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Abstract

We present an interior point approach to the zero-one integer programming feasibility

problem based on the minimization of a nonconvex potential function. Given a poly-

tope defined by a set of linear inequalities, this procedure generates a sequence of strict

interior points of this polytope, such that each consecutive point reduces the value of

the potential function. An integer solution (not necessarily feasible) is generated at

each iteration by a rounding scheme. The direction used to determine the new iterate

is computed by solving a nonconvex quadratic program on an ellipsoid. We illustrate

the approach by considering a class of difficult set covering problems that arise from

computing the 1-width of the incidence matrix of Steiner triple systems.

Key words: Integer programming, interior point method, Steiner triple systems, set

covering.

1. Introduction

In this paper we consider the following integer programming problem:

INTEGER PROGRAMMING: Let B ∈ ℜm×n′

and b ∈ ℜn′

. Find w ∈ ℜm such that:

BTw ≤ b (1)

wi = {−1, 1}, i = 1, . . . ,m. (2)

* To appear in Mathematical Programming.
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The more common form of integer programming, where variables xi take on (0,1) values,

can be converted to the above form with the change of variables

xi =
1 + wi

2
, i = 1, . . . ,m.

We describe an interior point algorithm, based on the approach proposed by Karmarkar

[15], to solve INTEGER PROGRAMMING, i.e. an algorithm that generates a sequence of

points {w0, w1, . . . , wk, . . .} where for all k = 0, 1, . . .

wk ∈
{

w ∈ ℜm|BT w < b; −e < w < e
}

,

where eT = (1, . . . , 1). In practice, this sequence often converges to a point from which one

can roundoff to a ±1 integer solution to (1-2). The algorithm cannot indicate that a feasible

integer solution does not exist. Nor does there exist a guarantee that the algorithm will find

a feasible solution, if one exists. However, we present several instances of computationally

difficult set covering problems in which it succeeds in providing optimal or best known

solutions.

To simplify notation, let I denote an m × m identity matrix,

A =

[

B
... I

... − I

]

∈ ℜm×n

and

c =

















b

1
...

1

















∈ ℜn

and let

I =
{

w ∈ ℜm | AT w ≤ c and wi = {−1, 1}
}

.

With this notation, INTEGER PROGRAMMING can be restated as: Find w ∈ I.

Integer programming is covered extensively in many textbooks, e.g. Schrijver [26] and

Nemhauser and Wolsey [20]. While the vast majority of algorithms for (0,1) integer pro-

gramming are based on branch and bound, enumeration or Lagrangian relaxation, several

papers have dealt with interior point methods for integer programming. These papers are

all based on the work of Hillier [11]. Hillier considers the optimization form of integer

programming in inequality form. In a first phase, Hillier’s method tentatively produces a

feasible integer interior point. There is no guarantee that this phase will terminate success-

fully. In a second phase a search is conducted by rounding off points on the line segment

going from this integer interior point to the optimal solution to the linear programming

relaxation produced by the Simplex Method. Ibaraki, Ohashi and Mine [12] extend the
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approach of Hillier by carrying out the search on a piecewise linear path. In a third phase,

Hillier’s method attempts to improve on the solution obtained in phase two. Jeroslow and

Smith [13] embedded phases one and two of Hillier approximation technique inside a simple

branch-and-bound scheme and report significant improvement of the hybrid method over

a pure branch-and-bound implementation. Faaland and Hillier [4] devised a method for

constructing search paths motivated by a statistical analysis of existing methods.

Let

L =
{

w ∈ ℜm | AT w ≤ c
}

and consider the linear programming relaxation of (1-2), i.e. find w ∈ L. One way of

selecting ±1 integer solutions over fractional solutions in linear programming is to introduce

the quadratic objective function,

maximize wT w =
m

∑

i=1

w2
i

and solve the NP-complete [25] nonconvex quadratic programming problem

maximize wT w (3)

subject to : AT w ≤ c (4)

Note that wT w ≤ m, with the equality only occurring when wj = ±1, j = 1, . . . ,m. The

following proposition establishes the relationship between (3-4) and (1-2).

Proposition 1.1 Let w ∈ L. Then w ∈ I ⇐⇒ wT w = m, where m is the optimal solution

to (3-4).

Proof: (=⇒) Clearly, if w ∈ I then w ∈ L and wi = ±1, i = 1, . . . ,m. Hence wT w = m.

(⇐=) If w is the optimal solution to (3-4) then w ∈ L. If wT w = m then wi = ±1, i =

1, . . . ,m and therefore w ∈ I. 2
The relationship between zero-one integer programming (with objective function) and

concave programming under linear constraints was first pointed out by Raghavachari [23]

(See also [3] and [14]). Glover and Klingman [9] develop an algorithm for (0,1) integer

programming based on concave programming. They report no experimental results. Surveys

on global constrained concave minimization are given in [21] and [22].

The remainder of this paper is summarized next. In Section 2, we define a nonconvex

potential function optimization problem that is central to our approach. We discuss how to

carry out this nonconvex optimization and relate this to INTEGER PROGRAMMING. In

Section 3, we show how to obtain a descent direction for the potential function. In Section

4, we report computational results of applying the interior point method to compute the
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1-width of incidence matrices of Steiner triple systems. Concluding remarks are made in

Section 5.

2. Nonconvex Optimization

Consider the potential function

ϕ(w) = log(m − wT w) − 1

n

n
∑

i=1

log di(w)

where

di(w) = ci − aT
i w, i = 1, . . . , n,

are the slacks. In place of (3-4), consider the equivalent nonconvex optimization problem:

minimize {ϕ(w)|AT w ≤ c}. (5)

To solve (5), we use an approach similar to the classical Levenberg-Marquardt methods [16]

[17]. Let

w0 ∈ Ls =
{

w ∈ ℜm | AT w < c
}

be a given initial interior point. Our algorithm generates a sequence of interior points of

L. Let wk ∈ Ls be the k-th iterate. Around wk a quadratic approximation of the potential

function is set up.

Let D = diag(d1(w), . . . , dn(w)), e = (1, . . . , 1), f0 = m − wT w and C be a constant.

The quadratic approximation of ϕ(w) around wk is given by

Q(w) =
1

2
(w − wk)T H(w − wk) + hT (w − wk) + C (6)

where the Hessian is

H = − 2

f0

I − 4

f2
0

wkwkT
+

1

n
AD−2AT (7)

and the gradient is

h = − 1

f0

wk +
1

n
AD−1e. (8)

Minimizing (6) subject to AT w ≤ c is NP-complete. However, if the polytope is substituted

by an inscribed ellipsoid, the resulting approximate problem is easy. Ye [27] has indepen-

dently proposed a polynomial time algorithm for nonconvex quadratic programming on an

ellipsoid. The following proposition describes such an inscribed ellipsoid.

Proposition 2.1 Consider the polytope defined as

L =
{

w ∈ ℜm|AT w ≤ c
}
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and let wk ∈ Ls = int(L) be an interior point of L. Consider the ellipsoid

E(r) =
{

w ∈ ℜm|(w − wk)T AD−2AT (w − wk) ≤ r2
}

.

Then for r ≤ 1, E(r) ⊂ L, i.e. E(r) is an inscribed ellipsoid in L.

Proof: It is sufficient to prove case when r = 1, since E(r) ⊂ E(1), for 0 ≤ r < 1. Assume

y ∈ E(1). Then

(y − wk)T AD−2AT (y − wk) ≤ 1

and consequently

D−1AT (y − wk) ≤ 1.

Denoting the i-th row of AT by aT
i· , we have

1

ci − aT
i·w

k
aT

i· (y − wk) ≤ 1, ∀i = 1, . . . , n

aT
i· (y − wk) ≤ ci − aT

i·w
k, ∀i = 1, . . . , n

aT
i·y ≤ ci, ∀i = 1, . . . , n.

Therefore AT y ≤ c. Consequently y ∈ L. 2
Substituting the polytope by the appropriate ellipsoid and letting ∆w ≡ w−wk results

in the optimization problem

minimize
1

2
(∆w)T H∆w + hT ∆w (9)

subject to : (∆w)T AD−2AT (∆w) ≤ r2. (10)

The optimal solution ∆w∗ to (9-10) is a descent direction of Q(w) from wk. For a given

radius r > 0, the value of the original potential function ϕ(w) may increase by moving

in the direction ∆w∗, because of the higher order terms ignored in the approximation. It

can be easily verified, however, that if the radius is decreased sufficiently, the value of the

potential function will decrease by moving in the new ∆w∗ direction. We shall say a local

minimum to (5) has been found if the radius must be reduced below a tolerance ǫ to achieve

a reduction in the value of the potential function.

The following theorem, proved in [15], characterizes the optimal solution of (9-10). In

place of the ellipsoid
{

x ∈ ℜm | xT AD−2AT x ≤ r2
}

(11)

the theorem considers the sphere

{

x ∈ ℜm | xT x ≤ r2
}

(12)
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without loss of generality since AD−2AT is, by assumption, positive definite and (11) can

be converted to the form given in (12) by means of a nonsingular linear transformation of

the space.

Theorem 2.2 Consider the optimization problem:

minimize
1

2
xT Hx + hT x (13)

subject to : xT x ≤ r2 (14)

where H ∈ ℜm×m is symmetric and indefinite, x, h ∈ ℜm and 0 < r ∈ ℜ. Let

u1, . . . , um denote a full set of orthonormal eigenvectors spanning ℜm and let λ1, . . . , λm

be the corresponding eigenvalues ordered so that λ1 ≤ λ2 ≤ · · · ≤ λm−1 ≤ λm. Denote

0 > λmin = min{λ1, . . . , λm} and umin the corresponding eigenvector. Furthermore, let q

be such that λmin = λ1 = · · · = λq < λq+1. To describe the solution to (13-14) we shall

consider two cases:

Case 1: Assume
∑q

i=1
(hT ui)

2 > 0. Let the scalar λ ∈ (−∞, λmin) and consider the para-

metric family of vectors

x(λ) = −
m

∑

i=1

(hT ui)ui

λi − λ
.

For any r > 0, denote by λ(r) the unique solution of the equation (x(λ))T x(λ) = r2 in λ.

Then x(λ(r)) is the unique optimal solution of (13-14).

Case 2: Assume hT ui = 0,∀i = 1, . . . , q. Let the scalar λ ∈ (−∞, λmin) and consider the

parametric family of vectors

x(λ) = −
m

∑

i=q+1

(hT ui)ui

λi − λ
. (15)

Let

rmax = ‖x(λmin)‖2.

If r < rmax then for any 0 < r < rmax, denote by λ(r) the unique solution of the equation

(x(λ))T x(λ) = r2 in λ. Then x(λ(r)) is the unique optimal solution of (13-14).

If r ≥ rmax, then let α1, α2, . . . , αq be any real scalars such that

q
∑

i=1

α2
i = r2 − r2

max.

Then

x =
q

∑

i

αiui −
m

∑

i=q+1

(hT ui)ui

(λi − λmin)

is an optimal solution of (13-14). Since the choice of αi’s is arbitrary, this solution is not

unique.
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The key result of Theorem 2.2 used in this paper is the existence of a unique optimal

solution to (13-14) if r < rmax. The proof of Theorem 2.2 relies on a lemma that is used to

develop the algorithm described in this paper.

Lemma 2.3 Let the length of x(λ) be

l (x(λ)) ≡ ‖x(λ)‖2
2 = (x(λ))T x(λ).

Part 1: Assume
∑q

i=1(h
T ui)

2 > 0. Consider the parametric family of vectors

x(λ) = −
m

∑

i=1

(hT ui)ui

λi − λ
,

for λ ∈ (−∞, λmin). Then l (x(λ)) is monotonically increasing in λ in the interval λ ∈
(−∞, λmin).

Part 2: Assume hT ui = 0,∀i = 1, . . . , q and consider the parametric family of vectors

x(λ) = −
m

∑

i=q+1

(hT ui)ui

λi − λ
, (16)

for λ ∈ (−∞, λmin). Furthermore, assume

r < ‖x(λmin)‖2.

Then l (x(λ)) is monotonically increasing in λ in the interval λ ∈ (−∞, λmin).

Proof: (Part 1) Since

x(λ) = −
m

∑

i=1

(hT ui)ui

λi − λ
,

then

l (x(λ)) = −
m

∑

i=1

(hT ui)
2

(λi − λ)2
.

In the range λ ∈ (−∞, λmin) each of the terms 1/(λi − λ)2, i = 1, . . . ,m, is a strictly

monotonically increasing function of λ, each of the numerators (hT ui)
2 (i = 1, . . . ,m)

is nonnegative and at least one of the numerators is strictly positive. Hence l (x(λ)) is

monotonically increasing in λ. 2
(Part 2) As in part 1, since

x(λ) = −
m

∑

i=q+1

(hT ui)ui

λi − λ
,
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then

l (x(λ)) = −
m

∑

i=q+1

(hT ui)
2

(λi − λ)2
.

In the range λ ∈ (−∞, λmin) each of the terms 1/(λi − λ)2 (i = q + 1, . . . ,m) is a strictly

monotonically increasing function of λ. Since r > 0, then ‖x(λmin)‖2 > 0 and therefore

∃ i > q such that hT ui 6= 0. Hence |hT ui| > 0 and consequently l (x(λ)) is monotonically

increasing in λ. 2
The fact that the length increases monotonically in the interval (−∞, λmin) was first

discovered by Reinsch [24]. Theorem 2.2 suggests an approach to solve the nonconvex

optimization problem (5). At each iteration, a quadratic approximation of the potential

function ϕ(w) around the iterate wk is optimized on an ellipsoid inscribed in the polytope

{w ∈ ℜm|AT w ≤ c} and centered at wk. Either a descent direction ∆w∗ of ϕ(w) is produced

by this optimization or wk is said to be a local minimum. A new iterate wk+1 is computed

such that ϕ(wk+1) < ϕ(wk) by moving from wk in the direction ∆w∗. At each iteration

the current iterate wk is rounded off to the nearest ±1 vertex: w̃k = (±1, . . . ,±1). If w̃k is

such that AT w̃k ≤ c then w̃k is a global optimal solution of (5) and consequently a solution

of INTEGER PROGRAMMING.

If a local minimum of (5) is found, the problem is modified by adding a cut and the

algorithm is applied to the augmented problem. Let v be the integer solution rounded off

from the local minimum. A valid cut is

vT w ≤ m − 2. (17)

Proposition 2.4 Cut (17) excludes v but does not exclude any other feasible integral solu-

tion of (1-2).

Proof: Follows immediately from the fact that vT w = m if w = v and vT w ≤ m − 2

otherwise. 2
We note that adding a cut of the type above will not, theoretically, prevent the algo-

rithm from converging to the same local minimum twice. However, the addition of the cut

changes the objective function and, consequently, should alter the trajectory followed by

the algorithm. As we will note later, in the section on experimental results, we observed no

case in which the algorithm returned to a previously visited local minimum.

Figure 1 details pseudo-code for procedure ip, the integer programming algorithm.

Procedure ip takes as input the A matrix, the c right hand side vector, an initial estimate

γ0 of parameter γ and initial lower and upper bounds on the acceptable length, l0 and l0,

respectively. In the first line of ip the minor iteration counter (k), lower and upper bounds

on the acceptable length region (l, l) and major iteration counter (K) are initialized. In

8



procedure ip(A, c, γ0, l0, l0)

1 k := 0; γ := γ0; l := l0; l := l0; K := 0;

2 wk := get start point(A, c);

3 w̃k := round off(wk);

4 do AT w̃k 6< c →
5 ∆w∗ := descent direction(γ,wk, l, l);

6 do ϕ(wk + α∆w∗) ≥ ϕ(wk) and l > ǫ →
7 l := l/lr;

8 ∆w∗ := descent direction(γ,wk, l, l)

9 od;

10 if ϕ(wk + α∆w∗) < ϕ(wk) →
11 wk+1 := wk + α∆w∗;

12 w̃k+1 := round off(wk+1);

13 k := k + 1

14 fi;

15 if l ≤ ǫ →
16 A := new matrix(A); c := new rhs(c);

17 k := 0; γ := γ0; l := l0; l := l0; K := K + 1;

18 wk := get start point(A, c);

19 w̃k := round off(wk)

20 fi

21 od

end ip;

Figure 1: Pseudo-Code: The ip Algorithm
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line 2, get start point returns a strict interior point of the polytope under consideration,

i.e. wk ∈ Ls. In many situations this is a trivial task. In others, a phase I interior point

linear programming algorithm may be required. In line 3, the array wk is rounded off to

the nearest ±1 vertex by procedure round off and the result is placed in array w̃k.

The algorithm iterates in the loop between lines 4 and 21, terminating only when a

feasible ±1 integer solution w̃k is found. At each iteration, a descent direction of the

potential function ϕ(w) is produced in lines 5 through 9. In line 5 the optimization (18-19)

is realized. Because of higher order terms the direction returned by descent direction

may not be a descent direction for ϕ(w). Loop 6-9 is repeated until an improving direction

for the potential function is produced or the largest acceptable length falls below a given

tolerance ǫ. These two cases are treated in lines 10-14 and 15-20, respectively.

In case the direction produced is a descent for ϕ(w), a new point wk+1 is defined (in

line 11) by moving from the current iterate wk in the direction ∆w∗ by a step length α < 1.

In line 12 this new point is rounded off and set to w̃k+1.

If in loop 6-9 the largest acceptable length has fallen below ǫ we say the algorithm has

converged to a local (not global) minimum. A new problem is defined in line 16 and the

algorithm is restarted in lines 17-19.

3. Computing the Descent Direction

We now consider in more detail the computation of the direction of descent for the potential

function. The algorithm described in this section is similar to the one in Moré and Sorensen

[19]. However, our implementation differs from the Moré and Sorensen approach in several

aspects. Moreover, Moré and Sorensen describe limited computational results on very

small problem instances and it is not known how their implementation will perform for

the potential function used in this paper. In this section we describe the algorithm in detail

for completeness and so that our computational results can be duplicated and verified.

As discussed previously, the algorithm solves the optimization problem

minimize
1

2
(∆w)T H∆w + hT ∆w (18)

subject to : (∆w)T AD−2AT ∆w ≤ r2 ≤ 1 (19)

to produce a descent direction ∆w∗ for the potential function ϕ(w). A solution ∆w∗ ∈ ℜm

to (18-19) is optimal if and only if there exists µ ≥ 0 such that:

(

H + µAD−2AT
)

∆w∗ = −h (20)

µ
(

(∆w∗)T AD−2AT ∆w∗ − r2
)

= 0 (21)
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H + µAD−2AT is positive semidefinite. (22)

With the change of variables γ = 1/(µ + 1/n) and substituting (7) and (8) into (20) we

obtain an expression for ∆w∗ satisfying (20):

∆w∗ = −
(

AD−2AT − 4γ

f2
0

wkwkT − 2γ

f0

I

)

−1

γ

(

− 1

f0

wk +
1

n
AD−1e

)

(23)

Note that r does not appear in (23). However, (23) is not defined for all values of r. Theorem

2.2 guarantees that if the radius r of the ellipsoid (19) is kept within a certain bound, then

there exists an interval 0 ≤ γ ≤ γmax such that

AD−2AT − 4γ

f2
0

wkwkT − 2γ

f0

I (24)

is nonsingular. The following proposition establishes that for γ small enough ∆w∗ is a

descent direction of ϕ(w).

Proposition 3.1 There exists γ > 0 such that the direction ∆w∗, given in (23), is a descent

direction of ϕ(w).

Proof:

∆w∗ = −
(

AD−2AT − 4γ

f2
0

wkwkT − 2γ

f0

I

)

−1

γ

(

− 1

f0

wk +
1

n
AD−1e

)

= −
[

AD−2AT
{

I − γ(AD−2AT )−1

(

− 4

f2
0

wkwkT − 2

f0

I

)}]

−1

×

γ

(

− 1

f0

wk +
1

n
AD−1e

)

= −γ

[

I + γ(AD−2AT )−1

(

4

f2
0

wkwkT
+

2

f0

I

)]

−1

(AD−2AT )−1 ×
(

− 1

f0

wk +
1

n
AD−1e

)

= γ

[

I + γ(AD−2AT )−1

(

4

f2
0

wkwkT
+

2

f0

I

)]

−1

(AD−2AT )−1(−h) (25)

Let γ = ǫ > 0 and consider lim
ǫ→0+

hT ∆w∗. We have

lim
ǫ→0+

∆w∗ = ǫ (AD−2AT )−1(−h)

and therefore

lim
ǫ→0+

hT ∆w∗ = −ǫ hT (AD−2AT )−1h.

Since, by assumption, ǫ > 0 and hT (AD−2AT )−1h > 0 then

lim
ǫ→0+

hT ∆w∗ < 0. 2
11



The idea of the algorithm is to solve (18-19), more than once if necessary, with the

radius r as a variable. Parameter γ is varied until r takes a value in some given interval.

Each iteration of this algorithm is comprised of two tasks. To simplify notation, let

Hc = AD−2AT (26)

Ho = − 4

f2
0

wkwkT − 2

f0

I (27)

and define

M = Hc + γHo.

Given the current iterate wk, we first seek a value of γ such that M∆w = γh has a solution

∆w∗. This can be done by binary search, as we will see shortly. Once such a parameter γ

is found, the linear system

M∆w∗ = γh (28)

is solved for ∆w∗ ≡ ∆w∗(γ(r)). Lemma 2.3 guarantees that the length l(∆w∗(γ)) is a

monotonically increasing function of γ in the interval 0 ≤ γ ≤ γmax. Optimality condition

(21) implies that r =
√

l(∆w∗(γ)) if µ > 0. Small lengths result in small changes in the

potential function, since r is small and the optimal solution lies on the surface of the ellipsoid.

A length that is too large may not correspond to an optimal solution of (18-19), since this

may require r > 1. We maintain an interval (l, l) called the acceptable length region and

accept a length l(∆w∗(γ)) if l ≤ l(∆w∗(γ)) ≤ l. If l(∆w∗(γ)) < l, γ is increased and (28)

is resolved with the new M matrix and h vector. On the other hand, if l(∆w∗(γ)) > l, γ

is reduced and (28) is resolved. Once an acceptable length is produced we use ∆w∗(γ) as

the descent direction. The notion of acceptable length region has been previously used by

Moré [18], Gay [7] and Moré and Sorensen [19].

Figure 2 details pseudo-code for procedure descent direction, where (18-19) is opti-

mized. As input, procedure descent direction is given an estimate for parameter γ, the

current iterate wk around which the inscribing ellipsoid is to be constructed and the current

acceptable length region defined by l and l. The value of γ passed to descent direction

at minor iteration k of ip is the value returned by descent direction at minor iteration

k − 1. It returns a descent direction ∆w∗ of the quadratic approximation of the potential

function Q(w) from wk, the next estimate for parameter γ and the current lower bound of

the acceptable length region, l.

In line 1 the length l is set to a large number and several logical keys are initialized:

LDkey is true if a linear dependency in the rows of M is found during the solution of the

12



procedure descent direction(γ,wk, l, l)

1 l := ∞; LDkey := false; γkey := false; γ
key

:= false;

2 do l > l or (l < l and LDkey = false) →
3 M := Hc + γHo; b := γh;

4 do M∆w = b has no solution →
5 γ := γ/γr; LDkey := true;

6 M := Hc + γHo; b := γh

7 od;

8 ∆w∗ := M−1b; l := (∆w∗)T AD−2AT ∆w∗;

9 if l < l and LDkey = false →
10 γ := γ; γ

key
:= true;

11 if γkey = true → γ :=
√

γγ fi;

12 if γkey = false → γ := γ · γr fi

13 fi;

14 if l > l →
15 γ := γ; γkey := true;

16 if γ
key

= true → γ :=
√

γγ fi;

17 if γ
key

= false → γ := γ/γr fi

18 fi

19 od;

20 do l < l and LDkey = true → l := l/lr od;

21 return(∆w∗)

end descent direction;

Figure 2: Pseudo-Code: The descent direction Algorithm
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linear system (28) and is false otherwise; γkey (γ
key

) is true if an upper (lower) bound for

an acceptable γ has been found and false otherwise.

The nonconvex quadratic optimization on the ellipsoid is carried out in the loop going

from line 2 to 19. The loop is repeated until either a length l is found such that l ≤ l ≤ l or

l ≤ l due to a linear dependency found during the solution of (28) (i.e. if LDkey = true).

Lines 3 to 8 produce a descent direction which may not necessarily have an acceptable

length. In line 3 the matrix M and the right hand side vector b are formed. The linear

system (28) is tentatively solved in line 4. The solution procedure may not be successful

(i.e. M may be singular). This implies that the parameter γ is too large. If this occurs, the

parameter γ is reduced in line 5 of loop 4-7, which is repeated until a nonsingular matrix

M is produced.

Once a nonsingular M matrix is available, a descent direction ∆w∗ is computed in line

8 along with its corresponding length l. Three cases can occur: (i) - the length is too small

even though no linear dependency was detected in the factorization; (ii) - the length is too

large; or (iii) - the length is acceptable. Case (iii) is the termination condition for the main

loop 2-19. In lines 9-13 the first case is considered. The value of γ is a lower bound on an

acceptable value of γ and is recorded in line 10 and the corresponding logical key is set. If

an upper bound γ for an acceptable value of γ has been found the new estimate for γ is set

to the geometric mean of γ and γ in line 11. Otherwise γ is increased by a fixed factor in

line 12.

Similar to the treatment of case (i), case (ii) is handled in lines 14-18. The value of γ is

an upper bound on an acceptable value of γ and is recorded in line 15 and the corresponding

logical key is set. If a lower bound γ for an acceptable value of γ has been found the new

estimate for γ is set to the geometric mean of γ and γ in line 16. Otherwise γ is decreased

by a fixed factor in line 17.

Finally, in line 20, the lower bound l may have to be adjusted if l < l and LDkey = true.

14



4. Experimental Results

We next present results of testing the algorithm described in this paper on a set of computa-

tional difficult zero-one integer programming problems. Fulkerson, Nemhauser and Trotter

[6] describe a class of computationally difficult set covering problems that arise in comput-

ing the 1-width of incidence matrices of Steiner triple systems. They suggest that these

are good problems for testing new algorithms for integer programming and set covering

because they have far fewer variables than numerous solved problems in the literature, yet

experience shows that they are hard to compute and verify. The β-width of a (0,1)-matrix

A is the minimum number of columns that can be selected from A such that all row sums

of the resulting submatrix of A are at least β. The 1-width of A is:

W(A) = min eT
nx

subject to : Ax ≥ em

x ≥ 0 and integral,

where en is an n-vector of ones and em an m-vector of ones. The 1-width is a set covering

problem. The incidence matrices A that arise from Steiner triple systems have precisely 3

ones per row. Furthermore, for every pair of columns j and k there is exactly one row i

for which aij = aik = 1. (i, j, k) are said to be a triple of A if there exists a row q such

that aqi = aqj = aqk = 1. Hall [10] discusses this structure in detail and shows a standard

technique for recursively generating Steiner systems for which n = 3k, (k = 1, 2, 3, . . .). A3

is the 1 × 3 matrix of ones. A3n is obtained from An as follows: The columns of A3n are

indexed {(i, j), 1 ≤ i ≤ n, 1 ≤ j ≤ 3}. The set {(i, r), (j, s), (k, t)} is a triple of A3n if and

only if one of the following holds:

• r = s = t and {i, j, k} is a triple of An, or

• i = j = k and {r, s, t} = {1, 2, 3}, or

• {i, j, k} is a triple of An and {r, s, t} = {1, 2, 3}.

We refer to instances of set covering problems that arise from Steiner triple systems by their

incidence matrices. Two examples for which n 6= 3k are given in [6]: A15 and A45.

Consider the seed matrices A3 and A15 below:

A3 =









0 1 1

1 0 1

1 1 0









, A15 =















Z E 0

0 Z E

E 0 Z

I I I















15



where I is a 5 × 5 identity matrix and

Z =

















































0 0 1 1 0

0 0 0 1 1

1 0 0 0 1

1 1 0 0 0

0 1 1 0 0

0 1 0 0 1

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

1 0 0 1 0

















































, E =

















































1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

















































.

Matrices A27, A81, A243, . . . and A45, A135, A405, . . . are generated using the recursion

A3n =





















An 0 0

0 An 0

0 0 An

I I I

[ Ã3n ]





















(29)

where I is an n × n identity matrix and Ã3n consists of 3! = 6 blocks corresponding to the

permutations of {1, 2, 3}; for each permutation π, the triples of the corresponding block are

{(i, π(1)), (j, π(2)), (k, π(3))}

where (i, j, k) runs through all triples of An.

Fulkerson, Nemhauser and Trotter [6] discuss computational experience with A9, A15,

A27 and A45. They are able to solve A9 with a cutting plane code after generating 44

cuts, but this approach fails with the three other problems. Using an implicit enumeration

algorithm similar to the one described in [8] they are able to solve A15 and A27 but not

A45. Avis [1] reports that A45 was solved in 1979 by H. Ratliff, requiring over two and a

half hours on an Amdahl V7 computer. Using an ibm 3033, Bausch [2] solved A27 and A45

in 25.1s and 527.1s, respectively. Avis also suggests why these problems may be so difficult

to solve by showing that any branch and bound algorithm that uses a linear programming

relaxation, and/or elimination by dominance requires the examination of 2
√

2m/3 partial

solutions, where m is the number of variables of the integer program.
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Before we describe the experimental results we make some final remarks regarding the

algorithmic setup used to run the experiments. Namely, we will describe the ±1 integer

programming formulation of the 1-width problem, the starting solution w0 for the interior

point algorithm and how rounding off is done.

In the feasibility version of the problem what is wanted is a set cover of size at most k.

Let the decision variable be

wj =







−1 if column j is in the cover

+1 otherwise

In the objective function constraint, at most k variables can contribute a −1, while the

remaining m − k must take on the value +1, i.e.

m
∑

j=1

wj ≥ −k + (m − k) = −2k + m

and therefore

−
m

∑

j=1

wj ≤ 2k − m. (30)

Of the three variables in each set covering constraint, at least one must take value −1, while

the other two can be +1 or −1. Hence

m
∑

j=1

aijwj ≤ 1, i = 1, . . . , n.

Finally, all variables are bounded above by +1 and below by −1,

−1 ≤ wj ≤ 1, j = 1, . . . ,m.

We propose two rounding schemes. Rounding scheme A is done as follows,

w̃j =







+1 if wj > 0

−1 if wj ≤ 0.

In rounding scheme B the entries of the iterate w are sorted in increasing order and a set

cover is built greedily, based on the sorted w vector. From this set cover, local neighbor

solutions are constructed by performing all two-exchanges (of columns i and j) for which

|wi − wj| < 10−8.

The 1-widths of incidence matrices of Steiner triple systems have the characteristic

that W(A) > m/2, and therefore one could use as an initial interior point the origin,

w0 = (0, . . . , 0)T . Instead, we choose to use w0
j = −(2k − m)/(m + 1), j = 1, . . . ,m, an

interior point that rounds off with scheme A to a cover containing all of the columns of the

17



Problem Integer Program Best Known Optimal

Variables/Constraints Cover

A27 27/116 18 yes

A45 45/330 30 yes

A81 81/1080 61 unknown

A135 135/3015 105 unknown

A243 243/9801 204 unknown

Table I: Problem Set

matrix A. We also use this starting solution as the initial interior point every time a cut is

generated.

We use the following algorithm parameter settings for all problem instances: γ0 = 32,

l0 = 0.5, l0 = 1.0, ǫ = 10−12, lr = 4, α = 0.5, γr =
√

2 and lr = 4. Our implementation

uses a direct Cholesky factorization to solve (28) at each iteration. This implementation

takes no advantage of the problem structure. The algorithm was implemented in fortran

and the tests were carried out on a Silicon Graphics iris R©workstation, model 4D/340S,

running irix System V Release 3.2.3. The f77 compiler was used to compile the code using

the optimization flag -O2 -Olimit 800. All times reported are user times given by the

system call times().

We ran the interior point algorithm on five set covering problems: A27, A45, A81, A135

and A243. Both rounding scheme implementations were run on all instances except problem

A243 where only rounding scheme B was used. Problems A27 and A45 are taken from [6]

and problems A81, A135 and A243 were generated using recursion (29). Of these problems,

optimal solutions are known for only the first two. Feo and Resende [5] have produced a

cover of size 61 for A81 and 204 for A243. It is widely conjectured that W(A81) = 61. Using

their code, a cover of size 105 was produced for A135. Table I shows the test problems and

the size of the best known cover for each. There, the number of constraints excludes upper

and lower bounds on the variables as well as the cover cardinality constraint (30). For each

instance, we set the cover cardinality constraint to make the algorithm search for the best

known cover, as well as a few larger covers. Tables II and III summarize the results for

rounding schemes A and B, respectively.

Figure 3 summarizes the run of the rounding scheme A implementation on problem

A27. It illustrates the behavior of f0 = m−wT w, a measure of nonintegrality of the interior

point solution, the length l(∆w) and the sum of the violations of the rounded solution w̃,
∑n

j=1 max{0, aT
j w̃ − cj}, as a function of the minor iterations. Minor iterations are the

18



Problem Search Major Itrs/Major CPU Time/Major Size Cover

Size Iterations Iteration Time Iteration Found

A27 18 1 162.0 3.62s 3.62s 18

A45 32 2 67.0 4.44s 4.44s 31

A45 31 2 147.0 18.59s 9.29s 31

A45 30 5 229.6 1m19.45s 15.89s 30

A81 65 8 335.9 13m05.17s 1m38.15s 63

A81 61 23 334.3 42m36.44s 1m51.15s 61

A135 107 19 787.1 4h55m37.26s 15m33.54s 107

A135 106 38 840.1 11h59m20.88s 18m55.81s 106

A135 105 0 0.0 0s 0s 105

Table II: Summary of results (Rounding scheme A)

Problem Search Major Itrs/Major CPU Time/Major Size Cover

Size Iterations Iteration Time Iteration Found

A27 18 1 2.0 0.05s 0.05s 18

A45 32 1 6.0 0.45s 0.45s 32

A45 31 1 66.0 4.35s 4.35s 31

A45 30 8 152.0 1m39.30s 12.41s 30

A81 65 1 30.0 11.11s 11.11s 65

A81 64 3 313.3 4m34.51s 1m31.50s 64

A81 63 3 328.0 4m52.09s 1m37.36s 63

A81 62 3 393.7 5m51.76s 1m57.25s 62

A81 61 3 407.0 6m02.80s 2m00.93s 61

A135 107 3 652.0 36m06.75s 12m02.25s 107

A135 106 5 738.4 1h09m13.00s 13m50.68s 106

A135 105 112 902.4 56h24m35.70s 30m13.18s 105

A243 206 2 653.0 2h23m19.02s 1h11m29.51s 206

A243 205 5 913.4 8h10m57.00s 1h38m11.40s 205

A243 204 0 0.0 0s 0s 204

Table III: Summary of results (Rounding scheme B)
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m − wT w

l(∆w)
∑

i
max{0, aT

i
w̃ − ci}

Figure 3: Iteration summary: A27 with rounding A

iterations from the start (or restart) of the algorithm until a local (maybe global) minimum

is found. It is interesting to observe the behavior of the length. It typically shrinks when

the algorithm encounters a flat region and increases abruptly whenever the iterate escapes

the flat region or whenever a new improved rounded solution is found. This behavior is

observed on all problem instances.

Figure 4 shows the distribution of the interior point solution from which the algorithm

rounded off to the cover of size 61 using rounding scheme A. Note that all but five compo-

nents are close to a ±1 value.

Figure 5 summarizes the run of the rounding scheme B implementation on problem A81.

The cover size and f0 = m − wT w are both plotted as a function of minor iterations. One

can observe that the algorithm converges to two nonglobal local minima before finally going

to an interior point from where rounding scheme B rounds to a cover of size 61. The first

cover of size 64 or lower was only found in the third major iteration.

We make the following comments regarding the numerical experiments.

• The main objective of the numerical experimentation is to show empirically that the

interior point algorithm converges to an interior point from which one can round off

to a good cover. Not much effort was devoted to efficient coding of the algorithm.

Specifically, the factorization used to solve the linear system in descent direction

was implemented in dense form, leaving much room for improvement. Consequently,

our implementation is not as fast as the probabilistic heuristic of Feo and Resende
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Figure 4: Final interior solution: A81 with rounding A

[5] for this class of set covering problems. Table IV summarizes running times for

that probabilistic heuristic tested on the same machine used to test our interior point

code.

• The algorithm has successfully produced the best known covers for all five instances

tested with both rounding schemes (except for A243 that was only tested with scheme

B).

• Scheme B is superior to the straightforward rounding scheme A. Even though it is

more time consuming it usually requires fewer iterations to find a good cover than

does scheme A, e.g. for problem A81 scheme A required over six times more iterations

and over seven times more running time to find a cover of size 61 than scheme B.

• Using scheme A, the algorithm encountered some difficulty in finding a cover of size

62 for A81. Interestingly, the probabilistic heuristic of Feo and Resende did not find

a cover of size 62 either. We conjecture that there exist more minimal covers of size

61 than of size 62 for A81.

• The algorithm is sensitive to machine precision. This can be illustrated by running

the rounding scheme A implementation on a machine with higher precision (a vax

8810). For problem A45, the code takes one major iteration on the vax while taking

five on the Silicon Graphics.
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CPU Size Cover

Problem Iterations Time Found

A27 1 0.05s 19

A27 3 0.07s 18

A45 1 0.15s 33

A45 3 0.17s 31

A45 3096 24.88s 30

A81 1 0.52s 63

A81 376 12.47s 61

A135 1 1.37s 108

A135 5 1.77s 107

A135 31 4.52s 106

A135 108 12.58s 105

A243 1 4.78s 207

A243 31 25.27s 206

A243 47 36.48s 205

A243 205 2m21.75s 204

Table IV: Summary of results (Probabilistic heuristic of Feo & Resende)

Mean iterations

Problem descent direction

A27 2.5

A45 1.53

A81 1.13

A135 1.06

A243 1.08

Table V: Average number of iterations: descent direction with rounding scheme B

22



0 305 610 915 1250

iteration

0

20

60

81

m − wT w

60

63

66

69

72

c
o
v
e
r

..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......



......

......

......

......

......

........................................................................................................................................................................................................
....
......
......
......
..............................................................................................................................................................................

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

...................................................................................................................................................................................................................................................................................................................................................
...
......
......
......
......
......
......
......
......
......
......
......
......
......
..............................................................................................................

....

......

......

......

..........................................................................................
......
......
......
......
..........................................................................................................................................................................................................................................

........................................................................................................

................................................................

m − wT w

cover

Figure 5: Iteration summary: A81 with rounding B

• The cut generation strategy to deal with nonglobal local minima succeeded in changing

the path generated by the algorithm to eventually lead to an interior point from which

one can round off to an integral feasible solution. Figure 4 shows that on problem

A81, the final interior point is indeed close to an integral feasible solution. This

characteristic was observed on all instances tested.

• All cuts generated were distinct. This, however, cannot always be guaranteed to

occur.

• Figure 3 illustrates an interesting correlation between the trust region and conver-

gence of the algorithm. Prior to reaching an interior point from which a better (less

infeasible) integer solution can be generated, the length (or trust region) increases.

• Moré and Sorensen [19] report a value of 1.63 for the average number of iterations

(counted by the number of calls to the linear system solver) in their algorithm for

quadratic optimization on an ellipsoid. In our implementation of descent direction,

this number is as low as 1.06, as summarized in Table V.
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5. Concluding Remarks

In this paper, we have introduced an interior point algorithm for zero-one integer program-

ming feasibility. We have described in detail the procedure of generating a descent direction

for a potential function whose global minimum corresponds to a feasible zero-one integer

solution. We show how to incorporate this descent direction procedure in a general purpose

algorithm for zero-one integer programming.

To illustrate the applicability of this general purpose algorithm, we use it to solve several

instances of computationally difficult set covering problems that arise from computing the

1-width of the incidence matrix of Steiner triple systems. In that context, we show how

to start the algorithm, propose two rounding schemes and show how to proceed when a

nonglobal local minimum is encountered. We have found optimal covers for two instances

with known optimal solutions and the best known covers for instances varying in size from

81 variables and 1080 constraints to 243 variables and 9801 constraints.

The code used to produce the experimental results solves the descent direction linear

system by direct Cholesky factorization, taking no advantage of problem structure. One

may expect improved performance with an implementation under development that takes

advantage of sparsity and nonzero structure of the linear system.
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