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AN INTERNAL SOLUTION TO THE PROBLEM 
OF LINEARIZATION OF A 

CONVEXITY SPACE 

BY 

D. A. SZAFRON AND J. H. WESTON 

1. Introduction. Following Kay and Womble [2] an abstract convexity struc
ture on a set X is a collection £ of subsets of X which includes the empty set, X 
and is closed under arbitrary intersections. One of the natural problems that 
arises in convexity structures is to give necessary and sufficient conditions for 
the existance of a linear structure on X such that the collection of all convex 
sets in the resulting linear space is precisely £. An associated problem is to 
consider a set with a convexity structure and a topology and find necessary and 
sufficient conditions for the existance of a linear structure on X such that X 
becomes a linear topological space with again £ the collection of convex sets. 
These problems were solved in [3] and [1] respectively in terms of the existance 
of families of functions from X to the real line. In this paper we give internal 
solutions to both problems. 

We will follow the notation and terminology of [3] and [1]. If X is a set and £ 
is a convexity structure on X then (X, £) will be called a convexity space and 
the members of £ convex sets. If S ç: X then the convex hull of S, written £(S), 
is the set f(S) = fl (C e £ | S ç C}. If S = {sl9..., sn} is finite write Ç(su . . . , sn) 
for £({si , . . . , sn}). 

If x E X, S ç X the Ç-join of JC and S is the set xcS = (J {£(x, s) | s 6 S}. £ is 
said to be join-hull commutative if ^ S ) = ^{x}US) = ^ ( S ) . £ is said to be 
domain finite if for each S g X , £(S) = U U(t) \T^S,T finite}. In [2] (theorem 
2) it is shown that for a domain finite, join-hull commutative convexity 
structure £, S is convex if and only if £(x, y) c S for each x, y e S. 

For any two distinct points x, y e X the line determined by x and y is the set 
(x9 y)= iz e X I z e £(x, y), or x G £(z, y), or y G £(X, Z)}. Notice that if s, f G (X, y) 
and s^ r then (s, t) = (x, y). 

2. Linearization. 

DEFINITION 2.1. A convexity space (X, f) is said to be gridable over a field F 
if there is a set A satisfying the following. 

(i) For each aeA, aeF there is a P " e £ such that U {K\ aeF} = X, 
P " n Pb = 0 if and only if a * ft, and if x, y G P" then <x, y>ç P„. Write 
Pa = PS. 
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(ii) If x, y e X , x ^ y , (x,y)DP" is a singleton and P 2 f l P ? = ^ then 
(x,y>DP^</>. 

(iii) There is a distinguished point x0eX such that f] {Pa \ a e A} = {x0}. 
(iv) If x, y e X , x ^ y then there is an a e A such that (x, y>flPa is a 

singleton. 
(v) For each a, j8 G A and (JC, y) c X for which (JC, y) D P a and (x, y) H P^are 

singletons, there are l,meF such that for each aeF (x, y)HPâ = 
(x,y>HP?a+m . 

The set A will be called the grid and the sets P™ hyper-planes. 

LEMMA 2.2. If (X, f) is a gridable convexity space, P is a hyper-plane in X 
and (x, y) is a line in X then exactly one of the following is true. 

(i) (x,y)nP = ct> 
(ii) (x, y )HP is a singleton 

(iii) (jc,y)ç=P 

Proof. If s, te(JC, y)DP and sï t then (s, f ) ^ P and (s, f) = (x, y). The fol
lowing result is an immediate consequence of definition 2.1(h) and the above 
lemma. 

LEMMA 2.3. If aeA, x,yeX, x^y, and (x,y)(lPa is a singleton then 

(x, y )nP£ is a singleton. 

DEFINITION 2.4. Given a convexity structure (X, f) which is gridable over a 
field F with grid A we define scalar multiplication as follows. 

Let aeF, xeX. 

(i) If JC = jc0 or a = 0 define ajc = x0. 
(ii) If x ^ x 0 and a # 0 then by 2.1 (iii) there is an aeA with xéPa. Hence, 

by 2.1(i), there is a beF, b^O, and x e P £ . Since ab^O. Pa C\Pa
ab= <f>. 

But, by 2.2, (x0, x)DP£ is a singleton and then by lemma 2.3 there is a 
zeX with (JCO, JC) H P*b = {z}. Define ax = z. 

LEMMA 2.5. Scalar multiplication is well defined. 

Proof. Assume x ^ x0, a,b, de Fa, b, d^O, a, j8 e A, and x e P J , x e P§. As 
in definition 2.4 (JC0, x) H P%b = {z} and (x0, x) H P^d = {w}. We must show w = z. 
By 2.1(v) there are €, m e F so that for each ceF, (x0, x)C\Pc= (x0, x) C\ P%+m. 
But {x0} = (x0,x)r)Po = (x0,x)nPi thus m = 0. Thus {jc} = <jc0,x>nPb = 
<x0, x) H P?b. But x e Pg thus f̂t = d. Finally {z} - (x, x0> H P£b = (x0, x) H P?ab = 
(x0, x) fi Pad = {w}. Thus w = z. 

DEFINITION 2.6. Given a convexity structure (X, f) which is gridable over a 
field F with grid A, with the characteristic of F not 2, we define addition as 
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follows. 
Let x, y e X. 

(i) If JC = y define x + y = 2x. 
(ii) If x ^ y then by 2.1(iv) there is an aeA with (x, y ) n P " a singleton. 

Also there are a,beF with x e P", ye Pi
ll {a + b)/2 * 0 then P"a+b)/2 H Pa = c/> so by lemma 2.3 <JC, y> Pi P?a+b)/2 is 
a singleton. If (a + b)/2 = 0 then <x, y)nP" a + b ) / 2 = (x, y ) H P a is a single
ton. Hence, in either case, there is a zeX with (JC, y)nP" a + b ) / 2 = {z}. 
Define x + y = 2z. 

LEMMA 2.7. Addition is well defined. 

Proof. Let a, j3e A be such that (x, y ) f lP a and (x, y)HP^ are singletons. 
Then there are a,b,c,deF with x ePaHP? and y e PîHP§. As in definition 
2.6 there are u, U G X with {u} = (x, y>nP"a+b) /2 and {u} = (x, y)nPfc+d) /2. We 
must show u = v. 

By 2.1(v) there are l,meF such that for each eeF (x, y ) f !P" = 
(x,y)HPfe+m. Now {x} = ( x , y ) n P ^ = (x ,y )nP? a + m and {y} = (x, y>nP? = 
(x, y>H Pfb+m- Thus JcePfflPfa+m and hence c=ia + m. Similarly d=tb + m. 
Thus £[(a + b)l2]+m=j(ta + m+tb + m) = (c + d)l2 and hence {u} = 
<x, y) fl P"a+b)/2 = <x, y) D Pfc+d)/2 = M - Thus u = a 

For the remainder of this section we will assume that (X, £) is a gridable 
convexity structure over a field F with grid A, the characteristic of F is not two, 
and scalar multiplication and addition are defined as above. 

The following two results will prove useful in showing that X is a vector 
space over F. 

LEMMA 2.8. Let a G A, a,beF, and x e P«. Then bx e Pab. 

Proof. If x = x0, then a = 0 = ab and bx = x0 e Pa = Pib. 
If XT^XO and a^O then x é P " and hence, by the definition of scalar 

multiplication, {bx} = (x0, x) fl Pib. 
If x ^ x0 and a = 0 then bx e (x0, x) by definition. But x, x0e Pa thus (x0, x ) ç 

Pa and hence bx e Pa = Pa
ab. 

LEMMA 2.9. Let aeA, a,beF, x e P" and ye Pi then x + y e Pi+b. 

Proof. If x = y the result follows from the previous lemma. If x ¥• y and 
(x,y)DP<x is a singleton then x + y = 2u where {u} = (x, y) D P"a+b)/2. By the 
previous lemma x + y = 2u e Pi+b-

If x 7* y and (x, y) fl Pa is not a singleton then there is a d e F with (x, y) ç P% 
then a = b = d. In this case x + y = 2u where DG(X, y )çPa- Hence, by 2.8, 

THEOREM 2.10. X is a vector space over F. 
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Proof. I. lx = x: lx0 = x0. If x ^ x 0 then xePZ for some a^O. Thus {lx} = 

(x(hx)npa
la=(xchx)npa

a = {x}. 
II. a(bx) = (ab)x: Clear if x = x0, a = 0, or b = 0. If x ^ x 0 , a^O, and b^O 

then X G ? C for some a G A, c e F , c^O. Hence, by definition 2.4 {(afr)x} = 
(x0, x)nP"ab)c and {bx} = (x0, x)DP£c. Therefore bxe(x0, x) and, since b # 0 , 
c^O, bx^x0. Thus (x0, bx) = (x0, x) and hence {a(bx)} = (x0, bx)DPa(bc) = 

<x0 ,x)nP"a b ) c = {(afc)x}. 
III. x + y = y + x: clear. 
IV. x + x0 = x: Xo + Xo = 2x0 = x0. If x ^ x 0 then x + x0 = 2w where {u} = 

(x0, x) fi P(ô+a)/2, x G Pa, and a ¥" 0. But w G P"/2 implies, by lemma 2.8, 

{xo+x} = {2u} = <xo,x)np;a/2 = <x0,x)nPS = {x}. 
V. For each X G X there is an x'eX with x + x' = x0: Let x' = (- l )x. 

x0 + (-l)xo = Xo + Xo = x0. If x ^ x 0 then xeP" for some a G A, aeF, a^O, and 
( - l )x = (x0, x ) f lP" a . Hence x + ( - l )x = 2w where {u} = (x, ( - l )x)nP" a _ a ) / 2 = 
{x0} since X0G(X, ( - l )x) . Thus x + x' = 2x0 = Xo. 

VI. (a + b)x = ax + bx : For each a G A if x G P" then, by lemma 2.8 and 2.9, 
(a + b)xeP™a+b)c, axGPac, foeP^ and thus ajc + foePac+bc- If 
(a + fc)x#ax + bx by 2.1(iv) there is an aeA with ((a + b)x, ax + bx)nPa a 
singleton. Hence (a + b)xePe, ax + bxeP? with e ^ / which is impossible. 

VII. a(x + y) = ax + ay: Similar to VI. 
VIII. (x + y) + z = x + (y + z): Similar to VI. 
In order to show that the convexity structure £ on X is the convexity 

structure induced on X by the linear structure just defined, we first show the 
following lemma. 

LEMMA 2.11. If x, y G X , X¥- y and keF then kx + ( l - k ) y e(x, y). 

Proof. If k = 0 the result is clear. Assume k ^ 0 then x G P", y e P J for some 
aeA, a,beF, a^b. Hence, by lemmas 2.8 and 2.9, z = kx + ( l - k ) y G 
Pka+a-Ub- Let {w} = (x, y) n PiaH1-k)b. We need only show w = z. 

Assume w^ z then, by 2.1(iv), there is a j3 G A with (z, w)fl P*3 a singleton. 
Assume (x, y)fl P*3 is not a singleton then, for some eeF, (x, y ) ç Pg. Hence 

WG(X, y ) ç P f and z = kx + ( l - k)y eP%eH1-k)e = P% by lemmas 2.8 and 2.9. 
Thus (z, w)^Pe which is impossible. Hence (x, y ) H P p is a singleton. 

Since (x, y)CiPa and (x, y ) H P p are singletons, by definition 2.1(v) there 
exists l,meF such that for each eeF (x, y ) n P " = (x, y)f!P£>+m. Thus XG 
Pfa+m, yeP?b+m and hence, by lemmas 2.8 and 2.9, zePf where / = 
k(la + m) + (1 - k){tb + m) = l(ka + (1 - k)b) + m. Since w G PL+u-iob, w G 
P?(ka+(i-k)b)+m. Hence z, WG<Z, w>nPf(ka+(1_k)b)+m which is a singleton. Thus 
w = z. 

THEOREM 2.12. Let (X, f) fte a convexity space and F an ordered field. 
Necessary and sufficient conditions that there is a linear structure on X over F in 
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which ( is the usual convexity structure are: 

(i) (X, () is join-hull commutative and domain finite. 
(ii) (X, f ) is gridable over F with grid A. 

(iii) If £(x, y) = £(x, z) then y = z. 
(iv) Let aeA. If (x, y)flPa is a singleton say xeP", ye PI and {w} = 

(x, y)H Pc then a^c<b implies w e £(x, y). 

Proof. Necessity is clear taking {Pa \ a e A} to be the maximal linear sub-
spaces and Pa = a + Pa. 

To show sufficiency it remains to show that f = f' where f' is the family of 
convex sets generated by the linear structure on X. 

Let Ce £, x, y e C, x# y. Suppose h,keF, ft, k>0, and ft + k = 1. By 2.1(iv) 
there is an a e A such that (x, y)HPa is a singleton and there are a,beF with 
X G P ; yeP£. Thus, by lemmas 2.8 and 2.9, w = kx + ftyePL+kb-

We may assume a<b then a<ha + kb<b and, by lemma 2.11, we(x, y) 
and thus by (iv), we£(x, y). Since £(x, y) = f]{Ee Ç \ x, y eE}, {(x,y)gC 
Hence for each x, y 6 C, h,keF with ft, k > 0 and ft + k = 1, ftx + ky 6 C. Thus 
Cef. 

Let D e £', x, y e D, x 5e y. By 2.1(iv) there is an a e A such that (x, y) fi P" is 
a singleton, say XGP", ye PI, a,beF. We may assume a < b. 

Let z e £(x, y) and ceF with zeP". If c<a<b then by (iv) x e £(z, y) and 
thus £(x, y) = £(z, y). Hence x = z and thus a = c which is impossible. Similarly 
if a<b<c, and hence we have a<c<b. Thus there are h,keF with c = 
fta 4- kft, ft, k > 0, and ft + k = 1. 

Let w = ftx + ky then, by lemmas 2.8, 2.9, and 2.11 {w} = (x, y)nP£a+kb = 
(x, y> fl P? = {z}. Hence, since D e £', zeD. Therefore £(x, y) c D. Since (X, f) 
is domain finite and join-hull commutative this is sufficient to show DeÇ. 

3. Linear topological spaces. If (X, f) is a convexity space and r is a Tx 

topology on X then the triple (X, r, £) is called a topological convexity space. 
The following definitions are taken from [1]. The convex topology TC of the 

triple (X, T, Ç) is the topology with sub-base S, the collection of complements of 
all T-closed members of £. A net (xd | de D) in X is said to converge convexly 
to x e X if for each subnet (xe\ee E) of (xd\de D), x e Ç(S)~ where S is the 
range of (xe | e e E) and - is r-closure. The triple (X, r, f ) is convexly regular if 
for each Ae£, xeX, xéA~ there are disjoint sets S, T containing x and A 
respectively such that X\S and X\T are closed members of f. Moreman [4] 
has shown that in a convexly regular space closures of convex sets are convex. 
Also it is an easy exercise to show that in such spaces a net is convexly 
convergent to xeX, if and only if it TC-converges to x. 

In order to consider a linear topological space over an ordered field F we 
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need a topology on F which makes F a linear topological space when 
considered as a vector space over itself. 

DEFINITION 3.1. If F is an ordered field then the interval topology on F is the 
topology with base {(a, b) \ a, b e F, a < b} where (a, b) = {c e F \ a < c < b}. 

LEMMA 3.2. An ordered field F with the interval topology is a linear topological 
space when considered as a vector space over itself. 

Proof. To show that addition is continuous suppose (xd\de D) and {yd\de 
D) are nets in F converging to JC and y respectively. Let x + y e (a, b), 
a,beF, then x e (x + ( a - x - y)/2, x + (b-x-y)/2)=U and y e 
(y + ( a - * - y ) / 2 , y + ( b - j c - y ) / 2 ) = V. If deD and xdeU, ydeV then 
xd + yde (a, b) thus (xd + yd | d e D) converges to x + y. 

To show that scalar multiplication is continuous suppose (xd\deD) and 
(yd | d e D ) are nets in F converging to x and y respectively. Assume x > 0 , 
y > 0 then we can also assume xd>0, yd >0 for each deD. Suppose xy e(a, b) 
where 0 < a < & , a,beF. Let x' = (jcy + a)/2y, y' = (jc'y + a)/2x', x" = 
(b + xy)/2y, and y" = (b + x"y)l2x". Hence a<xy implies x'y = (xy + a)/2>a 
and thus a<x'y implies x,y' = (x'y + a)/2 >a. Also x' = x/2 + a/2y< 
x/2 + Jcy/2y = x. Similarly x<x" so xe(x',x"). Similarly ye(y ' , y"). If deD, 
xd e (x', x") and yd e (y', y") then xdyd e (a, b) and thus (xdyd \ deD) converges 
to xy. 

It is clear that if (xd\de D) converges to x e F then {—xd \ deD) converges 
to -x and if (yd\de D) converges to 0 e F then (xdyd \deD) converges to 0. 
Hence scalar multiplication is continuous. 

For the remainder of the paper F will designate an ordered field with the 
interval topology and (X, ST, () a topological convexity space such that (X, £) is 
gridable over F and satisfies the conditions of theorem 2.12. 

DEFINITION 3.3. For each a e A, aeF define the left hand hyperplane G™ by 
G a = U {Pb | b < a} and the right half hyperplane Ha

a by Ha
a = U {PS \a < b}. 

DEFINITION 3.4. For each aeA define the function / a : X - > F by fa(x) = c 
where xeP". This function is well defined by 2.1(i). 

LEMMA 3.5. For each aeA, fa is linear. 

Proof. Let x, y e X and l,meF then JC e Pa
a, ye PI for some a,beF. By 

lemma 2.8 and 2.9 tx + my eP"a+rnh so / a( /x + my) = / a + mfc. But 
tfoc(x) + mfa(y) = £a + mb and hence fa is linear. 

LEMMA 3.6. For each aeA and aeF, Ha
a, Ga

a, X\H%9 and X \ G 2 e £ . 

Proof. Let x,y eHa
a then xePt, y e P " where a<b,c. Let h, keF, h,k>0 
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and h + k = l then hx + kyePtb+kc by lemmas 2.8 and 2.9. But hb + kc> 
ha + ka = a and thus hx + ky eH^. Thus, using theorem 2.12, H^e £. Similarly 
Ga

a, X\Ha
a, and X\Ga

ae£. 

LEMMA 3.7. If, for each aeA, aeF, Ha
a = X\ Ga

a~ and Ga
a = X\Ha~ then fa 

is TC- continuous. 

Proof. Let xeX, aeA, x e P", and c G (a, b) a,b,ceF, a< b. Let M = 
H £ n G". Since Ga

a~ = X\H% and Ha
a~ = X\G", Lemma 3.6 implies that M is 

rc-open. Also xeM since a < c < b . 
Il me M then mePd where a<d<b and hence /«(m) = de(a, b). Thus / a 

is TC-continuous. 

DEFINITION 3.8. (X, r, £) is said to have the Hahn-Banach property if for 
each D e Ç and peX with péD~ there exists an a G A and a G F so that either 

(i) Pc n D ^ </> and p G P£ implies fc < a < c. or 
(ii) P" H Dï (j) and p G Pi implies c<a<b. 

LEMMA 3.9. If (X, r, £) has the Hahn-Banach property, (xe \ e e E) is a net in 
X, peX and for each aeA (fa(e)\eeE) converges to f(p) in the interval 
topology on F, then (xe\ee E) converges convexly to p. 

Proof. Suppose not. Then there is a subnet (xd\deD) of (xe\eeE) such 
that pfÉÇ(S)~ where S is the range of (xd\deD). By the Hahn-Banach 
property there is an a G A and aeF with say fa(p) <a< fa(x) for all x e £(S)~. 
But then (fa(xd) \deD) does not converge to fa(p) which is impossible. 

THEOREM 3.10. Let (X, r, £) be a topological convexity space, r a Ti topology, 
and F an ordered field with the interval topology. The following are equivalent: 

(1) There is a linear structure on X over F and a topology on X such that X is 
a linear topological space over F, Ç is the usual convexity structure and the weak 
topology on X is rc. 

(2) (X, r, £) satisfies conditions (i), (ii), (iii), and (iv) of theorem 2.12 and in 
addition (v) Ha = X\Ga~ and Ga = X\Ha~ for each aeA, aeF (vi) (X, T, 0 
has the Hahn-Banach property. 

Proof. Necessity is clear. Using theorem 2.12 sufficiency will follow by 
showing that addition and scalar multiplication are continuous in the convex 
topology rc. Note that conditions (v) and (vi) imply that (X, r, £) is convexly 
regular and hence a net in X rc-converges to JCGX if and only if it converges 
convexly to x. 

Suppose (ad\deD) converges to a e F and (xd\deD) rc-converges to 
xeX. Let aeA then fa(adxd) = adfa(xd) by lemma 3.5 and (fa(xd) | deD) 
converges to fa(x) by lemma 3.7. Hence by lemma 3.2 (adfa(xd)\deD) 
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converges to afa(x) = fa{ax). Thus by lemma 3.8 (adxd \deD) Tc-converges to 
ax and scalar multiplication is rc-continuous. 

Suppose (xd\de D) and (yd\de D) rc -converge to x and y respectively. By 
lemmas 3.5 and 3.7 (/«(*<*+ y<*) | à eD) converges to fa(x) + fa(y) = fa(x + y). 
Hence, by lemma 3.9 (xd + yd \deD) rc-converges to x + y and thus addition 
is rc-continuous. 
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