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Abstract—Recently, a lot of attention has been paid to 1

regularization based methods for sparse signal reconstruction
(e.g., basis pursuit denoising and compressed sensing) and feature
selection (e.g., the Lasso algorithm) in signal processing, statistics,
and related fields. These problems can be cast as 1-regularized
least-squares programs (LSPs), which can be reformulated as
convex quadratic programs, and then solved by several standard
methods such as interior-point methods, at least for small and
medium size problems. In this paper, we describe a specialized
interior-point method for solving large-scale 1-regularized LSPs
that uses the preconditioned conjugate gradients algorithm to
compute the search direction. The interior-point method can solve
large sparse problems, with a million variables and observations,
in a few tens of minutes on a PC. It can efficiently solve large dense
problems, that arise in sparse signal recovery with orthogonal
transforms, by exploiting fast algorithms for these transforms.
The method is illustrated on a magnetic resonance imaging data
set.

Index Terms—Basis pursuit denoising, compressive sampling,
compressed sensing, convex optimization, interior-point methods,
least squares, preconditioned conjugate gradients, 1 regulariza-
tion.

I. INTRODUCTION

W
E consider a linear model of the form

where is the vector of unknowns, is the vector

of observations, is the noise, and is the

data matrix.

When and the columns of are linearly indepen-

dent, we can determine by solving the least squares problem

of minimizing the quadratic loss , where

denotes the norm of .

When , the number of observations, is not large enough

compared to , simple least-squares regression leads to over-fit.
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A. -Regularized Least Squares

A standard technique to prevent over-fitting is or Tikhonov

regularization [38], which can be written as

(1)

where is the regularization parameter. The Tikhonov

regularization problem or -regularized least-squares program

(LSP) has the analytic solution

(2)

We list some basic properties of Tikhonov regularization,

which we refer to later when we compare it to -regularized

least squares.

• Linearity. From (2), we see that the solution to the

Tikhonov regularization problem is a linear function of .

• Limiting behavior as . As converges

to the Moore–Penrose solution , where is the

Moore–Penrose pseudoinverse of . The limit point

has the minimum -norm among all points that satisfy

:

• Convergence to zero as . The optimal solution

tends to zero, as .

• Regularization path. The optimal solution is a smooth

function of the regularization parameter , as it varies

over . As decreases to zero, converges to the

Moore–Penrose solution; as increases, converges to

zero.

The solution to the Tikhonov regularization problem can be

computed by direct methods, which require flops (as-

suming that is order or less), when no structure is exploited.

The solution can also be computed by applying iterative (nondi-

rect) methods (e.g., the conjugate gradients method) to the linear

system of equations . Iterative methods

are efficient especially when there are fast algorithms for the ma-

trix-vector multiplications with the data matrix and its trans-

pose (i.e., and with and ), which

is the case when is sparse or has a special form such as partial

Fourier and wavelet matrices.

1932-4553/$25.00 © 2007 IEEE
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B. -Regularized Least Squares

In -regularized least squares (LS), we substitute a sum of

absolute values for the sum of squares used in Tikhonov regu-

larization, to obtain

(3)

where denotes the norm of and is

the regularization parameter. We call (3) an -regularized LSP.

This problem always has a solution, but it need not be unique.

We list some basic properties of -regularized LS, pointing

out similarities and differences with -regularized LS.

• Nonlinearity. From (2), we see that Tikhonov regulariza-

tion yields a vector , which is a linear function of the

vector of observations . By contrast, -regularized least

squares yields a vector , which is not linear in .

• Limiting behavior as . -regularized LS shows a

different limiting behavior with -regularized LS, as

. In -regularized LS, the limiting point has the minimum

norm among all points that satisfy .

• Finite convergence to zero as . As in Tikhonov reg-

ularization, the optimal solution tends to zero, as .

For -regularized LS, however, the convergence occurs

for a finite value of :

(4)

where denotes the norm of the

vector . For , the optimal solution of the -reg-

ularized LSP (3) is 0. In contrast, the optimal solution to the

Tikhonov regularization problem is zero only in the limit

as . (The derivation of the formula (4) for is

given in Section III-A.)

• Regularization path The solution to the Tikhonov reg-

ularization problem varies smoothly as the regularization

parameter varies over . By contrast, the regulariza-

tion path of the -regularized LSP (3), i.e., the family of

solutions as varies over , has the piecewise-linear

solution path property [15]: There are values ,

with , such that the regular-

ization path is a piecewise linear curve on

where solves the -regularized LSP (3) with .

(So and when .)

More importantly, -regularized LS typically yields a sparse

vector , that is that has relatively few nonzero coefficients.

(As decreases, it tends to be sparser but not necessarily [26],

[52].) In contrast, the solution to the Tikhonov regularization

problem typically has all coefficients nonzero.

Recently, the idea of regularization has been receiving a

lot of interest in signal processing and statistics. In signal pro-

cessing, the idea of regularization comes up in several con-

texts including basis pursuit denoising [8] and a signal recovery

method from incomplete measurements (e.g., [4], [7], [6], [11],

[12], [54], [53]). In statistics, the idea of regularization is used

in the well-known Lasso algorithm [52] for feature selection and

its extensions including the elastic net [63].

Some of these problems do not have the standard form (3) but

have a more general form

(5)

where are regularization parameters. (The variables

that correspond to are not regularized.) This general

problem can be reformulated as a problem of the form (3).

We now turn to the computational aspect of -regularized

LS, the main topic of this paper. There is no analytic formula

or expression for the optimal solution to the -regularized LSP

(3), analogous to (2); its solution must be computed numeri-

cally. The objective function in the -regularized LSP (3) is

convex but not differentiable, so solving it is more of a compu-

tational challenge than solving the -regularized LRP (1).

Generic methods for nondifferentiable convex problems,

such as the ellipsoid method or subgradient methods [51], [43],

can be used to solve the -regularized LSP (3). These methods

are often very slow.

The -regularized LSP (3) can be transformed to a convex

quadratic problem, with linear inequality constraints. The

equivalent quadratic program (QP) can be solved by standard

convex optimization methods such as interior-point methods

[32], [37], [57], [58]. Standard interior-point methods are

implemented in general purpose solvers including [34],

which can readily handle small and medium size problems.

Standard methods cannot handle large problems in which there

are fast algorithms for the matrix-vector operations with

and . Specialized interior-point methods that exploit such

algorithms can scale to large problems, as demonstrated in

[8], [27]. High-quality implementations of specialized inte-

rior-point methods include [5] and [50], which

use iterative algorithms, such as the conjugate gradients (CG)

or LSQR algorithm [42], to compute the search step.

Recently, several researchers have proposed homotopy

methods and variants for solving -regularized LSPs [14],

[24], [15], [46], [40]. Using the piecewise linear property of

the regularization path, path-following methods can compute

efficiently the entire solution path in an -regularized LSP.

When the solution of (13) is extremely sparse, these methods

can be very fast, since the number of kinks the methods need

to find is modest [14]. Otherwise, the path-following methods

can be slow, which is often the case for large-scale problems.

Other recently developed computational methods for -reg-

ularized LSPs include coordinate-wise descent methods [19],

a fixed-point continuation method [23], Bregman iterative

regularization based methods [41], [59], sequential subspace

optimization methods [35], bound optimization methods [17],

iterated shrinkage methods [9], [16], gradient methods [36],

and gradient projection algorithms [18]. Some of these methods

including the gradient projection algorithms [18] can efficiently

handle very large problems.
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C. Outline

The main purpose of this paper is to describe a specialized

interior-point method for solving large -regularized LSPs that

uses the preconditioned conjugate gradients algorithm to com-

pute the search step. The method which we will describe in

Section IV can solve large sparse problems with and on

the order of a million in a few tens of minutes on a PC. It

can efficiently solve large dense problems, that arise in sparse

signal recovery with orthogonal transforms, by exploiting fast

algorithms for these transforms. The specialized method is far

more efficient than interior-point methods that use direct or CG

methods to compute the search step, as demonstrated with sev-

eral examples in Section V. Compared with first-order methods

such as coordinate-descent methods, our method is comparable

in solving large problems with modest accuracy, but is able to

solve them with high accuracy with relatively small additional

computational cost.

We illustrate the method on a real magnetic resonance

imaging data set in Section V. The method can solve the QP

that arises in reconstructing the object of interest with adequate

accuracy from partially sampled Fourier coefficients, within

around 100 preconditioned conjugate gradients (PCG) steps,

which amounts to performing a few hundred fast Fourier

transform (FFT) operations on the object.

Although the interior-point method (we will describe in

Section IV) is tailored toward -regularized LSPs, the main

idea behind the method can be generalized to other convex

problems involving regularization. We describe some gener-

alizations of the method in Section VI. We also show how the

method can easily handle the general -regularized LSP (5),

without forming explicitly the data matrix, which is typically

dense, of its equivalent formulation of the form (3).

II. REGULARIZATION IN SIGNAL PROCESSING

AND STATISTICS

Several signal processing and estimation methods based on

the idea of regularization can be formulated as problems of

the form (3) or (5). In this section, we consider two important

regularization based methods. One of these is related to the

magnetic resonance imaging (MRI) example given in Section V.

A. Compressed Sensing/Compressive Sampling

Let be an unknown vector in (which can represent a

2- or 3-D object of interest). Suppose that we have linear

measurements of an unknown signal

where denotes the usual inner product, is the

noise, and are known signals. Standard reconstruc-

tion methods require at least samples. Suppose we know a

priori that is compressible or has a sparse representation in a

transform domain, described by (after expanding

the real and imaginary parts if necessary). In this case, if are

well chosen, then the number of measurements can be dra-

matically smaller than the size usually considered necessary

[4], [11].

Compressed sensing [11] or compressive sampling [4] at-

tempts to exploit the sparsity or compressibility of the true

signal in the transform domain by solving a problem of the

form

(6)

where the variable is . Here,

is called the compressed sensing matrix, is the

regularization parameter, and is called the sparsifying trans-

form. Compressed sensing has a variety of potential applications

including analog-to-information conversion and sparse MRI.

When is invertible, we can reformulate the compressed

sensing problem (6) as the -regularized LSP

(7)

where the variable is and the problem data or param-

eters are and . [If solves

(7), then solves (6), and conversely, if solves (6),

then solves (7).] This problem is a basis pursuit de-

noising (BPDN) problem with the dictionary matrix ; see, e.g.,

[8] for more on basis-pursuit denoising.

Before proceeding, we should mention an important feature

of the -regularized LSPs that arise in compressed sensing. The

data matrix in the -regularized LSP (7) is typically fully

dense, and so its equivalent QP formulation is fully dense. But

the equivalent dense QP has an important difference from gen-

eral dense QPs: there are fast algorithms for the matrix-vector

operations with and , based on fast algorithms for the spar-

sifying transform and its inverse transform.

B. Regularized Linear Regression

Let denote a vector of explanatory or feature vari-

ables, and denote the associated output. A linear model

predicts the output as

where is the bias or intercept and is the

weight vector.

Suppose we are given a set of (observed or training) exam-

ples, . To estimate the weight

coefficients and intercept, the Lasso algorithm [52] solves the

-regularized LSP

(8)

with variables and . The Lasso problem (8)

has the form (5) with the variables .

Here, the bias is not regularized.

Extensive research has shown that -regularized linear re-

gression can outperform -regularized linear regression (also



KIM et al.: AN INTERIOR-POINT METHOD FOR LARGE-SCALE -REGULARIZED LEAST SQUARES 609

called ridge regression), especially when the number of obser-

vations is smaller than the number of features [15], [52]. Re-

cently, theoretical properties of -regularized linear regression

have been studied by several researchers; see, e.g., [20], [29],

[33], [56], [62], [61].

III. OPTIMALITY CONDITIONS AND DUAL PROBLEM

In this section, we give some preliminaries needed later.

A. Optimality Conditions

The objective function of the -regularized LSP (3) is convex

but not differentiable, so we use a first-order optimality condi-

tion based on subdifferential calculus. We can obtain the fol-

lowing necessary and sufficient conditions for to be optimal

for the -regularized LSP (3):

We can now derive the formula (4) for . The condition

that 0 is optimal is that for ,

i.e., .

B. Dual Problem and Suboptimality Bound

We derive a Lagrange dual of the -regularized LSP (3).

We start by introducing a new variable , as well as

new equality constraints , to obtain the equivalent

problem

(9)

Associating dual variables with the

equality constraints , the Lagrangian is

The dual function is

The Lagrange dual of (9) is therefore

(10)

where the dual objective is

(See, e.g., [3, ch. 5] or [2] for more on convex duality.) The dual

problem (10) is a convex optimization problem with variable

. We say that is dual feasible if it satisfies the

constraints of (10), i.e., .

Any dual feasible point gives a lower bound on the optimal

value of the primal problem (3), i.e., , which

is called weak duality. Furthermore, the optimal values of the

primal and dual are equal since the primal problem (3) satisfies

Slater’s condition, which is called strong duality [3].

An important property of the -regularized LSP (3) is that

from an arbitrary , we can derive an easily computed bound on

the suboptimality of , by constructing a dual feasible point

(11)

The point is dual feasible, so is a lower bound on , the

optimal value of the -regularized LSP (3).

The difference between the primal objective value of and

the associated lower bound is called the duality gap. We

use to denote the gap

(12)

The duality gap is always nonnegative by weak duality, and

is no more than -suboptimal. At an optimal point, the duality

gap is zero, i.e., strong duality holds.

IV. A TRUNCATED NEWTON INTERIOR-POINT METHOD

The -regularized LSP (3) can be transformed to a convex

quadratic problem, with linear inequality constraints

(13)

where the variables are and . In this section,

we describe an interior-point method for solving this equivalent

QP.

A. A Custom Interior-Point Method

We start by defining the logarithmic barrier for the bound

constraints in (13)

defined over

. The central path consists of the unique minimizer

of the convex function

as the parameter varies from 0 to . With each point

on the central path we associate

, which can be shown to be dual feasible. (In-

deed, it coincides with the dual feasible point constructed

from using the method of Section III-B.) In particular,

is no more than -suboptimal, so the central

path leads to an optimal solution.

In a primal interior-point method, we compute a sequence of

points on the central path, for an increasing sequence of values

of , starting from the previously computed central point. (A typ-

ical method uses the sequence , where is

between 2 and 50 [3, Sec. 11.3]. The method can be terminated

when , where is the target duality gap, since then we

can guarantee -suboptimality of . (The reader is

referred to [3, Ch. 11] for more on the primal barrier method.) In

the primal barrier method, Newton’s method is used to minimize
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, i.e., the search direction is computed as the exact solution to

the Newton system

(14)

where is the Hessian and

is the gradient at the current iterate .

For a large -regularized LSP, solving the Newton system

(14) exactly is not computationally practical. We need to find a

search direction which gives a good trade-off of computational

effort versus the convergence rate it provides. In the method de-

scribed below, the search direction is computed as an approx-

imate solution to the Newton system (14), using PCG. When

an iterative method is used to approximately solve the Newton

system, the overall method is called a truncated Newton method.

Truncated Newton methods have been applied to interior-point

methods; see, e.g., [27], [30], [55], and [44].

In the primal barrier method, the parameter is held constant

until is (approximately) minimized, i.e., is small. For

faster convergence, however, we can update the parameter at

each iteration, based on the current duality gap, computed using

the dual feasible point constructed as described in Section III-B.

This leads to the following algorithm.

TRUNCATED NEWTON IPM FOR ` -REGULARIZED LSPS.

given relative tolerance � > 0.

Initialize. t := 1=�; x := 0; u := 1 = (1; . . . ; 1) 2 R .

repeat

1. Compute the search direction (�x;�u)

as an approximate solution to the Newton system

(14).

2. Compute the step size s by backtracking line

search.

3. Update the iterate by (x; u) := (x; u) + s(�x;�u).

4. Construct a dual feasible point � from (11).

5. Evaluate the duality gap � from (12).

6. quit if �=G(�) � � .

7. Update t.

As a stopping criterion, the method uses the duality gap divided

by the dual objective value. By weak duality, the ratio is an upper

bound on the relative suboptimality

where is the optimal value of the -regularized LSP (3) and

is the primal objective computed with the point (com-

puted in step 3). Therefore, the method solves the problem to

guaranteed relative accuracy .

Given the search direction , the new point is

, where , the step size, is to be

computed. In the backtracking line search, the step size is taken

as , where is the smallest integer that satisfies

where and are algorithm parameters.

(Typical values for the line search parameters are

.) The reader is referred to [3, ch. 9] for more on the back-

tracking line search.

We use the update rule

where and are parameters to be chosen.

The same type of update rule was used in the custom interior-

point method for -regularized logistic regression described in

[30]. The choice of and appears to give

good performance for a wide range of problems. This update

rule uses the step length as a crude measure of proximity to

the central path. In particular, is the value of for which the

associated central point has the same duality gap as the current

point. The update rule appears to be quite robust and work well

when combined with the PCG algorithm we will describe soon.

The reader is referred to [30] for an informal justification of

convergence of the interior-point method based on this update

rule (with exact search directions).

B. Search Direction via PCGs

We can find compact representations of the Hessian and gra-

dient. The Hessian can be written as

where

Here, we use to denote the diagonal matrix

with diagonal blocks . The Hessian is symmetric

and positive definite. The gradient can be written as

where

...

...

We compute the search direction approximately, applying the

PCG algorithm [10, Sect. 6.6] to the Newton system (14). The

PCG algorithm uses a preconditioner , which is

symmetric and positive definite. We will not go into the details

of the PCG algorithm, and refer the reader to [28], [48, Sect.

6.7], or [[39, Sect. 5].
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The preconditioner used in the PCG algorithm approximates

the Hessian of with its diagonal entries, while re-

taining the Hessian of the logarithmic barrier

(15)

Here, is the diagonal matrix obtained by setting the

off-diagonal entries of the matrix to zero.

The cost of computing the diagonal entries of can be

amortized over all interior-point iterations and multiple prob-

lems with the same data matrix and different observation vec-

tors, since we need to compute them only once. When the amor-

tized cost is still expensive, we can approximate the diagonal

matrix with a scaled identity matrix to obtain the

preconditioner

(16)

where is a positive constant. This preconditioner performs

well especially when the diagonal elements of show rela-

tively small variations.

The PCG algorithm needs a good initial search direction and

an effective truncation rule.

• Initial point There are many choices for the initial search

direction, e.g., 0, the negative gradient, and the search di-

rection found in the previous step. Numerical experiments

suggest that initializing the PCG algorithm with the pre-

vious search direction appears to have a small advantage

over the other two.

• Truncation rule The truncation rule for the PCG algorithm

gives the condition for terminating the algorithm. The trun-

cation rule in our implementation is simple: the PCG al-

gorithm stops when the cumulative number of PCG steps

exceeds the given limit or we compute a point with

relative tolerance less than . We use the adaptive rela-

tive tolerance change rule

where is the duality gap at the current iterate and is an

algorithm parameter. (The choice of appears to

work well for a wide range of problems.) In other words,

we solve the Newton system with low accuracy (but never

worse than 10%) at early iterations, and solve it more ac-

curately as the duality gap decreases.

Each iteration of the PCG algorithm involves a handful of

inner products, a matrix-vector product with

and a solve step with in computing with

. (Here, we use the convention that for column

vectors and is the column vector obtained by stacking

on top of .) The solve step can be computed as

where for the preconditioner (15)

and for the preconditioner (16). The compu-

tational cost is flops.

The computationally most expensive operation for a

PCG step is therefore the matrix-vector product with

. The product can be computed as

where . The complexity of depends on the problem

data and determines the cost of a PCG step. We consider two

cases.

• Sparse problems. The cost of computing primarily de-

pends on the number of nonzeros in the matrix . The cost

is flops when has nonzero elements.

• Dense problems with fast matrix-vector multiplications al-

gorithms. The cost of computing is if no struc-

ture is exploited. If fast algorithms are available for the ma-

trix-vector multiplications with and , the cost can be

reduced substantially. As an example we consider the com-

pressed sensing problem (6) where is a Fourier matrix

and is an orthogonal wavelet matrix .

The matrix-vector multiplication with

can be done efficiently using the fast algorithms for the

inverse wavelet transform and the DFT. The multiplication

can be computed efficiently

in a similar manner using the fast algorithm for the wavelet

transform. For any , we can efficiently compute

using zero-filling and then performing the in-

verse Fourier transform. The cost of a PCG step is there-

fore . (The Hessian-vector product involves

one FFT, one inverse FFT, one discrete wavelet transform

(DWT), and one inverse DWT operation.)

C. Performance

Since the memory requirement of the truncated Newton inte-

rior-point method is modest, the method is able to solve very

large problems, for which forming the Hessian (let alone

computing the search direction) would be prohibitively expen-

sive. The runtime of the truncated Newton interior-point method

is determined by the product of the total number of PCG steps

required over all iterations and the cost of a PCG step. The total

number of PCG iterations required by the truncated Newton

interior-point method depends on the value of the regulariza-

tion parameter and the relative tolerance . In particular, for

very small values of (which lead to solutions with relatively

large nonzero coefficients), the truncated Newton interior-point

method requires a larger total number of PCG steps.

In extensive testing, we found that the total number of PCG

steps ranges between a few tens (for medium size problems) and

several hundreds (for very large problems) to compute a solution

which is never worse than 1% suboptimal, i.e., with relative tol-

erance 0.01. In particular, we observed that the total number of

PCG steps remains modest (around a few hundred) nearly irre-

spective of the size of the problem, when the mutual coherence

of the data matrix is small, i.e., the off-diagonal elements of

are relatively small compared with the diagonal elements.

(This observation is not very surprising, since as the mutual co-

herence tends to zero, the Hessian in the Newton system (14)

becomes more and more diagonally dominant.)
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V. NUMERICAL EXAMPLES

In this section, we give some numerical examples to illustrate

the performance of the truncated Newton interior-point method

(TNIPM) described in Section IV. The algorithm parameters are

taken as

Since the iteration limit in the PCG algorithm is set to be

large enough, it was never reached in our experiments.

We compare the performance of the Matlab im-

plementation the truncated Newton interior-point

method (available from http://www.stanford.edu/

~boyd/l1_ls/) and the following five existing solvers:

, and

. [34] is a C implementation of a primal-dual

interior-point method with Matlab interface. is a

Matlab implementation of a primal-dual interior-point method

[50] that uses the Cholesky factorization algorithm to compute

the search direction. is a Matlab implementation

of a primal-dual interior-point method [50] that uses the LSQR

algorithm [42] to compute the search direction. (

and are available in [13], a library of

Matlab routines for finding sparse solutions to underdetermined

systems.) [5] is a Matlab package devoted to

compressed sensing problems. and

implement interior-point methods that use the CG or LSQR

method to compute the search direction and hence are similar

in spirit to our method. is an implementation of the

homotopy method [14], available in .

The existing methods and TNIPM were run on an AMD 270

under Linux.

A. A Sparse Signal Recovery Example

As an example, we consider a sparse signal recovery problem

with a signal which consists of 160 spikes with am-

plitude , shown at the top plot of Fig. 1. The measurement

matrix is created by first generating a matrix of

size with entries generated independently and iden-

tically according to the standard normal distribution and then

orthogonalizing the rows, as with the example in [5, Sect. 3.1].

In the problem, we have

where is drawn according to the Gaussian distribution

on .

Our method and the five existing methods above were run

to find a point which is not worse than 1% suboptimal, i.e.,

with relative tolerance 0.01. The regularization parameter was

taken as , where the value of was computed

using the formula given in (4). Table I compares the runtimes of

the Matlab implementation of our method and the five existing

methods. The truncated Newton interior-point method is most

efficient for this medium problem.

Fig. 1 shows the reconstruction results. The top plot shows the

original signal . The middle plot shows the signal ,

called the minimum energy reconstruction, (which is the point

in the set closest to the origin).

Fig. 1. Sparse signal reconstruction. Top: original signal. Middle: minimum
energy reconstruction. Bottom: BPDN reconstruction.

TABLE I
RUNTIMES OF THE TRUNCATED NEWTON INTERIOR-POINT METHOD (TNIPM)

AND FIVE EXISTING METHODS, FOR A SIGNAL DENOISING PROBLEM

The bottom plot shows the signal obtained by solving the

BPDN problem. The -regularization based method finds ex-

actly the positions of nonzeros in the original signal (after ap-
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Fig. 2. Brain image reconstruction results. Left. Collected partial Fourier coefficients (in white). Middle. Linear reconstruction. Right. Compressed sensing recon-
struction.

propriate thresholding), although the number of measurements

is far less than the number of unknowns. (After identifying the

nonzero positions in the reconstructed signal, we can use a stan-

dard least-squares method to estimate the values in the nonzero

positions, over all signals with the given nonzero positions.) The

minimum energy reconstruction method does not identify the

nonzero positions at all. We applied Tikhonov regularization

with a wide range of the regularization parameters to estimate

the signal but observed similar results.

B. A Compressed Sensing Example in Rapid MRI

As another example, we consider a sparse signal recovery

problem in MRI, using the idea of compressed sensing. We

scanned the brain of a healthy volunteer, obtaining 205 out of

512 possible parallel lines in the spatial frequency of the image.

The lines were chosen randomly with higher density sampling

at low frequency, achieving a 2.5 scan-time reduction factor, as

illustrated in the left panel of Fig. 2. The compressed sensing

matrix in (6) is therefore a matrix obtained by randomly

removing many rows of the 2-D DFT matrix, called a partial

Fourier ensemble. Brain images have a sparse representation

in the wavelet domain. In the example shown, we use the

Daubechies 4 wavelet transform as the sparsifying transform

in (6).

We compared the compressed sensing or sparse MRI method

with a linear reconstruction method, which sets unobserved

Fourier coefficients to zero and then performs the inverse

Fourier transform. For compressed sensing reconstruction, we

solved the problem with relative tolerance and

the regularization parameter . Fig. 2 shows the two

reconstruction results. The linear reconstruction suffers from

incoherent noise-like streaking artifacts (pointed by the arrow)

due to undersampling, whereas the artifacts are much less

noticeable in the compressed sensing reconstruction.

The compressed sensing reconstruction problem can be re-

formulated as a QP, which has around vari-

ables. (One half are the real and imaginary wavelet coefficients

and the other half are new variables added in transforming the

compressed sensing problem into a QP.) The run time of the

Matlab implementation of our interior-point method to solve the

QP with was a few minutes, and the total number

of PCG steps required over all interior-point iterations was 137.

The exact relative tolerance from the optimal objective value

(which was computed using our method with very small rela-

tive tolerance ) was below 1%. could not handle the

problem, since forming the Hessian (let alone computing the

search direction) is prohibitively expensive for direct methods.

Some of the existing solvers mentioned above could handle the

problem but were much slower than our method, by two orders

of magnitude.

C. Scalability

To examine the effect of problem size on the runtime of the

truncated Newton interior-point method, we generated a family

of ten sparse data sets, with the number of features varying

from one thousand to one million, and examples,

i.e., 10 times more features than examples. In doing so, the spar-

sity of was controlled so that the total number of nonzero en-

tries in was m. The elements of were independent

and identically distributed, drawn from the standard normal dis-

tribution. For each data set, was generated to be sparse with

nonzero elements. The measurements were corrupted

by white noise with zero mean and variance . The regu-

larization parameter was taken as .

Fig. 3 summarizes the scalability comparison results for the

regularization parameter, when our method and the four ex-

isting methods except for were run to find a point

which is not worse than 1% suboptimal, i.e., with relative tol-

erance 0.01.( was excluded in the scalability compar-

ison, since the current implementation available in [5] does not

handle sparse data effectively.) Evidently the truncated Newton

interior-point method is more efficient for small problems, and

far more efficient for medium and large problems. By fitting an

exponent to the data over the range from to the largest

problem successfully solved by each method, we found that

the empirical complexities of our method and the four existing

methods. The empirical complexity of was and

that of was . Empirical complexities of other

solvers were more than quadratic.

VI. EXTENSIONS AND VARIATIONS

We can solve the general -regularized LSP (5), using

The Truncated Newton interior-point method described in

Section IV. We can extend the idea behind this method to some

other problems involving regularization. The most important

part in the extensions is to find a preconditioner that gives a

good trade-off between the computational complexity and the

accelerated convergence it provides. We will focus on this part,
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Fig. 3. Runtime of the proposed truncated Newton interior-point method
(TNIPM), MOSEK, PDCO-CHOL (abbreviated as CHOL), PDCOLSQR (abbrevi-
ated as LSQR), and ll-magic, for ten randomly generated sparse problems,
with the regularization parameter.

and will not go into the details of other parts which are rather

straightforward.

A. General -Regularized LSPs

The general -regularized LSP (5) can be reformulated as

where and the variables are

. The first term in the objective can be evaluated an-

alytically and is in fact a quadratic function of the variables

. This problem can be cast as a problem of the form (3)

via a simple transform of variables, , and hence

can be solved using the truncated Newton interior-point method

described above.

We should point out that the method does not need to form

explicitly the data matrix of the equivalent -regularized LSP;

it needs an algorithm for multiplying a vector by the data matrix

of the equivalent formulation and an algorithm for multiplying a

vector by its transpose. These matrix-vector multiplications can

be performed with the nearly same computational cost as those

with the original data matrix and its transpose , provided

that the number of unregularized variables (i.e., ) is

small.

As an example, we consider the Lasso problem (8). It can be

transformed to a problem of the form

where the variables are and the problem data are

...

(Here, is the vector of all ones whose dimension is clear from

the context.) The data matrix in the equivalent formulation is

the sum of the original data matrix and a rank-one matrix, so the

matrix-vector multiplications with and can be performed

with the same computational cost as those with the original data

matrix and its transpose.

B. -Regularized LSPS With Nonnegativity Constraints

Suppose that the variable is known to be nonnegative.

We add the nonnegativity constraint to the -regularized LSP

(3), to obtain

The associated centering problem is to minimize the weighted

objective function augmented by the logarithmic barrier for the

constraints

The Newton system for the centering problem is

where

...
...

The diagonal preconditioner of the form

works well for this problem, especially when the optimal solu-

tion is sparse.

C. Isotonic Regression With Regularization

We consider a variation of the -regularized LSP (3) subject

to the monotonicity constraints

which can be written as

This problem is related to the monotone Lasso [25], which is

an extension of isotonic regression which has been extensively

studied in statistics [1], [45].

The -regularized isotonic regression problem arises in sev-

eral contexts. As an example, the problem of finding monotone

trends in a Gaussian setting can be cast as a problem of this form

[49], [21]. As another example, the problem of estimating accu-

mulating damage trend from a series of structural health mon-

itoring (SHM) images can be formulated as a problem of the
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form in which the variables are 3-D (a time series of images)

[22].

We take the change of variables

to reformulate the isotonic regression problem as an -regular-

ized LSP with monotonicity constraints

where the new data matrix is

. . .
...

...
. . .

(The entries of not shown above are zero.) This problem can

be solved by a truncated Newton interior-point method with the

preconditioner described above, exploiting the structure of the

new data matrix. The two operations, multiplying a vector by

and multiplying a vector by its transpose, can be done as

efficiently as those with , using the fact that the corresponding

operations with and can be done in flops.

D. -Regularized LSPs With Complex Variables

The truncated Newton interior-point method can be extended

to a problem of the form

(17)

where the variable is and the problem data are

and . Here , the norm of the complex vector

, is defined by

(18)

where is the real part of and is the imaginary part.

We note that (17) cannot be cast as an -regularized LSP

of the form (3). Instead, it can be reformulated as the convex

problem

(19)

where the variables are and the problem data are

This problem is a second-order cone program (SOCP) and can

be solved by standard interior-point methods; see, e.g., [31] for

more on SOCPs.

We show how the truncated Newton interior-point method

can be extended to the SOCP (19). Using the standard barrier

function for second-order cone constraints, the associated cen-

tering problem can be formulated as

(20)

where the variables are and is the bar-

rier function

for the constraints of (19). The Hessian of this problem is

As before, we consider the preconditioner that approximates the

Hessian of the first term in the objective of the centering problem

(20) with its diagonal entries, while retaining the Hessian of the

logarithmic barrier

After appropriate reordering, this preconditioner is a block di-

agonal matrix consisting of diagonal matrices, and so

the computational effort of is . This preconditioner

appears to be quite effective in solving the centering problem

(20).

In compressed sensing, a problem of the form (17) arises in

case when the entries of the matrices and are complex and

we do not expand the real and imaginary parts of the matrices

and . In this case, we have , which is a ma-

trix with complex entries. The resulting formulation is different

from the formulation, considered in Section II-A, obtained by

expanding the real and imaginary parts of , and , with

the penalty function . Compared to the for-

mulation described in Section II-A, the formulation based on

the penalty function (18) couples together the real and imagi-

nary parts of entries of , so the optimal solution found tends

to have more simultaneous zero real and imaginary entries in

the entries. (The idea behind the penalty function (18) is used in

the grouped Lasso [60] and in total variation minimization with

two- or higher-dimensional data [7], [47].)

VII. CONCLUSION

In this paper, we have described a specialized interior-point

method for solving large-scale -regularized LSPs. The method

is similar in spirit to the specialized interior-point method for

basis pursuit denoising described in [8]. A major difference is

that our method uses the PCG algorithm to compute the search

direction, whereas the method described in [8] uses the LSQR

without preconditioning. Another difference lies in the trunca-

tion rule for the iterative algorithm: the truncation rule for the

iterative algorithm used in our method is more aggressive to find
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a search direction which gives a good tradeoff of computational

effort versus the convergence rate it provides.

Our method can be generalized to handle a variety of exten-

sions, as described in Section VI. The extension to total varia-

tion minimization with two- or three-dimensional data is more

involved, since it is not straightforward to find a simple but ef-

fective preconditioner for the associated centering problem. We

hope to extend the method to the total variation minimization

problem in future work.

In many applications, the choice of an appropriate value of

the regularization parameter involves computing a portion of

the regularization path, or at the very least solving -regular-

ized LSPs with multiple, and often many, values of . Incor-

porating a warm start technique into the truncated Newton inte-

rior-point method, we can compute a good approximation of the

regularization path much more efficiently than by solving mul-

tiple problems independently. The idea has been successfully

used in -regularized logistic regression [30].
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