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We consider the generalization of a variant of Karmarkar's algorithm to semi-infinite programming. 
The extension of interior point methods to infinite-dimensional linear programming is discussed 
and an algorithm is derived. An implementation of the algorithm for a class of semi-infinite linear 
programs is described and the results of a number of test problems are given. We pay particular 
attention to the problem of Chebyshev approximation. Some further results are given for an 
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and a convergence proof is given in this case. 
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1. Introduction 

Much recent  a t tent ion has been  paid to Karmarkar ' s  Projective Algor i thm [8] for 

l inear  p rogramming  and  the rescaling algori thm discovered i ndependen t ly  by Dikin 

[4], Barnes [2], Caval ier  and  Soyster [3], and  Vanderbei  et al. [11]. These algori thms 

solve l inear  programs by construct ing a sequence of points  lying in  the inter ior  of 

the feasible region and  converging to the opt imal  solution.  Both algori thms make 

use of a t ransformat ion  of variables, fol lowed by a step in the direct ion of an 

appropr ia te  projected gradient.  

In this paper  we consider  the general izat ion of this approach  to solve l inear  

programs posed over more abstract spaces. In  part icular ,  we consider  a class of 

l inear  programs posed over a part icular  k ind of pre-Hilber t  space and  describe a 

conceptual  rescaling algori thm for members  of this class. In  order  to show that this 

is not  solely a theoretical exercise, we show that, for a class of semi-infini te  l inear  

programs,  this approach can be appl ied in a straightforward m a n n e r  to produce  a 

rescaling algori thm for semi-infinite l inear  programming.  

We begin by describing a general izat ion of the rescaling algori thm [11] to an 

abstract space. Let S be any set and  let W be a space of funct ions  from S to ~q. It 
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is clear that with suitable definitions of addition and scalar multiplication that W can 

be given a vector space structure. Let U and Z be arbitrary vector spaces. Define 

the space V to be the Cartesian product of U and W, i.e. 

V = U O W .  

We assume that V is a pre-Hilbert space with an inner product denoted by (-, -). 

Members of U are denoted by u, members of W are denoted by w, and members 
of  V are denoted by either (u, w) or (x, z). The generalization of the rescaling 

algorithm which we describe below requires that the elements of  W are regarded 

at different times to have either the norm induced by the inner product (the IP 

norm), or the supremum norm defined by 

t/wllo  = sup([I w(s)II~,l s c s}. 

For example, the set of continuous functions on [0, 1] can be regarded at different 
times as a pre-Hilbert space with inner product defined by 

;o ( f  g)= f(s)g(s)  ds 

or as the Banach space C[0, 1] with the supremum norm. We define a convex cone 
W+ as follows: 

W+={w6 W: wi(s)>-O, sc  S, i= 1 , . . . ,  q}, 

and note that its interior W°+ (with respect to the supremum topology) is given by 

We let 

o W + = { w c W :  wi(s)>O, scS ,  i = l , . . . , q } .  

V+= U ®  W+ 

and 

o o V+ = U ®  W+ 

and define a partial order "~>" on V by 

~zt>7 fo r ( ,  y c V  if and only if ~ - 7 c V + .  

If  we let 0 be the zero element of V then it is clear that 

cV,  ~/>0 if and only if ~ V + .  

The set V+ is called the positive cone of V. We define ~: > 3' for ~, 3' c V to mean 

that ( -  3' 6 V °, and we note that ( >  3' implies that s c i> 3/. We also assume that W ° 

is non-empty and having chosen a fixed element e of W ° let any (u, e) c V°+ be 

called a preferred element of V. 
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In what follows we shall confine our attention to linear programs which have the 

following form. 

LP minimize ((c, d), (u, w)), 

V((u, w)) = b, 

subject to (u, w) ~> 0, 

(u,w)c v, 

with c c U, d ~ W, b < Z, and T : V-~ Z being a continuous linear operator. For this 
class of  infinite-dimensional linear programs we can specify an algorithm which is 
a generalization of the rescaling algorithm of [11]. At each step of the algorithm, 

we define a V°+-invariant non-singular endomorphism of V which maps the current 
point (x, z) c V°+ to a preferred point (x, e) c V°+ which, with respect to the supremum 

norm, is "far  away" from the boundary of the positive cone. We then take a step 
in the transformed space along the direction of steepest descent of the transformed 
objective functional and apply the inverse of  the endomorphism to give a new 
current point in the original space. The endomorphism is defined in terms of the 
current point (x, z) > 0 and a preferred point (x, e) as follows. Firstly, define z -~ by 

,~--1 : ( Z I I ,  . . . , Zq 1) 

with 

z['(s) = ei(s) 
z,(s)' 

and z* by 

with 

z*=(zL...,z~) 

V s c S ,  i = l , . . . , q ,  

z,(s) 
z* (S ) -eds ) ,  Vs~S ,  i = l , . . . , q .  

Further we note that z -~, z* are elements of  W °. For any w, v c  W we define 
@: W x  W-~ W b y  

(w@v)i(s)=wi(s)vi(s), V, cS,  i = l , . . . , q .  

Clearly @ is commutative and associative and if w, r c W ° then so is w@ ~. 
We now define the following mappings in terms of the current point (x, z ) >  O: 

Fz((U, w ) ) :  (u, z-'Qw), 

F*~((u, w))= (u, z*Qw). 

It is clear that F~* and Fz are linear mappings from V to itself. It is easy to see that 

F=(V°_) ~ V ° and that F*(V °) ~ V °. It also follows from the definition of (3 that 
F* and Fz are mutual inverses. 
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I f  we make the assumption that for every (u, w) 6 V, 

((c, d), (u, w)) = (F*z((e, d)), F~((u, w))), 

then it follows that the solution to the problem given below has the same objective 

functional value as the solution of LP (the constraints are unchanged since F* and 

are mutual inverses). 

minimize (F*((e, d)), Fz((U, w))), 

T o F*z(F~((u ,  w ) ) )  = b, 

subject to F*(Fz((U, w))) >~ O, 

F*z(Fz((U, w)))c V, 

where To F denotes the composition of T and F. Let us write y for z- l (~ w, so that 
(u, y) = Fz(u, w)). Since V and V+ are invariant under Fz and its inverse, it is clear 

that this problem may be formulated as 

SLP minimize (Fz*((c, d)), (u, y)), 

To F~((u,  y))  = t,, 

subject to (u, y) ~> 0, 

(u ,y )  ~ V. 

The rescaling algorithm for LP can now be described as follows. Given a current 
point (x, z) feasible for LP and lying in V °, an iteration of the algorithm transforms 
V by the endomorphism Fz, mapping (x, z) to the preferred point (x, e). A step 

from (x, e) is then computed so as to give a new point in Fz(V) with a smaller SLP 
objective functional value than that of  (x, e); applying the inverse F* of Fz to V 
maps this new point to a new current point in V°+. 

In the finite-dimensional case the rationale underlying the rescaling algorithm is 
discussed fully in [3] and [11]; the reasoning is similar in the abstract case. The 

transformation Fz allows us to treat the current point as a preferred point which is 
chosen to be far away with respect to the supremum norm from the boundary of 
the positive cone. The direction of the step is given by the orthogonal projection 
of  -F*z((C, d)) onto the kernel of T o F~*. A strictly positive step in this direction 
guarantees a strict decrease in the objective functionals of  both the original problem 
and the scaled problem directly proportional  to the length of the step. The orthogonal 
projection is necessary to ensure that the new current point satisfies the constraints 

of  LP. 
For the constructions described above to be possible we require a number  of  

assumptions which we now list before proceeding to describe the steps of  the 

algorithm explicitly. 

Assumption 1. V =  U ®  W is a pre-Hilbert  space with inner product  ( . ,  .), where 

U is a vector space and W is a space of functions S ~  q. T: V--~Z is a linear 

mapping of  V to a vector space Z. 
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Assumption 2. There exists ¢~ ~ V with ~: > 0. 

Assumption 3. For every (u, w) c V, 

((c, d), (u, w)):  (t:*z((C, d)), Fz((U, w))). 

261 

Assumption 4. For any choice of z E W, the kernel of the linear operator T o F* is 
a Hilbert space with respect to the norm induced by the inner product. 

The algorithm 
Step O. Set k = O. 

Step 1. Take a feasible point (x, z) ~k) > 0 and map it to a preferred point (x, e) 
using the map F~k~, i.e. 

(X, e) =/~]~k~((x, z)(k)). 

Step 2. Project the direction of steepest descent for the t ransformed linear func- 
tion, -F*¢~((c, d)), orthogonally onto the kernel of the linear operator ToF*~ to 
give (cv, zv). 

Step 3. Find a step length a > 0 such that e + az e > 0, and let 

z' = e + cezp. 

Step 4. Invert the transformation to get (x, Z) (k+l), i.e. 

(X, Z) (k+l) = F~z(k)( (X ~ - OlCp, Z') ). 

Step 5. Check the termination criterion and stop if it is satisfied. Otherwise set 
k = k + 1 and return to Step 1. 

It is pertinent at this point to make some remarks regarding the above assumptions. 
When U ®  W =  V = E  ~ with the canonical inner product, the IP norm and the 
supremum norm are topologically equivalent, and V forms a Hilbert space with the 
convenient property that V°+ (the Cartesian product  of  U and the set of  points in 
W with strictly positive components) is nonempty.  We are therefore guaranteed not 
only the existence of a projected gradient vector by the Projection Theorem, but 
also the existence of a preferred element in V°+. When W is generalized to be a 
possibly infinite-dimensional space, the supremum norm and the IP norm are 

unfortunately no longer topologically equivalent, and the Hilbert spaces (such as 
Lz[a, b]) with which we would like to work have canonical positive cones with 
empty interiors with respect to the Hilbert-space norm. For this reason it is necessary 
to make use of  the supremum topology, and make Assumption 2, which amounts 
to choosing W so that V°+ is nonempty. 

In fact the condition that V be a Hilbert space is stronger than necessary. We 

require only that Assumption 4 above holds in order to ensure the existence of a 
projected direction of steepest descent. This assumption will hold in particular for 
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spaces W and transformations T where ker(T o F*) is finite-dimensional for every 

z in W. In the next section we shall describe a class of semi-infinite linear program- 

ming problems for which this is true, and show how a rescaling algorithm to solve 

members of this class can be constructed along the lines described above. 

2. Semi-infinite linear programming 

2.1. Problem formulation 

In this section we consider the application of the algorithm to a class of semi-infinite 
linear pgramming problems. These have the following form. 

minimize 

subject to 

where 

cTx,  

n 
al i (s )x  j >I bl(s) if s E [11, /)1], 

j = l  

aqj(s)xj>~bq(s) if sc[ lq ,  Vq], 
,]~ 1 

aij(s), b i (s)cC°°[l i ,  vi], i - = l , . . . , q ,  j = l  . . . .  ,n,  and c, x c E ' .  

With a slight abuse of notation we will write this as 

minimize c X x, 

subject to A ( s ) x  >~ b(s),  Vs c S, 

where 

A(s )  = • ".. • b(s)  = 
. . .  

and c, x ~ ~". (Here S = [ll, vii for the ith equation.) In order to put the above linear 

program into the form LP, we introduce a slack variable z~ ~ C°°[l~, v~] for each 

constraint in the above system. The problem then becomes 

minimize cVx, 

subject to A ( s ) x - z ( s ) ~ - b ( s ) ,  V s ~ S ,  

z ~ O ,  

where x ~ ~ ' ,  z c l]~=~ C°~[I~, vii, which is exactly the form that we require if we set 

U = ~ "  and W = Z ~ - I ] ~ _ ~ C ~ [ l i ,  vi], and let T ( x , z ) = A ( . ) x - z ( . ) .  The inner 

product ( - , . )  is defined on V as 

d), z)> I = d i ( s ) z , ( s )  ds .  
i~ 1 l i 
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We assume that e is given by ei ~ C~[li, vi] with ei(s) = 1, Vs c [1i, vi], i = 1, . , . . ,  q. 
We note that 

((c, o), (x, z)) = cTx, 

and see that 

((c, d), (u, w)) = (F*((c,  d)), Fz((U, w))), 

since from the definition of the inner product given above we have that 

((c, d), (u, w))= cTu + ~ d~(s)wi(s) ds 
i=1 

= cTu + di (s )z i (s ) (1 /z i (s ) )wi(s)  ds 
i= 1 I i 

= (F*z((C, d)), F~((u, w))). 

It is also evident that F*((c, 0)) = (c, 0), so that the direction of steepest descent for 

the transformed linear function is -(c,  0). It remains to show how we can accomplish 

the orthogonal projections within this framework which is dealt with in the next 

section. 

We note in closing this section that other forms of the semi-infinite linear program 
problem can be put into the LP framework with equal ease. In particular, if the 

elements of R" are constrained in sign then we can redefine W and e in order to 

force these elements away from the boundary of the positive cone at each step of 

the algorithm. 

2.2. A description of the implementation 

Clearly, in Step 1 and Step 4 of the algorithm applied to the semi-infinite case, we 

are effectively dividing and multiplying a positive function by a particular positive 

function which has the property that it transforms the current point to the point 

(x, e). In Step 2 of the algorithm we project a vector onto the kernel of T o F~*~k~. 

Observe that this is a finite-dimensional subspace of V so we may accomplish this 

by carrying out the following steps. 

(i) Find a basis {Yi: i = 1 , . . . ,  n} of the kernel of T o F*ck~ where T is defined in 
Section 2.1. This is accomplished easily since we can construct the elements of the 

basis as follows: 

:r o F*~((u, w ) ) =  :r(u, z* ~9 w) 

= Au - (z* fi) w) 

= Au - (z Q w) 

since z * = z  in this case. Thus, since any (u, w) in the kernel of To F~*¢~) has 
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w = Au @ z -1, the elements of  the basis are 

yi = (ki, rf) for i , . . . ,  n, 

where 

and 

k, = ( 0 , . . . ,  O, 1, 0 , . . . ,  O) , 

I in  i t h p o s i t i o n  

r i ( s )  = ( a , ( s ) /  z l ( s ) ,  . . . , a q i ( s ) /  z ~ ( s )  ) .  

(ii) Orthonormalize this finite basis to give 

{/3i = (g,, ti): i= 1 , . . . ,  n}. 

This is accomplished by the modified Gram-Schmidt  orthogonalization process, 
which is described in Goub and Van Loan [6]. 

It should be noted that the major work per iteration is in the calculation of the 
inner products (which are required for the Gram-Schmidt  procedure). Each inner 
product requires q integrations, and the number  of  inner products needed per 
iteration is O(n2). Thus the total number  of  integrations per iteration is O(n2q). 

It was decided to use Simpson's Rule to evaluate the integrals since it has a strong 
error bound and a simple implementation. In general the integrations cannot be 
carried out explicitly since even when the matrix A(s )  has polynomial entries, the 
integrand is a rational function. Most of  the function evaluation in this process is 

repetitive and so the cpu time can be decreased at the expense of using extra storage. 
Step 3 of  the algorithm requires the evaluation of a step length c~ > 0 satisfying 

e+ azp>O. 

(rain) and This is evaluated by finding the minimum value of Zp(S) in [0, 1], say Zp , 
then setting 

- -  C[((mul ) 
OZ = (min--~, 

Zp  

where a(mul) is a constant multiplier constrained to lie in the interval (0, 1), and we 
assume that the minimum value of zp is negative, otherwise the problem is 
unbounded. (The choice of  a~ul) is not entirely straightforward since the likelihood 

of the algorithm terminating at a non optimal point increases as we increase a~mui). 
A further discussion of  this point is made in Section 2.3.) For Step 5, the termination 
criterion chosen was to stop when two successive solutions differed by less than a 
prespecified tolerance. 
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We now digress slightly to consider a Phase 1 procedure for the algorithm. At 
Step 0 we require a feasible solution, which is not always immediately available. 
We therefore consider the following problem, for some vector k, 

FP minimize A, 

subject to A ( s ) x  + kA >I b(s) ,  

A~>0. 

I f  we can find a solution to the above problem with A = 0 then we have a feasible 

starting point for the main algorithm. It is easy to see that if we set every component  
of  k to max i (max~  s (b~ (s))), then a feasible starting point to the algorithm is obtained 
by setting A(°> to some value greater than 1 and setting x to 0, thus forcing the 
corresponding slack functions to be greater than 0. It is then possible to solve the 
feasibility problem, FP, by the algorithm described above if we change Step 3 to read 

Step 3. (For feasibility) Find the maximum step length fl > 0 such that 

e+  [3Zp~O. 

Let (Cp)A be the component  of  the projection % corresponding to the variable A. 

(c,)~ < 0  since FP is bounded below. Then set 

z' = e + olzp, 

where 

_ I - A / ( % ) ~  if A +/3(cp)~ <0 ,  

a tamu~X/3 otherwise, 

and O~mu I C ( 0 ,  1)  is a constant multiplier which ensures that the slack function remains 
strictly positive. 

Note that this sets h to zero at the first instance that it becomes negative and that 
the variable A is assumed to lie in U and not in W. This enables the solution of 

Phase 1 to be easily converted into a starting point for Phase 2, without a redefinition 
of the positive cone. 

2.3. Chebyshev approximation 

We consider the problem of approximating a given function f ( s )  with a finite set 
of  approximating functions {ai(s): i = 1 , . . . ,  n}. This problem may be formulated 
in the L ~ norm, 

n 
min max f ( s ) -  ~, xiai(s) , 
x E ~  n s ~ S  i=1 
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or, wi th  a c h a n g e  o f  n o t a t i o n ,  

ra in  m a x  f ( s )  - a-r(s)x  . 
x ~  n s ~ S  

I t  is we l l  k n o w n  tha t  this  is e q u i v a l e n t  to the  f o l l o w i n g  semi - in f in i t e  p r o g r a m .  

m i n i m i z e  h, 

sub jec t  to h + a T ( s ) x  >~f(s) ,  

h - a T ( s ) x  >1 - f ( s ) .  

It  is c lea r  to see tha t  we  can  use  the  a l g o r i t h m  d i scus sed  in Sec t ion  1 i f  we set 

W = Z =  C°°[0, 1 ] x  C~°[0, 1], 

a n d  

U = N x N  ". 

Thus ,  a g e n e r a l  e l e m e n t  has  the  f o r m  (h, x, z l ( s ) ,  z2(s)) w h e r e  z i ( s )  is the  s lack  

f u n c t i o n  a s s o c i a t e d  wi th  t he  i th cons t ra in t .  

Tile first p r o b l e m  a t t e m p t e d  was to a p p r o x i m a t e  s 6 wi th  the  f u n c t i o n s  ai(s)  = s ~-1, 

i = 1 . . . .  , n. The  resul ts  a re  g iven  in Tab l e  1. 

Table 1 

Chebyshev approximation of s 6. Tolerance of solution is 10 ~; True 
solution is 4.88 x 10  - 4  

c~(,1,~) Phase 1 Phase 2 Solution value CPU (s) 

0.20 1 109 4.99 × 1 0  - 4  26.3 
0.40 1 59 4.90x 10 4 14.5 
0.60 1 45 5.63 × 10 -4 11.1 
0.70 1 34 6.63 x 10 4 8.6 
0.80 1 40 5.95 X 1 0  - 4  9.9 
0.90 1 26 9.46 × 10 4 6.7 
0.95 1 26 9.25 x 10 4 6.6 
0.99 1 22 2.64× 10 3 5.7 

2.4. L l -approx imat ion  

W e  p r e s e n t  s o m e  less f a v o u r a b l e  resul ts  on  the  o n e - s i d e d  L l - a p p r o x i m a t i o n  p r o b l e m .  

A c o m p l e t e  d e s c r i p t i o n  o f  this  p r o b l e m  is g iven  in G t a s h o f f  a n d  G u s t a f s o n  [5]. Let  

~bl, •. •, ~bn be  an  e x t e n d e d  C h e b y s h e v  sys tem o f  o r d e r  two.  T h e  p r o b l e m  is t hen  to 
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find a func t ion  q in the span  of  the qSi, i =  1 , . . . ,  n, which  minimizes  I I q - f i l l  f rom 

above.  We can write this as the  fol lowing op t imiza t i on  p rob l em:  

min imize  f Iq(s ) - f ( s )[w(s)  ds 
Js ~ S  

n 

subject  to q(s) = ~ xi~5,(s), q(s) >~f(s), for  all s c S 

where  w is a posi t ive  weight ing  funct ion.  The  cons t ra in ts  enab le  us to rewri te  the 

in tegral  and  after  a l i t t le a lgebra  it is c lear  tha t  the  p r o b l e m  is equiva len t  to 

min imize  cr x, 

subjec t  to ~ xicbi(s) >~f(s) for  all s ~ S, 
i - - I  

where  ci =Js~s qSi(s)w(s) ds. F o r  the case S = [0, 1], cbi(s) = s i-1 and f ( s )  = - ~ = o  s2i 
the  p r o b l e m  becomes  

7 

minimize  ~ (1/i)x~, 
i = 1  

7 4 

subjec t  to ~ xis i-1>1- ~ s 2~ for  s c [0, 1]. 
i = 1  i ~ O  

Table  2 gives the results  o f  the i m p l e m e n t a t i o n  a p p l i e d  to this p r o b l e m  which  

has an op t ima l  so lu t ion  o f  -1 .78688.  Note  that  the i m p l e m e n t a t i o n  t e rmina tes  i f  

the  n u m b e r  of  i te ra t ions  exceeds  160. 

I t  is ev ident  f rom these  results  tha t  the  resca l ing  a lgor i thm per fo rms  poor ly ,  

espec ia l ly  when  the s tep length  c~m~n becomes  close to one.  We shal l  a t t empt  an 

exp l ana t i on  for  this p o o r  behav iou r  in wha t  fol lows.  Before do ing  this,  it  is ins t ruct ive  

to discuss  the re la t ionsh ip  be tween  the a lgo r i thm desc r ibed  above  and  the s t a n d a r d  

rescal ing  m e t h o d  app l i ed  to a d iscre t iza t ion  of  the  p rob lem.  This is the  subjec t  of  

the  next  section.  

Table 2 

Ll-approximation problem. Tolerance of solution is 10 -6 

c~mut ) Phase 1 Phase 2 Solution value CPU (s) 

0.20 0 161 -1.7859 21.4 
0.40 0 129 -1.7866 17.3 
0.60 0 71 -1.7863 9.4 
0.70 0 62 - 1.7863 8.7 
0.80 0 51 -1.7862 7.2 
0.90 0 37 -1.7856 5.3 
0.95 0 33 -1.7845 4.5 
0.99 0 31 -1.7838 4.1 
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3. Diseretizing the index set 

In order to apply the rescaling algorithm to semi-infinite linear programs as described 
above, a discretization of the set S must be made in order to carry out the computation 
of the integrals by Simpson's  Rule. It is interesting to speculate on whether the 

performance of this rescaling method differs from that obtained by discretizing S 
at the outset, and solving the resulting linear program by the standard rescaling 
method. 

This approach has been tried by Kortanek [9] who has experimented with the 
rescaling method applied to the dual of  the discretized problem. (The reader is 
referred to Gustafson [7] for conditions under which a sequence of solutions to 
successively finer discrete approximations of  a semi-infinite linear program converges 

to the true solution. If, in the notation of Section 2, we assume without loss of  
generality that q = 1, then these conditions amount  to the following. 

(i) There exists a feasible z with z(s)> 0 for every s c S. 
(ii) For i = 1 , . . . ,  n, there exist si c S, and ,~i > 0 such that 

{A(sl),..., a(s,)} 

is a linearly independent set and c=~7_1 Aim(si). 
It is easily verified that the examples above satisfy these conditions.) 

A discretized version of  the semi-infinite linear programming problem of  section 
2.1 is 

DLP minimize cTx, 

subject to A(sh)x >~ b(Sh), 

where sh, h = 0, 1 , . . . ,  N, runs over some discretization of the set S. For simplicity 

of  notation, we assume that A is a row vector a, so that introducing surplus variables 
zh, h = 0, 1 . . . .  , N, the constraints become 

a(s'(N)) - I  ( x )  \b(s'(N))J 

The rescaling transformation F~k) of  the algorithm becomes premultiplication by a 
diagonal matrix D with 

0 

where (DN)hh = z~h ~), h =0 ,  1 , . . . ,  N. The projection step simplifies to projection 
(o c) onto the kernel of  the matrix (B - D N )  where 
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It is easily verified that the actual projection is given by 

io 

where v solves 

( I .  + B T D ; , 2 n ) ~  = - c .  

Observe that (cI~) lies in the kernel of (B -DN)  even though v may be computed 
inaccurately. Adler et al. [ 1 ] have exploited this fact in developing a fast implementa- 
tion of the rescaling algorithm by applying it to the dual of the linear program in 
standard form. 

The rescaling algorithm was implemented with the projection calculation 
described above and applied to discretizations of the Chebyshev and Ll-approxima- 
tion problems. The results were promising and a sample of them have been given 
in Tables 3, 4 and 5. It should be noted that the results given in Table 4 are accurate 
to the precision specified by the stopping rule. The corresponding results using 
Simpson's Rule for the integration stopped before the convergence was completed. 

Tab le  3 

C h e b y s h e v  a p p r o x i m a t i o n  o f  s 6. D i sc r e t i z a t i on  in te rva l  0,01. 

T o l e r a n c e  o f  s o l u t i o n  is 10-6;  T rue  s o l u t i o n  is 4.88 x 10 4 

O~(mul ) P h a s e  1 Phase  2 S o l u t i o n  va lue  C P U  (s)  

0.20 1 72 4.92 X 1 0  - 4  19.9 

0.40 1 34 4 . 9 0 x  10 4 10.2 

0.60 1 22 4.89 x 10 -4  6.5 

0.70 1 17 4 . 8 8 x  10 -4 5.5 

0.80 1 15 4,88 x 10 -4  4.9 

0.90 1 13 4,88 x 10 4 4.4 

0.95 1 12 4.88 × 1 0  - 4  4.1 

0.99 1 11 4.88 X 1 0  - 4  3.8 

T a b l e  4 

C h e b y s h e v  a p p r o x i m a t i o n  o f  s".  D i sc re t i za t i on  in te rva l  0.01. 

T o l e r a n c e  o f  so lu t ion  is 1 0  - 6  

n P h a s e  1 P h a s e  2 S o l u t i o n  va lue  C P U  (s)  

3 1 10 3 .1250 x 10 -2  1.7 

4 1 11 7.809 x 10 -3 2.4 

5 1 11 1 . 9 5 0 x  10 3 3.0 

6 1 12 4.88 × 10 -4  4.1 

7 1 12 1.22 x 1 0  - 4  4.9 

8 1 11 3.1 x 10 -5 5.5 
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Table 5 

Ll-approximation problem. Discretization interval 0.01. 

Tolerance of solution is 10 -6 

o+o~<m Phase 1 Phase 2 Solution value CPU (s) 

0.20 0 88 -1.78689 12.1 
0.40 0 45 -1.78689 6.8 
0.60 0 30 -1.78689 4.3 
0.70 0 28 -1.78689 4.0 
0.80 0 20 -1.78687 3.0 
0.90 0 22 - 1.78686 3.2 
0.95 0 20 -1.78678 3.0 
0.99 0 16 -1.78663 2.5 

Since the computa t ion  o f  the project ion (z~;) using Simpson 's  Rule requires the 

values o f  z(s)  only at the points z(sh), h = 0 ,  l , . . . ,  N, the algori thm described in 

Section 2.2 can be viewed as working only with the values o f  z and zp at these 

points, as long as the min imum of  zp in Step 3 is taken over {Shlh =0 ,  1 , . . . ,  N}. 

We shall assume in what  follows that this is the case, which allows us to compare  

the algorithm from Section 2.2 and the s tandard rescaling algori thm applied to DLP,  

within the same framework.  
The reason for the different per formance  of  the two methods becomes clear when 

we consider the nature o f  the discretization o f  the interval [0, 1 ] used in Simpson's  

Rule. Recall that Simpson 's  rule divides the interval [0, 1] into an even number  ( N )  

o f  subintervals o f  length 6 (0.01 in the above examples) and approximates  the 

integral over [0, 1] o f  some function f by 

6 
I f (0 )  + 4f (8)  + 2f(28)  + 4f(3 6) + 2f(48)  + .  • • + 4 f ( ( N  - 1)8) + f ( N S ) ] .  

Thus the inner p roduc t  o f  functions f and g is approximated  by 

r 
• / , 

[g(NS)J  

where F is a diagonal  matrix with 

f 8 /3  i f h = 0 ,  N, 

Fhh=~28/3  if h = 2 , 4  . . . .  , N - 2 ,  
/ (4613 i f  h = 1 , 3 , . . . ,  N - 1 .  

It follows that with exact arithmetic the project ion calculation described in Section 

2.2 using the modified Gra m -Sc hm i d t  procedure  and Simpson 's  Rule amounts  to 
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calculating 

io 

where v now is the solution to the normal equations 

(I.+ BTD~'FD~B)v=-c. 

It follows that the projected descent directions generated by the two algorithms are 
different. Observe that for small 6, the presence of F in the normal equations gives 
a vector cp which is closer to - c  than that which is obtained when F is absent. This 
discounting of the constraints in the projection calculation gives a sequence of  
iterates which pass close to the boundary of the feasible region, and terminate 
prematurely due to roundoff error. However, the poor  convergence is not due to 
the use of Simpson's rule, but rather the poor scaling that is implicitly produced in 
the inner product. A different inner product would replace F by 6-1F in the normal 
equations given above, and then good convergence would result. This hypothesis 
was confirmed by experimentation. 

Despite these difficulties, we may establish a theoretical convergence result which 
applies to both choices of discretization described above. Our approach closely 
follows that of Kortanek and Shi [ 10]. We begin by recalling the steps of the rescaling 
algorithm. In order to aid exposition the steps have been written in a form which 
is convenient for algebraic manipulation. 

Step O. Set k = 0, choose (x <k), z<k~). 
Step 1. Let D = diag(z(k)(sh), h = 0, 1 , . . . ,  N)  and 

Step 2. Compute 

= ( I + B T D - ' G D - ' B ) - ' ( - ¢ ) .  
L~")J D '8 

Step 3. Compute 

1 
= - - m i n { z ( f f ( S h ) l h  = O, 1 , . . . ,  N } .  

Yk 

Step 4. 
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Step 5. Set k = k + l ,  return to Step 1. 

The algorithm stops in Step 2 if 

z k,j =0, 

in which case we declare optimality, or in Step 3 if yk ~< 0 which indicates unbounded- 

ness. Here G is any diagonal positive definite matrix. Note that if G = I, then the 
algorithm corresponds to a standard discretization, and if G = F as defined in the 

previous section, then the algorithm is that which uses Simpson's Rule. Observe 

that G is independent of k, whereas D is not; its dependence on k has been 

suppressed for notational convenience. It is useful to define at step k the vector 

y(k) = [ D G - ~ D  + BBT]-IBc.  

This vector will be shown to converge to the optimal solution for the dual problem 

to DLP which can be formulated as follows: 

N 
DLP* maximize ~ b(Sh)Yh, 

h=0 

subject to BXy = c, 

y>~O. 

It is easy to demonstrate the following lemma. 

Lemma 1. I f  D L P  has an optimal solution and the algorithm does not terminate then 

. 

Proof. For each k, we have by virtue of the definition of 

(k) D-1Bc(p k) and - c  = c~,k)+ T ~  1 (k) that zp = B L, Gzp . It now follows from the definition 
o f  X (k+l) that 

cTx (k+l) cTx (k) rl c(k)2_~ 
- -  -  kLI 2 J 

Since the algorithm does not terminate, Yk > 0 for every k, it is clear that cT.x "(k) is 

a decreasing sequence bounded below by the optimal value of DLP. Thus cTx (k) 

converges, and 

2 
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Let e = min{Ghh]h =0 ,  1 , . . . ,  N}, so that  

~(k),~Tz~_(k) (k) 2 

which implies that 

(k) 2 (k) T (k) ,/llc~ l{2+(z~ ) az~ ~>,/~IIG~>II=. (2) 
However ,  

[[Z(k)[}2 ~ -min{z~*>(Sh)( h = O, 1 , . . . ,  N}  = 1 .  
Yk 

/ ,~(k)~,T f~  (k) Multiplying both  sides o f  (2) by ~/llc~k>H2+t,p ) uzp  we find 

-elZp ) uzp . 

It follows immediately f rom (1) that 

f l lira = 0. []  
k ~  [ z(pk)J 

x~ k> y(k) 
In order  to demonstrate  the convergence o f  [=~] and we first prove the key 

result: 

Lemma 2. I f  DLP has an optimal solution and the algorithm does not terminate then, 
for each h = 0, 1 . . . . .  N, 

lim inf Dh~ GhhZ(pk)(Sh) ~ O. 

-1  k • Proof. Choose  h, and let vk = Dhn Ghhzp(sh). Let u = lim inf Vk and suppose  u > O. 

Then there exists K such that for each k >~ K 

U 
Ilim{vk, Vk+l, . . .}-- Ul < ~. 

Thus, for each k >~ K, vk > u/2  > 0. N o w  since D -1G is a positive definite diagonal  
matrix, it follows that z~k)(sh) > 0, for k >~ K. Thus,  by the definition of  D, for k >~ K, 

z(k+l)(sh) = Z(k>(Sh)(1 + aykZ(f)(Sh) ) > z(k>(sh), 

implying that lim infz(k)(Sh)> O. It follows immedaitely from Lemma 1 that Vk 
converges to zero which contradicts the assumpt ion  u > O. []  

We now proceed to the main  convergence theorem. 

Theorem I. Suppose that DLP has an optimal solution, and that the rescaling algorithm 
x(k) 

does not terminate. Let H = {hIlim inf z<kt(Sh)> O} where [~k~] is the kth iterate of the 
algorithm, and let M be the matrix of corresponding columns of  the ( N + 1) x ( N + 1) 

x(k) 
identity matrix. I f  (B - M) )  has rank N +  1, then any limit point [~] of {[~<k~]} k solves 
DLP and y(k> converges to a solution of  DLP*. 
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(k) and y(k) it is easy to derive the relationship Using the definition of  e(p k~, zp 

f epk> l 

Furthermore ,  for h ~ I4, lirn inf  D ~  ) > 0, whence Lemmas 1 and 2 imply that 

- ~  ( k )  
lira Dhh GhhZp (Sh) = O. 
k~oc) 

Thus, since limk~oo c(p k) = 0, it follows f rom (3) that 

[ [01 lim - M  T y(k)= . 
k~oC/ 

We can now invoke the s tandard argument  of  Kor tanek  and Shi [10] to show that 
y(k) converges to some vector  )5. Formally,  y(k~ is bounded ,  since if not, then 

[[y(k)[12Jk 

is a bounded  sequence having a limit point  u satisfying 

which contradicts the full rank assumption.  Thus y(k) has limit points. Moreover ,  
if Yl and Y2 are two such limit points then 

which implies Yl = Y2, by the full rank assumption.  Thus y(k) converges to )5. 
It is now sufficient to examine (3) to see that D ~Gz(p k) converges to -)5. By 

Lemma 2, )5 ~> 0, and so )5 is feasible for  DLP*. 
x@(m)) 

Returning to the primal problem, we consider  the sequence {[7~l]}k and let {[~(k(.,))]},. 
be a subsequence converging to the limit point  [~]. If, for  any h, 2(sh)> O, then, by 
Lemma 1, 

lim D~t~ ~ .(k(m))lo ~'JhhZ, p t.~h ) = O, 
m ~ o o  

• " . ( k ( m ) )  
which gives , l m , ~  Yh = 0, implying that 35 h = 0. By s tandard complementary  
slackness arguments,  namely 

N 

c T x = f  r B x =  E ~h(b(Sh)+2(Sh)) 
h = 0  

N 

=- Z )shb(Sh), 
h = 0  

it follows that [~] and )5 solve DLP  and its dual respectively. []  
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The above theorem shows that under suitable conditions the rescaling algorithm 
using Simpson's Rule to carry out the integrations will converge. In practice, 
however, choosing G = F gives poorer performance than choosing G = L For coarser 
discretizations (for example,  N =  10) when both algorithms converge we have 
observed that choosing G = F takes approximately three times as many iterations 

as choosing G = I. As remarked above, when the discretization is finer then rounding 
error gives termination at a non optimal point. 

Kortanek [9] has proved that the (non optimal) iterates x (k~ of  the rescaling 
algorithm when applied to a problem with optimal solution ~ satisfy 

<~1 
c Vx ~k~- C T ~ 2x/n 

(k) 
for sufficiently large k. Here n is the number  of  variables in the problem and Cp 

is the current projection of Dc. The proof  relies on choosing k large enough to 
guarantee that the current estimate of the dual solution is close to the optimum. A 
similar proof  for the algorithm described in Section 2.2 gives 

~< 1 (4) 
cT x (k) -- cT ff 2~/N +1/z 

where e =min{Ghh{ h : 0 ,  1 , . . . ,  N} and / z  = maX{Ghh [ h =0 ,  1 , . . . ,  N}. 
It is tempting to suppose that the ratio e//~, which equals 0.25 when G = F, and 

1.0 when G = 1 is responsible for the slower convergence of the rescaling method 
using Simpson's Rule. In fact, this is not the case, and experiments verified that 
scaling the matrix F by 1/6 improved the convergence to a level similar to that 

obtained when G = L 
Further experimentation confirmed that the decrease expected in cTx by virtue 

of (4) was often not obtained in the course of the algorithm. Examination of the 
estimates for the dual variables showed that these were quite different from their 
optimal values which indicates that the convergence rate obtained in (4) is accurate 
only in the immediate vicinity of  the optimal solution. 
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