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Abstract—Capturing psychological, emotional, and physiolog-
ical states, especially during a pandemic, and leveraging the
captured sensory data within the pandemic management ecosys-
tem is challenging. Recent advancements for the Internet of
Medical Things (IoMT) have shown promising results from
collecting diversified types of such emotional and physical health-
related data from the home environment. State-of-the-art deep
learning (DL) applications can run in a resource-constrained
edge environment, which allows data from IoMT devices to be
processed locally at the edge, and performs inferencing related
to in-home health. This allows health data to remain in the
vicinity of the user edge while ensuring the privacy, security,
and low latency of the inferencing system. In this article, we
develop an edge IoMT system that uses DL to detect diversi-
fied types of health-related COVID-19 symptoms and generates
reports and alerts that can be used for medical decision sup-
port. Several COVID-19 applications have been developed, tested,
and deployed to support clinical trials. We present the design of
the framework, a description of our implemented system, and
the accuracy results. The test results show the suitability of the
system for in-home health management during a pandemic.

Index Terms—Affective computing, deep learning (DL), emo-
tion analysis, Internet of Medical Things (IoMT).

I. INTRODUCTION

R
ECENT advancement in several domains, such as health-

related Internet of Things and AI, have made a significant

contribution to health support during the COVID-19 pandemic.

People are stuck due to travel restrictions, and healthcare

facilities are overwhelmed due to a large number of critical

patients. The elderly is particularly vulnerable to the pandemic.

Hence, in-home healthcare monitoring has become com-

monplace for both regular citizens and healthcare providers.

Recent Internet-of-Medical-Things (IoMT) devices can mon-

itor physiological, emotional, activity-related, and vital states

using wearable and noninvasive off-the-shelf hardware [1].

Furthermore, the accuracy of AI algorithms that can interpret

the IoMT data has also been remarkable [2]. Different types

of AI algorithms have emerged, especially deep learning (DL)
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algorithms, that have shown tremendous accuracy in interpret-

ing health-related data [3]. State-of-the-art DL algorithms can

even detect and recognize phenomena from live camera or

IoMT sensory data in real time. This has introduced a new

generation of IoMT-supported DL applications [4].

Among IoMT hardware advancements, one innovation has

made a breakthrough in the healthcare industry, called edge

IoMT nodes [1]. The current generation of IoMT nodes can

be independently deployed at the edge, e.g., the hospital or

home, where the health data needs to be monitored. These

edge health nodes now have a full OS with edge CPU and

graphics processing unit (GPU) support that allows the node

to perform complex DL computations on the edge. To leverage

the growth of sophisticated edge IoMT nodes, DL applications

have also been improved to support edge learning and infer-

encing. Data originating from a subject or hospital does not

need to travel outside the owner’s vicinity or edge; rather,

DL and event monitoring can take place at the edge. This

allows data privacy, security, and low-latency health applica-

tions to run on user premises with the support of DL and the

IoMT. The edge IoMT has hence ushered in new paradigms

of DL, such as federated learning, where learning takes place

in a distributed fashion at the edge, while only the model is

distributed [5]. Cheap GPU hardware can support IoMT nodes

that act as federated learning nodes.

IoMT has been used in several health-related applications,

such as physical therapy [1], mobile-edge computing [6],

seizure detection [9], pandemic management [10], and social

distancing monitoring [11], to cite a few. On the other

hand, DL has been used extensively to combat COVID-19

[7], [32] in several contexts, such as tracking wounds of

a person [12], diagnosing COVID-19 from X-rays [13], [14],

computerized tomography (CT) scans [15], [16], home health

monitoring [17], detecting multiple objects in a single cam-

era feed [19], and diagnosing diabetic retinopathy [21]. In

order to reduce the latency of IoMT inferencing and to ensure

the privacy and security of IoMT data, edge inferencing has

been suggested [8]. In another development, federated learning

has been proposed to support edge learning [5]. Finally, IoMT

and DL have been used together to deduce user emotions and

affective states [23]. For example, user emotions were col-

lected through the IoMT in [4]. Jelodar et al. [25] developed

a DL sentiment analysis system that could understand the emo-

tional state of a patient. The system presented in [26] used DL

to classify the activities of daily life.

Although much progress has been reported with the IoMT

and DL, very few have been used in the context that accom-

modates different in-home Quality-of-Life (QoL) monitoring

scenarios within one framework. QoL is the perceived health
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and emotional status of people. To this end, we introduce the

following novelties in this study.

1) We studied, implemented, and recommended a set of

edge learning IoMT devices that can be used to develop

DL edge solutions.

2) We have developed edge DL libraries for several IoMT

devices that can be used for developing health appli-

cations at the edge, e.g., at home. Our IoMT nodes

support a DL-based convolutional neural network (CNN)

architecture with the assistance of edge TPU/GPU.

3) We have developed a set of QoL monitoring applica-

tions based on IoMT edge learning. The applications

can monitor different phenomena and generate alerts in

real time.

The remainder of this article is organized as follows.

In Section II, we present some closely related works. In

Section III, we show the design and modeling of the system.

In Section IV, we show the implementation details, while

in Section V, we present and discuss the test results. In

Section VI, we conclude this article with our envisioned

future works.

II. RELATED WORKS

To report the state of the art in this domain, we present

advancements in four main areas: 1) IoMT devices; 2) DL

applications; 3) affective computing; and 4) edge learning.

A. IoMT

Yang et al. [1] used the IoMT in the context of physical

therapy at home. The IoMT was surveyed in the context of

mobile-edge computing in [6]. An overview of IoMT sen-

sors was studied in the context of patient monitoring in [7].

A comprehensive survey of health IoT based on the effect

of the Internet of Nano Things and 5G tactile Internet on

healthcare quality of service was portrayed [8]. The conver-

gence of IoT and cloud was used by Alhussein et al. [9]

to track the patient health status in a Cognitive Healthcare

IoT (CHIoT) system. A review of the IoMT for managing

pandemics, such as COVID-19, was presented in [10]. Ahmed

et al. [11] designed a framework that could track social

distancing and generate alerts when social distancing was

violated.

B. Deep Learning

Explainable AI was used by Lin et al. [2] to combat

the COVID-19 pandemic [16]. Federated learning was used

in [12] to track the wounds of subjects. DL has been

used to diagnose COVID-19 from X-rays [13], [14] and CT

scans [15], [16]. A detailed survey on DL in the context of

IoMT was presented in [3]. In order to add a semantic expla-

nation and evidence, the authors added model explainability

on top of the DL layers in [18]. DL has been used for object

classification to detect multiple objects using a single cam-

era feed [19], [20]. DL has also been used to diagnose diabetic

retinopathy [21]. A DL model was proposed in [22] that could

detect cancer patient using data classification.

C. Affective Computing for Health

The usage of the IoMT was surveyed by Singh et al. [23].

Collecting user emotions using the IoMT was presented

in [4]. Machine learning with the health IoT was used by

Machorro-Cano et al. [24] to support people with obesity in

managing their health status. Jelodar et al. [25] developed

a DL sentiment analysis system that could understand the

emotional state of a patient [25], [26]. Hossain and Ghulam

described a system, where emotion is recognized by the

extreme learning machine (ELM) classifier. The system

presented in that employed DL was used to classify the

activities of daily life.

D. Edge Learning

A 5G-based edge learning framework for COVID-19 patient

monitoring was presented in [1], in which the IoMT was

used to monitor symptoms. In order to reduce the latency

of IoMT inferencing and to add privacy and security to the

IoMT data, the authors suggested edge inferencing [8], [35].

To avoid delay in reporting critical in-home patient health

data, Hossain [27] proposed a cloud-assisted health moni-

toring system. Meanwhile, federated learning was proposed

to support edge learning in [5]. In another effort, edge-AI

was investigated [28] to support mobile edge learning and

computing. Rahman et al. [29] proposed an edge computing

framework to provide secure medical therapy.

III. SYSTEM DESIGN

In this section, we show the detailed design of the in-home

COVID-19 symptom management system. To show the design

using a modular approach, we present the design along the fol-

lowing four dimensions. We first show high-level applications

that can be built using the IoMT and edge learning. We then

deduce the IoMT edge hardware that will allow us to sup-

port the applications. Next, we show the complete end-to-end

stack followed by our designed model showing the flow of the

overall system.

A. Edge Applications

1) In-Home Quality of Life Management (HRQoL in the

Time of COVID-19): Health-Related QoL (HRQoL) is a metric

by which a subject can provide feedback to his/her health-

care provider regarding how effective the treatment is and how

much he/she can enjoy a natural way of life [34]. Fig. 1 shows

various qualities of life states that were taken into consider-

ation, implemented and tested for their effectiveness in the

home environment.

2) In-Home Pain/Depression and Facial Emotion Detection

(Computer Vision): This type of application uses a public-

facing camera and DL on camera streams to recognize pain,

depression, and facial emotions.

Electroencephalogram (EEG) Signal Detection: This type of

application uses raw EEG signals to classify pain, depression,

and emotion by measuring signals from an appropriate area of

the scalp.

3) In-Home Self-Quarantine and Safety (Facial Mask

Detection): Due to the nature of the airborne spreading pat-

tern, this application allows tracking high-risk visitors with

facial mask detection through DL algorithms.
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Social Distancing Detection: Appropriate social distanc-

ing can be monitored via wearable sensors or public-facing

cameras.

4) In-Home Symptom Management [Electrocardiogram

(ECG), Oxygen Saturation (SPo2), and Body Temperature

Detection]: Raw IoMT sensors can be used to detect different

COVID-19-related symptoms, such as oxygen saturation level,

body temperature, and heart rate.

Tiredness/Drowsiness Detection: Tiredness, excessive

yawning, drowsiness, and other related symptoms can be

classified using the IoMT and DL applications.

Speech Emotion Detection: Speech can be used to identify

the emotional state of a subject.

Fever Detection: Fever can also be detected in a noninvasive

way by using thermal cameras.

5) In-Home Treatment and Diagnosis (Pill Detection and

Reminder): DL can be used to identify the necessary pills

using regular cameras.

Doctor-on-Demand Chatbot: AI-based chatbots can be used

to follow up with patients, where a subject asks COVID-19-

related queries and obtains most of the answers. In addition,

the chatbot may follow-up with a doctor’s prescriptions.

Cough Sound: Cough sounds captured through a smart-

phone can be used to diagnose COVID-19.

B. Edge IoMT Device Selection

Fig. 1 shows a matrix of IoMT devices and correspond-

ing deployment scenarios. The bottom row shows the types

of IoMT hardware tested in this research, and the second

row called the AI at edge shows the hardware environ-

ment in which the actual edge IoMT hardware was deployed

and interfaced. While regular PCs and Raspberry PI were

interfaced with all the hardware mentioned in Fig. 1, the FLIR

thermal camera was interfaced with a smartphone.

C. Edge Deep Learning Stack Design

Fig. 1 also shows the complete stack in which the

edge IoMT hardware was incorporated and diverse types of

emotional and physiological phenomena detection systems

were developed. A sample QoL monitoring system that was

developed as described in Section III-A. As shown in Fig. 1,

the IoMT layer consists of the sensory media that help in event

data collection from the user ambience, which passes the raw

sensory data to the edge AI layer where either a Raspberry

PI or an NVIDIA Jetson platform captures the sensory data,

processes it with a CPU/GPU, and generates a report or alert

based on the type of QoL application the sensory media serves.

D. System Workflow

Fig. 2 shows the system workflow in which all the edge

IoMT hardware works within a certain scenario. The system

architecture starts with capturing the sensory data feed as input

to the system. The input can be from any of the four cate-

gories: 1) image; 2) video; 3) live camera feed; and 4) sensory

data. Appropriate DL libraries were developed for each input

feed, which is responsible for using the raw data set for train-

ing the DL algorithm, adding more accuracy to the modules,

and performing the inferencing. If the inferencing needs to be

Fig. 1. Edge-capable IoMT that are connected with edge learning hardware
to detect in-home user QoL data.

Fig. 2. Edge learning and processing flow for the IoMT.

done at the client edge, the DL model is converted to an edge

model, such as TensorFlow Lite (tflite). Finally, the model is

visualized using either a Web or smartphone application.

IV. IMPLEMENTATION

We implemented a wide range of edge learning applica-

tions that leverage the IoMT, and they can be explored on our

project homepage.1 We leveraged the IoMT hardware shown

in Fig. 1. As for the thermal camera, we used the FLIR Lepton

3.5 module, which was housed on a Pure Thermal 2 board hav-

ing a USB interface with the camera. Each of our developed

1http://advancedmedialab.com/UPM-AI-COVID19/demo-AI.html
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Fig. 3. UI for the edge learning IoMT applications: (a) Web interface;
(b) from left—smartphone application showing surrounding objects, people
around a subject with mask warning, and their identity; (c) capturing different
emotional states from a public facing camera; and (d) fever detection using
a thermal camera.

applications was developed end to end, starting with training

on the training data set, and including testing and validating,

and finally deployment via Web or smartphone applications.

Fig. 3(a) shows sample AI-based Web and smartphone appli-

cation interfaces that we developed for the proof of concept

for this research.

The DL applications either use TensorFlow/Keras or

PyTorch. The applications were trained using a cluster of

10 Nvidia RTX 2080 Ti GPUs. After each model was trained,

we deploy the model to run either on the Web or a smartphone.

In the case of Web-based deployment, we used a Flask server

deployed behind a Nginx reverse proxy server. The Flask

applications and the DL model were deployed as a docker

container. To access the GPU over the container, we used an

Fig. 4. IoMT data inferenced by the edge AI modules and alert generated
for further support of in-home subjects.

Nvidia docker with CUDA 9.0 and cudnn7-devel. For some

applications that required specialized CUDA support that was

not available from the cloud host, we have used ngrok to

securely tunnel the data traveling from our localhost DL server

through any network address translation (NAT) or firewall. To

deploy the DL application to the smartphone, we converted

the DL model to a tflite model and then quantized to support

the smartphone GPU/CPU.

Fig. 3(b) shows a smartphone application that can be

used by an elderly person having dementia or poor eye-

sight. The applications can recognize objects and people

around the subject and inform him/her through text-to-speech.

Fig. 3(c) shows an emotion collection application that uses

a Web-based edge learning client. Fig. 3(d) shows fever tem-

perature detection using a thermal camera. We also developed

an alert system based on IoMT hardware, shown in Fig. 1.

To ensure privacy and security for the IoMT data, we passed

the transactional data through an Ethereum and Hyperledger-

based blockchain framework to support both public and private

networks. The raw health data was saved off-chain and

linked with the blockchain for evidence support purposes.

Fig. 4 shows the AI alert generation system in which the crit-

ical events were captured, recognized, and shared with the

appropriate authorities via a messaging system. The system

also makes the IoMT-generated evidence available via the

blockchain. In addition to the computer vision-based DL appli-

cations, sensory data, such as oxygen saturation and ECG

values, were calculated using a recurrent NN (RNN).

V. TEST RESULTS

In this section, we elaborate on the tests that we con-

ducted to validate the efficacy of different applications. Due

to the diversity of each application type, details about the data

set, testing mechanism, and test results are presented in their

respective sections.

A. Sick or Nonsick From In-Home Cough Sound Analysis

We used a data set of 59 cough samples taken from

15 COVID-19 subjects who were confirmed with an RT-

PCR test. The subjects belonged to different age groups.

We also used around 219 samples of COVID-free subjects’
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Fig. 5. QoL measurement through cough sound recording from a sound
sensor: (a) time-series analysis of sample cough sound; (b) corresponding
frequency analysis in the image domain; and (c) training and validation loss
and accuracy.

cough sounds, which were labeled as pneumonia. The other

210 samples were from normal subjects that were collected

from Google’s audio data set. We converted cough sounds

to images [see Fig. 5(a) and (b)] and then applied a CNN

architecture with 3*CONV2D followed by an FC layer. The

resulting training loss and accuracy is shown in Fig. 5(c). The

training and validation loss were found to be 0.13 and 0.06,

respectively, while the training and validation accuracy were

recorded as 0.94 and 0.98, respectively.

B. Drowsiness Analysis

We used the dlib library along with You only Look

once (YoLo) V4 for facial mapping and facial landmark

detection. The sleeping pattern was calculated using the dura-

tion of a closed eye, the frequency of eyelid closure, and

blinking frequency. The algorithm also tracked head tilting

and yawning. We used the UTA drowsiness data set2 to train

our algorithm. The training and validation accuracy and loss

are shown in Fig. 6.

2http://vlm1.uta.edu/∼athitsos/projects/drowsiness/

Fig. 6. QoL measurement through tiredness and drowsiness detection
via camera sensor: (left) training and validation accuracy and (right) training
and validation loss.

Fig. 7. QoL measurement through social interaction using facial mask detec-
tion via camera sensor: (left) training and validation accuracy and (right)
training and validation loss.

C. Face Mask Detection

To train our face mask detection algorithm, we first used

a face detection algorithm based on the dlib library. We then

used a total of 8541 images consisting of 4250 images with

a face mask, and the rest without a face mask, downloaded

from a selenium-based Google search. Modified transfer learn-

ing using the MobieNetV2 architecture with a TensorFlow-

based CNN architecture was used. We achieved a training and

validation accuracy of 0.98 and 0.97, respectively, which is

shown in Fig. 7.

D. ECG

We used the Keras framework to implement a custom CNN

architecture to train the MIT-BIH Arrhythmia3 ECG data set.

The ECG signal was first preprocessed to generate a 2-D

image spectrogram. After the augmentation process, the 2-D

image was passed to a CNN architecture, which used seven

convolution layers followed by max pooling, global average

pooling, a fully connected layer, and a softmax layer, with

four classes of output. The resulting precision and recall val-

ues during the training and validation process are shown in

Table I, while the accuracy and loss values are presented in

3https://www.physionet.org/content/mitdb/1.0.0/
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Fig. 8. QoL measurement through physiological vital information col-
lected through ECG sensors: (left) training and validation accuracy and (right)
training and validation loss.

TABLE I
PRECISION AND RECALL OF ECG DATA CLASSIFICATION

TABLE II
PRECISION AND RECALL OF EMOTION CLASSIFICATION

Fig. 8. As shown in Table I, the training precision and recall

values of the ECG data were recorded to be 0.96 and 0.95,

respectively, for the training data set, whereas the validation

data set produced precision and recall values of 0.95 and 0.94,

respectively.

E. Physiological State Determination Using Emotion

Analysis

For this test, we used 1028 images for each of the seven

classes in training, 100 images for each of the seven classes

in validation, and 172 images for each of the seven classes in

the testing data set, as shown in Fig. 9(a). Fig. 9(a) shows the

confusion matrix with the precision and recall values of seven

emotion types, as shown in Table II. Fig. 9(b) and (c) shows

the training and validation accuracy and loss, respectively.

Table III shows the precision and recall values of six different

types of activities of daily life, which were recorded through

a smartphone.

Fig. 9. QoL measurement through emotional state detection using cam-
era sensor: (a) confusion metrics showing actual and predicted results;
(b) training and validation accuracy; and (c) training and validation loss.

TABLE III
PRECISION AND RECALL OF ACTIVITIES OF DAILY LIFE

F. Fever Detection

The application was trained with several modules: object

detection with YoloV3, face, eye, and forehead detection using

dlib, and then the live thermal camera reading of the forehead
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TABLE IV
PRECISION AND RECALL OF FEVER CLASSIFICATION

Fig. 10. QoL measurement through fever detection using thermal cam-
era sensors: (a) training and validation accuracy and (b) training and validation
loss.

was used to determine temperature, as shown in Fig. 3(d). The

application was tested on an NVIDIA Jetson Nano. The alarm

threshold was set at 37.5 ◦C. We used the Kaggle data set4 to

train our FLIR thermal camera images. The recorded precision

and recall values of the training and validation data sets are

shown in Table IV, and the corresponding chart is shown in

Fig. 10.

G. EEG Signal Classification

We trained our model using two data sets available from

Kaggle.5,6 The data sets provide the mental and emotional

states of subjects, captured through wearable BCI hardware.

The states are shown in Fig. 11. As shown in Fig. 11, the

trained random forest model could classify whether a person

was feeling positive, negative, or neutral. The precision and

recall values for three emotion types are shown in Table V.

Due to the clear demarcation of data types, we observed high

precision and recall values for each type of emotional value.

We were able to observe eight different types of COVID-

19-related phenomena, namely, the cough sound, drowsiness,

face mask detection, ECG and EEG data, emotional data,

activities of daily life, and fever detection from open-source

4https://www.kaggle.com/kpvisionlab/tufts-face-database-thermal-td-ir
5https://www.kaggle.com/birdy654/eeg-brainwave-dataset-feeling-emotions
6https://www.kaggle.com/birdy654/eeg-brainwave-dataset-mental-state

Fig. 11. QoL measurement through emotion detection using EEG sensors—
confusion metrics.

TABLE V
PRECISION AND RECALL OF EEG CLASSIFICATION

data sets. Because the trained models had acceptable accuracy,

precision, and recall values, we are now working with three

different hospitals at Madinah so that these trained models can

be deployed at patients’ home premises. The real challenge lies

in the actual data collection in the home. For that, we are plan-

ning to incorporate differential privacy, end-to-end encryption,

and federated learning among the edge devices. We will also

investigate ways to improve the accuracy, precision, and recall

values.

VI. CONCLUSION AND FUTURE WORK

In this article, we introduced an affective computing frame-

work that leverages the IoMT deployed in the user edge

environment, e.g., one’s home. The edge nodes use state-of-

the-art edge GPUs to run DL applications on the edge by

enabling collection and alert generation applications for a mul-

titude of COVID-19-related symptoms. Using the edge-GPU

architecture, user data privacy, security, and low-latency were

achieved. Due to the scarcity of specialized doctors and pan-

demic travel restrictions, especially for the elderly, in-home

healthcare and symptom management would provide the next

generation of healthcare support.

As a future work, we are planning to improve the accuracy

of each application and to deploy to real subjects. We are in

touch with several hospitals in which we have demonstrated

our solutions. After we attain acceptable accuracy, we will

plan for clinical trials.
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