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Abstract

An increasing number of people use mobile devices to monitor their behavior, such as exercise, 

and record their health status, such as psychological stress. However, these devices rarely provide 

ongoing support to help users understand how their behavior contributes to changes in their health 

status. To address this challenge, we aim to develop an interpretable policy for physical activity 

recommendations that reduce a user’s perceived psychological stress, over a given time horizon. 

We formulate this problem as a sequential decision-making problem and solve it using a new 

method that we refer to as threshold Q-learning (TQL). The advantage of the TQL method over 

traditional Q-learning is that it is “doubly robust” and interpretable. This interpretability is 

achieved by making model assumptions and incorporating threshold selection into the learning 

process. Our simulation results indicate that the TQL method performs better than the Q-learning 

method given model misspecification. Our analyses are performed on data collected from 79 

healthy adults over a 7 week period, where the data comprise physical activity patterns collected 

from mobile devices and self-assessed stress levels of the users. This work serves as a first step 

toward a computational health coaching solution for mobile device users.

Introduction

There is a growing interest in using mobile technologies, such as smartphones and wearable 

devices, for collecting health-relevant data and delivering health interventions [1]. In 

particular, mobile technologies that are able to continuously collect data over an extended 

period of time could deliver interventions in an adaptive manner. As a result, behavioral 

scientists and healthcare researchers are interested in using mobile technologies as an 

interactive platform for supporting health behavior change [2–5]. For example, by 

combining a fitness tracking wearable device (such as those made by Fitbit) that records a 

user’s exercise patterns with a fitness tracking smartphone app that records the user’s caloric 

intake and health status, the user can be provided with personalized coaching plans that 

suggest exercise or food based on the person’s ongoing performance. As another example, 

data collected from mobile devices can be used to personalize messages to patients [6] and 

support their self-care management of such concerns as obesity [7], chronic obstructive 

pulmonary disease [8], and post-traumatic stress disorder [9].

Researchers have used mobile devices to deliver behavioral interventions in the areas of 

substance use disorders [10], physical activities [11], mental health [12], cardiovascular 

disease management [13], and stress management [14]. The ability to use algorithms to 

prescribe interventions based on the behavioral data collected on mobile devices is still an 
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active area of research. The early evidence has started to emerge and stimulate the field 

through best practices [15, 16]. More recently, precision health applications have been 

developed to fuel closed-loop feedback systems that can help patients accurately follow the 

estimated treatment rules. Despite that the developed applications have performed well on 

observational data sets, the actual adoption in real life is often slow, and patient compliance 

is low. As demonstrated in recent large-scale trials such as the Innovative Approaches to 

Diet, Exercise, and Activity (IDEA) trial and the Tailored Rapid Interactive Mobile 

Messaging (TRIMM) trial for weight control [17, 18] and the Scripps Health study for 

healthcare cost and utilization control [19], it is insufficient to simply rely on unmasked data 

and algorithmic output from devices to improve outcomes. The data-driven insights need to 

be delivered with their interpretations in personal contexts (e.g., through text messaging or 

coaching advice with live discussion) to help patients. It is therefore imperative to develop 

interpretable analytics approaches that can provide highly relevant, person-specific insights 

[20, 21]. As medical decisions often involve unclear choices, developing interpretable 

analytics that consider human psychology is necessary to implement effective patient 

engagement technologies beyond simply addressing clinical efficacy.

Two key challenges emerge. One concerns how to generate adaptive feedback for a target 

user’s choice of actions by learning from real-world experiences that have led to desired 

health outcomes. The other regards how to make the feedback more interpretable by 

representing the learned behavior intervention decision rules in a simpler form that can be 

digested by users with ease and providing them with additional actionable guidance such as 

performance sub-goals. Both challenges lead to many subsequent questions regarding the 

interpretability of patient-generated health data in real-world healthcare applications.

To address the first challenge, a long line of research studies in adaptive clinical trials has 

established the benefits of incorporating adaptive treatment regimes in sequential multiple 

adaptive randomized trials (SMARTs) to achieve the best mean outcomes [22, 23]. More 

recently, researchers have considered applying adaptive rules to the delivery of behavioral 

intervention [24]. To address the second challenge, recent studies have started paying 

attention to the development of interpretable machine learning models for healthcare 

applications [25, 26]. However, the definitions of interpretability are often targeted at 

measuring some model characteristics (e.g., complexity), but unrelated to actual user 

interpretation [20, 21]. In the healthcare domain, an interpretable decision rule has the 

benefit of being easily communicated with domain experts and allowing machine learning 

algorithms to be trusted and widely implemented. There is some recent research work trying 

to address this problem, among which tree-based methods are known for interpretability and 

are easily deployed and disseminated. This approach was first introduced by Laber and Zhao 

[27] for one-stage treatment assignment problems. Zhang et al. [28] proposed a decision list 

based method to estimate the optimal dynamic treatment regimens. The decision list is easy 

to interpret and can be expressed as a flow chart of if-else clauses. This method has 

interpretability, but it requires a pre-mined class of decision-list-based regimes. In addition, 

tree-based methods, although they have low bias, are often highly variable. To bridge the 

gaps, in this study we consider ways that can help learn the interpretable decision rules and 

to generate adaptive and interpretable feedback according to the observations of target users. 
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Our proposed method has an easier formulation compared to the above methods and is 

expected to have balanced bias-variance trade-off.

We propose a learning framework to construct a health behavioral intervention policy (i.e., a 

set of decision rules that specifies actions to be taken under different conditions) that is 

adaptive and interpretable. By “interpretable,” what we mean is that the rules can not only 

be expressed using terms that are generally understood by a layperson, but that the meaning 

of the terms can be made concrete, rather than abstract. For example, a rule that says, “do 

moderate exercise for 30 minutes” if “your stress level is greater than 5” is more 

interpretable than “do moderate exercise for 30 minutes” if “the combination of the numbers 

you see on your screen has a value greater than 7.” In the latter case, the number that was 

displayed on the screen might be the result of evaluating a complicated and abstract 

mathematical expression that cannot be easily described in terms that a lay person could 

relate to.

Our intervention policy comprises a series of dynamic, interpretable decision rules that can 

be used to recommend behavior to users that can lead them to achieve their desired health 

outcomes. Q-learning (a model-free reinforcement learning technique) is commonly used to 

solve such sequential decision-making problems [29]. Q-learning uses a sequence of state-

action-reward triples to determine a sequence of decision rules that maximizes cumulative 

rewards. However, the resulting decision rules generated by the learning algorithm can be 

difficult to explain, rendering them unappealing in practical settings. In the domain of 

healthcare and health behavior, recommended actions need to be made understandable to 

patients and practitioners to promote adoption and engagement with them.

In this paper, we present a new method for estimating an interpretable policy for health 

behavior interventions. This method applies a linear approximation of the well-known Q-

learning algorithm with statistical regression modeling approaches [30, 31]. By using a 

regression model to approximate the Q-learning function, we can produce a result that is 

interpretable. The novelty of our work is that the estimated policy is adaptive and 

interpretable, and provides users with information on performance sub-goals (e.g., 

intermediate stress reduction). In contrast to a static, one-size-fits-all policy, an adaptive 

policy uses the most current information from each individual to tailor the intervention based 

on the individual’s ongoing performance. In the proposed method, we incorporate threshold 

finding into the Q-learning model and consider the threshold to be the sub-goal option. 

Therefore, we refer to our method as the Threshold Q-learning (TQL) method.

The remainder of this paper is organized as follows. In the next section, we describe the 

structure of the data set. Then, we explain the Q-learning and TQL methodological 

framework. After this, we compare the proposed TQL method with the Q-learning method 

using Monte Carlo simulations and the stress study data set. In the discussion section, we 

describe the advantages, potential, and limitations of the TQL method. In the last section, we 

present summary remarks regarding the TQL method.
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The observational data set

Psychological stress contributes to the development and progression of cardiovascular 

diseases, whereas good health behavior can improve physical health and reduce the negative 

consequences of stress. Research thus far has focused on the effect of regular exercise (i.e., a 

subset of physical activity that is planned, structured, and repetitive with the objective of 

improving or maintaining physical fitness) and physical activity on mental health and 

demonstrated the benefit of regular exercise and physical activity on emotional well-being 

and stress reduction [32, 33]. We use data collected from an observational cohort study [34], 

which aimed to understand the bidirectional relationship between stress exposure/perception 

and exercise behavior, to illustrate the potential effectiveness of our method. Access to the 

study data set and information about the study’s execution and materials is publicly available 

at [35]. We refer to this data set as the stress study data set.

The stress study data set comprises daily objective measures of exercise and self-reported 

stress levels from 79 healthy adults over a 7-week period from January 2014 to July 2015. 

The healthy adults participating in the study were reported to have exercised at least 6 times 

per month but did not have regular exercise schedules (e.g., intermittent exercisers). In this 

study, users were continuously monitored using a wrist-based accelerometer (Fitbit Flex, 

http://www.fitbit.com/) to detect whether they had engaged in a total of at least 24 minutes 

of moderate or vigorous physical activity (MVPA) within a 30-minute time interval each 

day. Each such observed instance of MVPA is referred to as an “MVPA bout” (and is akin to 

exercise). The duration of each MVPA bout is also recorded. Different levels of physical 

activity represent different actions that may be taken. Users were asked to report daily on 

their perceived psychosocial stress via a smartphone-based electronic diary. To measure 

psychosocial stress, the users were asked how stressed they felt at three randomized times 

during the day and were asked again at the end of the day how stressful their day had been 

overall. The stress level is a score ranging from 0 to 10 and is based on self-evaluation. In 

our method, the reported stress levels represent the individual’s health status. We use the 

end-of-the-day stress level as the health outcome. If this value is missing, then the averaged 

stress levels during the day are used. The Fitbit Flex wirelessly transmits activity data from 

users in real time. This prevents loss of data for users who may otherwise not return the 

device, provides a means to monitor wear compliance in real time, and allows for the 

continuous assessment of physical activity over numerous weeks. As such, the Fitbit Flex 

provides numerous benefits as compared to traditional research-grade accelerometers. 

Researchers have demonstrated that the Fitbit Flex is an accurate and reliable device for 

measuring physical activity [36–40].

Methodological framework

The data we observe are sequential. To initialize the sequence, information about each user’s 

characteristics and baseline health status (e.g., baseline stress level) is collected. At each 

stage, an action (e.g., MVPA pattern) and an intermediate health outcome (e.g., stress level 

reduction from baseline) are observed. In the notation that follows, lower-case variables are 

the realizations of their corresponding upper-case random variables. For example, o is a 

particular realization of the random variable O. Additionally, variables in bold font are 
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vectors or matrices (as opposed to scalars). In a T-stage study for each user i, we observe the 

data

{Oi1, Ai1, Oi2, Ai2, …, OiT , AiT , Yi} .

Oi1 is a scalar of a baseline health outcome measure, and Oit, where 1 < t ≤ T, is a scalar of 

an intermediate health outcome measure at the end of stage t. Ait is a scalar of action for user 

i at stage t. To simplify the problem, we only consider binary actions, Ait = 0 or 1. Yi is a 

scalar of a final health outcome measure for user i we aim to optimize. Let Hit denote the 

historical information for user i up to stage t. That is, Hit = {Oi1, Ai1, …, Oit}. In our data 

set, for each user i, Oit is the stress level reduction from baseline at stage t for 1 < t ≤ T, and 

the final health outcome Yi is the final stress level reduction from baseline. The propensity 

score, P(Ait|Hit), is defined as the probability of assigning some intervention given a user’s 

historical information. In a randomized study, the propensity score is known. In contrast to a 

randomized study, an observational study is not intervened in but observed. All the related 

features and the outcome of interest are observed in order to assess the relationship between 

the exposure and the outcome. Therefore, in an observational study, the propensity score is 

unknown and to be estimated. In this context, a policy, π = (π1, …, πT), is defined as a set 

of decision rules that takes the historical information of a user Hit as input and outputs a 

recommended action Ait at stage t for t = 1, …, T. Our goal is to estimate the policy, when 

implemented in the study population, that will optimize the expected outcome Eπ(Y). This 

policy is called the optimal policy, and denoted by π∗ = (π1
∗, …, πT

∗). For notation simplicity, 

the subscript i in the variables is omitted for the rest of the section.

Q-learning notation and framework

Q-learning is a learning method to construct high-quality policies. The purpose of Q-

learning is to model the interaction between an agent and environment. The Q-learning 

method learns an action-state value function of an agent, referred to as a Q function (quality 

of the action-state), and uses backward induction to estimate a policy that maximizes a 

cumulative reward obtained by interacting with the environment. In the health domain, an 

agent refers to a subject, and environment refers to the system of human body and external 

source of observations. Under our problem settings, the action is the health intervention, the 

state is implicitly represented by a function of historical health outcomes and actions, and 

the reward is the increased value of a beneficial health outcome or the decreased value of a 

hazardous health outcome. We use the Q-learning methodology framework from [30], and 

assume a parametric regression model for the Q function at each stage to learn the optimal 

policy that maximizes the reward for a finite time horizon (i.e., the final stage T is a finite 

number). In a T-stage study, the Q function is specified as follows.

In a final stage, T, we have

QT(hT , aT) = E(Y |HT = hT , AT = aT) .

In a previous stage, t, we have
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Qt(ht, at) = E(maxat + 1
Qt + 1(ht + 1, at + 1) |Ht = ht, At = at) .

It can be shown that the optimal policy π* will choose the action that maximizes the Q 

function at each stage. That is,

πt
∗(ht) = arg maxat

Qt(ht, at) .

We assume a parametric regression model for the Q function and denote the Q function at 

stage t as Qt(ht, at; θt), where θt is a vector of regression coefficients in the linear regression 

model and it consists of both the regression coefficients of the main effect and the action 

effect; i.e., θt = (θt0, θt1). An example of this linear approximation for the case where T = 2 

is provided below.

In the second stage,

Q2(h2, a2; θ2) = M2
Tθ20 + M2

Ta2θ21 .

In the first stage,

Q1(h1, a1; θ1) = M1
Tθ10 + M1

Ta1θ11,

where M1 = (1, o1)T and M2 = (1, a1, o1, o2, o1o2, a1o2)T. Linear regression can be used to 

estimate the parameters, denoted by θt
Q, and the optimal policy at stage, t, can be estimated 

by

πt
Q ht; θt

Q = argmaxat
Qt ht, at; θt

Q = I(Mt
Tθt1

Q > 0) .

Threshold Q-learning framework

The TQL method is based on Q-learning with a linear approximation and has threshold 

selection added into the learning process. The benefit of the threshold selection step is to 

obtain interpretability. In addition, we select the threshold by maximizing a doubly robust 

estimate of the expected outcome under a policy. “Doubly robust” means that we can still 

obtain a consistent estimation of the expected outcome as long as the Q functions or the 

propensity scores are correctly specified. For ease of explaining our framework, we will 

continue our exposition under the assumption that T = 2. To formulate the problem in 

mathematical terms, we now define Rit to be the dichotomized health outcome of the user i 
at the stage t, where Rit = I(Oit > ct), ct is the threshold to be estimated at each stage, and I(․) 
is an indicator function. Therefore, Rit = 1 if the outcome Oit exceeds ct; otherwise, Rit = 0. 

The threshold, ct, can be considered the outcome goal option (e.g., stress level reduction) at 

stage t. Therefore, Rit indicates whether the user i has met the goal in the stage t. We use the 
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notation pt to denote the propensity score at stage t. The resulting policy takes the form of a 

linear combination of the dichotomized outcomes. We model the Q function at the second 

stage as

Q2(h2, a2; θ2, c1, c2) = M2
Tθ20 + S2

T(a2 − p2)θ21

and the Q function in the first stage as

Q1(h1, a1; θ1, c1) = M1
Tθ10 + S1

T(a1 − p1)θ11,

where S1 = (1, r1)T and S2 = (1, a1, r1, r2, r1r2, a1r2)T, r1 = I(o1 > c1) and r2 = I(o2 > c2).

The estimated optimal policy in the second stage takes the following form:

π2(h2; θ2, c1, c2) = argmaxa2
S2

Ta2θ21 = I(S2
Tθ21 > 0)

The estimated optimal policy at the first stage takes the following form:

π1(h1; θ1, c1) = argmaxa1
S1

Ta1θ11 = I(S1
Tθ11 > 0)

The optimal policy is estimated using backward induction in order to maximize the reward 

over the time horizon. We are interested in the parameters that contain information about 

how different actions affect the value of the Q function. Therefore, the parameters of our 

main interest are the regression coefficients {θ11, θ21} and the threshold parameters {c1, 

c2}.

The estimation of an optimal policy consists of the estimation of regression parameters {θ11, 

θ21} and the estimation of threshold parameters {c1, c2}. The regression parameters are 

estimated as least squares estimators. The propensity scores are estimated using a logistic 

regression. The threshold parameters are estimated to maximize a doubly robust estimate of 

the beneficial expected outcome under a policy [41]. For the policy π = (π1, π2), the doubly 

robust estimate of the expected outcome is defined as

μπ = 1
n ∑

i = 1

n
Wi2(Yi − Q2(hi2, ai2)) − ∑

i = 1

n
Wi1(Q1(hi1, ai1) − max

ai2
Q2(hi2, ai2)) + ∑

i = 1

n
max
ai1

Q1(hi1, ai1) ,

where

Wi2 =
I(ai1 = π1(hi1))I(ai2 = π2(hi2))

p1(ai1 |hi1)p2(ai2 |hi2)

and
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Wi1 =
I(ai1 = π1(hi1))

p1(ai1 |hi1) .

Assuming the final outcome is a beneficial outcome, the threshold parameters are chosen to 

maximize μ̂ so that the optimal mean outcome is achieved. The expected outcome under a 

policy is the value of the policy. The estimate of the expected outcome is nonparametric and 

does not depend on the linear approximation for the Q function. It is doubly robust with 

respect to the misspecification of the regression model or the propensity score. Thus, the 

estimate is used to evaluate policies that are estimated under different model assumptions for 

the Q functions.

The detailed TQL algorithm is given below.

1. Estimate the propensity score pt(Ht) by p̂t(Ht) using logistic regression with At as 

outcome and Ht as predictors, with t = 1, 2.

2. For each pair of c = (c1, c2), do the following:

a. Regress Y on M2
Tθ20 + S2

T(a2 − p2(H2))θ21 to obtain the estimate θ2̂1(c).

b. Construct the pseudo outcome Ŷ = Y − S2a2θ̂21(c) + S2θ̂21(c)I(S2θ̂21(c) 

> 0).

c. Regress Ŷ on M1
Tθ10 + S1

T(a1 − p1(H1))θ11 to obtain the estimate θ̂11(c).

d. Construct the policy π(c) = (π1(c), π2(c)) where πt(c) = I(Stθ̂t1(c) > 0), 

t = 1, 2.

3. Choose the threshold ĉ = (ĉ1, ĉ2) that maximizes μ̂π(c).

4. Output the estimated policy π̂1(h1; θ̂1, ĉ1) = I(S1θ̂11(ĉ1) > 0) and π̂2(h2; θ̂2, ĉ1, 

ĉ2) = I(S2θ̂21(ĉ1, ĉ2) > 0).

The optimization in Step 3 of the TQL algorithm is performed using a genetic algorithm 

(GA) [42]. The GA is a heuristic searching algorithm and commonly used to find solutions 

to optimization questions. In a genetic algorithm, potential solutions are evolved iteratively 

towards the better ones. The evolution starts from a group of randomly selected solutions 

and mutates each solution to achieve a better value of the objective function. GA is 

implemented in the “GA” package available in R, an open-source statistical computing 

environment [43].

Experiments

Method evaluation based on Monte Carlo simulation

To assess the quality of the estimated policy using the TQL method, we performed a series 

of Monte Carlo simulations and then compared the expected outcome following the 

estimated policy identified by the TQL method with that of the policy identified by the Q-

learning method. We aim to maximize the final outcome; thus, the estimated policy that 

Hu et al. Page 8

IBM J Res Dev. Author manuscript; available in PMC 2018 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



results in a high value of the expected outcome is desired. The simulation procedure is 

specified as the following: We first generated the training data sets and a test data set. Then 

we estimated the optimal policy in each of the training data sets using the TQL method and 

the Q-learning method. The estimated policies were evaluated on the test set. The mean and 

the standard deviation of the expected outcome associated with the estimated policy from the 

two methods were compared.

To generate a training data set, we generated a set of actions, Ai1 and Ai2, and outcomes, 

Oi1, Oi2, and Yi, independently and identically distributed (i.i.d.) for each user i. To simulate 

the actions taken by a user, we considered binary actions, denoted by {0, 1}. Ai1 is an action 

generated from a Bernoulli distribution with probability

exp((1, hi1)α1
T)

1 + exp((1, hi1)α1
T)

.

Ai2 is an action generated from a Bernoulli distribution with probability

exp((1, hi2)α2
T)

1 + exp((1, hi2)α2
T)

.

where α1 = (0.4, −0.1) and α2 = (−1.5, 0.2, 1.8, −0.1).

The baseline stress level, Oi1, was i.i.d. generated from a normal distribution N(3, 1). The 

intermediate stress level, Oi2, was i.i.d. generated from a normal distribution N(0.2Oi1, 1), so 

Oi2 depends only on Oi1 but not Ai1. We generated the final outcome, Yi, from a model with 

a linear and a nonlinear action effect function separately. Specifically, in the model of a 

linear action effect function

Yi = (1, Ai1, Oi1, Oi2, Oi1Oi2, Ai1Oi2)Tθ20 + (1, Ai1, Oi1, Oi2, Oi1Oi2, Ai1Oi2)T(Ai2 − p2(Hi2))θ21 + εi,

where θ20 = (2.6, 0.4, − 2.2, − 0.03, 0.3, 0.02), θ21 = (−0.4, −0.3, 1.5, −0.3, 0.03, 0.06) and 

εi ~ N(0, 1).

In the model of a nonlinear action effect function

Yi = (1, Ai1, Oi1, Oi2, Oi1Oi2, Ai1Oi2)Tθ20 + Oi2
2(Ai2 − p2(Hi2))θ21 + εi,

where θ20 = (2.6, 0.4, −2.2, −0.03, 0.3, 0.02), θ21 = 1 and εi ~ N(0, 1).

We used the training sample size of 50, 100, and 500 to account for possible effects caused 

by different sample sizes. We also simulated a large test data set with a sample size of 2000. 

A summary of the mean and standard deviation of the expected outcome following the 

estimated policy using different methods, sample sizes, and models is provided in Table 1. 
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Two models were used to generate the data. One used a linear action effect function 

(referred to as the linear model), and the other used a nonlinear action effect function 

(referred to as the nonlinear model). Table 1 indicates that the TQL method results in a 

higher expected outcome on average compared to the Q-learning method in the nonlinear 

model setting. In the linear model setting, the TQL method and the Q-learning method result 

in similar expected outcomes on average. Additionally, the standard deviation of the 

expected outcome using the TQL method is similar to the one using the Q-learning method 

in the linear model case. However, in the nonlinear case the standard deviation of the 

expected outcome using the TQL method is higher.

Figure 1 shows the boxplot of the expected outcome following the estimated optimal policy 

over 500 Monte Carlo replications [44] when the training sample size is 500. It is worth 

noting that in the nonlinear model case, the policy derived from the TQL method is less 

stable but often yields higher expected outcome compared to the one derived from the Q-

learning method. This is because the threshold is selected by maximizing a doubly robust 

estimate of the expected outcome. As a result, the TQL method is expected to be more 

robust to model misspecification (i.e., less biased), by “paying a price” of larger variance as 

compared to the Q-learning method. The novelty of the TQL method is the added 

interpretability of the policy to provide interpretable guidance. This simulation study shows 

that in addition to interpretability, the TQL method can also yield policies that can lead to 

desirable expected outcomes.

Policy estimation from observational data

In this section, for the purpose of illustrating the proposed methodology, we applied the 

TQL method to the stress study data set. That is, we show how the TQL method can be used 

to generate a policy for recommending an action to a user in each decision stage, so as to 

maximize their final stress level reduction from baseline.

We considered a two-stage decision problem, where the time interval for each stage is 1 

week. We used the first 3 weeks of study users’ data as the training data and the fifth to the 

seventh week of the data as the test data. At the start of the first stage, we observed the 

baseline stress level Oi1, which is an averaged stress level in the first week. For each stage, 

we observed the user’s actual physical activity level and stress level reduction from baseline. 

The physical activity level is converted into a binary action, Ait, by computing the 

dichotomized MVPA bout duration, using a cutoff of 150 minutes per week. Ait = 1 means 

“active.” It indicates that the weekly MVPA bout duration is greater than 150 minutes. Ait = 

0 means “inactive.” It indicates that the weekly MVPA bout duration is not greater than 150 

minutes. We choose the cutoff of 150 minutes since the American Heart Association 

recommends 150 minutes of moderate exercise per week for an adult to improve 

cardiovascular health [45]. We observed the averaged self-reported stress level reduction 

from baseline in the second week and in the third week. Using the difference of the recorded 

stress level can adjust for heterogeneity of self-reports across users.

After applying our TQL method and the Q-learning method separately on the stress study 

data set, we compared the two resulting policies for interpretability. The policy generated by 

the TQL method is shown in Figure 2. The interpretation of the estimated policy in Figure 2 
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is as follows: In the first stage, the user is suggested to be inactive regardless of the baseline 

stress level. In the second stage, if a user’s baseline stress level is greater than 0.7, and she 

does not follow the suggestion of being inactive, then she is suggested to be active in the 

second stage, regardless of the intermediate outcome. For the case that the user follows the 

suggestion of being inactive, if his stress level increases from baseline greater than 1.1, then 

he is suggested to be active in the second stage, otherwise to stay inactive. If the user’s 

baseline stress level is less than or equal to 0.7 and his stress level at the end of the first stage 

increases greater than 1.1, then he is encouraged to be active in the second stage, otherwise 

to be inactive. In this situation, whether the user follows the recommended action in the first 

stage does not matter.

The estimated policy using the Q-learning method is as follows: In the first stage, the user is 

suggested to be active if the baseline stress level is less than 3.9, otherwise to be inactive. In 

the second stage, if (0.33 − 0.06o1 − 1.01o2 + 0.17a1 + 1.08a1o2 + 0.16o1o2 > 0), then be 

active, otherwise be inactive. While the decision rule used in the second stage is 

implementable, we consider it to be uninterpretable because the expression “0.33 − 0.06o1 

− 1.01o2 + 0.17a1 + 1.08a1o2 + 0.16o1o2” does not have a concrete meaning.

As we can see from the descriptions of the two policies, the policy estimated using the TQL 

method is more interpretable than the one generated using the Q-learning method. 

Therefore, the policy generated by the TQL method can be more easily translated into a 

meaningful set of guidelines for the user. To assess the effect of the estimated policies, we 

find the mean stress level reduction from baseline across the users at the end of the 2-week 

period following the policy estimated by the TQL method is 3.7, the one following the 

policy estimated by the Q-learning method is 0.5, while in the original data the mean stress 

level reduction across the users at the end of the 2-week period is 0.5.

Discussion

In this paper, we introduce a new learning method that not only helps identify an adaptive 

policy for behavior recommendation, but also generates feedback that is interpretable to a 

target user. The advantages of the new TQL method are three-fold. First, the policy 

estimated using the TQL method generates adaptive feedback that can account for individual 

observations directly. Taking the stress data as an example: At each stage wherein the target 

user’s action and averaged stress level reduction are observed, the expected utilities of the 

different next-step actions can then be calculated accordingly to drive behavior 

recommendations. Second, another strength of the TQL method is that it incorporates 

threshold finding in the problem formulation, which leads to the estimation of performance 

sub-goals and in turn helps generate detailed guidance for the users. Whether the sub-goal at 

each stage is achieved or not may affect the next-stage action recommendation. Finally, the 

policy learned by the TQL method can be interpreted to the target user to help the user 

understand the recommendation. We believe that policies that are less interpretable are less 

likely to be adopted by a user because it makes it difficult for them to understand the 

relationship between their experiences and the resulting recommendation. Thus, the learned 

policy with concrete meaning can be explained to individual users as a motivator for better 

compliance to the recommendation.

Hu et al. Page 11

IBM J Res Dev. Author manuscript; available in PMC 2018 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Despite all the advantages and potentials, there still exist limitations of the TQL method that 

warrant future investigation. For one, the performance of the TQL method depends on the 

underlying nature of the data set since we make model assumptions on the Q function. If the 

linear combination of the indicator functions cannot characterize the true relationship 

between the stress outcome and the observed history, then the TQL method may not 

outperform the methods without model assumptions. The doubly robust estimate is used to 

account for potential confounders. In a future study, it would be important to assess to what 

extent the findings can be generalizable. In the perspective of the development of 

interpretable machine learning methods for healthcare, it is also imperative to start 

developing patient subgroup analysis and calibration methods that can incorporate the 

evaluation metrics of some interpretability measures to inform on the trade-off between 

policy performance and interpretability [46].

Going forward, there is certainly still a need to further develop finer-granular strategies to 

translate the policies into messages or interfaces that can help explain the relationship 

between recommendations and users’ experiences. For example, based on the different 

motivational frames (e.g., emotional, social, and informational) [47], the adaptive and 

interpretable feedback would still need to be further tailored in different ways to engage and 

“nudge” the users more effectively. This is also aligned with the interest of the greater 

healthcare community in the pursuit of the vision in patient-centered care [48, 49]. 

Opportunities are especially rich in the application areas that are traditionally performed 

with survey-based ecological momentary assessment (EMA) [50]. By coupling EMA with 

mobile devices, the TQL method can help make sense of the incoming streams of repeatedly 

collected exposure data (e.g., psychosocial stressors) in ecologically valid settings such as 

home and work. Compared to the survey-based EMA, the TQL-enhanced mobile EMA 

applications with more contextual information from real-world experience are expected to 

further reduce recall bias and improve the efficacy of N-of-1 study [51, 52]. Users and field 

validation studies would be needed to demonstrate the value of adaptive and interpretable 

feedback for improving patient experience, healthcare quality and care coordination in the 

care management flow.

Conclusion

In an effort to bridge the gap between observed individual-level evidence and practical 

application, we designed and implemented an interpretable TQL method to estimate a 

recommendation policy and provide individualized recommendations for stress reduction. To 

meet the specific challenge of learning an interpretable policy, this work uses observations 

obtained from a stress study including self-reported stress levels and physical activity 

measurements from mobile devices. The method estimates a health intervention policy and 

computes optimal thresholds to set sub-goals. Personalized behavioral recommendations are 

made based on both the estimated policy and the sub-goals being set, thus avoiding making 

one-size-fits-all recommendations. Compared to the Q-learning method, the proposed 

method provides a more interpretable policy, which can in turn serve as the foundation for a 

more progressive version of behavioral coaching in the future.
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Figure 1. 
Boxplot of 500 Monte Carlo replications of the expected outcome under the estimated policy 

using the TQL method and QL method with a training sample size equal to 500 (top: in a 

linear model setting; bottom: in a nonlinear model setting).
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Figure 2. 
The estimated interpretable policy by the TQL method using the two-stage stress data.
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Table 1

Estimated mean (standard deviation) of the expected outcomes using the Threshold Q-learning (TQL) method 

and the Q-learning (QL) method.

Linear model Nonlinear model

n TQL QL TQL QL

50 3.16(1.32) 3.16(1.32) 4.66(0.91) 4.38(0.69)

100 3.14(1.37) 3.15(1.37) 4.72(0.62) 4.42(0.28)

500 3.30(1.28) 3.30(1.29) 4.75(0.36) 4.47(0.14)
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