AN INTERNAL SOLUTION TO THE PROBLEM OF LINEARIZATION OF A CONVEXITY SPACE

BY
D. A. SZAFRON AND J. H. WESTON

1. Introduction. Following Kay and Womble [2] an abstract convexity structure on a set X is a collection ζ of subsets of X which includes the empty set, X and is closed under arbitrary intersections. One of the natural problems that arises in convexity structures is to give necessary and sufficient conditions for the existance of a linear structure on X such that the collection of all convex sets in the resulting linear space is precisely ζ. An associated problem is to consider a set with a convexity structure and a topology and find necessary and sufficient conditions for the existance of a linear structure on X such that X becomes a linear topological space with again ζ the collection of convex sets. These problems were solved in [3] and [1] respectively in terms of the existance of families of functions from X to the real line. In this paper we give internal solutions to both problems.

We will follow the notation and terminology of [3] and [1]. If X is a set and ζ is a convexity structure on X then (X, ζ) will be called a convexity space and the members of ζ convex sets. If $S \subseteq X$ then the convex hull of S, written $\zeta(S)$, is the set $\zeta(S)=\bigcap\{C \in \zeta \mid S \subseteq C\}$. If $S=\left\{s_{1}, \ldots, s_{n}\right\}$ is finite write $\zeta\left(s_{1}, \ldots, s_{n}\right)$ for $\zeta\left(\left\{s_{1}, \ldots, s_{n}\right\}\right)$.

If $x \in X, S \subseteq X$ the ζ-join of x and S is the set $x_{\zeta} S=\bigcup\{\zeta(x, s) \mid s \in S\} . \zeta$ is said to be join-hull commutative if $\zeta\left(x_{\zeta} S\right)=\zeta(\{x\} \cup S)=x_{\zeta} \zeta(S)$. ζ is said to be domain finite if for each $S \subseteq X, \zeta(S)=\bigcup\{\zeta(t) \mid T \subseteq S, T$ finite $\}$. In [2] (theorem 2) it is shown that for a domain finite, join-hull commutative convexity structure ζ, S is convex if and only if $\zeta(x, y) \subseteq S$ for each $x, y \in S$.

For any two distinct points $x, y \in X$ the line determined by x and y is the set $\langle x, y\rangle=\{z \in X \mid z \in \zeta(x, y)$, or $x \in \zeta(z, y)$, or $y \in \zeta(x, z)\}$. Notice that if $s, t \in\langle x, y\rangle$ and $s \neq t$ then $\langle s, t\rangle=\langle x, y\rangle$.

2. Linearization.

Definition 2.1. A convexity space (X, ζ) is said to be gridable over a field F if there is a set A satisfying the following.
(i) For each $\alpha \in A, a \in F$ there is a $P_{a}^{\alpha} \in \zeta$ such that $\bigcup\left\{P_{a}^{\alpha} \mid a \in F\right\}=X$, $P_{a}^{\alpha} \cap P_{b}^{\alpha}=\phi$ if and only if $a \neq b$, and if $x, y \in P_{a}^{\alpha}$ then $\langle x, y\rangle \subseteq P_{a}^{\alpha}$. Write $P^{\alpha}=P_{0}^{\alpha}$.

[^0](ii) If $x, y \in X, x \neq y,\langle x, y\rangle \cap P_{a}^{\alpha}$ is a singleton and $P_{a}^{\alpha} \cap P_{b}^{\beta}=\phi$ then $\langle x, y\rangle \cap P_{b}^{\beta} \neq \phi$.
(iii) There is a distinguished point $x_{0} \in X$ such that $\bigcap\left\{P^{\alpha} \mid \alpha \in A\right\}=\left\{x_{0}\right\}$.
(iv) If $x, y \in X, x \neq y$ then there is an $\alpha \in A$ such that $\langle x, y\rangle \cap P^{\alpha}$ is a singleton.
(v) For each $\alpha, \beta \in A$ and $\langle x, y\rangle \subseteq X$ for which $\langle x, y\rangle \cap P^{\alpha}$ and $\langle x, y\rangle \cap P^{\beta}$ are singletons, there are $\ell, m \in F$ such that for each $a \in F\langle x, y\rangle \cap P_{a}^{\alpha}=$ $\langle x, y\rangle \cap P_{\ell a+m}^{B}$.
The set A will be called the grid and the sets P_{a}^{α} hyper-planes.
Lemma 2.2. If (X, ζ) is a gridable convexity space, P is a hyper-plane in X and $\langle x, y\rangle$ is a line in X then exactly one of the following is true.
(i) $\langle x, y\rangle \cap P=\phi$
(ii) $\langle x, y\rangle \cap P$ is a singleton
(iii) $\langle x, y\rangle \subseteq P$.

Proof. If $s, t \in\langle x, y\rangle \cap P$ and $s \neq t$ then $\langle s, t\rangle \subseteq P$ and $\langle s, t\rangle=\langle x, y\rangle$. The following result is an immediate consequence of definition 2.1(ii) and the above lemma.

Lemma 2.3. If $\alpha \in A, x, y \in X, x \neq y$, and $\langle x, y\rangle \cap P_{a}^{\alpha}$ is a singleton then $\langle x, y\rangle \cap P_{b}^{\alpha}$ is a singleton.

Definition 2.4. Given a convexity structure (X, ζ) which is gridable over a field F with grid A we define scalar multiplication as follows.

Let $a \in F, x \in X$.
(i) If $x=x_{0}$ or $a=0$ define $a x=x_{0}$.
(ii) If $x \neq x_{0}$ and $a \neq 0$ then by 2.1 (iii) there is an $\alpha \in A$ with $x \notin P^{\alpha}$. Hence, by 2.1(i), there is a $b \in F, b \neq 0$, and $x \in P_{b}^{\alpha}$. Since $a b \neq 0 . P^{\alpha} \cap P_{a b}^{\alpha}=\phi$. But, by $2.2,\left\langle x_{0}, x\right\rangle \cap P_{b}^{\alpha}$ is a singleton and then by lemma 2.3 there is a $z \in X$ with $\left\langle x_{0}, x\right\rangle \cap P_{a b}^{\alpha}=\{z\}$. Define $a x=z$.

Lemma 2.5. Scalar multiplication is well defined.
Proof. Assume $x \neq x_{0}, a, b, d \in F a, b, d \neq 0, \alpha, \beta \in A$, and $x \in P_{b}^{\alpha}, x \in P_{d}^{\beta}$. As in definition $2.4\left\langle x_{0}, x\right\rangle \cap P_{a b}^{\alpha}=\{z\}$ and $\left\langle x_{0}, x\right\rangle \cap P_{a d}^{\beta}=\{w\}$. We must show $w=z$. By 2.1(v) there are $\ell, m \in F$ so that for each $c \in F,\left\langle x_{0}, x\right\rangle \cap P_{c}^{\alpha}=\left\langle x_{0}, x\right\rangle \cap P_{\ell c+m}^{\beta}$. But $\left\{x_{0}\right\}=\left\langle x_{0}, x\right\rangle \cap P_{0}^{\alpha}=\left\langle x_{0}, x\right\rangle \cap P_{m}^{\beta}$ thus $m=0$. Thus $\{x\}=\left\langle x_{0}, x\right\rangle \cap P_{b}^{\alpha}=$ $\left\langle x_{0}, x\right\rangle \cap P_{e b}^{\beta}$. But $x \in P_{d}^{\beta}$ thus $\ell b=d$. Finally $\{z\}=\left\langle x, x_{0}\right\rangle \cap P_{a b}^{\alpha}=\left\langle x_{0}, x\right\rangle \cap P_{e a b}^{\beta}=$ $\left\langle x_{0}, x\right\rangle \cap P_{a d}^{\beta}=\{w\}$. Thus $w=z$.

Definition 2.6. Given a convexity structure (X, ζ) which is gridable over a field F with grid A, with the characteristic of F not 2 , we define addition as
follows.
Let $x, y \in X$.
(i) If $x=y$ define $x+y=2 x$.
(ii) If $x \neq y$ then by 2.1 (iv) there is an $\alpha \in A$ with $\langle x, y\rangle \cap P^{\alpha}$ a singleton. Also there are $a, b \in F$ with $x \in P_{a}^{\alpha}, y \in P_{b}^{\alpha}$.
If $(a+b) / 2 \neq 0$ then $P_{(a+b) / 2}^{\alpha} \cap P^{\alpha}=\phi$ so by lemma $2.3\langle x, y\rangle \cap P_{(a+b) / 2}^{\alpha}$ is a singleton. If $(a+b) / 2=0$ then $\langle x, y\rangle \cap P_{(a+b) / 2}^{\alpha}=\langle x, y\rangle \cap P^{\alpha}$ is a singleton. Hence, in either case, there is a $z \in X$ with $\langle x, y\rangle \cap P_{(a+b) / 2}^{\alpha}=\{z\}$. Define $x+y=2 z$.

Lemma 2.7. Addition is well defined.

Proof. Let $\alpha, \beta \in A$ be such that $\langle x, y\rangle \cap P^{\alpha}$ and $\langle x, y\rangle \cap P^{\beta}$ are singletons. Then there are $a, b, c, d \in F$ with $x \in P_{a}^{\alpha} \cap P_{c}^{\beta}$ and $y \in P_{b}^{\alpha} \cap P_{d}^{\beta}$. As in definition 2.6 there are $u, v \in X$ with $\{u\}=\langle x, y\rangle \cap P_{(a+b) / 2}^{\alpha}$ and $\{v\}=\langle x, y\rangle \cap P_{(c+d) / 2}^{\beta}$. We must show $u=v$.

By 2.1(v) there are $\ell, m \in F$ such that for each $e \in F\langle x, y\rangle \cap P_{e}^{\alpha}=$ $\langle x, y\rangle \cap P_{\ell e+m}^{\beta}$. Now $\{x\}=\langle x, y\rangle \cap P_{a}^{\alpha}=\langle x, y\rangle \cap P_{f a+m}^{\beta}$ and $\{y\}=\langle x, y\rangle \cap P_{b}^{\alpha}=$ $\langle x, y\rangle \cap P_{\ell b+m}^{\beta}$. Thus $x \in P_{c}^{\beta} \cap P_{\ell a+m}^{\beta}$ and hence $c=\ell a+m$. Similarly $d=\ell b+m$. Thus $\ell[(a+b) / 2]+m=\frac{1}{2}(\ell a+m+\ell b+m)=(c+d) / 2 \quad$ and \quad hence $\quad\{u\}=$ $\langle x, y\rangle \cap P_{(a+b) / 2}^{\alpha}=\langle x, y\rangle \cap P_{(c+d) / 2}^{\beta}=\{v\}$. Thus $u=v$.

For the remainder of this section we will assume that (X, ζ) is a gridable convexity structure over a field F with grid A, the characteristic of F is not two, and scalar multiplication and addition are defined as above.

The following two results will prove useful in showing that X is a vector space over F.

Lemma 2.8. Let $\alpha \in A, a, b \in F$, and $x \in P_{a}^{\alpha}$. Then $b x \in P_{a b}$.
Proof. If $x=x_{0}$, then $a=0=a b$ and $b x=x_{0} \in P^{\alpha}=P_{a b}^{\alpha}$.
If $x \neq x_{0}$ and $a \neq 0$ then $x \notin P^{\alpha}$ and hence, by the definition of scalar multiplication, $\{b x\}=\left\langle x_{0}, x\right\rangle \cap P_{a b}^{\alpha}$.

If $x \neq x_{0}$ and $a=0$ then $b x \in\left\langle x_{0}, x\right\rangle$ by definition. But $x, x_{0} \in P^{\alpha}$ thus $\left\langle x_{0}, x\right\rangle \subseteq$ P^{α} and hence $b x \in P^{\alpha}=P_{a b}^{\alpha}$.

Lemma 2.9. Let $\alpha \in A, a, b \in F, x \in P_{a}^{\alpha}$ and $y \in P_{b}^{\alpha}$ then $x+y \in P_{a+b}^{\alpha}$.
Proof. If $x=y$ the result follows from the previous lemma. If $x \neq y$ and $\langle x, y\rangle \cap P^{\alpha}$ is a singleton then $x+y=2 u$ where $\{u\}=\langle x, y\rangle \cap P_{(a+b) / 2}^{\alpha}$. By the previous lemma $x+y=2 u \in P_{a+b}^{\alpha}$.

If $x \neq y$ and $\langle x, y\rangle \cap P^{\alpha}$ is not a singleton then there is a $d \in F$ with $\langle x, y\rangle \subseteq P_{d}^{\alpha}$ then $a=b=d$. In this case $x+y=2 v$ where $v \in\langle x, y\rangle \subseteq P_{d}^{\alpha}$. Hence, by 2.8, $x+y \in P_{2 d}^{\alpha}=P_{a+b}^{\alpha}$.

Theorem 2.10. X is a vector space over F.

Proof. I. $1 x=x: 1 x_{0}=x_{0}$. If $x \neq x_{0}$ then $x \in P_{a}^{\alpha}$ for some $a \neq 0$. Thus $\{1 x\}=$ $\left\langle x_{0}, x\right\rangle \cap P_{1 a}^{\alpha}=\left\langle x_{0}, x\right\rangle \cap P_{a}^{\alpha}=\{x\}$.
II. $a(b x)=(a b) x$: Clear if $x=x_{0}, a=0$, or $b=0$. If $x \neq x_{0}, a \neq 0$, and $b \neq 0$ then $x \in P_{c}^{\alpha}$ for some $\alpha \in A, c \in F, c \neq 0$. Hence, by definition $2.4\{(a b) x\}=$ $\left\langle x_{0}, x\right\rangle \cap P_{(a b) c}^{\alpha}$ and $\{b x\}=\left\langle x_{0}, x\right\rangle \cap P_{b c}^{\alpha}$. Therefore $b x \in\left\langle x_{0}, x\right\rangle$ and, since $b \neq 0$, $c \neq 0, \quad b x \neq x_{0}$. Thus $\left\langle x_{0}, b x\right\rangle=\left\langle x_{0}, x\right\rangle$ and hence $\{a(b x)\}=\left\langle x_{0}, b x\right\rangle \cap P_{a(b c)}^{\alpha}=$ $\left\langle x_{0}, x\right\rangle \cap P_{(a b) c}^{\alpha}=\{(a b) x\}$.
III. $x+y=y+x$: clear.
IV. $x+x_{0}=x: x_{0}+x_{0}=2 x_{0}=x_{0}$. If $x \neq x_{0}$ then $x+x_{0}=2 u$ where $\{u\}=$ $\left\langle x_{0}, x\right\rangle \cap P_{(0+a) / 2}^{\alpha}, \quad x \in P_{a}^{\alpha}$, and $a \neq 0$. But $u \in P_{a / 2}^{\alpha}$ implies, by lemma 2.8, $\left\{x_{0}+x\right\}=\{2 u\}=\left\langle x_{0}, x\right\rangle \cap P_{2 a / 2}^{\alpha}=\left\langle x_{0}, x\right\rangle \cap P_{a}^{\alpha}=\{x\}$.

V . For each $x \in X$ there is an $x^{\prime} \in X$ with $x+x^{\prime}=x_{0}$: Let $x^{\prime}=(-1) x$. $x_{0}+(-1) x_{0}=x_{0}+x_{0}=x_{0}$. If $x \neq x_{0}$ then $x \in P_{a}^{\alpha}$ for some $\alpha \in A, a \in F, a \neq 0$, and $(-1) x=\left\langle x_{0}, x\right\rangle \cap P_{-a}^{\alpha}$. Hence $x+(-1) x=2 u$ where $\{u\}=\langle x,(-1) x\rangle \cap P_{(a-a) / 2}^{\alpha}=$ $\left\{x_{0}\right\}$ since $x_{0} \in\langle x,(-1) x\rangle$. Thus $x+x^{\prime}=2 x_{0}=x_{0}$.
VI. $(a+b) x=a x+b x$: For each $\alpha \in A$ if $x \in P_{c}^{\alpha}$ then, by lemma 2.8 and 2.9, $(a+b) x \in P_{(a+b) c}^{\alpha}, \quad a x \in P_{a c}^{\alpha}, \quad b x \in P_{b c}^{\alpha}, \quad$ and \quad thus $\quad a x+b x \in P_{a c+b c}^{\alpha}$. If $(a+b) x \neq a x+b x$ by 2.1 (iv) there is an $\alpha \in A$ with $\langle(a+b) x, a x+b x\rangle \cap P^{\alpha}$ a singleton. Hence $(a+b) x \in P_{e}^{\alpha}, a x+b x \in P_{f}^{\alpha}$ with $e \neq f$ which is impossible.
VII. $a(x+y)=a x+a y$: Similar to VI.
VIII. $(x+y)+z=x+(y+z)$: Similar to VI.

In order to show that the convexity structure ζ on X is the convexity structure induced on X by the linear structure just defined, we first show the following lemma.

Lemma 2.11. If $x, y \in X, x \neq y$ and $k \in F$ then $k x+(1-k) y \in\langle x, y\rangle$.
Proof. If $k=0$ the result is clear. Assume $k \neq 0$ then $x \in P_{a}^{\alpha}, y \in P_{b}^{\alpha}$ for some $\alpha \in A, a, b \in F, a \neq b$. Hence, by lemmas 2.8 and $2.9, z=k x+(1-k) y \in$ $P_{k a+(1-k) b}^{\alpha}$. Let $\{w\}=\langle x, y\rangle \cap P_{k a+(1-k) b}^{\alpha}$. We need only show $w=z$.

Assume $w \neq z$ then, by 2.1 (iv), there is a $\beta \in A$ with $\langle z, w\rangle \cap P^{\beta}$ a singleton.
Assume $\langle x, y\rangle \cap P^{\beta}$ is not a singleton then, for some $e \in F,\langle x, y\rangle \subseteq P_{e}^{\beta}$. Hence $w \in\langle x, y\rangle \subseteq P_{e}^{\beta}$ and $z=k x+(1-k) y \in P_{k e+(1-k) e}^{\beta}=P_{e}^{\beta}$ by lemmas 2.8 and 2.9. Thus $\langle z, w\rangle \subseteq P_{e}^{\beta}$ which is impossible. Hence $\langle x, y\rangle \cap P^{\beta}$ is a singleton.

Since $\langle x, y\rangle \cap P^{\alpha}$ and $\langle x, y\rangle \cap P^{\beta}$ are singletons, by definition 2.1(v) there exists $\ell, m \in F$ such that for each $e \in F\langle x, y\rangle \cap P_{e}^{\alpha}=\langle x, y\rangle \cap P_{\ell e+m}^{\beta}$. Thus $x \in$ $P_{t a+m}^{\beta}, y \in P_{\ell b+m}^{\beta}$ and hence, by lemmas 2.8 and $2.9, z \in P_{f}^{\beta}$ where $f=$ $k(\ell a+m)+(1-k)(\ell b+m)=\ell(k a+(1-k) b)+m$. Since $w \in P_{k a+(1-k) b}^{\alpha}, w \in$ $P_{\ell(k a+(1-k) b)+m}^{\beta}$. Hence $z, w \in\langle z, w\rangle \cap P_{\ell(k a+(1-k) b)+m}^{\beta}$ which is a singleton. Thus $w=z$.

Theorem 2.12. Let (X, ζ) be a convexity space and F an ordered field. Necessary and sufficient conditions that there is a linear structure on X over F in
which ζ is the usual convexity structure are:
(i) (X, ζ) is join-hull commutative and domain finite.
(ii) (X, ζ) is gridable over F with grid A.
(iii) If $\zeta(x, y)=\zeta(x, z)$ then $y=z$.
(iv) Let $\alpha \in A$. If $\langle x, y\rangle \cap P^{\alpha}$ is a singleton say $x \in P_{a}^{\alpha}, y \in P_{b}^{\alpha}$ and $\{w\}=$ $\langle x, y\rangle \cap P_{c}^{\alpha}$ then $a \leq c \leq b$ implies $w \in \zeta(x, y)$.

Proof. Necessity is clear taking $\left\{P^{\alpha} \mid \alpha \in A\right\}$ to be the maximal linear subspaces and $P_{a}^{\alpha}=a+P^{\alpha}$.

To show sufficiency it remains to show that $\zeta=\zeta^{\prime}$ where ζ^{\prime} is the family of convex sets generated by the linear structure on X.

Let $C \in \zeta, x, y \in C, x \neq y$. Suppose $h, k \in F, h, k \geq 0$, and $h+k=1$. By 2.1(iv) there is an $\alpha \in A$ such that $\langle x, y\rangle \cap P^{\alpha}$ is a singleton and there are $a, b \in F$ with $x \in P_{a}^{\alpha}, y \in P_{b}^{\alpha}$. Thus, by lemmas 2.8 and $2.9, w=k x+h y \in P_{h a+k b}^{\alpha}$.

We may assume $a<b$ then $a \leq h a+k b \leq b$ and, by lemma 2.11, $w \in\langle x, y\rangle$ and thus by (iv), $w \in \zeta(x, y)$. Since $\zeta(x, y)=\bigcap\{E \in \zeta \mid x, y \in E\}, \zeta(x, y) \subseteq C$. Hence for each $x, y \in C, h, k \in F$ with $h, k \geq 0$ and $h+k=1, h x+k y \in C$. Thus $C \in \zeta^{\prime}$.

Let $D \in \zeta^{\prime}, x, y \in D, x \neq y$. By 2.1(iv) there is an $\alpha \in A$ such that $\langle x, y\rangle \cap P^{\alpha}$ is a singleton, say $x \in P_{a}^{\alpha}, y \in P_{b}^{\alpha}, a, b \in F$. We may assume $a<b$.

Let $z \in \zeta(x, y)$ and $c \in F$ with $z \in P_{c}^{\alpha}$. If $c<a<b$ then by (iv) $x \in \zeta(z, y)$ and thus $\zeta(x, y)=\zeta(z, y)$. Hence $x=z$ and thus $a=c$ which is impossible. Similarly if $a<b<c$, and hence we have $a \leq c \leq b$. Thus there are $h, k \in F$ with $c=$ $h a+k b, h, k \geq 0$, and $h+k=1$.

Let $w=h x+k y$ then, by lemmas 2.8, 2.9, and $2.11\{w\}=\langle x, y\rangle \cap P_{h a+k b}^{\alpha}=$ $\langle x, y\rangle \cap P_{c}^{\alpha}=\{z\}$. Hence, since $D \in \zeta^{\prime}, z \in D$. Therefore $\zeta(x, y) \subseteq D$. Since (X, ζ) is domain finite and join-hull commutative this is sufficient to show $D \in \zeta$.
3. Linear topological spaces. If (X, ζ) is a convexity space and τ is a T_{1} topology on X then the triple (X, τ, ζ) is called a topological convexity space.

The following definitions are taken from [1]. The convex topology τ_{c} of the triple (X, τ, ζ) is the topology with sub-base S, the collection of complements of all τ-closed members of ζ. A net $\left(x_{d} \mid d \in D\right)$ in X is said to converge convexly to $x \in X$ if for each subnet $\left(x_{e} \mid e \in E\right)$ of $\left(x_{d} \mid d \in D\right), x \in \zeta(S)^{-}$where S is the range of $\left(x_{e} \mid e \in E\right)$ and - is τ-closure. The triple (X, τ, ζ) is convexly regular if for each $A \in \zeta, x \in X, x \notin A^{-}$there are disjoint sets S, T containing x and A respectively such that $X \backslash S$ and $X \backslash T$ are closed members of ζ. Moreman [4] has shown that in a convexly regular space closures of convex sets are convex. Also it is an easy exercise to show that in such spaces a net is convexly convergent to $x \in X$, if and only if it τ_{c}-converges to x.

In order to consider a linear topological space over an ordered field F we
need a topology on F which makes F a linear topological space when considered as a vector space over itself.

Definition 3.1. If F is an ordered field then the interval topology on F is the topology with base $\{(a, b) \mid a, b \in F, a<b\}$ where $(a, b)=\{c \in F \mid a<c<b\}$.

Lemma 3.2. An ordered field F with the interval topology is a linear topological space when considered as a vector space over itself.

Proof. To show that addition is continuous suppose $\left(x_{d} \mid d \in D\right)$ and $\left(y_{d} \mid d \in\right.$ $D)$ are nets in F converging to x and y respectively. Let $x+y \in(a, b)$, $a, b \in F, \quad$ then $\quad x \in(x+(a-x-y) / 2, \quad x+(b-x-y) / 2)=U \quad$ and $\quad y \in$ $(y+(a-x-y) / 2, y+(b-x-y) / 2)=V$. If $d \in D$ and $x_{d} \in U, y_{d} \in V$ then $x_{d}+y_{d} \in(a, b)$ thus $\left(x_{d}+y_{d} \mid d \in D\right)$ converges to $x+y$.

To show that scalar multiplication is continuous suppose ($x_{d} \mid d \in D$) and $\left(y_{d} \mid d \in D\right)$ are nets in F converging to x and y respectively. Assume $x>0$, $y>0$ then we can also assume $x_{d}>0, y_{d}>0$ for each $d \in D$. Suppose $x y \in(a, b)$ where $0<a<b, \quad a, b \in F$. Let $\quad x^{\prime}=(x y+a) / 2 y, \quad y^{\prime}=\left(x^{\prime} y+a\right) / 2 x^{\prime}, \quad x^{\prime \prime}=$ $(b+x y) / 2 y$, and $y^{\prime \prime}=\left(b+x^{\prime \prime} y\right) / 2 x^{\prime \prime}$. Hence $a<x y$ implies $x^{\prime} y=(x y+a) / 2>a$ and thus $a<x^{\prime} y$ implies $x^{\prime} y^{\prime}=\left(x^{\prime} y+a\right) / 2>a$. Also $x^{\prime}=x / 2+a / 2 y<$ $x / 2+x y / 2 y=x$. Similarly $x<x^{\prime \prime}$ so $x \in\left(x^{\prime}, x^{\prime \prime}\right)$. Similarly $y \in\left(y^{\prime}, y^{\prime \prime}\right)$. If $d \in D$, $x_{d} \in\left(x^{\prime}, x^{\prime \prime}\right)$ and $y_{d} \in\left(y^{\prime}, y^{\prime \prime}\right)$ then $x_{d} y_{d} \in(a, b)$ and thus $\left(x_{d} y_{d} \mid d \in D\right)$ converges to $x y$.

It is clear that if $\left(x_{d} \mid d \in D\right)$ converges to $x \in F$ then $\left(-x_{d} \mid d \in D\right)$ converges to $-x$ and if $\left(y_{d} \mid d \in D\right)$ converges to $0 \in F$ then $\left(x_{d} y_{d} \mid d \in D\right)$ converges to 0 . Hence scalar multiplication is continuous.

For the remainder of the paper F will designate an ordered field with the interval topology and (X, \mathscr{T}, ζ) a topological convexity space such that (X, ζ) is gridable over F and satisfies the conditions of theorem 2.12.

Definition 3.3. For each $\alpha \in A, a \in F$ define the left hand hyperplane G_{a}^{α} by $G_{a}^{\alpha}=\bigcup\left\{P_{b}^{\alpha} \mid b<a\right\}$ and the right half hyperplane H_{a}^{α} by $H_{a}^{\alpha}=\bigcup\left\{P_{b}^{\alpha} \mid a<b\right\}$.

Definition 3.4. For each $\alpha \in A$ define the function $f_{\alpha}: X \rightarrow F$ by $f_{\alpha}(x)=c$ where $x \in P_{c}^{\alpha}$. This function is well defined by $2.1(\mathrm{i})$.

Lemma 3.5. For each $\alpha \in A, f_{\alpha}$ is linear.
Proof. Let $x, y \in X$ and $\ell, m \in F$ then $x \in P_{a}^{\alpha}, y \in P_{b}^{\alpha}$ for some $a, b \in F$. By lemma 2.8 and $2.9 \quad \ell x+m y \in P_{\ell a+m b}^{\alpha} \quad$ so $\quad f_{\alpha}(\ell x+m y)=\ell a+m b$. But $\ell f_{\alpha}(x)+m f_{\alpha}(y)=\ell a+m b$ and hence f_{α} is linear.

Lemma 3.6. For each $\alpha \in A$ and $a \in F, H_{a}^{\alpha}, G_{a}^{\alpha}, X \backslash H_{a}^{\alpha}$, and $X \backslash G_{a}^{\alpha} \in \zeta$.
Proof. Let $x, y \in H_{a}^{\alpha}$ then $x \in P_{b}^{\alpha}, y \in P_{c}^{\alpha}$ where $a<b, c$. Let $h, k \in F, h, k \geq 0$
and $h+k=1$ then $h x+k y \in P_{h b+k c}^{\alpha}$ by lemmas 2.8 and 2.9. But $h b+k c>$ $h a+k a=a$ and thus $h x+k y \in H_{a}^{\alpha}$. Thus, using theorem 2.12, $H_{a}^{\alpha} \in \zeta$. Similarly $G_{a}^{\alpha}, X \backslash H_{a}^{\alpha}$, and $X \backslash G_{a}^{\alpha} \in \zeta$.

Lemma 3.7. If, for each $\alpha \in A, a \in F, H_{a}^{\alpha}=X \backslash G_{a}^{\alpha-}$ and $G_{a}^{\alpha}=X \backslash H_{a}^{\alpha-}$ then f_{α} is τ_{c}-continuous.

Proof. Let $x \in X, \alpha \in A, x \in P_{c}^{\alpha}$, and $c \in(a, b) a, b, c \in F, a<b$. Let $M=$ $H_{b}^{\alpha} \cap G_{a}^{\alpha}$. Since $G_{a}^{\alpha-}=X \backslash H_{b}^{\alpha}$ and $H_{a}^{\alpha-}=X \backslash G_{a}^{\alpha}$, Lemma 3.6 implies that M is τ_{c}-open. Also $x \in M$ since $a<c<b$.

If $m \in M$ then $m \in P_{d}^{\alpha}$ where $a<d<b$ and hence $f_{\alpha}(m)=d \in(a, b)$. Thus f_{α} is τ_{c}-continuous.

Definition 3.8. (X, τ, ζ) is said to have the Hahn-Banach property if for each $D \in \zeta$ and $p \in X$ with $p \notin D^{-}$there exists an $\alpha \in A$ and $a \in F$ so that either
(i) $P_{c}^{\alpha} \cap D \neq \phi$ and $p \in P_{b}^{\alpha}$ implies $b<a<c$. or
(ii) $P_{c}^{\alpha} \cap D \neq \phi$ and $p \in P_{b}^{\alpha}$ implies $c<a<b$.

Lemma 3.9. If (X, τ, ζ) has the Hahn-Banach property, $\left(x_{e} \mid e \in E\right)$ is a net in $X, p \in X$ and for each $\alpha \in A\left(f_{\alpha}(e) \mid e \in E\right)$ converges to $f(p)$ in the interval topology on F, then ($x_{e} \mid e \in E$) converges convexly to p.

Proof. Suppose not. Then there is a subnet $\left(x_{d} \mid d \in D\right)$ of $\left(x_{e} \mid e \in E\right)$ such that $p \notin \zeta(S)^{-}$where S is the range of $\left(x_{d} \mid d \in D\right)$. By the Hahn-Banach property there is an $\alpha \in A$ and $a \in F$ with say $f_{\alpha}(p)<a<f_{\alpha}(x)$ for all $x \in \zeta(S)^{-}$. But then $\left(f_{\alpha}\left(x_{d}\right) \mid d \in D\right)$ does not converge to $f_{\alpha}(p)$ which is impossible.

Theorem 3.10. Let (X, τ, ζ) be a topological convexity space, τ a T_{1} topology, and F an ordered field with the interval topology. The following are equivalent:
(1) There is a linear structure on X over F and a topology on X such that X is a linear topological space over F, ζ is the usual convexity structure and the weak topology on X is τ_{c}.
(2) (X, τ, ζ) satisfies conditions (i), (ii), (iii), and (iv) of theorem 2.12 and in addition (v) $H_{a}=X \backslash G_{a}^{\alpha-}$ and $G_{a}=X \backslash H_{a}^{\alpha-}$ for each $\alpha \in A, a \in F$ (vi) (X, τ, ζ) has the Hahn-Banach property.

Proof. Necessity is clear. Using theorem 2.12 sufficiency will follow by showing that addition and scalar multiplication are continuous in the convex topology τ_{c}. Note that conditions (v) and (vi) imply that (X, τ, ζ) is convexly regular and hence a net in $X \tau_{c}$-converges to $x \in X$ if and only if it converges convexly to x.

Suppose ($a_{d} \mid d \in D$) converges to $a \in F$ and $\left(x_{d} \mid d \in D\right) \tau_{c}$-converges to $x \in X$. Let $\alpha \in A$ then $f_{\alpha}\left(a_{d} x_{d}\right)=a_{d} f_{\alpha}\left(x_{d}\right)$ by lemma 3.5 and $\left(f_{\alpha}\left(x_{d}\right) \mid d \in D\right)$ converges to $f_{\alpha}(x)$ by lemma 3.7. Hence by lemma $3.2\left(a_{d} f_{\alpha}\left(x_{d}\right) \mid d \in D\right)$
converges to $a f_{\alpha}(x)=f_{\alpha}(a x)$. Thus by lemma $3.8\left(a_{d} x_{d} \mid d \in D\right) \tau_{c}$-converges to ax and scalar multiplication is τ_{c}-continuous.

Suppose ($x_{d} \mid d \in D$) and ($y_{d} \mid d \in D$) τ_{c}-converge to x and y respectively. By lemmas 3.5 and $3.7\left(f_{\alpha}\left(x_{d}+y_{d}\right) \mid d \in D\right)$ converges to $f_{\alpha}(x)+f_{\alpha}(y)=f_{\alpha}(x+y)$. Hence, by lemma $3.9\left(x_{d}+y_{d} \mid d \in D\right) \tau_{c}$-converges to $x+y$ and thus addition is τ_{c}-continuous.

References

1. M. D. Guay and S. A. Naimpally, Characterization of a convex subspace of a linear topological space, Proc. Japan Acad. (to appear).
2. D. C. Kay and E. W. Womble, Axiomatic convexity theory and the relationships between Caratheadory, Helly, and Radon numbers, Pacific J. Math., 15 (1971), 65-76.
3. D. Mah, S. A. Naimpally, and J. H. M. Whitefield, Linearization of a convexity structure, J. London Math. Soc., (to appear).
4. Douglas Moreman, Convexly topological space, (preprint).

Department of Mathematics
University of Regina
Regina, Saskatchewan
Canada S4S OA2

[^0]: Received by the editors October 7, 1975 and, in revised form, May 17, 1976.

