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Abstract

We propose a constrained linear data-feature-mapping model as an inter-
pretable mathematical model for image classification using a convolutional
neural network (CNN). From this viewpoint, we establish detailed connections
between the traditional iterative schemes for linear systems and the architec-
tures of the basic blocks of ResNet- and MgNet-type models. Using these
connections, we present some modified ResNet models that compared with
the original models have fewer parameters and yet can produce more accurate
results, thereby demonstrating the validity of this constrained learning data-
feature-mapping assumption. Based on this assumption, we further propose
a general data-feature iterative scheme to show the rationality of MgNet. We
also provide a systematic numerical study on MgNet to show its success and
advantages in image classification problems and demonstrate its advantages in
comparison with established networks.

1 Introduction

This paper focuses on providing mathematical insight into deep convolutional neural
network (CNN) models that have been successfully applied in many machine learning
and artificial intelligence areas such as computer vision, natural language processing,
and reinforcement learning [30]. Examples of CNN models include the LeNet-5
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model presented by LeCun et al. in 1998 [31], the AlexNet model by Hinton et
al. in 2012 [28], the residual network (ResNet) by He et al. in 2015 [17], pre-act
ResNet in 2016 [18], MgNet in 2019 [15], and other variants of CNN [42, 47, 22].
Among these CNN models, ResNet and pre-act ResNet are of special theoretical
and practical interest. In fact, researchers have taken many steps to advance the
field’s theoretical understanding of ResNet, to explain how and why it works well,
and to design better residual-type architecture based on empirical observations and
informal interpretation [54, 29, 7, 50, 56, 46, 22]. Most of the works mentioned
here focus on the interpretation of the basic block in ResNet. However, some fine
structures of ResNet and MgNet remain unclear. For example, how do we interpret
the convolutional kernels, what is the role of the activation function, and how do
we explain the pooling operations? For the explanation of pooling operations in
particular, as far as we are aware, almost no literature provides deep insights from a
mathematical viewpoint. Given the natural multi-scale (multi-resolution) structure
and the residual correction iterative scheme in multigrid methods [51, 11, 53], we
were inspired and motivated to interpret MgNet and ResNet architecture (the whole
feature extraction process including pooling layers) from the multigrid and iterative
methods perspectives.

We propose a generic mathematical model underlying the basic blocks of ResNet
and MgNet to demonstrate their dual relation and understand how they function. At
the core of our model is the following assumption: there is a data-feature mapping

A ∗ u = f, (1.1)

where A is understood as the underlying data-feature mapping to be learned and in
practice is implemented as a conversational kernel with multi-channel. In addition,
f is the data such as images and u is the feature tensor such that

u ≥ 0. (1.2)

Feature extraction is then viewed as an iterative procedure (c.f. [51]) to solve (1.1):

ui = ui−1 +Bi ∗ (f − A ∗ ui−1), i = 1 : ν. (1.3)

This is a typical residual correction iterative scheme for solving (1.1), where Bi is
called the smoother which is also implemented as a conversational kernel with multi-
channel in this work. Using, for example, the special activation function σ(x) =
ReLU(x) := max{0, x} ≥ 0, the above iterative process can be naturally modified to
preserve the constraint (1.2):

ui = ui−1 + σ ◦Bi ∗ σ(f − A ∗ ui−1), i = 1 : ν. (1.4)
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This forms the basic block of MgNet, precisely as in [15]. partial differential equations
(PDEs) [52, 53], we introduce this residual

ri = f − A ∗ ui. (1.5)

Now, the iterative process (1.4) can be written, in terms of the residual ri as:

ri = ri−1 − A ∗ σ ◦Bi ∗ σ(ri−1), i = 1 : ν. (1.6)

The iterative scheme (1.6) shares an almost identical structure with the basic block
architecture of pre-act ResNet. Then, the analysis process shown above will be used
to understand pre-act ResNet and to develop modified ResNet and pre-act ResNet
models in this paper.

Furthermore, by drawing on the multigrid [51, 11] idea to restrict the residuals, we
have a natural explanation for pooling operations in pre-act ResNet, which provides
a basis for establishing a complete connection between pre-act ResNet and MgNet.
Finally, we present numerical evidence to demonstrate that our constrained linear
models (1.1) and (1.2) with the nonlinear iterative solver (1.4) or (1.6) provide a
second interpretation and improvement on ResNet- and MgNet-type models. The
main contributions of this paper can be summarized as follows:

• A constrained linear data-feature mapping is proposed and developed as an
interpretable model to demonstrate the dual relation between ResNet- and
MgNet-type models.

• Some natural modifications of ResNet-type models based on the constrained
linear data-feature mapping are proposed.

• A general data-feature iterative scheme based on constrained linear data-feature
mapping is proposed to show the rationality of MgNet.

• A systematic numerical study of MgNet is proposed to show its success in
image classification problems and demonstrate its advantages over established
networks in this context.

This paper is organized as follows. In Section 2, we review some related works.
In Section 3, we introduce precise mathematical formulas to define ResNet-type and
MgNet models. In Section 4, we propose the constrained linear data-feature mapping
model to understand ResNet and MgNet architecture from the perspective of solving
the constrained linear system based on theoretical observations and analysis. Then,
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we develop some modified ResNet models based on the constrained linear data-
feature mapping presented. Finally, we propose a general data-feature iterative model
to further demonstrate the rationality of MgNet. In Section 5, we demonstrate the
validity of the constrained linear data-feature mapping assumption by comparing our
modified ResNet-type models with the established ResNet-type models. In addition,
we provide a systematic numerical study on MgNet. In Section 6, we offer some
concluding remarks, including a brief discussion of the implications of the results
reported herein and the investigative directions that can advance this research.

2 Related work

In [15], a unified neural network framework was proposed, known as MgNet, to
establish the connections between ResNet-type CNNs and multigrid methods. In that
work, the basic block of MgNet was first introduced, as in (1.4). These elementary
components in block 1.4, including the residual term f − A ∗ u, the convolutional
operators A and Bi, the activation functions σ, and the positions of these two σ,
were initially motivated by the deep connection between multigrid methods and
ResNet. However, a natural interpretation of the underlying mechanism of the basic
block iteration is still lacking (1.4). Furthermore, in this paper we propose the
constrained linear model to interpret the basic block (1.4) from the iterative method
perspective. Before MgNet, ideas and techniques from multigrid methods had been
used to develop efficient CNNs. The researchers who developed ResNet [17] first
took the multigrid methods as evidence to support what is known as a residual
representation for the interpretation of ResNet. Further, [26, 9, 55] adopted multi-
resolution ideas to improve the performance of their networks. Additionally, a CNN
model with a structure similar to that of the V-cycle multigrid was proposed to
address volumetric medical image segmentation and biomedical image segmentation
in [40, 37]. The literature also includes studies focused on applying deep learning
techniques in multigrid and numerical PDEs [25, 20].

Considering the connections between CNN models and some computational math-
ematics methods, researchers have also proposed the dynamic system or optimization
perspective [9, 5, 2, 36, 3]. A key motivation of the dynamic systems viewpoint is
that the iterative scheme xi = xi−1+f(xi−1) in pre-act ResNet resembles the forward
Euler scheme in numerical dynamic systems. Following this idea, [43, 33] interpreted
the data flow in ResNet as the solution of the transport equation in the characteristic
line. Furthermore, [36] interpreted some different CNN models with residual block
as some special discretization schemes for ordinary differential equations (ODEs),
for example PloyNet [56], FractalNet [29], and RevNet [7]. Ignoring the specific
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discretization methods, [3] proposed a family of CNN models based on black-box
solvers for ODEs. Some types of CNN architecture are further designed based on
the iterative schemes of optimization algorithms [8, 45, 32]. These studies share the
philosophy that many optimization algorithms can be considered as discretization
schemes for some special ODEs [19].

Considering the resemble properties of ResNet, [49, 35] claim that ResNet is an
ensemble of shallower models, and that discarding the intermediate residual block
does not influence the model accuracy. [21, 38] point out that ResNet optimizes
the risk in a functional space by combining an ensemble of effective features. In
addition, some works, such as [1, 23, 48], propose to study the generalization and
smoothness properties of ResNet from the Neural Tangent Kernel perspective. As for
the approximation properties of ResNet, [34] demonstrates that a very deep ResNet
with stacked modules, that have one neuron per hidden layer, and ReLU activation
functions can uniformly approximate any Lebesgue integrable function. Recently,
[14] studied and proved the approximation properties of ResNet and MgNet with
multi-channel 3×3 kernels for functions with image-type inputs, i.e. functions defined
on Rd×d.

3 Precise mathematical formulas for ResNet and

MgNet

In this section, we introduce ResNet [17] and pre-act ResNet [18] with precise math-
ematical formulas. Then, we introduce MgNet [15] and its variants.

3.1 ResNet and Pre-act ResNet

Figure 3.1 demonstrates the connection and difference between classical CNN, ResNet [17],
and pre-act ResNet [18].
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Figure 3.1: Comparison of classical CNN, ResNet, and pre-act ResNet.

Here, σ(x) = ReLU(x) := max{0, x} is the standard ReLU activation function.
For ResNet and pre-act ResNet with the basic block F(x) = A ∗ σ ◦ B ∗ x, A and
B are 3 × 3 convolutions with multichannel, zero padding, and stride one, and “◦”
means composition.

In order to investigate the interpretable mathematical model underlying these
models, let us write these CNN models with precise mathematical formulas. The
main structure of the pre-act ResNet without the last fully connected and soft-max
layers can be written as in Algorithm 1.

Algorithm 1 h = pre-act ResNet(f ; J, ν1, · · · , νJ)

1: Initialization: r1,0 = fin(f).
2: for ` = 1 : J do
3: for i = 1 : ν` do
4: Basic Block:

r`,i = r`,i−1 +A`,i ∗ σ ◦B`,i ∗ σ(r`,i−1). (3.1)

5: end for
6: Pooling(Restriction):

r`+1,0 = R`+1
` ∗2 r`,ν` +A`+1,0 ◦ σ ◦B`+1,0 ∗2 σ(r`,ν`). (3.2)

7: end for
8: Final average pooling layer: h = Rave(r

L,ν`).

Here, fin(·) depends on the dataset and problems such as fin(f) = σ ◦ θ0 ∗ f
for CIFAR [27] and fin(f) = Rmax ◦ σ ◦ θ0 ∗ f for ImageNet [4] as in [18]. r`,i =
r`,i−1 +A`,i ∗ σ ◦B`,i ∗ σ(ri−1) is often called the basic ResNet block, where A`,i with
i ≥ 0 and B`,i with i ≥ 1 are general 3 × 3 convolutions with zero padding and
stride 1. In the pooling block (3.2), ∗2 means the convolution with zero padding and
stride 2; R`+1

` is taken as 1 × 1 kernel and referred to as the projection operator in
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MgNet [18]; and B`,0 is taken as 3×3 convolutions, with the same channel dimension
as the output channel dimension of R`+1

` . During two consecutive pooling blocks,
index ` refers to the fixed resolution or `-th level grid as in the multigrid methods.
In the final average pooling layer, Rave means average pooling whereby the stride
depends on the dataset and the problem considered.

The scheme of the original ResNet [17], which was actually developed earlier than
pre-act ResNet, is very similar to that of pre-act ResNet but with a different order
of convolutions and activation functions. For ResNet, the basic block and pooling
operations are defined by

r`,i = σ
(
r`,i−1 + A`,i ∗ σ ◦B`,i ∗ r`,i−1

)
, (3.3)

r`+1,0 = σ
(
R`+1
` ∗2 r`,ν` + A`+1,0 ∗ σ ◦B`+1,0 ∗2 r`,ν`

)
. (3.4)

3.2 MgNet and its variants

In this subsection, we introduce the plain version of MgNet, and then discuss how to
obtain variants of MgNet based on choosing different hyper-parameters in the plain
MgNet.

3.2.1 Plain MgNet structure

Following the definitions and notations in [15], we show the plain version of MgNet
in Algorithm 2.

7



Algorithm 2 uJ = MgNet(f)
1: Input: number of grids J, number of smoothing iterations ν` for ` = 1 : J , number of channels
cf,` for f ` and cu,` for u`,i on `-th grid.

2: Initialization: f1 = fin(f), u1,0 = 0
3: for ` = 1 : J do
4: for i = 1 : ν` do
5: Feature extraction (smoothing):

u`,i = u`,i−1 + σ ◦B`,i ∗ σ
(
f ` −A` ∗ u`,i−1

)
∈ Rcu,`×n`×m` . (3.5)

6: end for
7: Note: u` = u`,ν`

8: Interpolation and restriction:

u`+1,0 = Π`+1
` ∗2 u` ∈ Rcu,`+1×n`+1×m`+1 . (3.6)

f `+1 = R`+1
` ∗2 (f ` −A` ∗ u`) +A`+1 ∗ u`+1,0 ∈ Rcf,`+1×n`+1×m`+1 . (3.7)

9: end for

Similar to ResNet, we consider u`,i = u`,i−1 + σ ◦ B`,i ∗ σ
(
f ` − A` ∗ u`,i−1

)
∈

Rcu,`×n`×m` to be the basic MgNet block. Here, B`,i with i ≥ 1 are general 3 × 3
convolutions with zero padding and stride 1, which are interpreted as the smoother
convolutions in multigrid. A` is also a 3×3 convolution with zero padding and stride
1 and is interpreted as the system operation as in the multigrid method. A key
feature of MgNet that differs from the ResNet structure is that A` does not depend
on the number of iterations on each grid. As discussed in [15], this can be understood
as indicating that there is only one system to be solved on each grid. In interpolation
and the restriction block (pooling block in ResNet), ∗2 means convolution with zero
padding and stride 2, Π`+1

` and R`+1
` are taken as 1× 1 kernel.

3.2.2 Variants of MgNet based on different hyper-parameters

Based on the plain MgNet in Algorithm 2, it is natural to derive variants of MgNet
by setting different hyper-parameter values. For simplicity, we use the following
notation to represent different MgNet models with different hyper-parameters:

MgNet[ν1, · · · , νJ ]-[(cu,1, cf,1), · · · , (cu,J , cf,J)]-B`,i. (3.8)

These hyper-parameters are defined as follows:

• [ν1, · · · , νJ ]: The number of smoothing iterations on each grid. For example,
[2, 2, 2, 2] means that there are 4 grids and the number of iterations on each
grid is 2.
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• [(cu,1, cf,1), · · · , (cu,J , cf,J)]: The number of channels for u`,i and f ` on each grid.
We focus on the cu,` = cf,` case, which suggests this simplification notation
[c1, · · · , cJ ], or even [c] if we further take c1 = c2 = · · · = cJ . For example,
MgNet[2, 2, 2, 2]-[64, 128, 256, 512] and MgNet[2, 2, 2, 2]-[256].

• B`,i: This means that we use a different smoother B`,i in each smoothing
iteration. Correspondingly, B` means that we share the smoother across all
the grids:

u`,i = u`,i−1 + σ ◦B` ∗ σ
(
f ` − A` ∗ u`,i−1

)
. (3.9)

Here, we note that we always use A`, which depends only on the grids.

For example, the notation MgNet[2, 2, 2, 2]-[256]-B` denotes an MgNet model with 4
different grids (feature resolutions), 2 smoothing iterations on each grid, 256 channels
for both the feature tensor u`,i and the data tensor f `, and (3.9) as the smoothing
iteration.

4 Constrained linear data-feature mapping

In this section, we establish a new understanding of pre-act ResNet and MgNet by
drawing on the idea that the pre-act ResNet block and MgNet block are iterative
schemes for solving some hidden model in each grid in a dual relation. Then, we
adopt this assumption for the ResNet-type models and obtain some modified models
with a special parameter-sharing scheme.

4.1 Constrained linear data-feature mapping and iterative
methods

Here, we introduce the data and feature space of CNN, which is analogous to the
function space and its duality in the theory of multigrid methods [53]. Specifically,
following [15] we introduce the next data-feature mapping model in every grid level
as follows:

A` ∗ u` = f `, (4.1)

where f ` and u` belong to the data and feature space of the `-th grid. We now make
the following two important observations for this data-feature mapping:

• The mapping in (4.1) is linear. More specifically, it is simply a convolution with
multichannel, zero padding, and stride one as in pre-act ResNet or MgNet.
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• In each level, namely between two consecutive poolings, there is only one data-
feature mapping. Or, we say that A` depends only on `, but not on the number
of layers.

The assumption that this linear data-feature mapping depends only on the grid level
` is motivated from a basic property of multigrid methods [51, 11, 53].

In addition to (4.1), we introduce an important constrained condition in feature
space whereby

u`,i ≥ 0. (4.2)

The rationality of this constraint in feature space can be interpreted as follows. First,
from the real neural system, the real neurons will only be active if the electric signal is
greater than a certain threshold value, i.e. human brains can only see features with a
certain threshold. On the other hand, the “shift” invariant property of feature space
in CNN models, namely, u+ a, will not change the classification results. This means
that u+ a should have the same classification result with u. That is, we can assume
u ≥ 0 to reduce the redundancy of u.

Based on these assumptions, the next step is to solve the data-feature mapping
equation in (4.1). We adopt some classical iterative methods [51] in scientific com-
puting to solve the system (4.1) and obtain

u`,i = u`,i−1 +B`,i ∗ (f ` − A` ∗ u`,i−1), i = 1 : ν`, (4.3)

where u` ≈ u`,ν` . For a more detailed account of iterative methods in numerical
analysis, we refer to [51, 10, 6]. To preserve (4.2), we naturally use the ReLU
activation function σ to modify (4.3) as follows:

u`,i = u`,i−1 + σ ◦B`,i ∗ σ(f ` − A` ∗ u`,i−1), i = 1 : ν`, (4.4)

which is exactly the same as the basic block in MgNet as in Algorithm 2.
Because of the linearity of convolution in data-feature mapping, if we consider the

residual r`,j = f `−A` ∗u`,j, (4.4) leads to the next iterative forms for the residuals:

r`,i = r`,i−1 − A` ∗ σ ◦B`,i ∗ σ(r`,i−1). (4.5)

This is the same as (3.3) under the constraint A`,i = A` in pre-act ResNet.
We summarize the above derivation in the following theorem.

Theorem 4.1 Under the assumption that there is only one linear data-feature map-
ping in each grid `, i.e., A`,i = A`, the iterative form in feature space as in (4.3) is
equivalent to (4.5) if A` is invertible where r`,i = f ` − A` ∗ u`,i.
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4.2 Modified pre-act ResNet and ResNet

In this subsection, we propose some modified ResNet and pre-act ResNet models
based on the assumption of the constrained linear data-feature mapping underlying
these models. Although the scheme in (4.5) is closely related to the original pre-act
ResNet, there is a major difference between the two given that in (4.5) there is an
extra constraint, i.e., A`,i = A`. As a result, we obtain the next modified pre-act
ResNet as follows:

Modified Pre-act ResNet (Pre-act ResNet-A`-B`,i)

r`,i = r`,i−1 + A` ∗ σ ◦B`,i ∗ σ(r`,i−1). (4.6)

Here, we make a small modification to the sign before A` in the formula because
of the linearity of convolution. As discussed, the modified pre-act ResNet model
is derived from constrained linear data-feature mapping by using a special iterative
scheme. Although we cannot obtain these connections in ResNet directly, formally
we can make the modification from A`,i to A` into (3.1) to obtain the corresponding
modified ResNet models:

Modified ResNet (ResNet-A`-B`,i)

r`,i = σ
(
r`,i−1 + A` ∗ σ ◦B`,i ∗ r`,i−1

)
. (4.7)

A unified but simple diagram ignoring the activation functions for these modified
pre-act ResNet and ResNet models with this structure is shown in Figure 4.1.

According to Theorem 4.1, the constrained linear model provides a precise in-
terpretation and understanding of the dual relation between the MgNet model and
the modified pre-act ResNet model. Briefly, MgNet applies u` as the feature for the
final logistic regression classifier. However, ResNet-type models employ r`, which
is in the dual space of u` in multigrid theory [53]. We provide the following three
perspectives to understand the modified (pre-act) ResNet models. First, sharing A
comes as a natural result of the connections between ResNet and MgNet under the
framework of the constrained linear model, since there is only one linear system on
each level. However, for any given linear system A`, applying different smoother B`,i

at each residual correction step can improve the convergence of the iterative method;
for example, the Chebyshev iteration and the multi-step iteration [10, 6] for solving
linear systems. In addition, results in [12, 13] demonstrate that there is a high level
of redundancy in (pre-act) ResNet models. Thus, sharing A at each level (change
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Figure 4.1: Diagram of modified (pre-act) ResNet basic block.

A`,i to A`) may not damage the representation power of (pre-act) ResNet models.
Furthermore, we observe that A and B play different roles in the pre-act ResNet
model in terms of their relations to the output. Recall the original basic block of
pre-act ResNet

r`,i = r`,i−1 + A`,i ∗ σ ◦B`,i ∗ σ(r`,i−1) = r`,i−1 + A`,i ∗ B̃`,i(r`,i−1),

where B̃`,i(r) := σ ◦ B`,i ∗ σ(r). Thus, we see that r`,i is linearly dependent on
the kernel A`,i, while r`,i is nonlinearly dependent on the kernel B`,i. This simple
observation indicates that sharing B may have completely different effects compared
with sharing A. Numerical results in Table 3 further verify this observation. A
detailed numerical study of modified ResNet-type models in the following section
in Tables 2 and 3 demonstrate the rationality of the constrained linear data-feature
assumption that constitutes the foundation of these modified models.

4.3 Linear versus nonlinear data-feature mapping

In this subsection, we investigate the rationality of the linear assumption in data-
feature mapping. We show that the linear data-feature-mapping model is both more
reasonable and more accurate than general data-feature mapping iterative models.

4.3.1 A general data-feature iterative model

Two of the most important assumptions above are that data-feature mapping (4.1) is
a linear model and that there should be only one model in each grid. To demonstrate
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that this linear model is adequate for image classification, we compare it with the
following nonlinear data-feature mapping:

A`(u`) = f `, (4.8)

where A` can be chosen for some special nonlinear forms, such as A` ∗ σ, σ ◦A`∗, or
σ ◦ A` ∗ σ. Then, we have the next iterative feature-extraction scheme:

u`,i = u`,i−1 + B`,i(f ` −A`(u`,i−1)), i = 1 : ν`, (4.9)

where B`,i takes linear or nonlinear forms. Here, we note that because of the nonlin-
earity of A` we cannot obtain the iterative scheme for the residuals for (4.9). We can
execute the iteration only in the feature space. Thus, we propose the next general
data-feature iterative model (GDFI) in Algorithm 3, which follows a similar mech-
anism in MgNet, for example the iteration of features as in (4.9) and the pooling
structure as in (4.11) and (4.12).

Algorithm 3 uJ,`J = GDFI(f ; J, ν1, · · · , νJ)

1: Initialization: f1 = fin(f), u1,0 = 0
2: for ` = 1 : J do
3: for i = 1 : ν` do
4: Feature extraction (smoothing):

u`,i = u`,i−1 + B`,i
(
f ` −A`(u`,i−1)

)
. (4.10)

5: end for
6: Pooling (interpolation and restriction):

u`+1,0 = Π`+1
` ∗2 u`,ν` . (4.11)

f `+1 = R`+1
` ∗2 (f ` −A`(u`,ν`) +A`+1(u`+1,0). (4.12)

7: end for

Here, (4.11) and (4.12) are understood as different interpolation and restriction
operators because of the difference in the feature and data space as discussed in
relation to MgNet. However, in practice, all are implemented by 3 × 3 convolution
with stride 2.
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4.3.2 Numerical study indicating rationality of MgNet

If we take this specific setting,

A`(u) = A` ∗ u,
B`,i(r) = σ ◦B`,i ∗ σ(r),

(4.13)

then Algorithm 3 precisely degenerates to MgNet. The iterative scheme for its resid-
ual, therefore, becomes

r`,i = r`,i−1 − A` ∗ σ ◦B`,i ∗ σ(r`,i−1), (4.14)

which is exactly the modified pre-act ResNet scheme discussed.
Considering the special form of MgNet, we try some numerical experiments with

“symmetric” forms for different linear or nonlinear schemes for both A` and B`,i in
Algorithm 3 as

K∗, K ∗ σ, σ ◦K∗, and σ ◦K ∗ σ, (4.15)

where K is a 3× 3 convolution kernel with multichannel, zero padding, and stride 1.
Here, we recall that the key idea in developing pre-act ResNet [18] from ResNet [17]
is to choose a better position for activation and convolution. Thus, from another
perspective, the motivation for choosing A` and B`,i as in (4.15) is to study the dual
version of the idea in developing pre-act ResNet in feature space.

As the results presented in Table 1 show, the original assumption about the
linearity of A` and the special non-linear form of B`,i, which forms MgNet exactly,
is the most rational and accurate scheme. This result is also consistent with the
theoretical concern and other numerical results in the following section.

5 Numerical experiments

In this section, we design numerical experiments to show that fixing the linear data-
feature mapping in each produces only slightly negative or sometimes even positive
effects as compared with the standard ResNet and pre-act ResNet models, which
demonstrates the rationality of the constrained data-feature mapping model. Then,
we compare the results of the MgNet model with those of established CNN models,
and design a set of numerical experiments to explore the properties of MgNet and
its variants.

Datasets. We evaluate our various models using four widely used datasets: MNIST [31],
CIFAR10 [27], CIFAR100 [27], and ImageNet(ILSVRC2012) [41].
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Model implementation. In our experiments, the structure of the classical ResNet
and pre-act ResNet models is implemented with the same structure as in the sample
codes in PyTorch [39]. We also implement our modified models and MgNet∗ with
PyTorch. Following the strategy in [17, 18], we adopt Batch Normalization [24] but
not Dropout [44].

Training. We adopt the SGD training algorithm with momentum 0.9. We also
adopt a weight decay value of 0.0005 on MNIST and CIFAR, whereas the value for
ImageNet is 0.0001. We take the minibatch sizes to be 128, 128, 256 for MNIST, CI-
FAR, and ImageNet, respectively. We use the Kaiming’s weight-initialization strat-
egy as in [16]. We always start training with a learning rate of 0.1. For MNIST,
we terminate training at 60 epochs and divide the learning rate by 10 at the 50-th
epoch. For both CIFAR and ImageNet, we terminate training at 150 epochs and
divide the learning rate by 10 at every 30 epochs.

5.1 Numerical results for modified ResNet and pre-act ResNet

To verify the optimality of the linear assumption of A`, we retain the linearity as-
sumption of A` with the iterative method (4.9). We, therefore, have the following
iterative scheme for residuals r`,i = f ` −A`(u`,i):

r`,i = r`,i−1 −A` ◦ B`,i(r`,i−1). (5.1)

If we take the specific setting

A`(u) = A` ∗ u,
B`,i(r) = σ ◦B`,i ∗ σ(r),

(5.2)

the iterative scheme for the residuals (5.1) becomes

r`,i = r`,i−1 − A` ∗ σ ◦B`,i ∗ σ(r`,i−1), (5.3)

which is precisely the modified pre-act ResNet scheme (4.6). We compare it with
some other linear forms and nonlinear forms for both A` and B`,i in Table 1, which
shows that the modified pre-act ResNet scheme (4.6) is the most accurate. The result
verifies that the assumption about the linearity of A` and the special nonlinear form
of B`,i gives the most rational and accurate scheme, which is also consistent with the
theoretical explanation in this paper.

∗Codes are available at https://github.com/XuTeam/MgNet Code.
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Schemes of A` and B`,i Accuracy
A` = A`∗, B`,i = B`,i∗ 71.36
A` = A`∗, B`,i = σ ◦B`,i∗ 93.04
A` = A`∗, B`,i = B`,i ∗ σ 93.80
A` = A`∗, B`,i = σ ◦B`,i ∗ σ 94.21
A` = A` ∗ σ, B`,i = B`,i∗ 92.90
A` = A` ∗ σ, B`,i = σ ◦B`,i∗ 92.87
A` = A` ∗ σ, B`,i = B`,i ∗ σ 94.01
A` = A` ∗ σ, B`,i = σ ◦B`,i ∗ σ 93.98
A` = σ ◦ A`∗, B`,i = B`,i∗ 92.13
A` = σ ◦ A`∗, B`,i = σ ◦B`,i∗ 92.44
A` = σ ◦ A`∗, B`,i = B`,i ∗ σ 93.79
A` = σ ◦ A`∗, B`,i = σ ◦B`,i ∗ σ 93.57
A` = σ ◦ A` ∗ σ, B`,i = B`,i∗ 93.20
A` = σ ◦ A` ∗ σ, B`,i = σ ◦B`,i∗ 93.93
A` = σ ◦ A` ∗ σ, B`,i = B`,i ∗ σ 94.08
A` = σ ◦ A` ∗ σ, B`,i = σ ◦B`,i ∗ σ 94.11

Table 1: Accuracy of models from Algorithm 3 with different linear and non-linear
schemes of A and B on CIFAR10.

Modified pre-act ResNet can also be understood as a special parameter-sharing
form on A`,i. To show that the effectiveness of the linear model does not arise from
the redundancy of the CNN models, we also apply the parameter-sharing technique
to B`,i for both ResNet and pre-act ResNet:

Pre-act ResNet-A`,i-B`

r`,i = r`,i−1 + A`,i ∗ σ ◦B` ∗ σ(r`,i−1), i = 1 : ν`. (5.4)

Pre-act ResNet-A`-B`

r`,i = r`,i−1 + A` ∗ σ ◦B` ∗ σ(r`,i−1), i = 1 : ν`. (5.5)

As B`,0 will change the channel number in ResNet (3.2) and pre-act ResNet (3.4),
we share only B`,i for i = 1 : ν`. For consistency, we denote the original ResNet and
pre-act ResNet models as ResNet-A`,i-B`,i and pre-act ResNet-A`,i-B`,i, respectively.
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Model Accuracy # Parameters
ResNet18-A`,i-B`,i 99.49 11M
ResNet18-A`-B`,i 99.61 8.0M
pre-act ResNet18-A`,i-B`,i 99.63 11M
pre-act ResNet18-A`-B`,i 99.67 8.0M

Table 2: Accuracy and number of parameters of ResNet-18, pre-act ResNet-18, and
their modified models on MNIST.

Model CIFAR10 CIFAR100 # Parameters
ResNet18-A`,i-B`,i 94.22 76.08 11M
ResNet18-A`-B`,i 94.34 76.32 8.1M
ResNet18-A`,i-B` 93.95 74.23 9.7M
ResNet18-A`-B` 93.30 74.85 6.6M
pre-act ResNet18-A`,i-B`,i 94.31 76.33 11M
pre-act ResNet18-A`-B`,i 94.54 76.43 8.1M
pre-act ResNet18-A`,i-B` 93.96 74.45 9.7M
pre-act ResNet18-A`-B` 93.63 74.46 6.6M
ResNet34-A`,i-B`,i 94.43 76.31 21M
ResNet34-A`-B`,i 94.78 76.44 13M
ResNet34-A`,i-B` 93.98 74.48 15M
ResNet34-A`-B` 93.55 74.46 6.7M
pre-act ResNet34-A`,i-B`,i 94.70 77.38 21M
pre-act ResNet34-A`-B`,i 94.91 77.41 13M
pre-act ResNet34-A`,i-B` 94.08 75.32 15M
pre-act ResNet34-A`-B` 94.01 74.12 6.7M

Table 3: Accuracy and number of parameters for ResNet, pre-act ResNet, and their
variants of modified versions on CIFAR10 and CIFAR100.

Importantly, in relation to the numerical results shown in Table 2 and Table 3,
the modified ResNet and pre-act ResNet models achieve almost the same accuracy as
their original respective models, whereas the other models do not. This result indi-
cates that the constrained data-feature mapping properly captures the mathematical
insight of the ResNet-related models.
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5.2 MgNet vs. established neural networks

According to the discussion and numerical results in §4.3, MgNet is the most natural
and accurate model under the general data-feature iterative scheme. In the following
subsections, we present a systematic numerical study to demonstrate the success of
MgNet for image classification problems and, in this context, its advantages over
established networks.

First, we test MgNet on the CIFAR10, CIFAR100, and ImageNet datasets and
compare the results with AlexNet [28], VGG [42], ResNet [17], pre-act ResNet [18],
and WideResNet [54]. As shown in Table 5.2, MgNet achieves 96% accuracy on
CIFAR10 and 79.94% accuracy on CIFAR100. On the ImageNet dataset, MgNet
achieves 78.59% top-1 accuracy. Compared with the selected benchmark models,
MgNet, therefore, is more accurate and has fewer parameters which demonstrate its
superior effectiveness as compared with the other models.

5.3 MgNet with different channels

Next, we employ two MgNet variants to demonstrate the model’s scalability with re-
spect to the number of channels. The first version is consistent with the typical CNN
models; as the grid becomes deeper, the number of channels gradually increases. In
the second version, the number of channels is the same across the grids, i.e., the
number of channels does not change with the grids (resolution). For all cases on
CIFAR100 (Table 5), accuracy improves simultaneously with the number of parame-
ters. We also found that on CIFAR100, with the same number of parameters, MgNet
with fixed channels is more accurate than MgNet with increasing channels, as shown
in Table 5. Based on this fact, the number of channels for MgNet in relation to
the CIFAR datasets is fixed in each grid in the rest of this paper. On ImageNet,
as MgNet with fixed channels has a huge number of parameters, we adopt MgNet
with increasing channels in the rest of the paper. As shown in Table 6, accuracy
improves simultaneously on ImageNet as the number of parameters increases. These
results show that MgNet has great potential for scalability in terms of the number
of channels.
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Dataset Model Accuracy Parameters

CIFAR10

AlexNet [28]a 76.22 2.5M
VGG19 [42] a 93.56 20.0M
ResNet18 [17] 95.28 11.2M

pre-act ResNet1001 [18] 95.08 10.2M
WideResNet28 ∗ 2 [54] 95.83 36.5M
MgNet[2,2,2,2]-256-Bl 96.00 8.2M

CIFAR100

AlexNet [28] a 43.87 2.5M
VGG19 [42] a 71.95 20.0M
ResNet18 [17] 77.54 11.2M

preact-ResNet1001 [18] 77.29 10.2M
WideResNet40 ∗ 2 [54] 79.50 36.5M
MgNet[2,2,2,2]-256-Bl 79.94 8.3M

ImageNet

AlexNet [28] 63.30 60.2M
VGG19 [42] 74.50 144.0M

ResNet18 [17] 72.12 11.2M
preact-ResNet200 [18] 78.34 64.7M
WideResNet50 ∗ 2 [54] 78.10 68.9M

MgNet[3,4,6,3]-[128,256,512,1024]-Bl,i 78.59 71.3M

aResults are reported in https://reposhub.com/python/deep-learning/bearpaw-
pytorch-classification.html

Table 4: Accuracy of MgNet and established CNN models for widely used datasets.
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Dataset [ν1, ν2, · · · , νJ ], c`, Accuracy Parameters

CIFAR100

MgNet[2,2,2,2]-[256]-Bl 79.94 8.3M
MgNet[2,2,2,2]-[512]-Bl 81.35 33.1M
MgNet[2,2,2,2]-[768]-Bl 81.74 74.4M
MgNet[2,2,2,2]-[1024]-Bl 81.89 132.2M

MgNet[2,2,2,2]-[32,64,128,256]-Bl 74.95 2.3M
MgNet[2,2,2,2]-[64,128,256,512]-Bl 78.06 12.5M

MgNet[2,2,2,2]-[128,256,512,1024]-Bl 80.29 37.5M
MgNet[2,2,2,2]-[256,512,1024,2048]-Bl 81.49 150.0M

Table 5: MgNet with fixed and increasing channels on CIFAR100

Dataset [ν1, ν2, · · · , νJ ], c`, Accuracy Parameters

ImageNet
MgNet[2,2,2,2]-[64,128,256,512]-B` 72.32 9.9M

MgNet[2,2,2,2]-[128,256,512,1024]-B` 76.82 38.5M

Table 6: MgNet with increasing number of channels on ImageNet.

5.4 MgNet with different number of iterations ν`

In this subsection, we explore the impact of the number of iterations ν` of each grid
in MgNet. We change only ν` in the grids and keep all the other parameters fixed. In
Table 7, we can see that as ν1 increases, the corresponding accuracy improves. We
also perform similar tests on the other layers, except for the first grid; increasing the
number of iterations of the other grids, ν2, ν3, ν4, has no significant impact on the
accuracy of the model, as shown in Table 8. In addition, we test different ν3 values
on ImageNet and find that as ν3 increases the corresponding accuracy improves,
as shown in Table 9. Increasing the number of iterations ν` does not increase the
number of parameters, which is also an advantage that MgNet has over the other
models tested.
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Dataset [ν1, ν2, · · · , νJ ], c`, Accuracy Parameters

CIFAR100

MgNet[2,2,2,2]-[256]-B` 79.94 8.3M
MgNet[4,2,2,2]-[256]-B` 80.25 8.3M
MgNet[8,2,2,2]-[256]-B` 80.32 8.3M
MgNet[16,2,2,2]-[256]-B` 80.42 8.3M
MgNet[32,2,2,2]-[256]-B` 80.89 8.3M
MgNet[2,2,2,2]-[512]-B` 81.35 33.1M
MgNet[4,2,2,2]-[512]-B` 81.53 33.1M
MgNet[8,2,2,2]-[512]-B` 81.83 33.1M
MgNet[16,2,2,2]-[512]-B` 81.97 33.1M
MgNet[2,2,2,2]-[1024]-B` 81.89 132.2M
MgNet[8,2,2,2]-[1024]-B` 82.46 132.2M

Table 7: MgNet with different ν1 on CIFAR100.

Dataset [ν1, ν2, · · · , νJ ], c` Accuracy Parameters

CIFAR100

MgNet[2,2,2,2]-[256]-B` 79.94 8.3M
MgNet[2,4,2,2]-[256]-B` 79.96 8.3M
MgNet[2,8,2,2]-[256]-B` 79.92 8.3M
MgNet[2,16,2,2]-[256]-B` 79.97 8.3M
MgNet[2,2,2,2]-[256]-B` 79.94 8.3M
MgNet[2,2,4,2]-[256]-B` 79.85 8.3M
MgNet[2,2,8,2]-[256]-B` 79.91 8.3M
MgNet[2,2,16,2]-[256]-B` 79.77 8.3M
MgNet[2,2,2,2]-[256]-B` 79.94 8.3M
MgNet[2,2,2,4]-[256]-B` 79.60 8.3M
MgNet[2,2,2,8]-[256]-B` 79.28 8.3M
MgNet[2,2,2,16]-[256]-B` 79.47 8.3M

Table 8: MgNet with different ν2, ν3, ν4 on CIFAR100.
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Dataset [ν1, ν2, · · · , νJ ], c` Accuracy Parameters

ImageNet

MgNet[2,2,2,2]-[64,128,256,512]-B` 72.32 9.9M
MgNet[2,2,4,2]-[64,128,256,512]-B` 73.04 9.9M
MgNet[2,2,8,2]-[64,128,256,512]-B` 73.72 9.9M
MgNet[2,2,16,2]-[64,128,256,512]-B` 73.81 9.9M

Table 9: MgNet with different ν3 on ImageNet.

5.5 Parameter sharing on operator B

Here, we explore the parameter-sharing technique on operator B. We consider two
cases: B` (B operator of every iteration step in the same grid is the same) and B`,i

(B operators of every iteration step in the same grid are different). The influence
of B is tested on CIFAR100 and ImageNet. As shown in Table 10 and Table 11,
the MgNet-B`,i models have a larger number of parameters and are more accurate
compared with the MgNet-B` models.

Dataset [ν1, ν2, · · · , νJ ], c` Accuracy Parameters

CIFAR100

MgNet[2,2,2,2]-[256]-B` 79.94 8.3 M
MgNet[2,2,2,2]-[256]-B`,i 80.12 10.7M
MgNet[4,2,2,2]-[256]-B` 80.25 8.3 M
MgNet[4,2,2,2]-[256]-B`,i 80.63 11.9M
MgNet[8,2,2,2]-[256]-B` 80.32 8.3M
MgNet[8,2,2,2]-[256]-B`,i 81.42 14.3M

Table 10: Comparison of MgNet with share B and no share B on CIFAR100.
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Dataset [ν1, ν2, · · · , νJ ], c` Accuracy Parameters

ImageNet

MgNet[2,2,2,2]-[64,128,256,512]-B` 72.32 9.9M
MgNet[2,2,2,2]-[64,128,256,512]-B`,i 73.36 13.0M
MgNet[2,2,4,2]-[64,128,256,512]-B` 73.04 9.9M
MgNet[2,2,4,2]-[64,128,256,512]-B`,i 74.58 14.7M
MgNet[2,2,2,2]-[128,256,512,1024]-B` 76.82 38.5M
MgNet[2,2,2,2]-[128,256,512,1024]-B`,i 77.27 51.1M
MgNet[2,2,4,2]-[128,256,512,1024]-B` 77.58 38.5M
MgNet[2,2,4,2]-[128,256,512,1024]-B`,i 77.94 55.7M

Table 11: Comparison of MgNet with share B and no share B on ImageNet.

6 Discussion and conclusion

We proposed a constrained linear data-feature-mapping model as underlying ResNet
and MgNet to demonstrate their dual relation. Under this model, we investigated the
connections between the traditional iterative method with a nonlinear constraint and
the basic block scheme in the pre-act ResNet model, and developed an explanation
for pre-act ResNet at a technical level from the dual perspective of MgNet. In com-
parison with existing studies that discuss the connection between dynamic systems
and ResNet, the constrained data-feature-mapping model goes beyond both formal
and qualitative comparisons to identify key model components via a more detailed
account. Furthermore, we hope that the reason, and the ways in which, ResNet-
type models work can be mathematically understood in a similar fashion as is the
case for classical iterative methods in scientific computing for which the theoretical
understanding is more mature and better-developed. The numerical experiments ver-
ified in this paper indicate the rationality and efficiency for the constrained learning
data-feature-mapping model. In addition, a systematic numerical study on MgNet
shows its success in image classification problems and its advantages over established
networks.

We believe that our investigation into the connections between CNNs and classical
iterative methods opens a new door to the mathematical understanding and analysis
of CNN models with certain structures as well as creating opportunities to make
improvements to them. The results presented indicate the great potential of this
model from both theoretical and empirical viewpoints. Obviously many aspects of
classical iterative methods with constraint should be further explored with the goal
of making significant improvements in this regard. For example, we are currently
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focusing on establishing the connection of ResNet with bottleneck and the subspace
correction iterative methods [51] and applying different techniques from iterative
methods to MgNet.
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