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Abstract. Existing MapReduce systems support relational style join operators
which translate multi-join query plans into several Map-Reduce cycles. This leads
to high I/O and communication costs due to the multiple data transfer steps be-
tween map and reduce phases. SPARQL graph pattern matching is dominated by
join operations, and is unlikely to be efficiently processed using existing tech-
niques. This cost is prohibitive for RDF graph pattern matching queries which
typically involve several join operations. In this paper, we propose an approach
for optimizing graph pattern matching by reinterpreting certain join tree struc-
tures as grouping operations. This enables a greater degree of parallelism in join
processing resulting in more “bushy” like query execution plans with fewer Map-
Reduce cycles. This approach requires that the intermediate results are man-
aged as sets of groups of triples or TripleGroups. We therefore propose a data
model and algebra - Nested TripleGroup Algebra for capturing and manipulating
TripleGroups. The relationship with the traditional relational style algebra used
in Apache Pig is discussed. A comparative performance evaluation of the tradi-
tional Pig approach and RAPID+ (Pig extended with NTGA) for graph pattern
matching queries on the BSBM benchmark dataset is presented. Results show up
to 60% performance improvement of our approach over traditional Pig for some
tasks.
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1 Introduction

With the recent surge in the amount of RDF data, there is an increasing need for scalable
and cost-effective techniques to exploit this data in decision-making tasks. MapReduce-
based processing platforms are becoming the de facto standard for large scale analyt-
ical tasks. MapReduce-based systems have been explored for scalable graph pattern
matching [1][2], reasoning [3], and indexing [4] of RDF graphs. In the MapReduce [5]
programming model, users encode their tasks as map and reduce functions, which are
executed in parallel on the Mappers and Reducers respectively. This two-phase com-
putational model is associated with an inherent communication and I/O overhead due
to the data transfer between the Mappers and the Reducers. Hadoop1 based systems
like Pig [6] and Hive [7] provide high-level query languages that improve usability
and support automatic data flow optimization similar to database systems. However,

1 http://hadoop.apache.org/core/
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most of these systems are targeted at structured relational data processing workloads
that require relatively few numbers of join operations as stated in [6]. On the con-
trary, processing RDF query patterns typically require several join operations due to
the fine-grained nature of RDF data model. Currently, Hadoop supports only partition
parallelism in which a single operator executes on different partitions of data across
the nodes. As a result, the existing Hadoop-based systems with the relational style join
operators translate multi-join query plans into a linear execution plan with a sequence
of multiple Map-Reduce (MR) cycles. This significantly increases the overall commu-
nication and I/O overhead involved in RDF graph processing on MapReduce platforms.
Existing work [8][9] directed at uniprocessor architectures exploit the fact that joins
presented in RDF graph pattern queries are often organized into star patterns. In this
context, they prefer bushy query execution plans over linear ones for query process-
ing. However, supporting bushy query execution plans in Hadoop based systems would
require significant modification to the task scheduling infrastructure.

In this paper, we propose an approach for increasing the degree of parallelism by
enabling some form of inter-operator parallelism. This allows us to “sneak in” bushy
like query execution plans into Hadoop by interpreting star-joins as groups of triples
or TripleGroups. We provide the foundations for supporting TripleGroups as first class
citizens. We introduce an intermediate algebra called the Nested TripleGroup Algebra
(NTGA) that consists of TripleGroup operators as alternatives to relational style oper-
ators. We also present a data representation format called the RDFMap that allows for
a more easy-to-use and concise representation of intermediate query results than the
existing format targeted at relational tuples. RDFMap aids in efficient management of
schema-data associations, which is important while querying schema-last data models
like RDF. Specifically, we propose the following:

– A TripleGroup data model and an intermediate algebra called Nested TripleGroup
Algebra (NTGA), that leads to efficient representation and manipulation of RDF
graphs.

– A compact data representation format (RDFMap) that supports efficient
TripleGroup-based processing.

– An extension to Pig’s computational infrastructure to support NTGA operators,
and compilation of NTGA logical plans to MapReduce execution plans. Operator
implementation strategies are integrated into Pig to minimize costs involved in RDF
graph processing.

– A comparative performance evaluation of Pig and RAPID+ (Pig extended with
NTGA operators) for graph pattern queries on a benchmark dataset is presented.

This paper is organized as follows: In section 2, we review the basics of RDF graph
pattern matching, and the issues involved in processing such pattern queries in systems
like Pig. We also summarize the optimization strategies presented in our previous work,
which form a base for the algebra proposed in this paper. In section 3.1, we present the
TripleGroup data model and the supported operations. In 3.2, we discuss the integration
of NTGA operators into Pig. In section 4, we present the evaluation results comparing
the performance of RAPID+ with the existing Pig implementation.
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Fig. 1. Example pattern matching query in (a) SPARQL (b) Pig Latin (VP approach)

2 Background and Motivation

2.1 RDF Graph Pattern Matching

The standard query construct for RDF data models is a graph pattern which is equiva-
lent to the select-project-join (SPJ) construct in SQL. A graph pattern is a set of triple
patterns which are RDF triples with variables in either of the s, p, or o positions. Con-
sider an example query on the BSBM2 data graph to retrieve “the details of US-based
vendors who deliver products within three days, along with the review details for these
products”. Fig. 1 (a) shows the corresponding SPARQL query, whose graph pattern can
be factorized into two main components (i) three star-join structures (SJ1, SJ2, SJ3)
describing resources of type Vendor, Offer, and Review respectively, two chain-join
patterns (J1, J2) combining these star patterns and, (ii) the filter processing.

There are two main ways of processing RDF graph patterns depending on the storage
model used: (i) triple model, or (ii) vertically partitioned (VP) storage model in which
the triple relation is partitioned based on properties. In the former approach, RDF pat-
tern matching queries can be processed as series of relational style self-joins on a large
triple relation. Some systems use multi-indexing schemes [8] to counter this bottleneck.
The VP approach results in a series of join operations but on smaller property-based re-
lations. Another observation [8] is that graph pattern matching queries on RDF data
often consist of multiple star-structured graph sub patterns. For example, 50% of the
benchmark queries in BSBM have at least two or more star patterns. Existing work
[8][9] optimize pattern matching by exploiting these star-structures to generate bushy
query plans.

2 http://www4.wiwiss.fu-berlin.de/bizer/
BerlinSPARQLBenchmark/spec/
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2.2 Graph Pattern Matching in Apache Pig

Graph Pattern Matching in Pig. Map Reduce data processing platforms like Pig fo-
cus on ad hoc data processing in the cloud environment where the existence of pre-
processed and suitably organized data cannot be presumed. Therefore, in the context
of RDF graph pattern processing which is done directly from input documents, the VP
approach with smaller relations is more suitable. To capture the VP storage model in
Pig, an input triple relation needs to be “split” into property-based partitions using Pig
Latin’s SPLIT command. Then, the star-structured joins are achieved using an m-way
JOIN operator, and chain joins are executed using th traditional binary JOIN operator.
Fig. 1(b) shows how the graph pattern query in Fig. 1(a) can be expressed and processed
in Pig Latin. Fig. 2 (a) shows the corresponding query plan for the VP approach. We
refer to this sort of query plan as Pig’s approach in the rest of the paper. Alternative
plans may change the order of star-joins based on cost-based optimizations. However,
that issue does not affect our discussion because the approaches compared in this pa-
per all benefit similarly from such optimizations. Pig Latin queries are compiled into
a sequence of Map-Reduce (MR) jobs that run over Hadoop. The Hadoop scheduling
supports partition parallelism such that in every stage, one operator is running on dif-
ferent partitions of data at different nodes. This leads to a linear style physical execution
plan. The above logical query plan will be compiled into a linear execution plan with
a sequence of five MR cycles as shown in Fig. 2 (b). Each join step is executed as a
separate MR job. However, Pig optimizes the multi-way join on the same column, and
compiles it into a single MR cycle.

Issues. (i) Each MR cycle involves communication and I/O costs due to the data transfer
between the Mappers and Reducers. Intermediate results are written to disk by Mappers
after the map phase, which are read by Reducers and processed in the reduce phase after
which the results are written to HDFS (Hadoop Distributed File System). These costs
are summarized in Fig. 2 (b). Using this style of execution where join operations are
executed in different MR cycles, join-intensive tasks like graph pattern matching will

Fig. 2. Pattern Matching using VP approach (a) Query plan (b) Map-Reduce execution flow
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result in significant I/O and communication overhead. There are other issues that con-
tribute I/O costs e.g. the SPLIT operator for creating VP relations generates concurrent
sub flows which compete for memory resources and is prone to disk spills. (ii) In im-
perative languages like Pig Latin, users need to explicitly manipulate the intermediate
results. In schema-last data models like RDF, there is an increased burden due to the
fact that users have to keep track of which columns of data are associated with which
schema items (properties) as well as their corresponding values. For example, for the
computation of join J2, the user needs to specify the join between intermediate relation
J1 on the value of property type “product”, and relation SJ3 on the value of property
type “reviewFor”. It is not straightforward for the user to determine that the value cor-
responding to property “product” is in column 20 of relation J1. In schema-first data
models, users simply reference desired columns by attribute names.

TripleGroup-based Pattern Matching. In our previous work [10], we proposed an
approach to exploit star sub patterns by re-interpreting star-joins using a grouping-based
join algorithm. It can be observed that performing a group by Subject yields groups of
tuples or TripleGroups that represent all the star sub graphs in the database. We can
obtain all these star sub graphs using the relational style GROUP BY which executes
in a single MR cycle, thus minimizing the overall I/O and communication overhead in
RDF graph processing. Additionally, repeated data processing costs can be improved by
coalescing operators in a manner analogous to “pushing select into cartesian product”
in relational algebra to produce a more efficient operator. The empirical study in our
previous work showed significant savings using this TripleGroup computational style,
suggesting that it was worth further consideration.

In this paper, we present a generalization of this strategy by proposing an interme-
diate algebra based on the notion of TripleGroups. This provides a formal foundation
to develop first-class operators with more precise semantics, to enable tighter integra-
tion into existing systems to support automatic optimization opportunities. Additionally,
we propose a more suitable data representation format that aids in efficient and user-
friendly management of intermediate results of operators in this algebra. We also show
how this representation scheme can be used to implement our proposed operators.

3 Foundations

3.1 Data Model and Algebra

Nested TripleGroup Algebra (NTGA) is based on the notion of the TripleGroup data
model which is formalized as follows:

Definition 1. (TripleGroup) A TripleGroup tg is a relation of triples t1,t2,...tk, whose
schema is defined as (S, P , O). Further, any two triples ti, tj ∈ tg have overlapping
components i.e. ti [coli ] = tj[colj] where coli, colj refer to subject or object com-
ponent. When all triples agree on their subject (object) values, we call them subject
(object) TripleGroups respectively. Fig. 3 (a) is an example of a subject TripleGroup
which corresponds to a star sub graph. Our data model allows TripleGroups to be nested
at the object component.
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Fig. 3. (a) Subject TripleGroup tg (b) Nested TripleGroup ntg

Fig. 4. (a) ntg.unnest() (b) n-tuple after tg.flatten()

Definition 2. (Nested TripleGroup) A nested TripleGroup ntg consists of a root Triple-
Group ntg.root and one or more child TripleGroups returned by the function ntg.
child() such that:
For each child TripleGroup ctg ∈ ntg. child(),

– ∃ t1 ∈ ntg.root, t2 ∈ ctg such that t1.Object = t2.

Nested TripleGroups capture the graph structure in an RDF model in a more natural man-
ner. An example of a nested TripleGroup is shown in Fig. 3 (b). A nested TripleGroup
can be “unnested” into a flat TripleGroup using the unnest operator. The definition is
shown in Fig. 5. Fig. 4 (a) shows the TripleGroup resulting from the unnest operation
on the nested TripleGroup in Fig. 3 (b). In addition, we define the flatten operation
to generate an “equivalent” n-tuple for a given TripleGroup. For example, if tg = t1,
t2,..., then the n-tuple tu has triple t1= (s1, p1, o1) stored in the first three columns of
tu, triple t2 = (s2, p2, o2) is stored in the fourth through sixth column, and so on. For
convenience, we define the function triples() to extract the triples in a TripleGroup.
For the TripleGroup in Fig. 3 (a), the flatten is computed as tg.triples(label) ��

tg.triples(country) �� tg.triples(homepage), resulting in an n-tuple as shown in
Fig. 4 (b). It is easy to observe that the information content in both formats is equivalent.
We refer to this kind of equivalence as content equivalence which we will denote as ∼=.
Consequently, computing query results in terms of TripleGroups is lossless in terms of
information. This is specifically important in scenarios where TripleGroup-based pro-
cessing is more efficient.

We define other TripleGroup functions as shown in Fig.5 (b). The structure-labeling
function λ assigns each TripleGroup tg, with a label that is constructed as some func-
tion of tg.props(). Further, for two TripleGroups tg1, tg2 such that tg1.props() ⊆
tg2.props(), λ assigns labels such that tg1.λ() ⊆ tg2.λ(). The labeling function λ in-
duces a partition on a set of TripleGroups based on the structure represented by the
property types present in that TripleGroup. Each equivalence class in the partition con-
sists of TripleGroups that have the exact same set of property types.

Next, we discuss some of the TripleGroup operators proj, filter, groupfilter,
and join, which are formally defined in Fig.5 (c).
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Symbol Description
tg TripleGroup
TG Set of TripleGroups
tp Triple pattern
ntg.root Root of the nested TripleGroup
ntg.child() Children of the nested TripleGroup
?vtp A variable in the triple pattern tp

(a)

Function Returns
tg.props() Union of all property types in tg
tg.triples() Union of all triples in tg
tg.triples(pi) Triples in tg with property type pi

tg.λ() Structure label for tg based on tg.props()
δ(tp) A triple matching the triple pattern tp
δ(?vtp) A variable substituion in the triple matching tp

(b)

Operator Definition
load({ti}) { tgi | tgi = ti, and ti is an input triple}
proj?vtp(TG) {δi(?vtp) | δi(tp) ∈ tgi, tgi ∈ TG and tp.λ() ⊆ tgi.λ()}
filterΘ(?vtp)(TG)

{ tgi | tgi ∈ TG and ∃ δi(tp) ∈ tgi such that
δi(?vtp) satisfies the filter condition Θ(?vtp)}

groupfilter(TG, P ) { tgi | tgi ∈ TG and tgi.props() = P }
Assume tgx ∈ TGx, tgy ∈ TGy, ∃ δ1(tpx) ∈ tgx, δ2(tpy) ∈ tgy,
and δ1(?vtpx) = δ2(?vtpy )

join(?vtpx :TGx, if O-S join, then {ntgi | ntgi.root= tgx, δ1(tpx).Object = tgy}
?vtpy :TGy) else { tgx ∪ tgy}

tg.flatten()
{tg.triples(p1) �� tg.triples(p2)...�� tg.triples(pn) where
pi ∈ tg.props()}

ntg.unnest()
{ ti | ti is a non-nested triple in tg.root }
∪ { (s, p, s′) | t′ = (s, p, (s′, p′, o′)) is a nested triple in tg.root}
∪ { ctgi.unnest() | ctgi ∈ tg.child() }

(c)

Fig. 5. NTGA Quick Reference (a) Symbols (b) Functions (c) Operators

(proj) The proj operator extracts from each TripleGroup, the required triple com-
ponent from the triple matching the triple pattern. From our example data,
proj?hpage(TG) ={www.vendors.org/V 1}.

(filter) The filter operator is used for value-based filtering i.e. to check if the
TripleGroups satisfy the given filter condition. For our example data, filterprice>500

(TG) would eliminate the TripleGroup ntg in Fig. 3 (b) since the triple (&Offer1,
price, 108) does not satisfy the filter condition.

(groupfilter) The groupfilter operation is used for structure-based filtering
i.e. to retain only those TripleGroups that satisfy the required query sub structure.
For example, the groupfilter operator can be used to eliminate TripleGroups like
tg in Fig. 3 (a), that are structurally incomplete with respect to the equivalence class
TG{label,country,homepage,mbox}.

(join) The join expressionjoin(?vtpx :TGx,?vtpy :TGy) computes the join between
a TripleGroup tgx in equivalence class TGx with a TripleGroup tgy in equivalence class
TGy based on the given triple patterns. The triple patterns tpx and tpy share a common
variable ?v at O or S component. The result of an object-subject (O-S) join is a nested
TripleGroup in which tgy is nested at the O component of the join triple in tgx. For ex-
ample, Fig. 6 shows the nested TripleGroup resulting from the join operation between
equivalence classes TG{price,validTo,vendor,product} and TG{label,country,homepage}
that join based on triple patterns {?o vendor ?v} and {?v country ?vcountry}
respectively. For object-object (O-O) joins, the join operator computes a TripleGroup
by union of triples in the individual TripleGroups.
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Fig. 6. Example join operation in NTGA

Execution plan using NTGA and its mapping to Relational Algebra. TripleGroup-
based pattern matching for a query with n star sub patterns, compiles into a MapRe-
duce flow with n MR cycles as shown in Fig. 7. The same query executes in double
the number of MR cycles (2n − 1) using Pig approach. Fig. 7 shows the equivalence
between NTGA and relational algebra operators based on our notion of content equiva-
lence. This mapping suggests rules for lossless transformation between queries written
in relational algebra and NTGA. First, the input triples are loaded and the triples that
are not part of the query pattern are filtered out. Pig load and filter operators are
coalesced into a loadFilter operator to minimize costs of repeated data handling.
The graph patterns are then evaluated using the NTGA operators, (i) star-joins using
Pig’s GROUP BY operator, which is coalesced with the NTGA groupFilter operator
to enable structure-based filtering (represented as StarGroupFilter) and, (ii) chain
joins on TripleGroups using the NTGA join operator (represented as RDFJoin). The
final result can be converted back to n-tuples using the NTGA flatten operator. In
general, TripleGroups resulting from any of the NTGA operations can be mapped to
Pig’s tupled results using the flatten operator. For example, the StarGroupFilter
operation results in a set of TripleGroups. Each TripleGroup can be transformed to an
equivalent n-tuple resulting from relational star-joins SJ1, SJ2, or SJ3.

Fig. 7. NTGA execution plan and mapping to Relation Algebra
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3.2 RAPID+: Integrating NTGA Operators into Pig

Data Structure for TripleGroups - RDFMap. Pig Latin data model supports a bag
data structure that can be used to capture a TripleGroup. The Pig data bag is imple-
mented as an array list of tuples and provides an iterator to process them. Consequently,
implementing NTGA operators such as filter, groupfilter, join etc. using this
data structure requires an iteration through the data bag which is expensive. For exam-
ple, given a graph pattern with a set of triple patterns TP and a data graph represented
as a set of TripleGroups TG, the groupfilter operator requires matching each triple
pattern in TP with each tuple t in each TripleGroup tg ∈ TG. This results in the cost
of the groupfilter operation being O(|TP |*|tg|*|TG|). In addition, representing
triples as 3-tuple (s, p, o) results in redundant s(o) components for subject (object)
TripleGroups. We propose a specialized data structure called RDFMap targeted at ef-
ficient implementation of NTGA operators. Specifically it enables, (i) efficient look-
up of triples matching a given triple pattern, (ii) compact representation of intermedi-
ate results, and (iii) ability to represent structure-label information for TripleGroups.
RDFMap is an extended HashMap that stores a mapping from property to object val-
ues. Since subject of triples in a TripleGroup are often repeated, RDFMap avoids this
redundancy by using a single field Sub to represent the subject component. The field
EC captures the structure-label (equivalence class mapped to numbers). Fig. 8. shows
the RDFMap corresponding to the Subject TripleGroup in Fig. 3 (a). Using this rep-
resentation model, a nested TripleGroup can be supported using a nested propMap
which contains another RDFMap as a value. The propMap provides a property-based
indexed structure that eliminates the need to iterate through the tuples in each bag. Since
propMap is hashed on the P component of the triples, matching a triple pattern inside
a TripleGroup can now be computed in time O(1). Hence, the cost of the groupfilter
operation is reduced to O(|P |*|TG|).

Fig. 8. RDFMap representing a subject TripleGroup

Implementing NTGA operators using RDFMap. In this section, we show how the
property-based indexing scheme of an RDFMap can be exploited for efficient imple-
mentation of the NTGA operations. We then discuss the integration of NTGA operators
into Pig.
StarGroupFilter. A common theme in our implementation is to coalesce operators
where possible in order to minimize the costs of parameter passing, and context switch-
ing between methods. The starGroupFilter is one such operator, which coalesces
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the NTGA groupfilter operator into Pig’s relational GROUP BY operator. Creating
subject TripleGroups using this operator can be expressed as:

TG = StarGroupFilter triples by S

The corresponding map and reduce functions for the StarGroupFilter operator are
shown in Algorithm 1. In the map phase, the tuples are annotated based on the S compo-
nent analogous to the map of a GROUP BY operator. In the reduce function, the different
tuples sharing the same S component are packaged into an RDFMap that corresponds
to a subject TripleGroup. The groupfilter operator is integrated for structure-based
filtering based on the query sub structures (equivalence classes). This is achieved us-
ing global bit patterns (stored as BitSet) that concisely represent the property types
in each equivalence class. As the tuples are processed in the reduce function, the lo-
cal BitSet keeps track of the property types processed (line 6). After processing all
tuples in a group, if the local BitSet (locBitSet) does not match the global BitSet
(ECBitSet), the structure is incomplete and the group of tuples is eliminated (lines 10-
11). Fig. 9 shows the mismatch between the locBitSet and ECBitSet in the sixth po-
sition that represents the missing property “product” belonging to the equivalence class
TG{price,validTo,delivDays,vendor,product}. If the bit patterns match, a labeled RDFMap
is generated (line 13) whose propMap contains all the (p,o) pairs representing the edges
of the star sub graph. The output of StarGroupFilter is a single relation containing
a list of RDFMaps corresponding to the different star sub graphs in the input data.

Algorithm 1. StarGroupFilter
1 Map (Tuple tup(s,p,o))
2 return (s,tup)

3 Reduce (Key, List of tuples T)
4 foreach tup(s,p,o) in T do
5 Initialize: Sub← s; EC← findEC(p)
6 locBitset.set(p)
7 propMap.put(p,o)
8 end foreach
9 ECBitSet← global BitSet for EC

10 if locBitset != ECBitSet then
11 return null
12 else
13 return new RDFMap(Sub, EC, propMap)
14 end if

Fig. 9. Structure-based filtering of TripleGroups

Algorithm 2. RDFJoin
1 Map (RDFMap rMap)
2 if joinKey == * then
3 return (rMap.Sub, rMap)
4 else
5 key← rMap.propMap.get(joinKey)
6 return (key, rMap)
7 end if

8 Reduce (Key, List of RDFMaps R)
9 foreach rMap in R do

10 if rMap.EC == EC1 then
11 list1.add(rMap)
12 else if rMap.EC == EC2 then
13 list2.add(rMap)
14 end if
15 end foreach
16 foreach outer in list1 do
17 foreach inner in list2 do
18 propMapNew←

joinProp(outer.propMap,
inner.propMap)

19 ECNew← joinSub(outer.EC,
inner.EC)

20 SubNew← joinSub(outer.Sub,
inner.Sub)

21 rMapNew← new
RDFMap(SubNew, ECNew,
propMapNew)

22 resultList.add(rMapNew)
23 end foreach
24 end foreach
25 return resultList



56 P. Ravindra, H. Kim, K. Anyanwu

RDFJoin: The RDFJoin operator takes as input a single relation containing
RDFMaps, and computes the NTGA join between star patterns as described by Al-
gorithm 2. The O-S join J1 between the star patterns in Fig. 1 can be expressed as
follows:

J1 = RDFJoin TG on (1:’vendor’, 0:*);

where joins on O are specified using the property types, and joins on S are specified as a
’*’. In the map phase, the RDFMaps are annotated based on the join key corresponding
to their equivalence class (lines 2-8). In the reduce phase, the RDFMaps that join are
packaged into a new RDFMap which corresponds to a nested TripleGroup. The EC of
the new joined RDFMap is a function of the EC of the individual RDFMaps. For exam-
ple, the RDFJoin between TripleGroups shown in Fig. 6, results in an RDFMap whose
propMap contains the union of triples from the individual TripleGroups as shown in
Fig. 10. In our implementation, the Sub field is a concatenation of the Sub fields of the
individual TripleGroups e.g. &Offer1.&V 1. The join result is optimized by eliminat-
ing the (p, o) pair corresponding to the join triple if it is no longer required. This reduces
the size of the intermediate RDFMaps after each MR cycle. Our join result corresponds
to an unnested joined TripleGroup, as shown in Fig. 4 (a).

Fig. 10. Example RDFMap after RDFJoin operation

4 Evaluation

Our goal was to empirically evaluate the performance of NTGA operators with re-
spect to pattern matching queries involving combinations of star and chain joins. We
compared the performance of RAPID+ with two implementations of Pig, (i) the naive
Pig with the VP storage model, and (ii) an optimized implementation of Pig (Pigopt),
in which we introduced additional project operations to eliminate the redundant join
columns. Our evaluation tasks included, (i) Task1 - Scalability of TripleGroup-based
approach with size of RDF graphs, (ii) Task2 - Scalability of TripleGroup-based pat-
tern matching with denser star patterns, and (iii) Task3 - Scalability of NTGA operators
with increasing cluster sizes.
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Table 1. Testbed queries and performance gain of RAPID+ over Pig (10-node cluster / 32GB)

Query #Triple Pattern #Edges in Stars %gain Query #Triple Pattern #Edges in Stars %gain
Q1 3 1:2 56.8 Q6 8 4:4 58.4
Q2 4 2:2 46.7 Q7 9 5:4 58.6
Q3 5 2:3 47.8 Q8 10 6:4 57.3
Q4 6 3:3 51.6 2S1C 6 2:4 65.4
Q5 7 3:4 57.4 3S2C 10 2:4:4 61.5

4.1 Setup

Environment: The experiments were conducted on VCL3, an on-demand computing
and service-oriented technology that provides remote access to virtualized resources.
Nodes in the clusters had minimum specifications of single or duo core Intel X86 ma-
chines with 2.33 GHz processor speed, 4G memory and running Red Hat Linux. The
experiments were conducted on 5-node clusters with block size set to 256MB. Scala-
bility testing was done on clusters with 10, 15, 20, and 25 nodes. Pig release 0.7.0 and
Hadoop 0.20 were used. All results recorded were averaged over three trials.

Testbed - Dataset and Queries: Synthetic datasets (n-triple format) generated using
the BSBM tool were used. A comparative evaluation was carried out based on size of
data ranging from 8.6GB (approx. 35 million triples) at the lower end, to a data size
of 40GB (approx. 175 million triples). 10 queries (shown in Table 1) adapted from the
BSBM benchmark (Explore use case) with at least a star and chain join were used.
The evaluation tested the effect of query structure on performance with, (i) Q1 to Q8
consisting of two star patterns with varying cardinality, (ii) 2S1C consisting of two star
patterns, a chain join, and a filter component (6 triple patterns), and (ii) 3S2C consisting
of three star patterns, two chain joins, and a filter component (10 triple patterns). Query
details and additional experiment results are available on the project website4.

4.2 Experiment Results

Task1: Fig. 11 (a) shows the execution times of the three approaches on a 5-node clus-
ter for 2S1C. For all the four data sizes, we see a good percentage improvement in
the execution times for RAPID+. The two star patterns in 2S1C are computed in two
separate MR cycles in both the Pig approaches, resulting in the query compiling into
a total of three MR cycles. However, RAPID+ benefits by the grouping-based join al-
gorithm (StarGroupFilter operator) that computes the star patterns in a single MR
cycle, thus reducing one MR cycle in total. We also observe cost savings due to the
integration of loadFilter operator in RAPID+ that coalesces the LOAD and FILTER

phases. As expected, the Pigopt performs better than the naive Pig approach due to the
decrease in the size of the intermediate results.

3 https://vcl.ncsu.edu/
4 http://research.csc.ncsu.edu/coul/RAPID/ESWC_exp.htm

https://vcl.ncsu.edu/
http://research.csc.ncsu.edu/coul/RAPID/ESWC_exp.htm
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Fig. 11. Cost analysis on 5-node cluster for (a) 2SIC (b) 3S2C

Fig. 11 (b) shows the performance comparison of the three approaches on a 5-node
cluster for 3S2C. This query compiles into three MR cycles in RAPID+ and five MR
cycles in Pig / Pigopt. We see similar results with RAPID+ outperformed the Pig based
approaches, achieving up to 60% performance gain with the 32GB dataset. The Pig
based approaches did not complete execution for the input data size of 40GB. We sus-
pect that this was due to the large sizes of intermediate results. In this situation, the
compact representation format offered by the RDFMap proved advantageous to the
RAPID+ approach. In the current implementation, RAPID+ has the overhead that the
computation of the star patterns results in a single relation containing TripleGroups
belonging to different equivalence classes. In our future work, we will investigate tech-
niques for delineating different types of intermediate results.

Task2: Table 1 summarizes the performance of RAPID+ and Pig for star-join queries
with varying edges in each star sub graph. NTGA operators achieve a performance gain
of 47% with Q2 (2:2 cardinality) which increases with denser star patterns, reaching
59% with Q8 (6:4 cardinality). In addition to the savings in MR cycle in RAPID+, this
demonstrates the cost savings due to smaller intermediate relations achieved by elimi-
nating redundant subject values and join triples that are no longer required. Fig. 12 (b)
shows a comparison on a 5-node cluster (20GB data size) with Pigopt which eliminates
join column redundancy in Pig, similar to RDFMap’s concise representation of subjects
within a TripleGroup. RAPID+ maintains a consistent performance gain of 50% across
the varying density of the two star patterns.

Task3: Fig. 12(a) shows the scalability study of 3S2C on different sized clusters, for
32GB data. RAPID+ starts with a performance gain of about 56% with the 10-node
cluster, but its advantage over Pig and Pigopt reduces with increasing number of nodes.
The increase in the number of nodes, decreases the size of data processed by each node,
therefore reducing the probability of disk spills with the SPLIT operator in the Pig based
approaches. However, RAPID+ still consistently outperforms the Pig based approaches
with at least 45% performance gain in all experiments.
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Fig. 12. Scalability study for (a) 3S2C varying cluster sizes (b) two stars with varying cardinality

5 Related Work

Data Models and High-Level Languages for cluster-based environment. There has
been a recent proliferation of data flow language such as Sawzall [11], DryadLINQ [12],
HiveQL [7], and Pig Latin [6] for processing structured data on parallel data processing
systems such as Hadoop. Another such query language, JAQL5 is designed for semi-
structure data analytics, and uses the (key, value) JSON model. However, this model
splits RDF sub graphs into different bags, and may not be efficient to execute bushy
plans. Our previous work, RAPID [13] focused on optimizing analytical processing of
RDF data on Pig. RAPID+ [10] extended Pig with UDFs to enable TripleGroup-based
processing. In this work, we provide formal semantics to integrate TripleGroups as
first-class citizens, and present operators for graph pattern matching.

RDF Data processing on MapReduce Platforms. MapReduce framework has been
explored for scalable processing of Semantic Web data. For reasoning tasks, specialized
map and reduce functions have been defined based on RDFS rules [3] and the OWL
Horst rules [14], for materializing the closure of RDF graphs. Yet another work [15]
extends Pig by integrating schema-aware RDF data loader and embedding reasoning
support into the existing framework. For scalable pattern matching queries, there have
been MapReduce-based storage and query systems [2],[1] that process RDFMolecules.
Also, [16] uses HadoopDB [17] with a column-oriented database to support a scal-
able Semantic Web application. This framework enables parallel computation of star-
joins if the data is partitioned based on the Subject component. However, graph pattern
queries with multiple star patterns and chain join may not benefit much. Another re-
cent framework [4] pre-processes RDF triples to enable efficient querying of billions of
triples over HDFS. We focus on ad hoc processing of RDF graphs that cannot presume
pre-processed or indexed data.

Optimizing Multi-way Joins. RDF graph pattern matching typically involves sev-
eral join operations. There have been optimization techniques [9] to re-write SPARQL
queries into small-sized star-shaped groups and generate bushy plans using two phys-
ical join operators called njoin and gjoin. It is similar in spirit to the work presented

5 http://code.google.com/p/jaql

 http://code.google.com/p/jaql
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here since both exploit star-shaped sub patterns. However, our work focuses on parallel
platforms and uses a grouping-based algorithm to evaluate star-joins. There has been
work on optimizing m-way joins on structured relations like slice join [18]. However,
we focus on joins involving RDF triples for semi-structured data. Another approach
[19] efficiently partitions and replicates of tuples on reducer processes in a way that
minimizes the communication cost. This is complementary to our approach and the
partitioning schemes could further improve the performance of join operations. [20], in-
vestigates several join algorithms which leverage pre-processing techniques on Hadoop,
but mainly focus on log processing. RDFBroker [21] is a RDF store that is based on the
concept of a signature (set of properties of a resource), similar to NTGA’s structure-
labeling function λ. However, the focus of [21] is to provide a natural way to map RDF
data to database tables, without presuming schema knowledge. Pregel [22] and Sig-
nal/Collect [23] provide graph-oriented primitives as opposed to relational algebra type
operators, and also target parallel platforms. The latter is still in a preliminary stage and
has not completely demonstrated its advantages across parallel platforms.

6 Conclusion

In this paper, we presented an intermediate algebra (NTGA) that enables more natural
and efficient processing for graph pattern queries on RDF data. We proposed a new data
representation format (RDFMap) that supports NTGA operations in a more efficient
manner. We integrated these NTGA operators into Pig, and presented a comparative
performance evaluation with the existing Pig implementation. For certain classes of
queries, we saw a performance gain of up to 60%. However, there might be certain
scenarios in which it may be preferable not to compute all star patterns. In such cases,
we need a hybrid approach that utilizes cost-based optimization techniques to determine
when the NTGA approach is the best. We will also investigate a more efficient method
for dealing with heterogeneous TripleGroups resulting from join operations.
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