
An Internet-Based Platform for Testing Generation Scheduling Auctions

Ray D. Zimmerman Robert J. Thomas Deqiang Gan Carlos Murillo-Sánchez
rz10@cornell.edu rjt1@cornell.edu deqiang@ee.cornell.edu cem14@cornell.edu

School of Electrical Engineering, Cornell University, Ithaca, NY 14853
Abstract

This paper describes the uses and architecture of a
network-centered computing-rich software platform
called PowerWeb. PowerWeb was designed and built
as a simulation environment for experimentally testing
various power exchange auction markets through tour-
naments. It is designed to host simulations of a com-
petitive “day-ahead” electric energy market in the
context of a restructured electric power industry. The
PowerWeb environment is meant to be flexible so as to
accommodate different “rules of the game”. In this
paper we describe its interactive, distributed and web-
based character.

1 Introduction

The US electric power industry is taking major
steps forward to restructure its institutional arrange-
ments to support competition among energy suppliers.
The US is not the first in the world to embark on this
path and to refer to the undertaking as deregulation
would be a mistake. In 1990 the United Kingdom re-
structured it’s industry to form separate generation,
transmission and distribution companies. Today, this
arrangement represents perhaps the most complex regu-
latory environment in the world as a result of efforts
to ensure that the independent companies provide reli-
able electric power at fair prices. Despite the experi-
ence in the UK, the historical experience with deregu-
lation of other industries has been an unqualified suc-
cess from the point of view of economic efficiency. For
example, price decreases in the airline, natural gas, and
long distance telephone industries have been well
documented [1]. However, the electric utility industry
presents unprecedented complications for restructuring.
In particular, electric power networks offer multiple
simultaneous commodities and a variety of externali-
ties such as reliability concerns that imply a pure mar-
ket solution is unlikely to be efficient. The unbundling
of technical services suggests the existence of a multi-
dimensional or multi-unit market where the sale of
many related goods will take place. While there is an
emphasis by economists on efficiency, there is little
known about the efficiency properties of various auc-
tion designs for multiple objects.
1

1060-3425/98 $10
The move to competitive markets for electric
power is advancing at increasing speed, based on the
notion that competition will generate cost savings. In
our opinion there is insufficient attention being paid to
the type of market to be employed. The notion that any
market is better than no market is demonstrably false
for a number of reasons. Without careful attention to
the design of these markets the promise of deregulation
could easily be lost through new types of inefficien-
cies. For example, it has been shown in experimental
economics that the specific auction institution (double
auction, call auction, uniform price auction, English
auction, etc.) can have dramatically different efficien-
cies. Some auctions are much more efficient in the face
of market power than others [2]. Efficiency differences
as much as 15% are commonly observed.

Although it has been shown by Smith [3] in eco-
nomics laboratory experiments that reasonable efficien-
cies can be achieved in smart markets for extremely
simple network situations, no experiments have been
conducted testing smart markets with complex net-
works. Additionally, no experiments have tested mul-
tiple interconnected markets for ancillary services
along with the energy market as have been proposed for
most electric power markets. The unit commitment
problem remains untouched in experimental testing
except for the primitive yet intriguing experiments of
Plott [4]. The common thread in all of these untested
areas is the necessity for collaborative research in elec-
trical engineering and experimental economics. It is for
this reason that we have designed and built the experi-
mentation environment we refer to as PowerWeb. In
the remaining part of this paper we describe its archi-
tecture in some detail. It is an example of a network-
centered computing environment that we believe will
become commonplace in the years to come.

2 PowerWeb functionality

PowerWeb is an Internet-based simulation envi-
ronment for testing various power exchange auction
markets experimentally using human decision makers.
It is interactive, distributed and web-based. It is de-
signed to host simulations of a competitive “day-
ahead” electric energy market in the context of a re-
structured electric power industry.
.00 (C) 1998 IEEE

2.1 Overview

Since PowerWeb is based on the Internet, it is not
necessary for participants to be in the same physical
location in order to conduct an experiment. The web-
based architecture, shown in Figure 3, enables a partici-
pant to access PowerWeb from anywhere Internet ac-
cess is available. The only software necessary is a mod-
ern web browser, such as Netscape Navigator™, which
runs on nearly all computing platforms in common use
today.

The PowerWeb environment is meant to be flexi-
ble so as to accommodate markets with a variety of
“rules of the game”. Because of operational constraints
on a power system, it seems necessary to have a central
agent acting as an independent system operator (ISO).
PowerWeb is designed to host various ISO models, for
example, a “maximum ISO” where full market infor-
mation is available. This is typical of several variants
of the PoolCo model. The PowerWeb environment is
designed to run unit commitment and optimal power
flow routines against load forecasts in order to provide
generation schedules such as those that might be as-
signed by a Power Exchange (PX).

In the current implementation of PowerWeb, the
ISO/PX receives offers to sell power from independ-
ently owned generation facilities. Based on a forecasted
load profile for the next day and the information gath-
ered from the generator’s offers, the ISO computes the
optimal generator set points along with a correspond-
ing price schedule which will allow the system to
meet changing demand while satisfying all operational
constraints. The method used to solicit offers and the
mechanism which determines prices are dependent on
the market model being examined.

As a web-based tool, PowerWeb may be used in
several capacities. It can be utilized in a tightly con-
trolled setting where a well-defined group of subjects
are used for a very specific set of market experiments.
It can also be used in a more open environment in
which anyone on the web can log in and “play” as a
generator competing against other generators, con-
trolled by other humans or computer algorithms
(automatons), to generate power profitably.

In either case, since PowerWeb is web-based it is
accessible at all times to anyone with proper authoriza-
tion, as long as the servers are up and running. To
eliminate the need to coordinate accesses (via phone, e-
mail, etc.) and to prevent one user’s actions from inter-
fering with another’s, all accesses occur in the context
of a given “session”.

2.2 A typical session

When initially accessing PowerWeb, it is necessary
to register to obtain a user id and password which will
be used to authorize all further access. A registered
user can log in to an existing session, and eventually
2

1060-3425/98 $10
they will be able to create a new session via a set of
HTML forms. The session specifies which power sys-
tem is being simulated, who “owns” which system
resources (generators, etc.), and what market mecha-
nism is in use. Multiple sessions can be active at any
given time and activity in each is completely independ-
ent of the others. Typically, a user in a session will
“own” one or more generating plants, or may represent
the ISO. The ownership mapping may be static, or it
may be set to update dynamically as participants enter
and leave the session.

After logging in, a user has access to the system
information area which gives tabular summaries of the
system operation conditions as well as a “live” one-
line diagram of the power system. Figure 1 shows the
one-line diagram of a 6 generator, 30 bus system in
PowerWeb’s database. This diagram is generated dy-
namically by a Java applet from information retrieved
from a relational database server. The diagram can be
panned and zoomed and it is interactive in that clicking
on an object such as a line, bus, generator, or load will
query the database for information about the object.
For example, selecting a bus will display the current
information about real and reactive flows into and out
of the bus as well as information about the current
voltage level of the bus. This information is the most
recent power flow data based on the current unit com-
mitment and dispatch schedule. Access to the informa-
tion is granted depending on the identity of the one
requesting it. For instance, access to a competing gen-
erator’s cost information would not be permitted.

Figure 1: PowerWeb one-line diagram display,
showing 30-bus system

Market information is also available to the user,
including the cost, offer, dispatch and revenue informa-
tion for each period for any generators owned by the
.00 (C) 1998 IEEE

user. The main auction page, shown in Figure 2 for a
simple sealed bid type auction, allows for submission
of offers into the auction. The plot which displays the
costs and the block offers is drawn by a Java applet,
updating automatically as offers are entered and re-
vised.

Figure 2: The form for entering bids. The
“blocks” are displayed dynamically via a Java

applet

Though not implemented in the current version,
PowerWeb is also designed to display auction results
after an experiment so the experimenters and partici-
pants can visually observe key aspects of the behavior
of the market.

When a session has ended or a user has finished
they can log out explicitly, or quit their browser
which implicitly does an automatic log out.

The PowerWeb User’s Manual [5] has more details
regarding PowerWeb’s functionality.

3 Internet technologies

In order to understand some of the design choices
that were made for PowerWeb, it is important to un-
derstand the capabilities and limitations of the cur-
rently available Internet technologies. These technolo-
gies include a rich collection of cross-platform, open
standards that enable developers to quickly create and
deploy network-centered applications.

This section explores some of the primary tech-
nologies utilized in PowerWeb. It should be noted
that, for many of these technologies, the Internet is
not the only, or necessarily even primary, context for
their use. PowerWeb is a distributed application de-
fined by various programs running simultaneously on
different computers and the protocols by which these
3

1060-3425/98 $10
programs interact. PowerWeb uses a client-server ar-
chitecture, where the programs involved take on the
role of client or server for a specific of interaction. The
technologies discussed below are divided into the lan-
guages used to implement PowerWeb’s various pro-
grams and the protocols by which they communicate.

3.1 Languages

HTML [6]

HyperText Markup Language (HTML) is a very
well-known and widely used international standard
maintained by the Internet Engineering Task Force
(IETF) for defining a document with possible links to
other network resources. An HTML document, as in-
terpreted and rendered by a typical web browser, may
include structured and formatted text, tables, fill-out
forms, images, hypertext links, Java applets and refer-
ences to other types of data which can be handled via
helper applications or browser plug-ins.

HTML is ideal for displaying information to a
user on the web. An HTML renderer is built into every
web browser so it is very cross-platform in nature. It
is limited in that it is static, so interactivity with an
HTML document is generally in the form of a link to
another (possibly dynamically generated) HTML
document. The vast majority of the user interface in
PowerWeb consists of dynamically generated HTML
pages.

Perl [7]

Perl is a language originally designed as a UNIX ad-
ministration tool. It has become tremendously popular
with web developers as a language for writing pro-
grams which generate HTML pages as output. One of
Perl’s many strengths is in the area of text handling,
which is exactly what is needed for producing and ma-
nipulating HTML. Perl’s operating system, file sys-
tem, network and database interface capabilities along
with its object-oriented language features, uniquely
coordinated developer community, and extensive ar-
chive of high quality freely available reusable modules,
make it an ideal choice for many of PowerWeb’s tasks

Java[8]

Java is a complete programming language that al-
lows true platform-independent application develop-
ment. It was developed by Sun Microsystems and has
been submitted to the open standards process. It is an
object-oriented, distributed, interpreted, robust, secure,
architecture-neutral, portable, high-performance,
multi-threaded, and dynamic language. Of particular
significance to developers of network applications is
the ability of a Java application class, called an
“applet”, to be securely downloaded from anywhere on
.00 (C) 1998 IEEE

the network. The application can then be loaded dy-
namically and executed immediately. It is simple to
place references to Java applets into an HTML docu-
ment. Users may then invoke an applet by simply ac-
cessing the relevant page.

PowerWeb currently uses Java applets to display
the one-line diagram of the power system and to dis-
play cost and offer information graphically. In spite of
the fact that Java is a relatively immature technology
and there is some inconsistency across implementations,
it promises to be a dominant player in the development
of network-centered applications like PowerWeb.

JavaScript [9]

JavaScript is an interpreted scripting language de-
veloped by Netscape Communications. Contrary to the
implication of the name, it is not based on Java. JavaS-
cript code can be embedded within an HTML document
where it is executed by the web browser in response to
specified events. For example, a button can be linked to
some JavaScript code that executes when the button is
pressed.

One area where JavaScript is used in PowerWeb is
to validate offers which have been entered in a form
before sending them back to the server.

SQL

The Structured Query Language (SQL) is a standard
language for defining, querying and manipulating the
data in a relational database. PowerWeb uses the SQL
to access and modify all data in its database.

Matlab

Matlab, the language, is an interpreted, procedural
language developed by The MathWorks and designed
for numerical mathematics, especially applications in-
volving matrix and vector computations. It includes
highly optimized dense and sparse matrix factoring
routines among many others. Until the most recent
version, Matlab was quite limited in the data struc-
tures available, but its strength in matrix and vector
computations still make it a tool of choice for the
types of computations required for power system simu-
lations.

PowerWeb uses Matlab as the language for im-
plementing all of the optimal power flow programs as
well as the market pricing code which form the core of
PowerWeb’s computational server. Since Matlab is not
explicitly designed as a network language, it was nec-
essary to develop our own protocol for interacting
with the Matlab programs.
4

1060-3425/98 $10
3.2 Protocols

HTTP [10]

The HyperText Transfer Protocol (HTTP) is the
standard protocol for communicating between clients
and servers on the web. HTTP is a stateless protocol
which specifies how a client and server establish a con-
nection, how the client requests a specific service from
the server, how the server issues a response, and how
the connection is terminated. The terms “client” and
“server” are defined primarily in terms of their roles
in an HTTP interaction. HTTP connections over the
Internet are implemented using the TCP/IP protocol.

In PowerWeb all interaction between the web
browser and the web server are based on HTTP, as are
all communications with the computational server.

CGI [11]

Common Gateway Interface (CGI) is a very popu-
lar standard protocol for communication between a
web server and an external program, typically referred
to as a CGI program. The primary role of a CGI pro-
gram is to dynamically create data on demand, such as a
web page or image, for the web server to return to a
client. Since the CGI protocol clearly defines the inter-
face to the web server, any language which can imple-
ment this interface can be used to write a CGI pro-
gram. One of the limitations of CGI is the performance
penalty arising from the overhead involved in spawning
a new process for each request. FastCGI [12] is a lesser
used alternative which allows the external program to
continue to run between requests to avoid this over-
head. Some web servers also have application program-
ming interfaces (APIs) which allow developers to di-
rectly extend the web server functionality to be able to
generate dynamic pages.

PowerWeb uses CGI programs implemented in
Perl for nearly all of the dynamically generated
HTML pages which make up PowerWeb’s user inter-
face. Some of the other alternatives mentioned are also
being considered.

Cookies [13]

An HTTP cookie is an object containing state in-
formation, a simple name and value pair, that a web
server informs a web browser to send along with any
subsequent requests to a specified range of URLs. Pow-
erWeb utilizes cookies to store login information to
avoid requiring a user to type in their password for
each page they want to access.

URL [14]

A Uniform Resource Locator (URL) is the stan-
dard means of identifying and locating any network
resource. URLs are used to address specific web pages
.00 (C) 1998 IEEE

including those which may be generated dynamically by
a program. PowerWeb uses URLs to identify the
HTML documents that make up its user interface.

MIME [15]

The Multipurpose Internet Mail Extensions
(MIME) standard specifies the type of data and encod-
ing associated with a document. PowerWeb uses
MIME to specify the type of data transmitted over the
HTTP connections between clients and the web server
and computational server.

DBI [16]

DBI is database interface module and API for ac-
cessing SQL databases from Perl. It is designed to be
independent of the database server being used. It is an
ideal interface for PowerWeb to use to access its data-
base server from the Perl CGI programs.
5

1060-3425/98 $10.0
JDBC [17]

The Java Database Connectivity (JDBC) is the
standard protocol for accessing a database from the Java
programming language. Any additional Java-based
PowerWeb components that are developed will use
JDBC for all database access.

4 Communications architecture

PowerWeb employs a distributed architecture on
several different levels. First, it is a client server ar-
chitecture, in that all user interaction with PowerWeb
is via a web client (a browser, or applet running within
a browser) communicating with the PowerWeb server.
Second, the PowerWeb server also has a distributed
architecture consisting of several independent processes,
such as the web server, the database server, and the
computational server, each of which can be running on
different computers. Even the computational server has
several parts which need not reside on a single machine.
web browser

client machine #1

Java
applet

database
server

server machine #2

computational
server

server machine #3

PowerWeb Server

web server
HTML

document

main server machine

real-time
update server

request
handlerweb browser

client machine #2

Java
applet

web browser

client machine #3

Java
applet

Key

computer (hardware) program (software)

I
N
T
E
R
N
E
T

Figure 3 PowerWeb communications architecture
0 (C) 1998 IEEE

Figure 3 illustrates the various components of the
PowerWeb communications architecture. Currently,
the entire PowerWeb server is running on a Sun Ultra
2200, with dual 200 MHz processors. The web server
is an Apache server [18] and the database server is
mySQL [19].

When a request for a specific URL is transmitted
from one of the web clients to the web server, the
server determines whether the URL refers to a static
HTML document or to one which must be generated on
the fly. In the first case, the web server retrieves the
file from the disk and returns it to the client. In the
second case, the web server passes the request on to
what is referred to here generically as a “request han-
dler”. This could be a separate program invoked via a
CGI or FastCGI protocol, or it could simply be a
server module which runs to produce the document to
be returned.

The vast majority of accesses to PowerWeb are
processed by a “request handler” which, in turn, makes
requests to the database server. In the current imple-
mentation, the “request handler” is a CGI program
written in Perl. All accesses subsequent to login are
accompanied by a cookie containing authentication data
which is compared with information provided by the
database. The protocol for communication with the
database server is a specialized protocol defined by the
developers of mySQL which uses UNIX sockets for
local communication and TCP/IP sockets for remote
communication. The computational server also receives
requests from the “request handler” via the HTTP pro-
tocol. Based on the parameters sent with the request, it
retrieves the necessary data from the database, runs the
requested computation, and returns the output to the
“request handler”. The computational engine is imple-
mented as a web server with a CGI program that makes
database queries and invokes Matlab programs through
a UNIX pipe.

The real-time update server, which is not currently
implemented, is needed in order to contact a client
when it needs to be made aware of new information.
The standard web protocols facilitate only the fol-
lowing sequence: a client connects to the server with a
request, the server responds and closes connection. The
HTTP protocol is a state-less protocol which does not
provide the ability for the server to initiate a commu-
nication with a client. One way to overcome this limi-
tation is for the server to keep a “live” connection to a
Java applet running at each active client. This “live”
connection must be handled via another server process.
A typical use of the update server would be if the user
acting as ISO triggers a recomputation of the dispatch
and price schedules, when the computation is com-
pleted, the server would pass a message to the update
server to notify the clients to retrieve the new infor-
mation.
6

1060-3425/98 $10.
5 Database structure

In the PowerWeb environment there is a tremen-
dous amount of data which needs to be handled and
used in varying contexts. A relational database server
satisfies the needs for logical data organization with
its relational model, synchronized updating of the data
to maintain data integrity, and flexibility in access to
the data via the SQL language.

In the interactive Internet-based environment, per-
formance of the database server is also of utmost im-
portance. The mySQL server [19] used in PowerWeb
meets these requirements nicely.

The data handled by PowerWeb can be classified
into three main categories:

• user administration data
• power system data
• session data

5.1 User administration data

The user administration data is used primarily to
control who has access to what information in Pow-
erWeb. When a request is made for user X to see cost
information for a generator “owned” by group Y, for
instance, these tables would be accessed to determine
whether the request is coming from someone who is
authenticated as user X, and to ensure that user X really
is a member of group Y. These data are stored primarily
in three tables:

Users user id, password, registration info

Groups group id and name

UserGroup mapping of users to groups

5.2 Power system data

The power system data refers to the coordinate
data needed to display a one-line diagram of the sys-
tem, all of the power flow data needed to run an opti-
mal power flow (OPF), the results of the OPF, and
the cost information required to compute profits given
the resulting dispatch and price schedules. These data
are held in the tables described below.

The main table which contains the top level data
for each base case, one row per case, is the Systems ta-
ble. Each row of each of the Areas, Buses, Branches,
BranchSegments , Caps, Gens, and Loads tables has a
field which links it to a system in the Systems table
and another which is the index of that particular area,
bus, branch, etc. within that system. In addition, each
row of the tables contain the following data:

Systems system id, system name, MVA base, num-
ber of buses, lines, gens, etc.

Areas area name, price reference bus
00 (C) 1998 IEEE

Buses area number, zone, voltage class, bus type,
upper and lower voltage limits, initial
voltage magnitude and angle, one-line co-
ordinates

Branches “from” and “to” bus numbers, circuit
number, line status, impedance and charg-
ing parameters, thermal capacity ratings,
tap ratio and phase angle shift

BranchSegments one-line coordinates of branch seg-
ments

Caps bus number, status, admittance, one-line
coordinates

Gens bus number, gen name, baseMVA, status,
initial active and reactive power genera-
tion, initial voltage magnitude set-point,
upper and lower limits on active and reac-
tive output, ramp rate, min up and down
times, key to entry in GenCosts table

GenCosts cost class, cost model, startup and shut-
down costs

GenCostData key to entry in GenCosts table, pa-
rameters which define polynomial or
piece-wise linear production cost curve

Loads bus number, real and reactive demand, per-
centages of constant impedance, constant
current, and constant power

The data for the (optimal) power flow solutions is
stored in separate tables, to avoid having to store all of
the constant power flow data for each case that is run.
The Solns table holds the top-level data, one row per
solved case, to which the other tables are referenced.
Each of the BusSolns, BranchSolns , and GenSolns ta-
bles has a column which links each record to an entry
in the Solns table and another which is the bus, branch,
or generator index. In addition, the following informa-
tion is stored in theses tables:

Solns solution id, name, system id

BusSoln bus type, voltage magnitude and angle,
Lagrange multipliers for real and reactive
power balance requirements, Kuhn-Tucker
multipliers for upper and lower voltage
constraints

BranchSoln real and reactive power flow at each end
of the branch, Kuhn-Tucker multipliers
for flow constraints

GenSoln status, active and reactive power output,
voltage setpoint, Kuhn-Tucker multipliers
for upper and lower real and reactive out-
put constraints
7

1060-3425/98 $1
The Changes and ChangeData tables provide a con-
venient way to specify modifications to an existing
base case. Each row in Changes corresponds to an inde-
pendent set of modifications that can be applied to an
existing base case. ChangeData has a column which
associates that particular change with a corresponding
set in Changes.

Changes change set id, valid system id (0 for any
system), name of change set

ChangeData table, column and index of data to be
modified (all indices if index is 0), type
of change (scale or replace), scale or re-
placement value

5.3 Session data

All interaction with PowerWeb is in the context
of a “session” that the user is logged in to. The tables
listed in this section handle the data for managing these
sessions. The main top-level data is stored in the Ses-
sions table, with one row per session. Many of the
other tables here have references to a particular entry in
this table which link their data to a specific session.

Sessions session id, name, user id of session owner,
system id, market id, number of trading
periods, number of dispatch periods, num-
ber of iterations per trading period, length
of dispatch period, time given for each it-
eration, persistence level, synchronous vs.
asynchronous ISO offer evaluation, log-
ging detail level, creation time, start
time, simulation clock time, session state,
current trading period, current dispatch
period, current iteration number, textual
session description

The Markets table has an entry for each type of
market implemented in PowerWeb. The table stores a
few parameters common to the various markets, but
the rules of each market are programmed separately in
PowerWeb code.

Markets market id, name, type of offer (blocks,
functions), auction id, offer dimensions

The Resources and ResOwners tables specify which
system resources (e.g. generators) are “owned” by
which user or group.

Resources resource id, session id, resource type (gen,
load), index, name

ResOwners resource id, user id or group id

Each PowerWeb session is organized into a se-
quence of trading periods, during which offers are made
to sell power to meet a forecasted demand schedule.
The schedule for a given trading period may be divided
into several dispatch periods, each of which has its own
demand forecast, its own actual demand, and possible
0.00 (C) 1998 IEEE

it’s own set of other arbitrary changes to network pa-
rameters. A “system profile” is used to specify how
the system parameters, including demand, vary through
out the various trading periods and dispatch periods.
The SystemProfiles table defines the system parameters
used for each period.

SystemProfiles session id, trading period, dispatch
period, type of profile (forecasted or ac-
tual), sequence number, change set id

In addition, the submission of offers and computa-
tion of dispatch and price schedules may be iterated
several times for each period in the system profile.
Each of these iterations is treated as a separate “case”
to be run. The Cases table associates an id with each
iteration of each period which the other tables can use
as a reference. CaseIOData associates each case with it’s
set of offers and dispatch results, and CaseSolnData
matches each case with its solution in the Solns table.

Cases case id, session id, trading period, dispatch
period, iteration, locked/unlocked

CaseIOData case id, resource id, type of IO data (real
power, reactive power, etc.), offer id, dis-
patch id

Offers offer id, sequence (block) number, quan-
tity, price

Dispatches dispatch id, quantity, price, fixed cost,
variable cost, startup cost, penalty, profit

CaseSolnData case id, solution id

6 Underlying optimal power flow

At the heart of the PowerWeb computational en-
gine is an optimal power flow (OPF) program that is
executed by the ISO in response to offers submitted in
an auction. The market activity rules determine what
offers are valid, but it is the ISO’s role to ensure the
safe and reliable operation of the network. By using an
OPF, the ISO can legitimately allocate generation in an
“optimal” way while respecting line flow constraints,
voltage magnitude constraints, VAr constraints and
any other constraints that are necessary to ensure safety
and reliability. As a by-product, the OPF also produces
the shadow prices associated with locationally-based
marginal pricing (LBMP) of power. These prices can be
used as determined by the market mechanism being em-
ployed.

In the context of a market in PowerWeb, the OPF
may be subjected to widely varying costs and therefore
dispatches which are far from typical base case opera-
tion. It is important in such an environment that the
OPF be extremely robust.

The OPF in PowerWeb can handle quadratic cost
functions as well as convex piece-wise linear cost func-
tions. The OPF problem can be stated as follows:
8

1060-3425/98 $10.
Minimize the total cost of generation,

min
Pg ,Qg

fi∑

such that active and reactive power balance equations
are satisfied,

P(V,θ)− Pgi + PLi = 0

Q(V,θ)− Qgi + QLi = 0

active and reactive generator outputs are within speci-
fied limits,

Pgi
m ≤ Pgi ≤ Pgi

M

Qgi
m ≤ Qgi ≤ Qgi

M

bus voltages lie in an acceptable range,

V m ≤ Vi ≤ V M

and apparent power flow at the “from” and “to” bus
ends of each line do not exceed the line’s capacity lim-
its,

˜ S ij
f ≤ Sij

M

˜ S ij
t ≤ Sij

M .

In addition to the formulation above, PowerWeb
auctions require the ability for the OPF to de-commit
units with excessive offers.

Several OPF algorithms have been developed in
Matlab for use in PowerWeb. One method is based on
the “constr” function in Matlab’s Optimization Tool-
box (OT). This optimizer uses a quasi-Newton ap-
proach which seems to work quite well for small sys-
tems. Quadratic cost functions can easily be handled
directly. The piece-wise linear costs arising from block
offers in PowerWeb are accommodated by introducing
cost variables which are constrained below by the
piece-wise linear functions.

The other OPF algorithms available to PowerWeb
are based on successive linear programming. LP-based
methods have been examined extensively and are used in
some production grade OPF packages [20]. Three LP-
based OPF solvers have been developed for PowerWeb.
One is a “dense” approach which eliminates the power
flow equations and network voltage variables in the
formulation of the LP. The dense method also uses one
variable for each segment of a piece-wise linear cost
function [21]. The other two approaches solve a larger
sparse LP which contains the power flow equations and
bus voltages. One uses the “one variable per cost seg-
ment” approach used in the dense method and the other
uses the constrained cost variable approach employed by
the OT-based OPF to handle the piece-wise linear cost
functions.

Since the OT’s quasi-Newton based “constr” func-
tion does not preserve sparsity it is only suitable for
small problems. With a good, sparse LP-solver the
00 (C) 1998 IEEE

LP-based methods are able to handle much larger sys-
tems. The following are some preliminary timing re-
sults in seconds for the first two LP-based methods
running on a Sun Ultra 2200, using BPMPD, by Csaba
Mészáros, as the LP-solver [22].

Table 1: OPF Timing Results (seconds)

Size of Test System Run Time (seconds)
Generators Buses Dense LP Sparse LP

3 9 2 3
6 30 8 12
7 57 13 13

19 118 30 27
54 118 65 43
80 148 408 675
64 300 150 150

In the current implementation, the ability to de-
commit expensive generators is handled by a commit-
ment heuristic. However, if an expensive generator is
needed for VArs, this is only detected if the OPF fails
to converge. Next stage developments for the OPF are
to improve the handling of unit commitment [23] and
to include reliability and dynamic security constraints.

The latest version of the Matlab OPF solvers and
more detailed documentation of the algorithms em-
ployed are available at no cost at
http://www.pserc.cornell.edu/matpower/ as part of the
MATPOWER package [24].

7 Conclusions

In light of the restructuring of the electric power
industry to foster a competitive environment among
energy suppliers, tools for experimentally testing the
various proposed market structures are needed. Pow-
erWeb is designed to be a flexible platform for per-
forming such economic experiments using realistic
modeling of the physical network and real human deci-
sion makers. As an Internet-based, network-centered
computing environment, PowerWeb makes use of a
wide variety of technologies in its implementation.
All data are handled by a relational database and mar-
ket computations are performed by a Matlab-based
OPF. Next stage enhancements to the OPF involve
incorporating security constraints. On-going develop-
ment of the PowerWeb platform is planned to accom-
modate the industry’s experimental needs.

8 References

1. C. Winston, 1993. “Economic Deregulations = Days of
Reckoning for Microeconomists” Journal of Economic
Literature, vol. 31: 1263-1289.

2. J. Bernard, W. Schulze, and T. Mount, 1997. “Auction
Mechanisms for a Competitive Electric Power Market”,
paper presented at the American Agricultural Economics
Association Summer Meetings, July 1997, Toronto, Can.
9

1060-3425/98 $10.
3. V. Smith, 1996, “Market Power and Mechanism Design
for Deregulated Electricity Networks” Selected Paper
presented at the Economic Science Meetings, Oct. 17-20,
1996, University of Arizona. Tucson, Arizona.

4. C. Plott, March 10, 1997, “An Experimental Test of the
California Electricity Market”,
http://www.energyonline.com/wepex/reports/reports2.html.

5. R. J. Thomas, R. D. Zimmerman, R. Ethier, “PowerWeb
User’s Manual”, PSERC 97-10,
http://www.pserc.wisc.edu/pubs/PWebMan.pdf.

6. “IETF - HyperText Markup Language (HTML) Working
Group”, http://www.ics.uci.edu/pub/ietf/html/.

7. “The http://www.perl.com/ Home Page”,
http://www.perl.com/.

8. “Java Documentation”, http://www.javasoft.com/docs/.

9. “JavaScript Guide”,
http://home.netscape.com/eng/mozilla/3.0/handbook/javascript/.

10. “IETF - Hypertext Transfer Protocol (HTTP) Working
Group”, http://www.ics.uci.edu/pub/ietf/http/.

11. “The Common Gateway Interface”,
http://hoohoo.ncsa.uiuc.edu/cgi/overview.html.

12. “FastCGI”, http://www.fastcgi.com/.

13. “Persistent Client State HTTP Cookies”
http://www.netscape.com/newsref/std/cookie_spec.html.

14. “IETF - Uniform Resource Identifiers (URI) Working
Group”, http://www.ics.uci.edu/pub/ietf/uri/.

15. “MIME (Multipurpose Internet Mail Extensions”,
http://www.oac.uci.edu/indiv/ehood/MIME/MIME.html.

16. “DBI - A Database Interface Module for perl5”,
http://www.hermetica.com/technologia/DBI/.

17. “The JDBC™ Database Access API”,
http://www.javasoft.com/products/jdbc/.

18. “Apache HTTP Server Project”, http://www.apache.org/.

19. “mySQL Home Page”, http://www.tcx.se/.

20. O. Alsac, J. Bright, M. Prais, B. Stott, “Further Develop-
ments in LP-based Optimal Power Flow”, IEEE Trans.
On Power Systems, vol. 5, no. 3, 1990, pp. 697-711.

21. B. Stott, J. L. Marino, O. Alsac, “Review of Linear Pro-
gramming Applied to Power System Rescheduling”,
1979 PICA, pp. 142-154.

22. C. Mészáros, “The efficient implementation of interior
point methods for linear programming and their applica-
tions”, Ph.D. Thesis, Eötvös Loránd University of Sci-
ences, 1996.

23. C. Murillo-Sánchez and R. J. Thomas, “Thermal Unit
Commitment Including Optimal AC Power Flow Con-
straints”, a paper presented at and published in the pro-
ceedings of the 31st HICSS Conference, Kohala Coast,
Hawaii, Jan 6-9, 1998.

24. R. Zimmerman and D. Gan, “MATPOWER: A Matlab
Power System Simulation Package”,
http://www.pserc.cornell.edu/matpower/.
00 (C) 1998 IEEE

