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SUMMARY 
Recent studies on the relationship between the Nusselt (Nu) and Rayleigh (Ra) numbers 
for base-heated convection in a spherical shell with a constant viscosity show that the 
power-law index is around 114, which is different from the value of 1 I3 predicted by a 
simple boundary layer theory. We show that such a difference may be caused by the flow 
pattern due to the geometry. The flow pattern of the convection in a spherical shell 
at relatively low Ra, at least, less than lo6, is characterized by narrow upwelling and 
broad downwelling, which is similar to the opposite flow pattern of internally heated 
convection. Convection in the internally heated case predicts the power-law index of 
114. We demonstrate this relationship based on the concept of ‘local’ Rayleigh (Ral) and 
Nusselt (Nul) numbers 
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INTRODUCTION 

Large-scale mantle convection is undoubtedly 3-D in character 
partly because of its geometry. Thus, it is important to under- 
stand how such a geometrical constraint influences various 
aspects of mantle convection. Numerical studies of the mantle 
convection in 3-D spherical shells (e.g. Baumgardner 1985; 
Glatzmaier 1988; Bercovici et al. 1989; Ratcliff, Schubert & 
Zebib 1995; Iwase 1996) give solutions that are clearly different 
from those obtained by 2-D or 3-D Cartesian convection. 
For example, for constant viscosity the upwelling flows are 
cylindrical and in the steady state are surrounded by sheet-like 
downwellings. The heat transport efficiency is also different 
from that of Cartesian convection. It is well known that 
the power-law index (b) of the Nusselt-Rayleigh numbers 
relationship is around 1/3 (e.g. Christensen 1984). /3=1/3 is 
predicted by the boundary layer theory of the box model 
without internal heating (Turcotte & Oxburgh 1967). However, 
b- 1 /4 has been reported for spherical shell geometry models 
(Ratcliff, Schubert & Zebib 1996). This paper presents an 
interpretation of the Nu-Ra relationship of the convection in a 
spherical shell based on the recently introduced idea of ‘local’ 
Rayleigh and Nusselt numbers (Honda 1996). 

DEFINITION OF Nu AND Ra 

The Nusselt (Nu) and Rayleigh (Ra)  numbers are generally 
defined by 

Nu ~ Qcond+conv I e c o n d  

\ R a c y  gud3AT 

where Qcon~+conv is the heat flux of the convective state, and 
Qcond that when the heat is transported only by conduction. 
AT, d ,  g ,  a, v and IC are respectively the temperature drop across 
the convection layer, the depth of the convective layer, the 
acceleration of the gravity, the coefficient of the thermal 
expansion, kinematic viscosity, and thermal diffusivity. For the 
spherical shell model, the Nusselt number (eq. 1) at r = r  is 
given by 

where r o ,  r l ,  k and Q ( r )  are the radii of the outer and inner shell, 
the thermal conductivity and the heat flux at r = r,  respectively. 
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Honda (1996) recently introduced the ‘local’ Rayleigh (Ral) 
and Nusselt (Nul)  numbers for interpreting the results of the 
convection with a strongly temperature-dependent viscosity. 
They are defined by 

(3) 

where Ql is the heat flux and AT, is the temperature drop 
within a boundary layer. The suffix 1 stands for the ‘local’ value 
(1 is either top or bottom). There are no apparent physical 
meanings for Nu1 and Ral. However, they are found to be 
convenient parameters to compare the various types of con- 
vection. Honda (1996) showed that Nul-Ral relationship for 
temperature-dependent viscosity can be interpreted by the 
results of constant-viscosity convection with free or rigid 
surfaces. 

RESULTS OF 3-D SPHERICAL SHELL AND 
AXISYMMETRIC CONVECTION 

Fig. 1 shows the Nu-Ra relationship for base-heated isoviscous 
convection in a spherical shell (full 3-D: filled and open circles; 
axisymmetric geometry: open triangles). The results of the full 
3-D calculations were obtained by Ratcliff et al. (1996) and 
Iwase (1996). In both calculations, the convection equations 
(Boussinesq approximation) were solved by the control- 
volume (finite-volume) method, and the number of control 
volumes was either 40x50~100 (v ,  6, 4) (Ratcliff et al. 1996) 
or 32~32x64  (some with 64~64x128) (Iwase 1996). The com- 
putation of the axisyrnmetric geometry model was performed 
using the full 3-D code described in Iwase (1996) by stipulating 
that the physical parameters, such as the velocity, temperature 
and pressure do not change in longitudinal direction and the 

Ra vs. Nu (global) 
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Figure 1. Relationship between Nusselt (Nu) and Rayleigh (Ra) 
numbers for the 3-D spherical shell convection. Triangles are the 
results for the axisymmetric model. Circles are those for the full 3-D 
model (filled circles: after Ratcliff ef al. 1996; open circles: after Iwase 
1996). The solid line is the least-squares fit. 

longitudinal velocity is zero. The number of control volumes 
was 64x128 ( r ,  6). All the calculations were carried out under 
the condition of constant viscosity and the ratio of the inner to 
outer shell radius being 0.55, which is appropriate for the 
mantle of the Earth. In the full 3-D models, the results for both 
the tetrahedral and cubic flow patterns are shown for 
Ra<2x105. For R a  > 2x105, time-dependent solutions are 
obtained. For the axisymmetric model, solutions of two or four 
cells with both rising or descending currents at poles are found. 
In this case, the Nusselt number and global mean temperature 
oscillate with time at higher Rayleigh numbers (Ra > lo5). At 
Ra=5x105, the variations of the Nussult number and the 
globally averaged temperature with time are respectively - 1.5 
and -0.1 per cent for the axisymmetric model and - 5  and 
-0.6 per cent for the full 3-D model. In this study, we take 
their time averages. 

We show the least-squares fit of the data assuming the 
power-law relationship between Nusselt and Rayleigh numbers 
(NuccRaP) in Fig. 1. The gradient of this line (8) is 0.24, which 
is close to 1 /4. 

The flow pattern obtained for both full 3-D spherical and 
axisymmetric convections shows generally narrow upwellings 
and broad downwellings (e.g. Iwase 1996). This flow pattern is 
similar to the opposite flow pattern for internally heated con- 
vection. We show that this analogy works for the Nul-Ral 
relationship. 

Nul-Ral FOR INTERNALLY HEATED 
CONVECTION 

McKenzie, Roberts & Weiss (1974) studied the convection 
heated from within and introduced the following modified 
Nusselt (NuM) and Rayleigh (RaM) numbers, 

(4) 

where (AT)  is the temperature difference between the hori- 
zontally averaged temperature at the bottom surface and the 
temperature at the top surface. p is the fraction of heat pro- 
duced within. Based on a simple boundary layer theory, 
McKenzie et al. (1974) derived the relationship between these 
parameters. They are given by 

( 5 )  NUM cc Ra,  P . 

The exponent /3 is 114 when the convection is totally heated 
from below (i.e. p = O ) .  As the fraction of heat produced from 
within increases, p approaches 1 /5. This difference occurs 
because of the breakdown of the symmetry of the down- and 
upwelling flows. It can be shown that the former case (i.e. 
p= 1 /4) predicts the commonly used exponent of 1 /3 in the 
power-law Nu-Ra relationship. When the convection is totally 
driven from within (i.e. p= l), the upwelling becomes broad 
and weak, while the downwelling becomes narrow and strong. 
We can also assume that (AT)=ATtop. Thus, NUM and RaM 
can be written in terms of Ratop and Nutop as 
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Ra vs. Nu (local) Thus, using eq. (5 )  with /I= 115, we obtain the following 
relationship between Nutop and Ratop, 

Nutop xRatbp . 
We can determine the proportional constant in eqs (5 )  or (7) 
based on the results given by Schubert & Anderson (1985). 
They are given in Fig. 2, where we also include the cases with 
non-zero p. The line, with a gradient of 1 15, is drawn by eye in 
the figure. This relationship is given by 

(7) 
I I4 

where Ra, is the critical Rayleigh number (= 1296 for p= 1). 
Using eqs (6) and (8), we obtain 

Nutop N 1 .ORa:i; . (9) 

Nul-Ral FOR 3-D SPHERICAL AND 
AXISYMMETRIC CONVECTION 

We study the relationship between local Nusselt (Nul) and 
Rayleigh (Ral) numbers for the spherical shell geometry. We 
make the assumption that AT at the top or bottom boundary is 
the difference between the mean temperature and the top or 
bottom temperature, respectively. The relationship between 
the local Nusselt and Rayleigh numbers for the spherical shell 
geometry is shown in Fig. 3. Fig. 3(a) shows the relationship of 
Nutop-Ratop and NU~ottom-Ra~ottom, and Figs 3(b) and (c) show 
the relationship of Nul-Ratop and NUl-Rabottom (1 = either top 
or bottom), respectively. The relationship obtained by 2-D 
convection for the internally heated case (eq. (9)) is also 
shown. Jn Fig. 3(a), the results are dispersed around the line 
for the 2-D internally heated case. However, if we use the local 
Rayleigh number defined at  either the top or bottom, the 
scatter of the data becomes small (Figs 3b and c). The points 
are distributed close to the power-law relationship for the 2-D 

Ra vs. Nu (internally heated) 
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Figure 2. Relationship between modified Nusselt (NuM) and 
Rayleigh (RUM) numbers for 2-D convection with internal heating 
(after Schubert & Anderson 1985). p is the ratio of the internal heat to 
the total heat source. The gradient of the solid line is 1 / 5 .  

A Axis. (bot) 

Ra vs. Nu (local) 
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Figure 3. Relationship between local Nusselt (Nul) and Rayleigh 
(Ral) numbers. (a) Top Nusselt vs. top Rayleigh and bottom Nusselt 
vs. bottom Rayleigh numbers. (b) Local Nusselt vs. top local Rayleigh 
numbers. (c) Local Nusselt vs. bottom local Rayleigh numbers. The 
result of the 2-D convection heated from within is shown by the solid 
line. 
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internally heated case. In particular, the relationship between 
Nu1 and Rabottom (Fig. 3(c)) is almost the same as that obtained 
by the 2-D box convection with internal heating. This implies 
that NUbottom N Nutop at the same Rabottom. 

Davies (1993) argued that, if the core is cooled forcibly by the 
plate-scale flow, Qbottom and Qtop are related by the following 
equations (eq. (E3) in his Appendix E): 

or, in terms of our local Nusselt number, 

Nubottom = YNutop (1 1) 

where y is a constant (in his model, thermal conductivity is 
constant). This relationship suggests the possibility that both 
local Nusselt numbers are controlled by a local Rayleigh 
number at either the top or bottom. Since the mean mantle 
temperature is approximately 0.2 for the spherical shell 
geometry model, the local Rayleigh number at the bottom is 
larger than that at the top. Also, the Nul-Ral relationship is 
almost coincident with that for the 2-D internally heated case, 
if we use the Rayleigh number at the bottom (Fig. 3c). This 
may suggest that the convection is controlled mainly by the 
instability at the bottom thermal boundary layer. 

CONCLUSION A N D  DISCUSSION 

For moderate Rayleigh numbers, i.e. less than -lo6, the 
NUl-Rabottom or Nul-Ratop (1 is either top or bottom) relation- 
ship with the power-law index of 114 is obtained for the 
spherical shell geometry model of mantle convection. In the 
spherical shell model, the symmetric nature of the flow pattern 
is broken. Generally, it is characterized by narrow upwellings 
and broad downwellings. A similar asymmetrical flow pattern 
is also found in the convection heated within for the box con- 
vection model. For these cases, we have shown that the power- 
law index of the Nu]-Ral relationship is 114 based on the 
simple thermal boundary layer theory (McKenzie et al. 1974). 
We find that the Nul-Ral relationship for the 3-D spherical and 
axisymmetric convection shows the power-law index of 114. 
Qualitative studies suggest that both Nutop and Nubottom may 
depend on Rabottom rather than Ratop. 

At very high Rayleigh numbers, the thicknesses of the 
boundary layers at the top and bottom become thin, and 
both upwellings and downwellings become narrower. In 
such cases, we can expect the breakdown of broad-scale 
features, and the prediction (p= 113) of the simple boundary 
layer theory (Turcotte & Oxburgh 1967) or the mean field 
theory for the spherical shell model (Olson 1981) may apply 
again (see Solheim & Peltier 1990). When the inner shell 

radius approaches the outer shell radius, the spherical shell 
geometry becomes close to 3-D box geometry. Thus, we also 
expect B = 1 /3  in this situation. Temperature- and/or depth- 
dependent viscosity may also influence the heat transport 
efficiency. These cases will be looked at in the future. 
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