within separate blocks
independently of the rest of the program.

Consider the concurrent version of transfer in Listing 1, in which bank
account objects have concurrently running handlers. Suppose that a process
calls the method transfer (acc1, acc2, 100) on separate accounts acc1
and acc2. The body of the method contains two commands on these separate
objects—thus, two asynchronously executed requests—that transfer the stated
amount from the first account to the second. It also contains balance queries
which are executed synchronously. The Scoop guarantees ensure that while the
process is inside the body of transfer, no other process can log intervening



An Interference-Free Programming Model for Network Objects 231

requests on acc1 or acc2. As a result, it would not be possible for another
process to observe the balances of the two accounts in an intermediate state,
i.e. when the money has been withdrawn from the former but not credited to
the latter. The body of transfer can thus be reasoned about sequentially and
independently of the rest of the program. This additional control over the order
in which requests are logged (i.e. that requests cannot be interrupted) is the
key distinction Scoop has over other message-passing-based models such as the
actor model, or active objects.

Scoop provides some more advanced concurrency mechanisms beyond the
focus of this paper. Most notable are its generalization of method preconditions
to support condition synchronization on separate objects, and its support for effi-
cient data sharing between processes sharing memory via “passive” data objects
that can be accessed directly (i.e. without the overhead of message-passing). We
refer to [18,20] respectively for more detailed discussions of these concepts.

SCOOP Runtime. The concurrent programming abstractions presented rely
on the existence of a runtime that can correctly and efficiently realize them. At
the core of Scoop’s runtime is a simple execution model for managing requests
that are sent between processes. Each process is associated with a “queue of
queues” [25], that is, a fifo queue itself containing (possibly several) fifo sub-
queues for storing incoming requests. Each of these subqueues represents a “pri-
vate area” for some other process to log requests, in program text order, and
without interference from other processes (since they have their own subqueues).
Figure 1 visualizes three processes (p1, p2, p3) simultaneously logging requests
(green blocks) on another process (p0). The process p0 is handling the sub-
queues one-by-one in the order that they were created, and handles the requests
within them in the order that they were logged there, hence ensuring the Scoop
reasoning guarantees.

Consider again the process that calls transfer (acc1, acc2, 100) on two
separate accounts, acc1 and acc2. Under the current runtime, the handlers of
acc1 and acc2 both generate a private subqueue on which the calling process
can log requests (i.e. the balance queries and set balance commands) without
interruption for the duration of the block. Should another process also need to
log requests on an account, then a new private subqueue is generated for it and
its requests can be logged without waiting.

We remark that earlier versions of the Scoop runtime additionally pro-
vided timing guarantees by not allowing processes to enqueue requests concur-
rently [17]. A formal comparison with the current semantics is given in [5].

Fig. 1. Three processes (p1, p2, p3) logging requests on another (p0)



232 M. Schill et al.

3 Overview of Distributed Scoop

In this section we present D-Scoop (for Distributed Scoop), which combines
network objects and the Scoop synchronization semantics into a single, distrib-
uted programming model that maintains the simplicity of the original abstrac-
tions. We present an overview of its architecture and communication protocol,
and explain how separate calls are generalized to potentially remote objects
(Sects. 4 and 5 describe in more detail how control of remote objects is achieved
in D-Scoop, and how the system compensates for unresponsive clients).

A prototype implementation of the D-Scoop model is available online [7].
Our prototype builds upon the Scoop support for Eiffel in EiffelStudio [8], which
implements the model using threads and shared memory. D-Scoop generalizes
the implementation, allowing for multiple instances of potentially remote Scoop
programs to communicate, under-the-hood, by asynchronous message passing.

Architecture. In D-Scoop, an instance of a Scoop program is called a node.
A node can open a connection to another node through a network socket, which
is then shared by all of its processes. A node can request the index object of
another node, which is a user-defined object that typically provides the API of
the node, or some form of registry. It is valid for a node to not supply an index
object, typically if it is a client in a client-server style setup. To be able to accept
incoming connections from other nodes, a node must start a server and provide
its own index object (or a factory that generates them). Every node in a D-
Scoop network has a unique identifier (ID), which is independent of any other
IDs such as IP addresses. Object references in D-Scoop include this node ID,
along with their object and process identifiers (as in classical Scoop), with the
latter important for determining the number of processes involved in a separate
block.

The nodes in D-Scoop networks communicate, via their connections, using
an asynchronous message-passing scheme. Messages conform to a protocol and
can be one of two types: a request1 or a reply. Requests are sent from a client
node to a supplier, defining work for the supplier to do. Replies are sent back
from the supplier to the client indicating the outcome.

Within nodes, we rely on existing mechanisms of Scoop for garbage collect-
ing local objects and processes. D-Scoop however must also account for objects
used by multiple nodes. To achieve this, we use a distributed garbage collection
algorithm similar to that of Birrell et al. [3].

Requests and Replies. Messages in the D-Scoop communication protocol
have subjects which convey their intended semantics. Messages that are requests
can have one of many different subjects which we outline in the following. Replies
however only indicate success (

�

�

�

�

OK ) or failure (
�

�

�

�

FAIL ), sometimes with addi-
tional arguments, such as the result of a query call.

The simplest request subjects are
�

�

�

�

HELLO ,
�

�

�

�

PING and
�

�

�

�

INDEX , which respec-
tively initialize a connection between nodes, test whether an existing one is still
1 Note that these are distinct from the requests used for inter-process communication

in Scoop.



An Interference-Free Programming Model for Network Objects 233

alive, and request the index object of the supplier node (which typically provides
an API of methods for retrieving more objects).

A number of requests are required to realize a separate block involving remote
objects. A

�

�

�

�

PRELOCK request announces that a process in a client node wishes
to log calls on one or more processes in a supplier node. When a supplier is
ready, the client can issue a

�

�

�

�

LOCK request to announce it is now entering the
separate block. Following this, it can issue requests corresponding to asynchro-
nous method calls (

�

�

�

�

CALL ), synchronous calls (
�

�

�

�

SCALL ), and queries (
�

�

�

�

QCALL ).
To announce leaving the separate block, the client sends an

�

�

�

�

UNLOCK request.
(We describe in more detail how these requests establish control in Sect. 4.)

Requests with the subjects
�

�

�

�

SHARE and
�

�

�

�

RELEASE are respectively used for
obtaining and revoking permission for given object references to be shared with
third party nodes. They are used by D-Scoop for garbage collecting.

Finally,
�

�

�

�

AWAIT and
�

�

�

�

READY requests are used to implement condition syn-
chronization on remote objects. In short: if the condition does not hold, the client
process issues an

�

�

�

�

AWAIT request before going to sleep. This instructs the sup-
plier to wake it up with a

�

�

�

�

READY request once the state of the remote objects
changes, so that the condition can be checked again.

Message Handling. Incoming messages are handled by the request handlers of
D-Scoop nodes in multiple stages, depending on their subjects. If an incoming
message has the subject

�

�

�

�

HELLO ,
�

�

�

�

PING ,
�

�

�

�

SHARE , or
�

�

�

�

RELEASE , then it is han-
dled directly. If a message is a reply, then it is relayed to the appropriate process
within the node. Messages addressed to other nodes are relayed.

For messages concerning separate blocks and condition synchronization, a
more careful treatment is required. In D-Scoop, every node has a special des-
ignated proxy process for handling incoming lock and call requests. Associated
with these proxy processes are proxy objects, which are surrogates (or placehold-
ers) for actual remote objects, holding references to them. This additional layer
is used to catch special contexts in which calls are treated differently. For lack of
space we do not go into detail, but mention two of the most important: callbacks
(see [20]), and a Scoop extension for passive data objects (see [18]).

To minimize the overhead of proxy processes and objects, they are created
only when needed and removed when they are not. For example, if not existing
already, receiving a

�

�

�

�

LOCK request with some given object identifiers will trigger
the creation of a proxy process on that node and proxies for those objects. And
when no longer in use by local processes, they can be collected by the local
Scoop garbage collector.

Remote Calls in Separate Blocks. The communication protocol presented
is ultimately the glue that allows for network objects to be used within the
Scoop framework. Our aim was to make the fusion of these concepts as seamless
as possible: programmers should not need to be aware of the communication
protocol for network objects, and the core abstractions of Scoop should not
need to be fundamentally reinvented to accommodate the extension.

In D-Scoop we were able to maintain the original abstractions provided by
separate blocks, while also providing a natural generalization to support objects



234 M. Schill et al.

residing on other nodes. When a process needs to make a call on a separate
object, there are now three possible cases to distinguish. If the target object
shares the same process (and thus, obviously, the same node), the call is executed
immediately—as in Scoop. If the target object has a distinct process but on the
same node, the process logs a request in a private subqueue for the caller (see
Sect. 2)—as in Scoop. If the target object has a distinct process on a remote
node, however, the D-Scoop communication protocol comes into play, and a
�

�

�

�

CALL message is sent to the remote node.

4 Controlling Remote Objects

We have presented an overview of the D-Scoop architecture, its messaging
protocol, and its generalization of separate blocks to support calls on remote
objects. In this section, we describe how control of remote objects and thus
distributed separate blocks are achieved.

In D-Scoop, separate blocks are handled in three phases: (i) the prelock
phase, for ensuring a correct ordering; (ii) the issuing phase, for enqueuing calls;
and (iii) the execution phase, for executing calls. The issuing phase happens
strictly after the prelock phase. While the execution phase cannot start before
the issuing phase, the two can otherwise overlap due to asynchronicity.

Prelock Phase. In standard Scoop, if a process enters a separate block, the
processes handling the separate objects generate private subqueues for logging
calls (see Sect. 2 and Fig. 1). In D-Scoop however, if a process enters a separate
block involving separate objects on remote nodes, messages must be sent to
trigger the generation of subqueues in a way that preserves the usual reasoning
guarantees. We refer to this messaging phase as the prelock phase.

A client node seeking to enter a separate block involving remote objects
must first announce its intention by sending

�

�

�

�

PRELOCK requests to the nodes
they reside on. This is done in a fixed order (a global order based on node IDs)
to avoid deadlocks, and one-at-a-time; an

�

�

�

�

OK reply must be received before the
next

�

�

�

�

PRELOCK is sent. Once the last such request is successful, the client node
announces that it is entering the separate block and will start issuing calls. This
announcement is made via

�

�

�

�

LOCK requests, which can be sent asynchronously in
any order. By replying with

�

�

�

�

OK , the supplier nodes are acknowledging that the
involved processes have created private subqueues and are ready to enqueue calls
from the client. Figure 2 exemplifies this phase for a client node C that wishes
to enter a separate block involving remote objects on supplier nodes N1, . . . Nn.
Here, an arrow denotes the transmission of a message, with its subject given at
the end (additional parameters are not visualized).

When multiple nodes are entering prelock phases involving common supplier
nodes, blocking must occur in order to maintain the separate block order guar-
antees. In particular, if a

�

�

�

�

PRELOCK message is sent but the supplier is already
involved in the prelock phase of a competing node, then the system blocks on
that message. Instead of blocking for the whole of the competing node’s separate
block, D-Scoop permits a more fine-grained and efficient solution. In particular,



An Interference-Free Programming Model for Network Objects 235

C N1 N2 Nn

T
im

e
PRELOCK

OK
PRELOCK

OK

PRELOCK
OK

LOCKLOCKLOCK

OKOK
OK

. . .

. . .

Fig. 2. Prelock phase: a process on node C is entering a separate block involving
separate objects on remote nodes N1, . . . Nn

it only blocks until the competing node leaves its prelock phase and starts issuing
calls. That is to say, D-Scoop only blocks while “setting up” the subqueues in
a correct order; competing issuing phases can otherwise safely run concurrently.

Issuing and Execution Phases. The prelock phase ends and the issuing phase
begins when the final

�

�

�

�

LOCK request is successful. At this point, the processes han-
dling all the involved remote objects are ready to enqueue calls. In most circum-
stances, commands on remote objects are requested via asynchronous

�

�

�

�

CALL mes-
sages, and queries are requested via synchronous

�

�

�

�

QCALL messages. The supplier
nodes enqueue commands and immediately reply with an

�

�

�

�

OK . When a query is
received however, the supplier node enqueues it, but only replies once it has been
executed (passing the result in an additional parameter of the

�

�

�

�

OK message).
The execution phase begins with the execution of the first logged call. If all

the calls are asynchronous, it can take place strictly after the issuing phase. The
issuing phase ends on sending the

�

�

�

�

UNLOCK message; the execution phase ends
on processing it.

Example Communication. We return to our running bank account example,
which we extend with a simple method withdraw (Listing 2) for withdrawing a
given amount from a given account that we assume to be remote. The method
first synchronously queries the remote object to check that the balance is suffi-
cient, before asynchronously decreasing the balance.

Suppose we have a running D-Scoop system with two bank accounts on dif-
ferent nodes (A1, A2). Suppose now that a client node (C1) is trying to transfer
an amount from A1 to A2, while another client node (C2) is trying to withdraw



236 M. Schill et al.

C1 A1 A2 C2

T
im

e

PRELOCKPRELOCK
OK

LOCK
OKOK

QCALL
OK

PRELOCK
OK

LOCKLOCK

OKOK
QCALLQCALL

OK
CALL

UNLOCK
OKOK

OK
QCALL

OK
CALL

QCALL
OKOK

CALL

UNLOCKUNLOCK

OKOK
OK

Fig. 3. All three phases: a process on C1 calls transfer on A1 and A2; a process on
C2 concurrently calls withdraw on A1

an amount from A1. Recall that the bodies of both methods are separate blocks
(involving, respectively, separate accounts on A1, A2 and A1). Figure 3 visualizes
the messages exchanged in one possible behavior.

Observe that both clients initially send a
�

�

�

�

PRELOCK request to A1. The
request from C2 is received first and is therefore answered immediately; mean-
while, C1 blocks. Since C2 only seeks control over a process on A1, it proceeds to
send a

�

�

�

�

LOCK request, thus completing its prelock phase and generating its pri-
vate subqueue on A1. This allows C1 to unblock and its first

�

�

�

�

PRELOCK request
finally succeeds.

Since the prelock phase of one client can take place in parallel to the issu-
ing and execution phases of another, C2 already starts issuing calls before C1

concludes its prelock phase. In particular, it requests the balance query (via
�

�

�

�

QCALL ) which is executed synchronously (and the balance amount returned).
Following this, C1 requests a

�

�

�

�

PRELOCK on A2 (which is uncontended), before
completing its prelock phase by sending

�

�

�

�

LOCK requests to A1 and A2.
At this point, both C1 and C2 issue balance queries (

�

�

�

�

QCALL )—the former is
evaluating its conditional guard, and the latter is evaluating the expression in the
input of s.set balance (s.balance - am). SinceC2 completed its prelock first, its
private subqueue on A1 is ahead of the subqueue for C1, and so its call is executed
first. Following this,C2 requests an asynchronous command (

�

�

�

�

CALL ) to update the



An Interference-Free Programming Model for Network Objects 237

balance, and then exits its separate block via an
�

�

�

�

UNLOCK request. Once acknowl-
edged,C2 knows that the whole transaction (balance and then set balance) was
successful, and its effects become visible to other clients. Once the

�

�

�

�

OK correspond-
ing to its earlier

�

�

�

�

QCALL arrives, C1 can resume issuing the remaining calls in its
separate block before exiting via

�

�

�

�

UNLOCK requests to A1 and A2.
Note that the reasoning guarantees of the separate blocks have been main-

tained. The calls are executed in program text order and without interven-
ing calls from other nodes: within a separate block, multiple balance calls in
sequence thus always return the same result. The combination of the prelock
phase and the underlying queue of queues semantics prevents the possibility of
interleavings that break this.

5 Compensating for Failure

Our presentation of D-Scoop has thus far focused on the challenge and intri-
cacies of combining the network objects abstraction with a concurrency model
and runtime. In this section, we turn our attention to a topic that cannot be
ignored in the setting of distributed computing: coping with failure.

While failure can often be managed simply—a fixed timeout is used, for
example, to manage it in prelock phases—failure in the middle of a separate
block, when only some of the side-effecting commands have been issued, needs
a more elaborate solution. We introduce compensation, D-Scoop’s mechanism
for reacting to such failure, and demonstrate its use on our running example.

Compensation. In D-Scoop, upon failure of a supplier, the client is informed
using exceptions, and can react to it appropriately in a rescue-clause. However,
the suppliers in separate blocks are in general oblivious to the status of the
client. Our solution is to introduce compensation, a supplier-side mechanism for
reacting to client nodes that become unresponsive or disconnect prematurely.
The technique registers user-provided closures on suppliers that, before releasing
objects controlled by disconnected clients, are executed to restore consistency.

The basic technique is adapted from well-established usage in transactions,
in particular, for recovering from long-running transactions or transactions with
side effects. It fits naturally with the D-Scoop model, given that separate blocks
are transaction-like in the sense that other clients cannot observe the separate
objects in intermediate states. One can think of a

�

�

�

�

LOCK and
�

�

�

�

UNLOCK pair as
being the beginning and end of a transaction; after

�

�

�

�

UNLOCK is acknowledged,
all changes become visible.

The scope of compensation is the issuing phase, and encompasses all executed
calls on processes that have been acquired during the prelock phase (and only
those processes). In the case of nested separate blocks, the outer block has to take
into account that the effects of the inner block are already visible if an

�

�

�

�

UNLOCK

was issued. This is different to most definitions of nested transactions, in which
the inner transaction always finishes together with the outer transaction.

Defining Compensation. Compensation closures are provided by the user as
the input of special methods for registering compensation. (We remark that



238 M. Schill et al.

closures are given with the Eiffel keyword agent, and can refer to existing meth-
ods.) It is possible to define them in the client or the supplier. A client-defined
compensation closure is registered before the call to the method to be compen-
sated (and is ignored by the supplier if no request follows). A supplier-defined
compensation closure is provided within the called method. The latter comes
with the advantage that compensation is defined together with the method, but
the former allows for more flexibility: different compensations can be defined
depending on where the call is made, which is particularly useful for methods
that do not always need compensation.

Consider the simple method set balance for bank account objects (Listing 3)
which sets the balance of an account to some provided input. The listing also
includes examples of how to make it compensable. On the left is a snippet of the
body of transfer, now annotated with client-defined compensation before the
call. On the right is supplier-defined compensation, provided at the beginning of
the method body. In both cases, the balance argument to the closure (agent)
is evaluated to the original balance, so it will restore the old balance if called.

Implementing Compensation. Upon receiving a
�

�

�

�

LOCK request, a supplier
node stores the IDs of the newly requested processes in a stack. This stack is
mainly used to identify which processes need to be released upon

�

�

�

�

UNLOCK . Each
of the process entries also contains a reference to a set of compensation closures,
extracted from the program text. These closures are accompanied by relative
timestamps, so that within all the sets for this client each number is unique and
a later registration has a strictly higher number than an earlier one. Whenever
a process is unlocked normally (i.e. not due to premature disconnection) the
respective set is cleared. However, if a client node disconnects prematurely, all
sets associated with the client are merged and then ordered by the timestamps.
The execution of the compensation closures is done in reverse order.

Figure 4 shows the call stack caused by a remote client calling the method a
and then h. The targets of a, b, c, d and h are owned by process P1, while the
targets of the calls e, f, and g are owned by process P2. During the execution
of c, P1 acquires control over P2 to execute. After a is finished, the client sends
another request to execute h before releasing P1.

We now take a look at three failure scenarios, all of them due to a premature
disconnect by the client. If the client disconnects before a is executed, nothing
happens. The client’s control over P1 is simply lifted. The second case is more



An Interference-Free Programming Model for Network Objects 239

Fig. 4. Example call stack

complex: if the client disconnects while a is executing, the calls a, b, . . . g are
all executed as requested. Since P1 is issuing the

�

�

�

�

UNLOCK request to P2 before
finishing itself, the changes done by e, f, g are visible. The disconnect then
causes the compensation closures of d, c, b, a to be executed before control over
P1 is released. Consequently, the compensation of c has to deal with the fact
that the changes due to e, f, g are already visible.

If the client issued the call to h but got lost before sending the
�

�

�

�

UNLOCK

request, the situation is similar, with the one difference being that the compen-
sation of h is executed before the others.

6 Evaluation

We evaluated D-Scoop against Java RMI to gauge its performance against a
well-established and widely used approach based on network objects. We sought
to collect evidence towards answering two questions. First, is there a performance
overhead associated with the automatic synchronization in D-Scoop, and does
it become incommensurate with the effort to manually write synchronization
code? Second, do the language abstractions of D-Scoop facilitate simpler code?

Example Selection. D-Scoop and Java RMI have many differences: not only
in the model, but also in terms of the underlying programming languages (Eif-
fel and Java) which have many points of variation regarding performance and
compilers. In this context, we devised a set of four microbenchmarks isolated to
comparing the performance of calls: (i) command call, in which a single client
sends a series of command calls to the supplier; (ii) query call, analogous, but
with query calls; (iii) locking and command call, in which a few clients compete
to control a supplier object and send a single command call; and (iv) locking and
query call, analogous, but with a single query call.

In addition to microbenchmarks, we also evaluated D-Scoop against Java
RMI on three larger examples. First, dining philosophers, a classical example
where multiple objects (forks) are repeatedly controlled. For this benchmark,
all philosophers and forks reside on different nodes, and we assume that eating,
using the fork, and thinking take no time. Second, a more practical example:
a log server, in which various events are logged. Here, there are multiple log
servers for redundancy, meaning that copies of logs can still be retrieved if one
fails. To ensure a consistent ordering across servers, a client must control all



240 M. Schill et al.

of them before adding the entries. In our benchmark, three clients repeatedly
generate a simple log message, gain control across the servers, and then place
it. Third, a pipeline representing distributed services. Each stage waits until the
previous stages are ready before retrieving data and processing it. Each stage
provides one operation of the well known formula

√
a2 + b2. We measured the

time the final stage needed for a specific number of calculations.
For Java RMI, explicit locking was used to establish a comparable flexibility

in the clients. Furthermore, the Java code explicitly orders the locks so as to
avoid deadlocks. The source code of the examples and of D-Scoop itself can be
found on our supplementary material webpage [7].

Performance. Overall, we found that despite the potential overhead of auto-
matic synchronization, D-Scoop’s performance is competitive with—and can
be superior to—explicit locking-based synchronization in Java RMI. The results
of the performance evaluation are listed in Fig. 5 and are the averages of 30
runs; we used two off-the-shelf laptops connected by an ethernet cable. The
microbenchmarks show that the performance of both D-Scoop and Java RMI
is similar when just issuing commands or queries. D-Scoop commands are a
bit quicker than D-Scoop queries due to them being asynchronous, whereas in
RMI both are synchronous. When it comes to the control microbenchmarks, the
built-in synchronization in D-Scoop allows for a more significant improvement
in speed, both for synchronous and asynchronous calls. However, the synchro-
nization overhead prevents the asynchronous advantage of Control/Command
translating into faster performance than Control/Query.

For both the dining philosophers and the logging example, the fact that
the prelock phase can be done in parallel with the issuing and execution phase
of another client proves to be a significant advantage in comparison to RMI.
In addition, the logging example shows the advantage of asynchronous calls in
D-Scoop. The underlying semantics make it possible to ensure control over
multiple nodes and have multiple clients issuing asynchronous calls at the same

0 20 40 60 80 100 120 140

Commands

Queries

Control/Command

Control/Query

Philosophers

Logging

Pipeline

time (s)

D-SCOOP

Java RMI

Fig. 5. Benchmark results: each run involved several thousand iterations (see [7])



An Interference-Free Programming Model for Network Objects 241

Table 1. Code complexity

Classes Features Instructions

RMI D-Scoop RMI D-Scoop RMI D-Scoop

Microbenchmarks 3 2 8 6 19 13

Dining philosophers 3 2 6 3 18 10

Logging 6 3 16 9 23 10

Pipelines 2 1 10 16 62 42

time. The pipeline example has less congestion around the protected objects;
here, the advantage of D-Scoop lies solely in slightly fewer messages sent due
to more powerful synchronization mechanics.

Simplicity. Our second question asked whether the language abstractions also
yield simpler code. For our seven benchmarks, we recorded: (i) the number of
classes involved, excluding primitive types, classes, and strings, and ignoring the
RMI remote interface; (ii) the number of features (i.e. attributes and methods),
ignoring the Java “getters” in RMI since they just return an otherwise counted
attribute; and (iii) the number of written instructions, excluding boilerplate
code. This ensures that the differences are only due to synchronization. Table 1
lists the results.

As can be seen, the solutions in D-Scoop are much more compact across
the three measurements. In the case of advanced techniques such as condition
synchronization—an in-depth discussion is omitted for brevity—the complexity
of RMI increases further still. Note that not included in the RMI examples are
compensation and the automatic releasing of locks, since they are difficult to
achieve in that framework. Also, although the usage of a lock or semaphore is
counted as a class, its features are not counted in the feature column since they
are already provided by the library. We remark that these numbers only indicate
that D-Scoop programs are more compact than their RMI counterparts. What
we leave to future work is a study of users themselves to determine whether the
D-Scoop abstractions are easier to read and program with, regardless of their
compactness. (An existing Scoop study is encouraging [19].)

7 Related Work

There is a wide selection of work addressing concurrency and distribution in
the object-oriented paradigm. Here, we highlight some work that is closest to
our own.

The active object [14] design pattern (which inherits from the actor
model [1]), like Scoop, decouples method calls from method executions. Such
objects are associated with their own processes, which can send messages to
each other asynchronously, introducing concurrency. Despite the similarity to
Scoop, active objects lack the guarantee of interference-freedom when multiple



242 M. Schill et al.

objects are involved. Furthermore, non-active objects have to be protected man-
ually, and there is no built-in support for condition synchronization (although
it is possible to use the observer pattern to actively notify waiting processes).
Scoop can be seen as an advanced form of active objects: objects are by default
active, but multiple objects can share the same process. In addition, the Scoop
synchronization mechanisms ensure the absence of intervening calls and also
protect non-active objects [18]. Condition synchronization is simple (via method
preconditions) and does not require signaling.

There have been some successful attempts to generalize ideas from active
objects and the actor model to distributed programming frameworks, with some
prominent examples including Creol [12], AmbientTalk [6], and JCoBox [21]. The
latter partitions the object space into “coboxes”, each with a common thread of
control to improve safety; an approach similar to the processes of Scoop and
D-Scoop. Caromel et al. [4] consider a way of unifying threads and objects
to support simpler reasoning about distributed computing, and provide a for-
mal calculus. An important distinction of D-Scoop in comparison to other
frameworks is the impossibility of interrupting requests sent to multiple (poten-
tially distributed) objects controlled by different threads, giving the model its
transaction-like semantics.

Network objects [2] share some similarities with active objects, although
calls to them are traditionally synchronous to mimic standard method calls, and
calls to local network objects are usually handled by the calling process. Creol
exemplifies different synchronization approaches possible with active objects,
and their natural extension to network objects. Some languages, such as E [16],
avoid blocking entirely to ensure deadlock-freedom. This, in our view, can lead
to complex behavior that is difficult to understand from the point of view of
classical sequential programming. By making synchronization simpler to use,
D-Scoop potentially reduces (but does not eliminate) the risk of deadlocks.

For dealing with failures, the programming language Argus [15] supports
“atomic objects” that can be used in a transaction. In contrast, our compensation
approach is not limited to pure data-objects.

8 Conclusion

This paper made a case for combining network objects with synchronization
models. We presented D-Scoop, a distributed programming model obtained by
combining the network objects abstraction with the runtime semantics of the
object-oriented concurrency model Scoop. We presented an efficient two-phase
locking protocol that generalized the strong reasoning guarantees of Scoop to
network objects, allowing for interference-free and transaction-like reasoning on
(potentially multiple) remotely located objects, without the programmer having
to explicitly manage their synchronization. Furthermore, we proposed a com-
pensation mechanism by which D-Scoop programs can recover from failure.
The evaluation of our prototype implementation [7] suggested that D-Scoop



An Interference-Free Programming Model for Network Objects 243

remains competitive against—and can outperform—explicit locking-based syn-
chronization in Java RMI, a well-established realization of network objects, with
the automatic synchronization mechanisms also allowing for more compact code.

In future work, we plan to improve the efficiency of D-Scoop with respect
to intra-object parallelism [11,13]. We will investigate concepts such as slic-
ing [22], and the possible integration of software transactional memory [9]. We
will also investigate whether performance can be improved, by (safely) relaxing
the requirement that one node communicates with another via a single con-
nection. Finally, we want to formalize the D-Scoop semantics using [5] to test
extensions, and provide a formal proof that the protocol and algorithms correctly
generalize the Scoop guarantees.

Acknowledgements. We thank Sebastian Nanz for his invaluable support through-
out this project. We also thank Carlo A. Furia and the anonymous referees for their
helpful comments and criticisms. The underlying research was partially funded by ERC
Grant CME #291389.

References

1. Agha, G.: ACTORS: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1986)

2. Birrell, A., Nelson, G., Owicki, S.S., Wobber, E.: Network objects. In: Proceedings
of SOSP 1993, pp. 217–230. ACM (1993)

3. Birrell, A., et al.: Distributed garbage collection for network objects. Technical
report, Systems Research Center (1993)

4. Caromel, D., Henrio, L., Serpette, B.P.: Asynchronous sequential processes. Inf.
Comput. 207(4), 459–495 (2009)

5. Corrodi, C., Heußner, A., Poskitt, C.M.: A graph-based semantics workbench for
concurrent asynchronous programs. In: Stevens, P., et al. (eds.) FASE 2016. LNCS,
vol. 9633, pp. 31–48. Springer, Heidelberg (2016)

6. Dedecker, J., Van Cutsem, T., Mostinckx, S., D’Hondt, T., De Meuter, W.:
Ambient-oriented programming in AmbientTalk. In: Thomas, D. (ed.) ECOOP
2006. LNCS, vol. 4067, pp. 230–254. Springer, Heidelberg (2006)

7. Distributed SCOOP website. http://cme.ethz.ch/scoop/dscoop/
8. Eiffel Documentation: Concurrent Eiffel with SCOOP. https://www.eiffel.org/doc/

solutions/Concurrent%20programming%20with%20SCOOP. Accessed April 2016
9. Eugster, P., Vaucouleur, S.: Composing atomic features. Sci. Comput. Program.

63(2), 130–146 (2006)
10. Grand Central Dispatch (GCD) Reference. https://developer.apple.com/library/

mac/documentation/Performance/Reference/GCD libdispatch Ref/index.html.
Accessed April 2016

11. Henrio, L., Huet, F., István, Z.: Multi-threaded active objects. In: De Nicola, R.,
Julien, C. (eds.) COORDINATION 2013. LNCS, vol. 7890, pp. 90–104. Springer,
Heidelberg (2013)

12. Johnsen, E.B., Owe, O., Yu, I.C.: Creol: a type-safe object-oriented model for
distributed concurrent systems. Theor. Comput. Sci. 365(1–2), 23–66 (2006)

http://cme.ethz.ch/scoop/dscoop/
https://www.eiffel.org/doc/solutions/Concurrent%20programming%20with%20SCOOP
https://www.eiffel.org/doc/solutions/Concurrent%20programming%20with%20SCOOP
https://developer.apple.com/library/mac/documentation/Performance/Reference/GCD_libdispatch_Ref/index.html
https://developer.apple.com/library/mac/documentation/Performance/Reference/GCD_libdispatch_Ref/index.html


244 M. Schill et al.

13. Johnsen, E.B., Blanchette, J.C., Kyas, M., Owe, O.: Intra-object versus inter-
object: concurrency and reasoning in Creol. Proc. TTSS 2008. ENTCS 243, 89–103
(2009)

14. Lavender, R.G., Schmidt, D.C.: Active object: an object behavioral pattern for
concurrent programming. In: Vlissides, J.M., Coplien, J.O., Kerth, N.L. (eds.)
Pattern Languages of Program Design, vol. 2, pp. 483–499. Addison-Wesley (1996)

15. Liskov, B.: Distributed programming in Argus. Commun. ACM (CACM) 31(3),
300–312 (1988)

16. Miller, M.S., Tribble, E.D., Shapiro, J.S.: Concurrency among strangers. In: De
Nicola, R., Sangiorgi, D. (eds.) TGC 2005. LNCS, vol. 3705, pp. 195–229. Springer,
Heidelberg (2005)

17. Morandi, B., Schill, M., Nanz, S., Meyer, B.: Prototyping a concurrency model. In:
Proceedings of ACSD 2013, pp. 170–179. IEEE (2013)

18. Morandi, B., Nanz, S., Meyer, B.: Safe and efficient data sharing for message-
passing concurrency. In: Kühn, E., Pugliese, R. (eds.) COORDINATION 2014.
LNCS, vol. 8459, pp. 99–114. Springer, Heidelberg (2014)

19. Nanz, S., Torshizi, F., Pedroni, M., Meyer, B.: Design of an empirical study for
comparing the usability of concurrent programming languages. In: Proceedings of
ESEM 2011, pp. 325–334. IEEE Computer Society (2011)

20. Nienaltowski, P.: Practical framework for contract-based concurrent object-
oriented programming. Doctoral dissertation, ETH Zürich (2007)

21. Schäfer, J., Poetzsch-Heffter, A.: JCoBox: generalizing active objects to concurrent
components. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 275–299.
Springer, Heidelberg (2010)

22. Schill, M., Nanz, S., Meyer, B.: Handling parallelism in a concurrency model. In:
Lourenço, J.M., Farchi, E. (eds.) MUSEPAT 2013 2013. LNCS, vol. 8063, pp. 37–
48. Springer, Heidelberg (2013)

23. Shavit, N., Touitou, D.: Software transactional memory. Distributed Comput.
10(2), 99–116 (1997)

24. Torshizi, F.A., Ostroff, J.S., Paige, R.F., Chechik, M.: The SCOOP concurrency
model in Java-like languages. In: Proceedings of CPA 2009. Concurrent Systems
Engineering Series, vol. 67, pp. 7–27. IOS Press (2009)

25. West, S., Nanz, S., Meyer, B.: Efficient and reasonable object-oriented concurrency.
In: Proceedings of ESEC/FSE 2015, pp. 734–744. ACM (2015)


	An Interference-Free Programming Model for Network Objects
	1 Introduction
	2 Background: Network Objects and Scoop
	3 Overview of Distributed Scoop
	4 Controlling Remote Objects
	5 Compensating for Failure
	6 Evaluation
	7 Related Work
	8 Conclusion
	References


