AN INTERNAL SOLUTION TO THE PROBLEM OF LINEARIZATION OF A CONVEXITY SPACE

BY

D. A. SZAFRON AND J. H. WESTON

1. Introduction. Following Kay and Womble [2] an abstract convexity structure on a set X is a collection ζ of subsets of X which includes the empty set, X and is closed under arbitrary intersections. One of the natural problems that arises in convexity structures is to give necessary and sufficient conditions for the existance of a linear structure on X such that the collection of all convex sets in the resulting linear space is precisely ζ . An associated problem is to consider a set with a convexity structure and a topology and find necessary and sufficient conditions for the existance of a linear structure on X such that X becomes a linear topological space with again ζ the collection of convex sets. These problems were solved in [3] and [1] respectively in terms of the existance of families of functions from X to the real line. In this paper we give internal solutions to both problems.

We will follow the notation and terminology of [3] and [1]. If X is a set and ζ is a convexity structure on X then (X, ζ) will be called a *convexity space* and the members of ζ convex sets. If $S \subseteq X$ then the convex hull of S, written $\zeta(S)$, is the set $\zeta(S) = \bigcap \{C \in \zeta \mid S \subseteq C\}$. If $S = \{s_1, \ldots, s_n\}$ is finite write $\zeta(s_1, \ldots, s_n)$ for $\zeta(\{s_1, \ldots, s_n\})$.

If $x \in X$, $S \subseteq X$ the ζ -join of x and S is the set $x_{\zeta}S = \bigcup \{\zeta(x, s) \mid s \in S\}$. ζ is said to be join-hull commutative if $\zeta(x_{\zeta}S) = \zeta(\{x\} \cup S) = x_{\zeta}\zeta(S)$. ζ is said to be domain finite if for each $S \subseteq X$, $\zeta(S) = \bigcup \{\zeta(t) \mid T \subseteq S, T \text{ finite}\}$. In [2] (theorem 2) it is shown that for a domain finite, join-hull commutative convexity structure ζ , S is convex if and only if $\zeta(x, y) \subseteq S$ for each $x, y \in S$.

For any two distinct points $x, y \in X$ the *line* determined by x and y is the set $\langle x, y \rangle = \{z \in X \mid z \in \zeta(x, y), \text{ or } x \in \zeta(z, y), \text{ or } y \in \zeta(x, z)\}$. Notice that if $s, t \in \langle x, y \rangle$ and $s \neq t$ then $\langle s, t \rangle = \langle x, y \rangle$.

2. Linearization.

DEFINITION 2.1. A convexity space (X, ζ) is said to be gridable over a field F if there is a set A satisfying the following.

 (i) For each α∈A, a∈F there is a P^α_a∈ζ such that ∪ {P^α_a | a∈F} = X, P^α_a∩ P^α_b = φ if and only if a≠b, and if x, y∈ P^α_a then ⟨x, y⟩⊆ P^α_a. Write P^α = P^α₀.

Received by the editors October 7, 1975 and, in revised form, May 17, 1976.

[December

- (ii) If $x, y \in X$, $x \neq y$, $\langle x, y \rangle \cap P_a^{\alpha}$ is a singleton and $P_a^{\alpha} \cap P_b^{\beta} = \phi$ then $\langle x, y \rangle \cap P_b^{\beta} \neq \phi$.
- (iii) There is a distinguished point $x_0 \in X$ such that $\bigcap \{P^{\alpha} \mid \alpha \in A\} = \{x_0\}$.
- (iv) If $x, y \in X$, $x \neq y$ then there is an $\alpha \in A$ such that $\langle x, y \rangle \cap P^{\alpha}$ is a singleton.
- (v) For each α, β∈ A and ⟨x, y⟩⊆ X for which ⟨x, y⟩ ∩ P^α and ⟨x, y⟩ ∩ P^β are singletons, there are l, m∈ F such that for each a∈ F ⟨x, y⟩ ∩ P^β_a = ⟨x, y⟩ ∩ P^β_{a+m}.

The set A will be called the grid and the sets P_a^{α} hyper-planes.

LEMMA 2.2. If (X, ζ) is a gridable convexity space, P is a hyper-plane in X and $\langle x, y \rangle$ is a line in X then exactly one of the following is true.

- (i) $\langle x, y \rangle \cap P = \phi$
- (ii) $\langle x, y \rangle \cap P$ is a singleton
- (iii) $\langle x, y \rangle \subseteq P$.

Proof. If $s, t \in \langle x, y \rangle \cap P$ and $s \neq t$ then $\langle s, t \rangle \subseteq P$ and $\langle s, t \rangle = \langle x, y \rangle$. The following result is an immediate consequence of definition 2.1(ii) and the above lemma.

LEMMA 2.3. If $\alpha \in A$, $x, y \in X$, $x \neq y$, and $\langle x, y \rangle \cap P_a^{\alpha}$ is a singleton then $\langle x, y \rangle \cap P_b^{\alpha}$ is a singleton.

DEFINITION 2.4. Given a convexity structure (X, ζ) which is gridable over a field F with grid A we define *scalar multiplication* as follows.

Let $a \in F$, $x \in X$.

- (i) If $x = x_0$ or a = 0 define $ax = x_0$.
- (ii) If x≠x₀ and a≠0 then by 2.1(iii) there is an α∈ A with x∉ P^α. Hence, by 2.1(i), there is a b∈F, b≠0, and x∈ P^α_b. Since ab≠0. P^α ∩ P^α_{ab} = φ. But, by 2.2, ⟨x₀, x⟩ ∩ P^α_b is a singleton and then by lemma 2.3 there is a z∈X with ⟨x₀, x⟩ ∩ P^α_{ab} = {z}. Define ax = z.

LEMMA 2.5. Scalar multiplication is well defined.

Proof. Assume $x \neq x_0$, $a, b, d \in Fa, b, d \neq 0$, $\alpha, \beta \in A$, and $x \in P_b^{\alpha}, x \in P_d^{\beta}$. As in definition 2.4 $\langle x_0, x \rangle \cap P_{ab}^{\alpha} = \{z\}$ and $\langle x_0, x \rangle \cap P_{ad}^{\beta} = \{w\}$. We must show w = z. By 2.1(v) there are ℓ , $m \in F$ so that for each $c \in F$, $\langle x_0, x \rangle \cap P_c^{\alpha} = \langle x_0, x \rangle \cap P_{\ell c+m}^{\beta}$. But $\{x_0\} = \langle x_0, x \rangle \cap P_0^{\alpha} = \langle x_0, x \rangle \cap P_m^{\beta}$ thus m = 0. Thus $\{x\} = \langle x_0, x \rangle \cap P_{\ell ab}^{\beta} = \langle x_0, x \rangle \cap P_{db}^{\beta} = \langle x_0, x \rangle \cap P_{db}^{\beta} = \langle x_0, x \rangle \cap P_{da}^{\beta} = \{w\}$. But $x \in P_d^{\beta}$ thus $\ell b = d$. Finally $\{z\} = \langle x, x_0 \rangle \cap P_{ab}^{\alpha} = \langle x_0, x \rangle \cap P_{\ell ab}^{\beta} = \langle x_0, x \rangle \cap P_{ad}^{\beta} = \{w\}$. Thus w = z.

DEFINITION 2.6. Given a convexity structure (X, ζ) which is gridable over a field F with grid A, with the characteristic of F not 2, we define *addition* as

488

follows.

Let $x, y \in X$.

- (i) If x = y define x + y = 2x.
- (ii) If x≠y then by 2.1(iv) there is an α∈A with ⟨x, y⟩∩ P^α a singleton. Also there are a, b∈F with x∈P^α_a, y∈P^α_b.

If $(a+b)/2 \neq 0$ then $P_{(a+b)/2}^{\alpha} \cap P^{\alpha} = \phi$ so by lemma 2.3 $\langle x, y \rangle \cap P_{(a+b)/2}^{\alpha}$ is a singleton. If (a+b)/2 = 0 then $\langle x, y \rangle \cap P_{(a+b)/2}^{\alpha} = \langle x, y \rangle \cap P^{\alpha}$ is a singleton. Hence, in either case, there is a $z \in X$ with $\langle x, y \rangle \cap P_{(a+b)/2}^{\alpha} = \{z\}$. Define x + y = 2z.

LEMMA 2.7. Addition is well defined.

Proof. Let $\alpha, \beta \in A$ be such that $\langle x, y \rangle \cap P^{\alpha}$ and $\langle x, y \rangle \cap P^{\beta}$ are singletons. Then there are $a, b, c, d \in F$ with $x \in P_{a}^{\alpha} \cap P_{c}^{\beta}$ and $y \in P_{b}^{\alpha} \cap P_{d}^{\beta}$. As in definition 2.6 there are $u, v \in X$ with $\{u\} = \langle x, y \rangle \cap P_{(a+b)/2}^{\alpha}$ and $\{v\} = \langle x, y \rangle \cap P_{(c+d)/2}^{\beta}$. We must show u = v.

By 2.1(v) there are $\ell, m \in F$ such that for each $e \in F \langle x, y \rangle \cap P_e^{\alpha} = \langle x, y \rangle \cap P_{\ell e+m}^{\beta}$. Now $\{x\} = \langle x, y \rangle \cap P_a^{\alpha} = \langle x, y \rangle \cap P_{\ell a+m}^{\beta}$ and $\{y\} = \langle x, y \rangle \cap P_b^{\alpha} = \langle x, y \rangle \cap P_{\ell b+m}^{\beta}$. Thus $x \in P_c^{\beta} \cap P_{\ell a+m}^{\beta}$ and hence $c = \ell a + m$. Similarly $d = \ell b + m$. Thus $\ell[(a+b)/2] + m = \frac{1}{2}(\ell a + m + \ell b + m) = (c+d)/2$ and hence $\{u\} = \langle x, y \rangle \cap P_{(a+b)/2}^{\alpha} = \langle x, y \rangle \cap P_{(c+d)/2}^{\beta} = \{v\}$. Thus u = v.

For the remainder of this section we will assume that (X, ζ) is a gridable convexity structure over a field F with grid A, the characteristic of F is not two, and scalar multiplication and addition are defined as above.

The following two results will prove useful in showing that X is a vector space over F.

LEMMA 2.8. Let $\alpha \in A$, $a, b \in F$, and $x \in P_a^{\alpha}$. Then $bx \in P_{ab}$.

Proof. If $x = x_0$, then a = 0 = ab and $bx = x_0 \in P^{\alpha} = P_{ab}^{\alpha}$.

If $x \neq x_0$ and $a \neq 0$ then $x \notin P^{\alpha}$ and hence, by the definition of scalar multiplication, $\{bx\} = \langle x_0, x \rangle \cap P_{ab}^{\alpha}$.

If $x \neq x_0$ and a = 0 then $bx \in \langle x_0, x \rangle$ by definition. But $x, x_0 \in P^{\alpha}$ thus $\langle x_0, x \rangle \subseteq P^{\alpha}$ and hence $bx \in P^{\alpha} = P^{\alpha}_{ab}$.

LEMMA 2.9. Let $\alpha \in A$, $a, b \in F$, $x \in P_a^{\alpha}$ and $y \in P_b^{\alpha}$ then $x + y \in P_{a+b}^{\alpha}$.

Proof. If x = y the result follows from the previous lemma. If $x \neq y$ and $\langle x, y \rangle \cap P^{\alpha}$ is a singleton then x + y = 2u where $\{u\} = \langle x, y \rangle \cap P^{\alpha}_{(a+b)/2}$. By the previous lemma $x + y = 2u \in P^{\alpha}_{a+b}$.

If $x \neq y$ and $\langle x, y \rangle \cap P^{\alpha}$ is not a singleton then there is a $d \in F$ with $\langle x, y \rangle \subseteq P_d^{\alpha}$ then a = b = d. In this case x + y = 2v where $v \in \langle x, y \rangle \subseteq P_d^{\alpha}$. Hence, by 2.8, $x + y \in P_{2d}^{\alpha} = P_{a+b}^{\alpha}$.

THEOREM 2.10. X is a vector space over F.

[December

Proof. I. 1x = x: $1x_0 = x_0$. If $x \neq x_0$ then $x \in P_a^{\alpha}$ for some $a \neq 0$. Thus $\{1x\} = \langle x_0, x \rangle \cap P_{1a}^{\alpha} = \langle x_0, x \rangle \cap P_a^{\alpha} = \{x\}$.

II. a(bx) = (ab)x: Clear if $x = x_0$, a = 0, or b = 0. If $x \neq x_0$, $a \neq 0$, and $b \neq 0$ then $x \in P_c^{\alpha}$ for some $\alpha \in A$, $c \in F$, $c \neq 0$. Hence, by definition 2.4 $\{(ab)x\} = \langle x_0, x \rangle \cap P_{(ab)c}^{\alpha}$ and $\{bx\} = \langle x_0, x \rangle \cap P_{bc}^{\alpha}$. Therefore $bx \in \langle x_0, x \rangle$ and, since $b \neq 0$, $c \neq 0$, $bx \neq x_0$. Thus $\langle x_0, bx \rangle = \langle x_0, x \rangle$ and hence $\{a(bx)\} = \langle x_0, bx \rangle \cap P_{a(bc)}^{\alpha} = \langle x_0, x \rangle \cap P_{(ab)c}^{\alpha} = \{(ab)x\}$.

III. x + y = y + x: clear.

IV. $x + x_0 = x$: $x_0 + x_0 = 2x_0 = x_0$. If $x \neq x_0$ then $x + x_0 = 2u$ where $\{u\} = \langle x_0, x \rangle \cap P^{\alpha}_{(0+a)/2}, x \in P^{\alpha}_a$, and $a \neq 0$. But $u \in P^{\alpha}_{a/2}$ implies, by lemma 2.8, $\{x_0 + x\} = \{2u\} = \langle x_0, x \rangle \cap P^{\alpha}_{2a/2} = \langle x_0, x \rangle \cap P^{\alpha}_a = \{x\}.$

V. For each $x \in X$ there is an $x' \in X$ with $x + x' = x_0$: Let x' = (-1)x. $x_0 + (-1)x_0 = x_0 + x_0 = x_0$. If $x \neq x_0$ then $x \in P_a^{\alpha}$ for some $\alpha \in A$, $a \in F$, $a \neq 0$, and $(-1)x = \langle x_0, x \rangle \cap P_{-a}^{\alpha}$. Hence x + (-1)x = 2u where $\{u\} = \langle x, (-1)x \rangle \cap P_{(a-a)/2}^{\alpha} = \{x_0\}$ since $x_0 \in \langle x, (-1)x \rangle$. Thus $x + x' = 2x_0 = x_0$.

VI. (a+b)x = ax + bx: For each $\alpha \in A$ if $x \in P_c^{\alpha}$ then, by lemma 2.8 and 2.9, $(a+b)x \in P_{(a+b)c}^{\alpha}$, $ax \in P_{ac}^{\alpha}$, $bx \in P_{bc}^{\alpha}$, and thus $ax + bx \in P_{ac+bc}^{\alpha}$. If $(a+b)x \neq ax + bx$ by 2.1(iv) there is an $\alpha \in A$ with $\langle (a+b)x, ax+bx \rangle \cap P^{\alpha}$ a singleton. Hence $(a+b)x \in P_e^{\alpha}$, $ax + bx \in P_f^{\alpha}$ with $e \neq f$ which is impossible.

VII. a(x+y) = ax + ay: Similar to VI.

VIII. (x+y)+z = x + (y+z): Similar to VI.

In order to show that the convexity structure ζ on X is the convexity structure induced on X by the linear structure just defined, we first show the following lemma.

LEMMA 2.11. If $x, y \in X$, $x \neq y$ and $k \in F$ then $kx + (1-k)y \in \langle x, y \rangle$.

Proof. If k = 0 the result is clear. Assume $k \neq 0$ then $x \in P_a^{\alpha}$, $y \in P_b^{\alpha}$ for some $\alpha \in A$, $a, b \in F$, $a \neq b$. Hence, by lemmas 2.8 and 2.9, $z = kx + (1-k)y \in P_{ka+(1-k)b}^{\alpha}$. Let $\{w\} = \langle x, y \rangle \cap P_{ka+(1-k)b}^{\alpha}$. We need only show w = z.

Assume $w \neq z$ then, by 2.1(iv), there is a $\beta \in A$ with $\langle z, w \rangle \cap P^{\beta}$ a singleton.

Assume $\langle x, y \rangle \cap P^{\beta}$ is not a singleton then, for some $e \in F$, $\langle x, y \rangle \subseteq P_{e}^{\beta}$. Hence $w \in \langle x, y \rangle \subseteq P_{e}^{\beta}$ and $z = kx + (1-k)y \in P_{ke+(1-k)e}^{\beta} = P_{e}^{\beta}$ by lemmas 2.8 and 2.9. Thus $\langle z, w \rangle \subseteq P_{e}^{\beta}$ which is impossible. Hence $\langle x, y \rangle \cap P^{\beta}$ is a singleton.

Since $\langle x, y \rangle \cap P^{\alpha}$ and $\langle x, y \rangle \cap P^{\beta}$ are singletons, by definition 2.1(v) there exists ℓ , $m \in F$ such that for each $e \in F \langle x, y \rangle \cap P_e^{\alpha} = \langle x, y \rangle \cap P_{\ell e+m}^{\beta}$. Thus $x \in P_{\ell a+m}^{\beta}$, $y \in P_{\ell b+m}^{\beta}$ and hence, by lemmas 2.8 and 2.9, $z \in P_f^{\beta}$ where $f = k(\ell a + m) + (1 - k)(\ell b + m) = \ell(ka + (1 - k)b) + m$. Since $w \in P_{ka+(1-k)b}^{\alpha}$, $w \in P_{\ell(ka+(1-k)b)+m}^{\beta}$. Hence $z, w \in \langle z, w \rangle \cap P_{\ell(ka+(1-k)b)+m}^{\beta}$ which is a singleton. Thus w = z.

THEOREM 2.12. Let (X, ζ) be a convexity space and F an ordered field. Necessary and sufficient conditions that there is a linear structure on X over F in which ζ is the usual convexity structure are:

- (i) (X, ζ) is join-hull commutative and domain finite.
- (ii) (X, ζ) is gridable over F with grid A.
- (iii) If $\zeta(x, y) = \zeta(x, z)$ then y = z.
- (iv) Let $\alpha \in A$. If $\langle x, y \rangle \cap P^{\alpha}$ is a singleton say $x \in P_{a}^{\alpha}$, $y \in P_{b}^{\alpha}$ and $\{w\} = \langle x, y \rangle \cap P_{c}^{\alpha}$ then $a \leq c \leq b$ implies $w \in \zeta(x, y)$.

Proof. Necessity is clear taking $\{P^{\alpha} \mid \alpha \in A\}$ to be the maximal linear subspaces and $P_{\alpha}^{\alpha} = a + P^{\alpha}$.

To show sufficiency it remains to show that $\zeta = \zeta'$ where ζ' is the family of convex sets generated by the linear structure on X.

Let $C \in \zeta$, $x, y \in C$, $x \neq y$. Suppose $h, k \in F$, $h, k \ge 0$, and h + k = 1. By 2.1(iv) there is an $\alpha \in A$ such that $\langle x, y \rangle \cap P^{\alpha}$ is a singleton and there are $a, b \in F$ with $x \in P_a^{\alpha}$, $y \in P_b^{\alpha}$. Thus, by lemmas 2.8 and 2.9, $w = kx + hy \in P_{ha+kb}^{\alpha}$.

We may assume a < b then $a \le ha + kb \le b$ and, by lemma 2.11, $w \in \langle x, y \rangle$ and thus by (iv), $w \in \zeta(x, y)$. Since $\zeta(x, y) = \bigcap \{E \in \zeta \mid x, y \in E\}$, $\zeta(x, y) \subseteq C$. Hence for each $x, y \in C$, $h, k \in F$ with $h, k \ge 0$ and h + k = 1, $hx + ky \in C$. Thus $C \in \zeta'$.

Let $D \in \zeta'$, $x, y \in D$, $x \neq y$. By 2.1(iv) there is an $\alpha \in A$ such that $\langle x, y \rangle \cap P^{\alpha}$ is a singleton, say $x \in P_a^{\alpha}$, $y \in P_b^{\alpha}$, $a, b \in F$. We may assume a < b.

Let $z \in \zeta(x, y)$ and $c \in F$ with $z \in P_c^{\alpha}$. If c < a < b then by (iv) $x \in \zeta(z, y)$ and thus $\zeta(x, y) = \zeta(z, y)$. Hence x = z and thus a = c which is impossible. Similarly if a < b < c, and hence we have $a \le c \le b$. Thus there are $h, k \in F$ with c = ha + kb, $h, k \ge 0$, and h + k = 1.

Let w = hx + ky then, by lemmas 2.8, 2.9, and 2.11 $\{w\} = \langle x, y \rangle \cap P_{ha+kb}^{\alpha} = \langle x, y \rangle \cap P_{c}^{\alpha} = \{z\}$. Hence, since $D \in \zeta'$, $z \in D$. Therefore $\zeta(x, y) \subseteq D$. Since (X, ζ) is domain finite and join-hull commutative this is sufficient to show $D \in \zeta$.

3. Linear topological spaces. If (X, ζ) is a convexity space and τ is a T_1 topology on X then the triple (X, τ, ζ) is called a *topological convexity space*.

The following definitions are taken from [1]. The convex topology τ_c of the triple (X, τ, ζ) is the topology with sub-base S, the collection of complements of all τ -closed members of ζ . A net $(x_d \mid d \in D)$ in X is said to converge convexly to $x \in X$ if for each subnet $(x_e \mid e \in E)$ of $(x_d \mid d \in D)$, $x \in \zeta(S)^-$ where S is the range of $(x_e \mid e \in E)$ and - is τ -closure. The triple (X, τ, ζ) is convexly regular if for each $A \in \zeta$, $x \notin A^-$ there are disjoint sets S, T containing x and A respectively such that $X \setminus S$ and $X \setminus T$ are closed members of ζ . Moreman [4] has shown that in a convexly regular space closures of convex sets are convex. Also it is an easy exercise to show that in such spaces a net is convexly convergent to $x \in X$, if and only if it τ_c -converges to x.

In order to consider a linear topological space over an ordered field F we

1976]

need a topology on F which makes F a linear topological space when considered as a vector space over itself.

DEFINITION 3.1. If F is an ordered field then the *interval topology* on F is the topology with base $\{(a, b) \mid a, b \in F, a < b\}$ where $(a, b) = \{c \in F \mid a < c < b\}$.

LEMMA 3.2. An ordered field F with the interval topology is a linear topological space when considered as a vector space over itself.

Proof. To show that addition is continuous suppose $(x_d | d \in D)$ and $(y_d | d \in D)$ are nets in F converging to x and y respectively. Let $x + y \in (a, b)$, $a, b \in F$, then $x \in (x + (a - x - y)/2, x + (b - x - y)/2) = U$ and $y \in (y + (a - x - y)/2, y + (b - x - y)/2) = V$. If $d \in D$ and $x_d \in U$, $y_d \in V$ then $x_d + y_d \in (a, b)$ thus $(x_d + y_d | d \in D)$ converges to x + y.

To show that scalar multiplication is continuous suppose $(x_d | d \in D)$ and $(y_d | d \in D)$ are nets in F converging to x and y respectively. Assume x > 0, y > 0 then we can also assume $x_d > 0$, $y_d > 0$ for each $d \in D$. Suppose $xy \in (a, b)$ where 0 < a < b, $a, b \in F$. Let x' = (xy + a)/2y, y' = (x'y + a)/2x', x'' = (b + xy)/2y, and y'' = (b + x''y)/2x''. Hence a < xy implies x'y = (xy + a)/2 > a and thus a < x'y implies x'y' = (x'y + a)/2 > a. Also x' = x/2 + a/2y < x/2 + xy/2y = x. Similarly x < x'' so $x \in (x', x'')$. Similarly $y \in (y', y'')$. If $d \in D$, $x_d \in (x', x'')$ and $y_d \in (y', y'')$ then $x_dy_d \in (a, b)$ and thus $(x_dy_d | d \in D)$ converges to xy.

It is clear that if $(x_d | d \in D)$ converges to $x \in F$ then $(-x_d | d \in D)$ converges to -x and if $(y_d | d \in D)$ converges to $0 \in F$ then $(x_d y_d | d \in D)$ converges to 0. Hence scalar multiplication is continuous.

For the remainder of the paper F will designate an ordered field with the interval topology and (X, \mathcal{T}, ζ) a topological convexity space such that (X, ζ) is gridable over F and satisfies the conditions of theorem 2.12.

DEFINITION 3.3. For each $\alpha \in A$, $a \in F$ define the left hand hyperplane G_a^{α} by $G_a^{\alpha} = \bigcup \{P_b^{\alpha} \mid b < a\}$ and the right half hyperplane H_a^{α} by $H_a^{\alpha} = \bigcup \{P_b^{\alpha} \mid a < b\}$.

DEFINITION 3.4. For each $\alpha \in A$ define the function $f_{\alpha}: X \to F$ by $f_{\alpha}(x) = c$ where $x \in P_c^{\alpha}$. This function is well defined by 2.1(i).

LEMMA 3.5. For each $\alpha \in A$, f_{α} is linear.

Proof. Let $x, y \in X$ and $\ell, m \in F$ then $x \in P_a^{\alpha}$, $y \in P_b^{\alpha}$ for some $a, b \in F$. By lemma 2.8 and 2.9 $\ell x + my \in P_{\ell a+mb}^{\alpha}$ so $f_{\alpha}(\ell x + my) = \ell a + mb$. But $\ell f_{\alpha}(x) + mf_{\alpha}(y) = \ell a + mb$ and hence f_{α} is linear.

LEMMA 3.6. For each $\alpha \in A$ and $a \in F$, H_a^{α} , G_a^{α} , $X \setminus H_a^{\alpha}$, and $X \setminus G_a^{\alpha} \in \zeta$.

Proof. Let $x, y \in H_a^{\alpha}$ then $x \in P_b^{\alpha}$, $y \in P_c^{\alpha}$ where a < b, c. Let $h, k \in F, h, k \ge 0$

and h+k=1 then $hx+ky \in P_{hb+kc}^{\alpha}$ by lemmas 2.8 and 2.9. But hb+kc > ha+ka = a and thus $hx+ky \in H_a^{\alpha}$. Thus, using theorem 2.12, $H_a^{\alpha} \in \zeta$. Similarly G_a^{α} , $X \setminus H_a^{\alpha}$, and $X \setminus G_a^{\alpha} \in \zeta$.

LEMMA 3.7. If, for each $\alpha \in A$, $a \in F$, $H_a^{\alpha} = X \setminus G_a^{\alpha-}$ and $G_a^{\alpha} = X \setminus H_a^{\alpha-}$ then f_{α} is τ_c -continuous.

Proof. Let $x \in X$, $\alpha \in A$, $x \in P_c^{\alpha}$, and $c \in (a, b)$ $a, b, c \in F$, a < b. Let $M = H_b^{\alpha} \cap G_a^{\alpha}$. Since $G_a^{\alpha^-} = X \setminus H_b^{\alpha}$ and $H_a^{\alpha^-} = X \setminus G_a^{\alpha}$, Lemma 3.6 implies that M is τ_c -open. Also $x \in M$ since a < c < b.

If $m \in M$ then $m \in P_d^{\alpha}$ where a < d < b and hence $f_{\alpha}(m) = d \in (a, b)$. Thus f_{α} is τ_c -continuous.

DEFINITION 3.8. (X, τ, ζ) is said to have the Hahn-Banach property if for each $D \in \zeta$ and $p \in X$ with $p \notin D^-$ there exists an $\alpha \in A$ and $a \in F$ so that either

- (i) $P_c^{\alpha} \cap D \neq \phi$ and $p \in P_b^{\alpha}$ implies b < a < c. or
- (ii) $P_c^{\alpha} \cap D \neq \phi$ and $p \in P_b^{\alpha}$ implies c < a < b.

LEMMA 3.9. If (X, τ, ζ) has the Hahn-Banach property, $(x_e \mid e \in E)$ is a net in $X, p \in X$ and for each $\alpha \in A$ $(f_{\alpha}(e) \mid e \in E)$ converges to f(p) in the interval topology on F, then $(x_e \mid e \in E)$ converges convexly to p.

Proof. Suppose not. Then there is a subnet $(x_d | d \in D)$ of $(x_e | e \in E)$ such that $p \notin \zeta(S)^-$ where S is the range of $(x_d | d \in D)$. By the Hahn-Banach property there is an $\alpha \in A$ and $a \in F$ with say $f_{\alpha}(p) < a < f_{\alpha}(x)$ for all $x \in \zeta(S)^-$. But then $(f_{\alpha}(x_d) | d \in D)$ does not converge to $f_{\alpha}(p)$ which is impossible.

THEOREM 3.10. Let (X, τ, ζ) be a topological convexity space, τ a T_1 topology, and F an ordered field with the interval topology. The following are equivalent:

(1) There is a linear structure on X over F and a topology on X such that X is a linear topological space over F, ζ is the usual convexity structure and the weak topology on X is τ_c .

(2) (X, τ, ζ) satisfies conditions (i), (ii), (iii), and (iv) of theorem 2.12 and in addition (v) $H_a = X \setminus G_a^{\alpha^-}$ and $G_a = X \setminus H_a^{\alpha^-}$ for each $\alpha \in A$, $a \in F$ (vi) (X, τ, ζ) has the Hahn-Banach property.

Proof. Necessity is clear. Using theorem 2.12 sufficiency will follow by showing that addition and scalar multiplication are continuous in the convex topology τ_c . Note that conditions (v) and (vi) imply that (X, τ, ζ) is convexly regular and hence a net in $X \tau_c$ -converges to $x \in X$ if and only if it converges convexly to x.

Suppose $(a_d | d \in D)$ converges to $a \in F$ and $(x_d | d \in D)$ τ_c -converges to $x \in X$. Let $\alpha \in A$ then $f_{\alpha}(a_d x_d) = a_d f_{\alpha}(x_d)$ by lemma 3.5 and $(f_{\alpha}(x_d) | d \in D)$ converges to $f_{\alpha}(x)$ by lemma 3.7. Hence by lemma 3.2 $(a_d f_{\alpha}(x_d) | d \in D)$

1976]

converges to $af_{\alpha}(x) = f_{\alpha}(ax)$. Thus by lemma 3.8 $(a_d x_d \mid d \in D) \tau_c$ -converges to ax and scalar multiplication is τ_c -continuous.

Suppose $(x_d | d \in D)$ and $(y_d | d \in D)$ τ_c -converge to x and y respectively. By lemmas 3.5 and 3.7 $(f_{\alpha}(x_d + y_d) | d \in D)$ converges to $f_{\alpha}(x) + f_{\alpha}(y) = f_{\alpha}(x + y)$. Hence, by lemma 3.9 $(x_d + y_d | d \in D)$ τ_c -converges to x + y and thus addition is τ_c -continuous.

REFERENCES

1. M. D. Guay and S. A. Naimpally, *Characterization of a convex subspace of a linear topological space*, Proc. Japan Acad. (to appear).

2. D. C. Kay and E. W. Womble, Axiomatic convexity theory and the relationships between Caratheadory, Helly, and Radon numbers, Pacific J. Math., 15 (1971), 65-76.

3. D. Mah, S. A. Naimpally, and J. H. M. Whitefield, *Linearization of a convexity structure*, J. London Math. Soc., (to appear).

4. Douglas Moreman, Convexly topological space, (preprint).

DEPARTMENT OF MATHEMATICS UNIVERSITY OF REGINA REGINA, SASKATCHEWAN CANADA S4S OA2