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Abstract

Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis (M. tuberculosis), is a

major cause of morbidity and mortality worldwide and efforts to control TB are hampered by

difficulties with diagnosis, prevention and treatment 1,2. Most people infected with M.

tuberculosis remain asymptomatic, termed latent TB, with a 10% lifetime risk of developing active
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TB disease, but current tests cannot identify which individuals will develop disease 3. The

immune response to M. tuberculosis is complex and incompletely characterized, hindering

development of new diagnostics, therapies and vaccines 4,5. We identified a whole blood 393

transcript signature for active TB in intermediate and high burden settings, correlating with

radiological extent of disease and reverting to that of healthy controls following treatment. A

subset of latent TB patients had signatures similar to those in active TB patients. We also

identified a specific 86-transcript signature that discriminated active TB from other inflammatory

and infectious diseases. Modular and pathway analysis revealed that the TB signature was

dominated by a neutrophil-driven interferon (IFN)-inducible gene profile, consisting of both IFN-

γ and Type I IFNαβ signalling. Comparison with transcriptional signatures in purified cells and

flow cytometric analysis, suggest that this TB signature reflects both changes in cellular

composition and altered gene expression. Although an IFN signature was also observed in whole

blood of patients with Systemic Lupus Erythematosus (SLE), their complete modular signature

differed from TB with increased abundance of plasma cell transcripts. Our studies demonstrate a

hitherto under-appreciated role of Type I IFNαβ signalling in TB pathogenesis, which has

implications for vaccine and therapeutic development. Our study also provides a broad range of

transcriptional biomarkers with potential as diagnostic and prognostic tools to combat the TB

epidemic.

Blood transcriptional profiling has improved diagnosis and understanding of disease

pathogenesis 6-9. Such a comprehensive unbiased survey will provide insights into the

immunopathogenesis of TB, leading to advances in control of this complex disease.

Genome-wide transcriptional profiles were generated from blood from active TB patients

(before treatment), latent TB patients and healthy controls (Supplementary Fig. 1, Tables 1,

2). A distinct 393-transcript signature was defined in active TB patients (Training Set,

London), using a combination of expression level and statistical filters and hierarchical

clustering (Supplementary Fig. 2b(i), Table 3, Methods). We then applied the 393-transcript

list to two independent cohorts (UK Test Set; South African Validation Set). Hierarchical

clustering of transcriptional profiles showed active TB patients cluster independently of

latent TB and healthy controls, in both intermediate (London) and high burden (South

Africa) regions with a significant association between cluster and study group (Fisher's exact

test, p = 0.00001365, UK, Fig. 1a; and p = 5.79 × 10−10, South Africa, Fig. 1b). This was

independent of ethnicity, age or gender (Supplementary Figs. 2b(ii), c and d). The

transcriptional profiles of 10 – 25% of latent TB patients (5/21 Test Set, 3/31 Validation Set)

clustered with active TB patients (Fig. 1a, 1b). K-nearest neighbours class prediction using

the 393-transcript list, gave a sensitivity of 61.67%, specificity 93.75%, and an

indeterminate rate of 1.9% for the Test Set, (Supplementary Table 4), with 5 latent TB

patients classified as active TB and 4 active TB patients misclassified. In the Validation Set

the sensitivity was 94.12%, specificity 96.67%, and indeterminate rate 7.8%. The UK

patients were of diverse ethnicity, potentially infected with different M. tuberculosis

lineages, suggesting the signature may be independent of bacterial clade, although molecular

typing was not available. The proportion of latent patients having a transcriptional signature

similar to that of active TB was equal to the expected frequency of patients at risk of

progression to active disease 3, potentially identifying latent TB patients with sub-clinical

active disease or higher burden latent infection.

Four out of 21 active TB patients in the Test Set, also misclassified by class prediction,

clustered with healthy controls and latent TB patients (●, #, ■, ◆ Fig. 1a), demonstrating

molecular heterogeneity that could reflect clinical variance. To address this, radiographic

extent of disease was assessed by 3 physicians, blinded to clinical diagnosis and

transcriptional profile (Supplementary Fig. 3)10. The median “Molecular Distance to

Health”11, a composite of the number of transcripts in a profile that significantly differ from
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the healthy control baseline, and the degree of that difference for advanced disease, was

significantly higher than for those with minimal or no disease (Fig. 1c). We show for the

first time that the transcriptional signature in blood correlates with extent of disease in active

TB patients, and reflects changes at the site of disease. The transcriptional signature was

diminished in active TB patients after 2 months, and completely extinguished by 12 months

after treatment, with “Molecular Distance to Health” at 12 months significantly lower than

at baseline pretreatment (Fig. 1d and Supplementary Fig. 4), reflecting radiographic

improvement. Thus the blood transcriptional signature of active TB patients could be used to

monitor efficacy of treatment, and is reflective of the host response to M. tuberculosis

infection.

The 393-gene active TB signature may reflect common inflammatory responses evoked

during many diseases. We therefore identified a TB-specific 86-gene whole blood signature

through analysis of significance 12, compared to patients with other bacterial and

inflammatory diseases (Supplementary Fig. 5, Tables 5 and 6). This 86-gene signature was

then tested against patients normalized to their own controls from 7 independent datasets by

class prediction (K-nearest neighbours) (Fig. 2a). Sensitivities in the TB Training and

Validation Sets were 92% and 90% respectively, distinguishing active TB from other

diseases with a pooled specificity of 83% (Supplementary Table 7). As with the 393-gene

signature this 86-gene signature was diminished in response to treatment (Fig. 2b), and

reflected the same heterogeneity in identical patient samples (Supplementary Fig. 6).

To identify functional components of the transcriptional host response during active TB, we

employed a modular data mining strategy, using sets of genes that are coordinately

expressed in different diseases and defined as specific modules, often demonstrating

coherent functional relationships through unbiased literature profiling 7. The blood modular

signature of active TB patients as compared to healthy controls (filtering out only undetected

transcripts, α=0.01, in at least 2 individuals) was similar in all 3 TB datasets (Fig. 3a,

Supplementary Fig. 7), confirming the reproducibility of the transcriptional signature. The

modular TB signature revealed decreased abundance of B cell (Module, M1.3) and T cell

(M2.8) transcripts and increased abundance of myeloid related transcripts (M1.5 and M2.6).

The largest proportion of transcripts changing in a given module in TB, were within the

IFN-inducible module (M3.1; 75 - 82% of IFN-module transcripts; Fig. 3a). Since a Type I

IFN-inducible signature, linked with disease pathogenesis, has been demonstrated in PBMC

from patients with SLE 13,14, we compared whole blood modular signatures from patients

with other diseases. SLE patients demonstrated over-representation of the IFN-inducible

module (M3.1, Fig. 3a, quantitated in Supplementary Fig. 8), but displayed a plasma-cell

related module absent in TB (M1.1, Fig. 3a; Supplementary Fig. 8). The blood modular

signature from patients with Group A Streptococcus or Staphylococcus infection, or Still's

disease showed minimal to no change in the IFN-inducible module (M3.1) but marked over-

representation of the neutrophil-related module (M2.2), distinguishing these diseases from

TB (Fig. 3a, Supplementary Fig. 8). Thus the IFN-inducible signature is not common to all

inflammatory responses, but is preferentially induced during some diseases, potentially

reflecting protection or pathogenesis. Although SLE and TB share common inflammatory

components such as an IFN-inducible response, the overall pattern of transcriptional

changes (Fig. 3a) and their amplitude (Supplementary Fig. 8) distinguishes one disease from

another.

The TB blood transcriptional signature could represent altered cell composition or changes

in gene expression in discrete cellular populations. Percentages of CD4+ and CD8+ T cells

and B cells, assessed by flow cytometry were significantly diminished in active TB patients,

with reduced numbers of total and central memory CD4+ T cells (Fig. 3b; Supplementary

Figs. 9a and b), in keeping with previous studies 15. That the reduction in T cell transcripts
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revealed by the modular analysis (Fig. 3a) resulted from changes in cell numbers in the

blood, was further confirmed since expression of these transcripts in purified T cells from

the same individuals did not differ between TB patients and healthy controls

(Supplementary Fig. 9c). In contrast, the increase in myeloid transcripts (M1.5, M2.6, Fig.

3a) in the blood of active TB patients was not accounted for by changes in monocytes

(CD14+, CD16−) or neutrophils (CD16+, CD14−) although inflammatory monocytes

(CD14+, CD16+) were increased (Fig. 3c; Supplementary Fig. 10a), as in other diseases 16.

Increased abundance of myeloid transcripts was less pronounced in purified monocytes

(CD14+) (Supplementary Figure 10b), suggesting involvement of other cells.

Pathway analysis confirmed IFN signalling as the most significantly over-represented

pathway in the 393-gene signature (Fischer's Exact test, Benjamini-Hochberg multiple test

correction, p<0.0000001, Supplementary Fig. 11). Genes downstream of both IFN-γ and

Type I IFN α/β receptor signalling were significantly over-represented in blood from active

TB patients (Fig. 4a, b, c). IFN-α2a and IFN-γ proteins were not elevated in serum from

active TB patients, although the IFN-inducible chemokine CXCL10 (IP10) was

(Supplementary Fig. 11c, d, e).

Although IFN-γ is protective during immune responses to intracellular pathogens, including

mycobacteria 4,17,18, the role of Type I IFNαβ is less clear. Type I IFN signalling is crucial

for defense against viral infections but may be detrimental during bacterial 19, including

mycobacterial infections20,21. Absence of IFNαβ signalling in mice improved outcome

after infection with highly virulent 20-22 but not less virulent strains of M. tuberculosis 23.

Highly virulent strains of M. tuberculosis induce higher levels of Type I IFNs 20. There are

reports of TB reactivation during IFN-α treatment for hepatitis C viral infection 24. The

increase in Type I IFNαβ-inducible transcripts in the blood of active TB patients (Fig. 4c),

correlating with disease severity, provides the first data in human disease to support a role

for Type I IFNs in TB pathogenesis. These IFN-inducible transcripts were over-expressed in

purified blood neutrophils and to a lesser extent monocytes, but not CD4+ and CD8+ T cells,

from active TB patients, compared to healthy controls (Fig. 4d; OAS1, IFI6, IFI44, IFI44L,

OAS3, IRF7, IFIH1, IFI16, IFIT3, IFIT2, OAS2, IFITM3, IFITM1, GBP1, GBP5, STAT1,

GBP2, TAP1, STAT1, STAT2, IFI35, TAP2, CD274, SOCS1, CXCL10, IFIT5).

Neutrophils are the predominant cell type infected with rapidly replicating M. tuberculosis

in TB patients 25. Evidence from genetically susceptible mice suggests that neutrophils

contribute to pathology during M. tuberculosis infection 26. Our studies support a role for

neutrophils in TB pathogenesis, which may result from over-activation by IFN-γ and Type I

IFNs.

Earlier microarray studies, limited by small numbers of patients and custom microarrays,

reported a small number of genes in blood associated with TB 27,28. Here we provide the

first complete description of the human blood transcriptional signature of TB. The signature

of active TB, observed in 10 – 20% of latent TB patients, may identify those individuals

who will develop active disease, facilitating targeted preventative therapy, but longitudinal

studies are needed to assess this. That the TB signature is dominated by Type I IFN-

signalling and reflects extent of lung disease, may indicate the process leading to disease

susceptibility. These data improve our understanding of the fundamental biology of TB and

may offer future leads for diagnosis and treatment.

METHODS SUMMARY

Whole blood was collected into Tempus tubes (Applied Biosystems, CA, USA) from active

TB patients (confirmed by culture for M. tuberculosis); Latent TB patients (defined by a

positive tuberculin-skin test (TST) (London) and/or a positive M. tuberculosis antigen-

Berry et al. Page 4

Nature. Author manuscript; available in PMC 2012 November 08.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



specific IFN-γ release assay, IGRA; healthy controls (recruited in London; TST/IGRA

negative). RNA was extracted from whole blood and purified (by Dynabeads, Invitrogen)

neutrophils, monocytes, CD4+ and CD8+ T cells and genome-wide transcriptional profiles

were generated using Illumina HT12 beadarrays, and analysed using Genespring GX, (see

main Methods section). Calculation of “Molecular Distance to Health” 11, transcriptional

modular analysis 7, and analysis of significance 12 were performed as previously described.

Pathway analysis was performed using Ingenuity (Ingenuity Systems, Inc., CA, USA).

Multiplex Serum Protein Measurement was performed using Milliplex Multi-Analyte

Profiling System by Millipore UK, Ltd, Dundee. Flow Cytometry was performed on a

Beckman Coulter Cyan using Summit Software Version 3.02, followed by FlowJo analysis.

METHODS (for online publication)

Participant Recruitment and Patient Characterization

The local Research Ethics Committees at St. Mary's Hospital London, UK (REC 06/

Q0403/128) and University of Cape Town, Cape Town, Republic of South Africa (REC

012/2007) approved the study. All participants were aged over 18 years old and gave written

informed consent. Participants were recruited from St. Mary's Hospital and Hammersmith

Hospital, Imperial College Healthcare NHS Trust, London, UK, Hillingdon Hospital, The

Hillingdon Hospitals NHS Trust, Uxbridge, UK and the Ubuntu TB/HIV clinic, Khayelitsha,

Cape Town, South Africa. Patients were prospectively recruited and sampled, before any

anti-mycobacterial treatment was initiated, but only included in the final analysis if they met

the full clinical criteria for their relevant study group. A subset of active TB patients

recruited into the first cohort recruited in London was also sampled at 2 and 12 months after

the initiation of therapy. Patients who were pregnant, immunosuppressed, or who had

diabetes, or autoimmune disease were ineligible and excluded from this study. In South

Africa, all participants had routine HIV testing using the Abbott Determine® HIV1/2 rapid

antibody assay test kit (Abbott Laboratories, Abbott Park, Illinois, USA). Active TB patients

were confirmed by laboratory isolation of M. tuberculosis on mycobacterial culture of a

respiratory specimen (either sputum or bronchoalvelolar lavage fluid) with sensitivity testing

performed by The Royal Brompton Hospital Mycobacterial Reference Laboratory, London,

UK or The Reference Lab of the National Health Laboratory Service, Groote Schuur

Hospital, Cape Town. In the UK, latent TB patients were recruited from those referred to the

TB clinic with a positive TST, together with a positive result using an IGRA. Latent TB

participants in South Africa were recruited from individuals self-referring to the voluntary

testing clinic at the Ubuntu TB/HIV clinic, and IGRA positivity alone was used to confirm

the diagnosis, irrespective of TST result (although this was still performed). Healthy control

participants were recruited from volunteers at the National Institute for Medical Research

(NIMR), Mill Hill, London, UK. To meet the final criteria for study inclusion healthy

volunteers had to be negative by both TST and IGRA.

Tuberculin Skin Testing

This was performed according to the UK guidelines 29 using 0.1ml (2TU) tuberculin PPD

(RT23, Serum Statens Institute, Copenhagen, Denmark). A positive TST was termed ≥6mm

if BCG unvaccinated, ≥15mm if BCG vaccinated, as per the UK national guidelines 30.

Interferon Gamma Release Assay Testing

The QuantiFERON® Gold In-Tube assay (Cellestis, Carnegie, Australia) was performed

according to the manufacturers instructions.

Berry et al. Page 5

Nature. Author manuscript; available in PMC 2012 November 08.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



Total and Differential Leucocyte Counts

2mls of whole blood was collected into Terumo Venosafe 5ml K2-EDTA tubes (Terumo

Europe, Leuven, Belgium). Samples were then analysed within 4 hours using the Nihon

Kohden MEK-6400 Automated Hematology Analyzer (Nihon Kohden Corporation, Tokyo,

Japan).

Assessment of Radiographic Extent of Disease

Plain chest radiographs were obtained for all patients recruited in London as digital images

and graded by three independent clinicians, blinded to the transcriptional profiles and the

clinical data, using a modified version of the classification system of the U.S. National

Tuberculosis and Respiratory Disease Association 10. This system characterises the

radiographic extent of disease into “Minimal”, “Moderately advanced” or “Far advanced”

stages, according to criteria based upon the density and extent of lesions and presence of

absence of cavitation. We modified the system for use in our study so that it also included a

classification of “No disease, and accounted for the presence of pleural disease or

lymphadenopathy. The system was then converted into a decision tree to aid classification

(Supplementary Figure 3a).

RNA Sampling, Extraction and Processing for Microarray Analysis

3mls of whole blood was collected into Tempus tubes (Applied Biosystems, Foster City,

CA, USA), vigorously mixed immediately after collection, and stored between −20°C and

−80°C before RNA extraction. RNA was isolated from Training Set samples using 1.5mls

whole blood and the PerfectPure RNA Blood kit (5 PRIME Inc, Gaithersburg, MD, USA).

Test and Validation (SA) Set samples were extracted from 1ml of whole blood using the

MagMAX™-96 Blood RNA Isolation Kit (Applied Biosystems/Ambion, Austin, TX, USA)

according to the manufacturer's instructions. 2.5mg of isolated total RNA was then globin

reduced using the GLOBINclear™ 96-well format kit (Applied Biosystems/Ambion, Austin,

TX, USA) according to the manufacturer's instructions. Total and globin-reduced RNA

integrity was assessed using an Agilent 2100 Bioanalyzer showing a quality of RIN of 7 –

9.5 (Agilent Technologies, Santa Clara, CA, USA). RNA yield was assessed using a

Nanodrop 1000 spectrophotometer (NanoDrop Products, The rmo Fisher Scientific Inc,

Wilmington, DE, USA). Biotinylated, amplified antisense complementary RNA targets

(cRNA) were then prepared from 200 - 250ng of the globin-reduced RNA using the Illumina

CustomPrep RNA amplification kit (Applied Biosystems/Ambion, Austin, TX, USA).

750ng of labelled cRNA was hybridized overnight to Illumina Human HT-12 BeadChip

arrays (Illumina Inc, San Diego, CA, USA), which contain more than 48,000 probes. The

arrays were then washed, blocked, stained and scanned on an Illumina BeadStation 500

following the manufacturer's protocols. Illumina BeadStudio v2 software (Illumina Inc, San

Diego, CA, USA) was used to generate signal intensity values from the scans.

Separated cells isolation and RNA extraction

Whole blood was collected in EDTA. Neutrophils (CD15+), monocytes (CD14+), CD4+ T

cells and CD8+ T cells were isolated sequentially using Dynabeads according to

manufacturers instructions. RNA was extracted from whole blood (5′ Prime Perfect Pure

kit) or separated cell populations (Qiagen RNEasy Mini Kit) and stored at −80°C until use.

Microarray Data Analysis

Normalisation—Illumina BeadStudio v2 software was used to subtract background, and

scale average signal intensity for each sample to the global average signal intensity for all

samples, except for Figure 5 and Supplementary Figures 5c and 6b, where signals are

normalised to the median of the control. A gene expression analysis software program,
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GeneSpring GX, version 7.1.3 (Agilent Technologies, Santa Clara, CA, USA, hereafter

referred to as GeneSpring), was used to perform further normalisation. All signal intensity

values less than 10 were set to equal 10. Next, per-gene normalisation was applied, by

dividing the signal intensity of each probe in each sample by the median intensity for that

probe across all samples. These normalised data were used for all downstream analyses

except the assessment of molecular distance to health detailed below.

Filtering—Using GeneSpring, all transcripts were filtered first to select detected

transcripts; those called present in greater than 10% of all samples. Present calls are selected

if the signal precision is <0.01. The remaining transcripts are filtered to select the most

variable probes - those that have a minimum of 2-fold expression change compared to the

median intensity across all samples, in greater than 10% of all samples.

Unsupervised analysis: hierarchical clustering and class discovery—This

approach aims to create an unbiased grouping of samples on the basis of their molecular

profiles, independently of any other phenotypic or clinical classification. Transcripts

meeting the filtering criteria are then subjected to hierarchical clustering using GeneSpring.

For hierarchical clustering of genes, we use a clustering algorithm based upon Pearson

correlation, creating a vertical dendrogram of genes, where transcripts with a similar

expression pattern across all samples are grouped together. The distances between branches

of the tree relate to the similarity of the expression patterns, and the distance between

clusters is determined by the average of the distance between all points in each cluster,

known as average linkage. The vertical expression profiles so generated can then be

subjected to the same hierarchical clustering algorithm, now grouping individual participants

into horizontally presented clusters on the basis of the similarity of their expression profiles.

For this stage, we base the clustering algorithm on Spearman Rank correlation. By

examining the cluster membership we can assess both whether the samples are grouping

according to known factors (clinical diagnosis, demographic features) and also discover if

there are unknown subclasses within the dataset.

Supervised analysis: statistical filtering and class comparison—The aim of the

supervised analysis is to identify transcripts which are differentially expressed between

study groups and that might serve as classifiers or yield insight into immunopathogenesis,

i.e. class comparison. The filtered list of transcripts generated for unsupervised analysis was

used as the starting point for the supervised analysis, i.e. those transcripts that were both

detected, and had at least 2 fold change in expression compared to the median, in greater

than 10% of all samples. Using GeneSpring, these transcripts were then tested using the

Kruskal-Wallis test for comparisons across all study groups, with a=0.01. Adjustment for

multiple testing was applied using the Benjamini-Hochberg False Discovery Rate (FDR) set

at 1%. Lists of transcripts generated in this way were then used for hierarchical clustering as

described above. Interpretation of functional roles of individual transcripts was established

by searching the database at the National Center for Biotechnology Information Gene

database at http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene

Class Prediction—We utilised one of the class prediction tools available within

GeneSpring. The prediction model employed the K-nearest neighbours algorithm, with 10

neighbours and a p value ratio cut off of 0.5. All genes from the 393 transcript list were used

for the prediction. The prediction model was refined by cross-validation on the training set,

with the one Active outlier excluded. This model was then used to predict the classification

of the samples in the independent Test and Validation Sets. Where no prediction was made,

this was recorded as an indeterminate result. Sensitivity, specificity and 95% confidence
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intervals (95% CI) were determined using GraphPad Prism version 5.02 for Windows. P-

values were determined using two-sided Fisher's Exact test

Supervised analysis: (i) “Molecular Distance to Health”—This technique was

performed as previously described11. It aims to convert transcript abundance values into a

representative score indicating the degree of transcriptional perturbation of a given sample

compared to a healthy baseline. This is performed by determining whether the expression

values of a given sample lie inside or outside two standard deviations from the mean of the

healthy controls.

Supervised analysis: (ii) Pathway analysis—Additional functional analysis of

differentially expressed genes was performed using Ingenuity Pathways Analysis

(Ingenuity® Systems, Inc., Redwood, CA, USA, www.ingenuity.com). Canonical pathways

analysis identified the pathways from the Ingenuity Pathways Analysis that were most

significantly represented in the dataset. The significance of the association between the

dataset and the canonical pathway was measured using Fisher's Exact test to calculate a p-

value representing the probability that the association between the transcripts in the dataset

and the canonical pathway is explained by chance alone, with a Benjamini-Hochberg

correction for multiple testing applied. The program can also be used to map the canonical

network and overlay it with expression data from the dataset.

Supervised analysis: (iii) Transcriptional modular analysis—This analysis was

performed as described previously7,11. In the context of the present study, since the

modular framework was derived using Affymetrix HG U133A&B GeneChips, it was

necessary to translate the probes comprising the modules into their equivalents on the

Illumina platform. RefSeq IDs were used to match probes between the Affymetrix HG U133

and Illumina HT-12 V3 platforms. Unambiguous matches were found for 2,109 out of the

5,348 Affymetrix probe sets, and these were used in the present modular analysis. The

matching probes were preserved in their original modules. To graphically present the global

transcriptional changes, for the disease group as a whole versus the healthy control group as

a whole, spots are aligned on a grid, with each position corresponding to a different module

based on their original definition. Spot intensity indicates the percentage of differentially

expressed transcripts changing in the direction shown, from the total number of transcripts

detected for that module, while spot colour indicates the polarity of the change (red = over-

represented, blue = under-represented).

Significance Analysis12—Transcriptional changes in whole blood were evaluated

through statistical group comparison performed systematically for active TB (Test Set),

Staphylococcus infection, Still's syndrome, and adult and pediatric SLE versus their

respective healthy controls, which allows the normalization of each disease group to its own

matched healthy control group, thus avoiding biological or technical confounding factors. A

TB-specific whole blood signature composed of 86 genes was identified (Supplementary

Fig. 5 and Table 5 and 6, p<0.01) not in the four other datasets (p>0.05) using Mann-

Whitney T-Test with Benjamini and Hochberg False Discovery Rate multiple testing

correction. Class prediction was performed using K-Nearest Neighbors algorithm, as before.

Multiplex Serum Protein Measurement

1 – 4ml blood was collected into serum clot activator tubes (either Greiner BioOne 1ml

vacuette tubes, ref 454098, Greiner BioOne, Kremsmünst, Austria; or BD 4ml vacutainer

tubes, ref 368975; Becton Dickinson). Tubes were centrifuged at 2000g for 5 minutes at

room temperature and the serum portion extracted and frozen at −80°C pending analysis.

Analysis was performed by multiplexed cytokine bead-based immunoassay by Millipore UK
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(Millipore UK Ltd, Dundee, UK) using the Milliplex® Multi-Analyte Profiling system

(Millipore, Billerica, MA, USA). The serum levels of 63 cytokines, chemokines, soluble

receptors, growth factors, adhesion molecules and acute phase proteins were measured in

this way in each sample. Samples were assayed for levels of MMP-9, C-reactive protein,

serum amyloid A, EGF, Eotaxin, FGF-2, Flt-3 Ligand, Fractalkine, G-CSF, GM-CSF, GRO,

IFN-a2, IFN-g, IL-10, IL-12p40, IL-12p70, IL-13, IL-15, IL-17, IL-1a̤, IL-1b, IL-1Ra, IL-2,

IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, CXCL10 (IP10), MCP-1, MCP-3, MIP-1 a, MIP-1b,

PDGF-AA, PDGF-AB/BB, RANTES, soluble CD40 ligand, soluble IL-2RA, TGF-a, TNF-

a, VEGF, MIF, soluble Fas, soluble Fas Ligand, tPAI-1, soluble ICAM-1, soluble VCAM-1,

soluble CD30, soluble gp130, soluble IL-1RII, soluble IL-6R, soluble RAGE, soluble TNF-

RI, soluble TNF-RII, IL-16, TGF-b1, TGF-b2 and TGFb-3.

Flow Cytometry

200μl of whole blood (collected in Sodium-Heparin tubes) per staining panel was incubated

with the appropriate antibodies for 20 minutes at room temperature in the dark. Red blood

cells were then lysed using BD FACS lysing solution (BD Biosciences), incubating for 10

minutes at room temperature in the dark. Cells were spun down and washed in 2ml FACS

buffer (PBS/ BSA/ Azide) before being fixed in 1% paraformaldehyde. Samples were then

run on a Beckman Coulter Cyan using Summit Software Version 3.02. Analysis was carried

out using FlowJo Version 8.7.3 for Macintosh (Tree Star, Inc.). Gating strategies used are

set out in Supplementary Figures 9 and 10. Flow cytometric data is presented as dot plots

(Figures 3, and Supplementary 9 and 10). Where appropriate pooled flow cytometry data

was tested for significance using the Mann-Whitney Rank Sum U-test. All antibodies were

purchased from BD Pharmingen or Caltag Laboratories (Invitrogen) except for CD45RA,

which was purchased from Beckman Coulter.

Statistical Analysis

Molecular distance to health and Modular Framework analysis calculations were performed

using Microsoft Excel 2003 (Microsoft Corporation, Redmond, WA, USA). Statistical

analysis of continuous variables and correlation analysis was performed using GraphPad

Prism version 5.02 for Windows (GraphPad Software, San Diego California USA,

www.graphpad.com). Analysis of categorical variables was performed using SPSS version

14 for Windows (Chicago, Illinois, USA).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A distinct whole blood 393-gene transcriptional signature of active TB
393-transcripts differentially expressed in whole blood of active and latent TB patients and

healthy controls a, Test Set. b, Validation Set (SA) profiles, ordered by hierarchical

clustering (Spearman correlation with average linkage) creating a condition tree, upper

horizontal edge of heatmap; study grouping (clinical phenotype) coloured blocks at each

profile base. Heatmap rows = genes, columns = participants. c, Profiles were grouped

according to radiographic extent of disease and the mean “Molecular Distance to Health”

compared between groups (Methods) (Kruskal-Wallis ANOVA, Dunn's multiple

comparison, *** = p <0.0001). d, Active TB patients at 0, 2 and 12 months after initiation of

anti-mycobacterial treatment. The mean “Molecular Distance to Health” for each timepoint

was compared (Friedman's repeated measures test, Dunn's multiple comparison). Horizontal

bars indicate the median, 5th and 95th percentiles.
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Figure 2. A distinct whole blood 86-gene transcriptional signature of active TB is distinct from
other diseases
a, Comparison of 86-gene signature in patients with TB and other diseases normalized to

their own controls; TB (Training, n=13; Control, n=12), TB (SA, n=20; Control = 12),

Group A Streptococcus (Strep; n=23; Control=12), Staphylococcus (Staph; n=40; Control=

12), Still's disease (Still; n=31; Control=22), Adult (SLE; n=29; Control= 16) and paediatric

SLE (pSLE; n=49; Control=11) patients. b, Expression levels of 86 gene signature after 2

and 12 months of treatment in TB patients.
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Figure 3. Whole blood transcriptional signature of active TB reflects distinct changes in cellular
composition and gene expression
a, Gene expression (disease versus healthy controls) of TB (Test Set) and different diseases

mapped within a pre-defined modular framework. Spot intensity (red = increased, blue =

decreased) indicates transcript abundance. Functional interpretations previously determined

by unbiased literature profiling shown by colour-coded grid. Whole blood (Test Set active

TB patients and controls) analysed by flow cytometry for (b) CD3+CD4+ and CD3+CD8+ T

cells and CD19+CD20+ B cells (c) CD14+ monocytes, CD14+CD16+ inflammatory

monocytes and CD16+ neutrophils. Error bars = median, ** = p<0.01, * = p<0.05, Mann-

Whitney test.
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Figure 4. Interferon-inducible gene expression in active TB
Ingenuity Pathways analysis canonical pathway for interferon signalling symbol indicates

gene function (legend on right). Transcripts over-represented in Test Set active TB patients

shaded red a, Type II IFN-γ. b, Type I IFNαβ signalling. Transcript abundance of

representative IFN-inducible genes in active TB (Test Set) from c, whole blood, d, separated

blood leucocyte population. Transcript abundance/expression is normalised to the median of

the healthy controls.
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