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An interspecies analysis reveals a key role for
unmethylated CpG dinucleotides in vertebrate
Polycomb complex recruitment

This article has had an erroneous label (H3K27me3) removed from Figure 4C since Advance Online Publication.
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The role of DNA sequence in determining chromatin state is

incompletely understood. We have previously demonstrated

that large chromosomal segments from human cells recapi-

tulate their native chromatin state in mouse cells, but the

relative contribution of local sequences versus their geno-

mic context remains unknown. In this study, we compare

orthologous chromosomal regions for which the human

locus establishes prominent sites of Polycomb complex

recruitment in pluripotent stem cells, whereas the corre-

sponding mouse locus does not. Using recombination-

mediated cassette exchange at the mouse locus, we establish

the primacy of local sequences in the encoding of chromatin

state. We show that the signal for chromatin bivalency is

redundantly encoded across a bivalent domain and that this

reflects competition between Polycomb complex recruit-

ment and transcriptional activation. Furthermore, our re-

sults suggest that a high density of unmethylated CpG

dinucleotides is sufficient for vertebrate Polycomb recruit-

ment. This model is supported by analysis of DNA methyl-

transferase-deficient embryonic stem cells.

The EMBO Journal (2012) 31, 317–329. doi:10.1038/

emboj.2011.399; Published online 4 November 2011
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Keywords: chromatin bivalency; CpG islands; Polycomb;
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Introduction

The mechanism by which gene expression and the associated

chromatin states are encoded in primary DNA sequence is a

fundamental question in molecular biology. Orthologous

chromosomal regions from closely related species can exhibit

differing patterns of transcription factor binding, histone

modifications and transcriptional output in the same cell

type. Many factors could play a role in this process including

changes in DNA sequence, positioning within the nucleus,

alterations in the epigenetic machinery and in the levels or

modifications of the transcription factors.

Transfer of large chromosomal segments into the genome of

another species has provided evidence for the primacy of DNA

sequence in the encoding of gene expression and chromatin

states. A comparison of transcription factor binding and

H3K4me3 modification in hepatocytes from an aneuploid

mouse carrying human chromosome 21 found that the

human chromosome adopted the human rather than the

mouse pattern of chromatin modifications (Wilson et al,

2008). Furthermore, we have previously reported that, follow-

ing the replacement of B87 kilobases (kb) of the mouse a

globin locus with a corresponding 120-kb region from the

human genome, the human sequence adopts its native chro-

matin state in erythroid cells (Wallace et al, 2007). Thus, the

information required for species-specific regulatory differences

appear to be encoded in cis-acting DNA sequences.

An important outstanding question is whether this code is

local or global (Coller and Kruglyak, 2008). Interspecies differ-

ences in the chromatin landscape could either reflect alterations

restricted to the site of chromatin modifications or alternatively

a synergistic interaction between regulatory elements distribu-

ted throughout the locus. This question is particularly pertinent

to the establishment of bivalent chromatin domains, which

have been defined as promoters marked by both the active

H3K4me3 modification (mediated by Trithorax Group (TrxG)

proteins) and the repressive H3K27me3 modification (mediated

by Polycomb Group (PcG) proteins) (Azuara et al, 2006;

Bernstein et al, 2006). Sites of H3K4 methylation are conserved

between orthologous locations in human and mouse genomes;

however, the underlying DNA sequences are often no more

conserved than background (Bernstein et al, 2005). This implies

either that the DNA elements directing H3K4 methylation

represent only a small fraction of the underlying sequence or

that they are influenced by distal flanking sequences. Sequences

responsible for vertebrate PcG recruitment and modification by

H3K27me3 are also incompletely characterized (Margueron and

Reinberg, 2011). In support of a local model, CpG islands (CGIs;

Ku et al, 2008; Mendenhall et al, 2010) and transcription factor

binding sites (Barna et al, 2002; Caretti et al, 2004; Kim et al,
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2009) have been implicated. In support of a global model, long

non-coding RNA transcription mediates PcG recruitment in cis

to the inactive X chromosome (Zhao et al, 2008), the vertebrate

Kcnq1 (Pandey et al, 2008) and INK4A loci (Yap et al, 2010) and

in Arabidopsis (Swiezewski et al, 2009; Heo and Sung, 2011). In

addition, PcG recruitment in trans has been reported for the

HOTAIR long non-coding RNA (Rinn et al, 2007).

The a globin genes provide a useful model for investigating

the role of primary DNA sequences in the templating of

chromatin states. In pluripotent embryonic stem (ES) cells,

the human a globin locus contains prominent sites of PcG

recruitment and chromatin bivalency whereas the correspond-

ing mouse locus does not (Garrick et al, 2008). We have

undertaken a comparative analysis of these loci to investigate

the sequences encoding the bivalent chromatin state. We first

confirm, by comparing these two loci within the same nucleus

in a humanized mouse model, that cis-acting sequences are

responsible for differential recruitment of PcG proteins. Next, to

determine which sequences are responsible, we have used

recombinase-mediated cassette exchange (RMCE) to insert var-

ious fragments of the human locus into the orthologous position

in the mouse locus. We find that a 4-kb region of human

sequence establishes a novel bivalent chromatin domain.

Analysis of non-overlapping fragments shows that chromatin

state is redundantly encoded across this 4kb region. Using this

model we provide evidence that, consistent with a recent report

(Mendenhall et al, 2010), chromatin bivalency reflects competi-

tion between PcG recruitment and transcriptional activation at

CGIs. These analyses highlight a correlation between density of

unmethylated CpG dinucleotides and PcG recruitment and a

causative relationship is supported by the finding of multiple

sites of de-novo Polycomb repressive complex 2 (PRC2) recruit-

ment at CpG-rich regions that are methylated in wild-type ES

cells and lose methylation in Dnmt3a/b�/� ES cells.

Results

Local sequences are sufficient to encode chromatin

bivalency

The a globin genes are similarly arranged in the human and

mouse genomes (Figure 1A); however, the human a globin

locus is associated with prominent sites of PcG recruitment

and chromatin bivalency in pluripotent cells whereas the

corresponding mouse locus is not (Garrick et al, 2008;

Figure 1A; Supplementary Figure S1A–D). To confirm that

cis-acting sequences are responsible for these differences in

chromatin state, we analysed ES cells from a mouse model in

which the entire mouse a globin locus is replaced with a

syntenic region (B120kb) from the human locus (Wallace

et al, 2007; Figure 1B). Since only one mouse chromosome is

modified, species-specific real-time qPCR probes can be used

to compare the chromatin profiles at the mouse and human

loci within the same nucleus. There is a clear difference in

chromatin state between the human and the mouse a globin

genes: Cbx7, a component of the Polycomb repressive complex

1 (PRC1), Ezh2, a component of the PRC2 and the H3K4me3

histone modification are templated specifically to the human

but not to the mouse locus (Figure 1C–E). Similarly, although

the level of H3K27me3 is slightly above background levels at

the mouse locus, the level at the human gene is considerably

greater (Figure 1F). Thus, these differences in chromatin state

between mouse and human a globin genes must be deter-

mined by cis-acting sequences rather than trans-acting factors

which differ between human and mouse.

Next, we determined which sequences encode chromatin

bivalency. Using RMCE (Figure 2A), we introduced test

fragments from the human a globin cluster into the ortholo-

gous region of the mouse locus, which contains duplicated

copies of the mouse a and y genes in two homology blocks.

We replaced the downstream homology block with an RMCE

cassette by homologous recombination. Subsequently, using

RMCE we introduced a 4-kb fragment of the a globin locus,

including the human HBA2 gene and flanking sequences, into

this cassette. A linked Hprt selective marker was excised

using Flp recombinase so that the human fragments were

flanked only by frt and lox511 sites in the mouse locus

(Figure 2A). We also introduced DNA fragments encoding

FERD3L, another short gene associated with a bivalent chro-

matin state in human ES cells (Supplementary Figure S1E) and

as a negative control HBB, which does not recruit PcG or the

H3K4me3 mark in human ES cells (Supplementary Figure S1F).

Both HBA2 and FERD3L recruit PRC2 (Ezh2) and are

modified by H3K27me3 at this ectopic location. The HBA2

gene was also modified by H3K4me3 consistent with a biva-

lently modified chromatin domain. The levels of H3K4me3

modification observed were lower for FERD3L but still above

background (Figure 2B and C). There was no recruitment of

PRC2 or modification of chromatin with H3K27me3 or

H3K4me3 for the negative control HBB fragment (Figure 2D).

Thus, all of the sequences required for chromatin bivalency

appear to be encoded locally in these short DNA fragments.

ChIP with an antibody to unmodified histone H3 confirms that

these differences do not reflect alterations in histone occu-

pancy (Supplementary Figure S1G–I).

Chromatin state is redundantly encoded throughout a

bivalent domain

Domains of chromatin bivalency may extend over many kilo-

bases (Ku et al, 2008). This could either reflect recruitment to

an initial site followed by spreading along the chromosome

Figure 1 Differences in chromatin state at human and mouse a globin loci in humanized mouse ES cells. (A) The human a globin cluster is
located close to the telomere (16p13.3), whereas the mouse cluster lies at an interstitial chromosomal position (11qA4). The positions of a
globin genes (HBA1/Hba1 and HBA2/Hba2) and other globin genes within the loci are indicated. The a globin genes in both species are
arranged in duplicated homology blocks. In the human locus, these blocks contain only the a globin genes whereas in the mouse, the y globin
genes are also present. Published ChIP-seq data illustrate differences in the epigenetic status at human versus mouse a globin genes in human
and mouse ES cells. To facilitate analysis of duplicated homology blocks, reads were remapped with Bowtie permitting up to two copies of a
sequence in the genome. Read count is normalized to reads mapped per 10 million. (B) For one copy of mouse chromosome 11, the illustrated
region was replaced with the 120-kb orthologous region of human chromosome 16 including the a globin genes (Wallace et al, 2007) permitting
comparison of human and mouse globin loci within the same nucleus of pluripotent cells. (C–F) ChIP was performed with antibodies to
(C) Ezh2, (D) Cbx7, (E) H3K4me3 and (F) H3K27me3 in these transgenic mouse ES cells bearing one wild-type allele and one humanized allele.
Enrichment was quantified as percentage of input DNA and is plotted according to the position of species-specific qPCR amplicons relative to
the human or mouse a globin gene. Positive and negative control points are shown on the right side of each panel (from left to right: 50 mouse b
globin gene, mouse b globin exon1, mouse b actin, mouse Gata6). Data are the result of at least two biological replicates ±s.d.
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or recruitment by multiple redundant sequence elements

throughout the domain. Initially, we assessed the relative

contributions of the promoter and gene body sequences

to chromatin state. To address this, the HBA2 4-kb test frag-

ment was divided into three subfragments, which were sepa-

rately integrated into the same genomic locus using RMCE

(Figure 3). Fragment (I) is the original 4-kb fragment.

Fragment (II) and Fragment (III) extend from the start of

Fragment (I) to the transcriptional start site (TSS) and exon

2, respectively. Fragment (IV) extends from the TSS to the end

of the original 4-kb fragment. The nucleotide composition of

these various fragments and the HBB and FERD3L fragments is

illustrated (Supplementary Figure S2A–F). For each fragment,

three independently derived cell lines were analysed.
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Figure 2 Establishment of a novel bivalent chromatin domain in the mouse a globin locus. (A) An RMCE cassette was targeted to the wild-type
mouse a globin locus deleting the 30 homology block containing the Hba2 and 30 theta genes. The position of qPCR primers located within the
mouse a globin locus upstream of the RMCE exchange site (1–2) and in exon 1 of the mouse a globin gene (3) are indicated. (B–D) DNA
fragments encoding the human (A) HBA2, (B) FERD3L and (C) HBB genes were separately integrated into this locus using the RMCE system.
Following Flp-mediated excision of the Hprt selective marker gene, ChIP was performed with antibodies to Ezh2, H3K4me3 and H3K27me3 and
enrichment quantified with species-specific qPCR probes. The positions of qPCR probes within the tested fragments are indicated (numbered
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input DNA. Data are shown for three separately derived and analysed cell lines ±s.d.
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Figure 3 Chromatin state is redundantly encoded in the 4-kbHBA2 fragment. (A) The indicated subfragments were separately integrated into themouse a
globin locus using the RMCE system. The positions of tested subfragments relative to the original 4-kb HBA2 fragment are shown. (B) Following Flp-
mediated excision of the Hprt selective marker gene, ChIP was performed with antibodies to Ezh2, Cbx7, H3K4me3 and H3K27me3 and enrichment was
quantified with species-specific qPCR probes. qPCR probes 1–3 are located within the endogenous mouse a globin locus as indicated in Figure 1. Other
probe positions are identical to Figure 2. Enrichment was quantified as percentage of input DNA. Data are the shown for three separately derived and
analysed cell lines±s.d. (C) ChIP-seq was performed with an antibody to Ezh2 for a cell line with Fragment (IV) inserted into the mouse a globin locus
(orange bar). Readsweremapped to the transgenic locus (middle track). For comparison, ChIP-seq data are shown for Ezh2 at thewild-typemouse a globin
locus (upper track; data from Ku et al). An input track is also displayed (lower track). ChIP-seq enrichment is normalized to mapped reads per 10 million.
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Remarkably, all three of the test fragments became mod-

ified by H3K4me3 and H3K27me3 and recruited PRC1 and

PRC2 complexes, albeit to varying degrees (Figure 3B).

Therefore, it appears that the signal for chromatin bivalency

is redundantly encoded throughout Fragment (I).

Surprisingly, the greatest magnitude of PcG recruitment and

H3K27me3 modification was observed not for the largest

Fragment (I) but for a smaller Fragment (IV) which lacks

the gene promoter. This fragment also had the lowest level of

H3K4me3 modification. To compare the degree of PcG re-

cruitment at the newly inserted human fragments with the

flanking mouse locus, we performed ChIP-seq in transgenic

ES cells containing Fragment (IV) using an antibody to Ezh2

(Figure 3C, lower track). The corresponding region in the

unmodified genomic locus is illustrated for comparison

(Figure 3C, upper track). This shows that the bivalent chro-

matin state is templated by sequences within the fragment

rather than acquiring modification that has spread from

flanking sequences. We also note that there is not marked

spreading of the Ezh2 signal into adjacent chromatin.

Chromatin bivalency reflects competition between PcG

recruitment and transcriptional activation

Since PcG recruitment is greater when the promoter

sequences are deleted it seemed possible that chromatin

bivalency reflects a competition between the recruitment

of PcG and activating proteins at the promoter. If so, the

presence of additional activating sequences should shift the

balance towards an active epigenetic state. To test this, we

generated another transgenic cell line in which an B200-bp

fragment encoding an MC1 promoter, which is constitutively

active in mouse ES cells (Thomas and Capecchi, 1987), was

inserted upstream of the 4-kb HBA2 fragment (Figure 4A), and

the resulting construct was integrated by RMCE and compared

with cell lines carrying Fragment (I) or Fragment (IV).
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Figure 4 Chromatin bivalency at the HBA2 gene reflects competition between Polycomb recruitment and transcriptional activation.
(A) Fragments tested: (1) HBA2 gene with promoter deletion (Fragment IV in Figure 3). (2) Intact HBA2 gene (Fragment I in Figure 3).
(3) Intact HBA2 gene with anB200-bp fragment encoding the MC1 promoter inserted upstream of the full 4-kb HBA2 fragment with orientation
towards the gene. (B) Expression of spliced HBA2 RNAwas quantified with a species-specific qPCR probe. Expression is quantified relative to
mouse Gapdh. For each fragment tested, data are shown for three separately derived and analysed cell lines±s.d. (C) ChIP was performed with
antibodies to H3K4me3, Ezh2 and H3K27me3. qPCR amplicons present in all of the tested fragments are indicated (green). Enrichment was
quantified as percentage of input DNA. Data are shown for three separately derived and analysed cell lines ±s.d.
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Quantification of spliced HBA2 cDNA in these three cell

lines revealed a very low level of expression when the

promoter had been deleted, higher expression for the HBA2

gene with intact promoter and higher still for the fragment

containing the MC1 promoter (Figure 4B). It should be noted

that the level of expression observed even for this fragment is

several orders of magnitude lower than for HBA2 in an

erythroid cell. Next, we compared active and repressive

histone modifications and PRC2 recruitment for all three of

these RMCE-modified cell lines. There is an inverse relation-

ship between H3K27me3 and H3K4me3 (Figure 4C) with the

highest level of PRC2 recruitment and lowest level of

H3K4me3 seen when the activating sequences associated

with the promoter were deleted. Complete clearing of PRC2

and H3K27me3 occurred in the presence of the MC1 promoter

and an intermediate level of H3K4me3 and H3K27me3 was

observed for the wild-type construct.

CGI erosion during mammalian evolution is associated

with loss of chromatin bivalency

A clear difference in primary sequence between the human

and mouse a globin genes is the presence of prominent CGIs

in the human but not in the mouse locus; this reflects erosion

of the CGI in the mouse lineage compared with a common

mammalian ancestor (Antequera and Bird, 1993). To inves-

tigate whether this association between CGI erosion and loss

of PcG recruitment is a general phenomenon, we identified

2088 peaks of H3K27me3 in human ES cells that were

associated with elevated CpG density (X6% in a 500-bp

window). These were compared with their corresponding

genomic intervals (using the UCSC liftOver tool) in mouse

and rat ES cells.

Peaks are ranked according to CpG density (in a 500-bp

window) in the mouse genome (Figure 5A). Each line dis-

plays a peak of H3K27me3 in human ES cells and the

chromatin state of corresponding genomic regions in mouse

ES cells. CpG density is generally conserved between corre-

sponding regions in the human and rodent genomes and this

is associated with conservation of H3K27me3 recruitment in

ES cells. However, numerous examples were identified for

which CGI erosion between human and mouse is associated

with diminution of the H3K27me3 histone modification

(Figure 5A, below dashed line). This is confirmed by a pileup

analysis comparing enrichment of H3K27me3 at mouse re-

gions associated with conserved (43%; green) and eroded

(p3%; blue) CpG density (Figure 5B). The correlation is also

apparent when the data are presented as a scatter plot

(Supplementary Figure S3). To confirm that this is not a

species-specific phenomenon, a map of H3K27me3 was gen-

erated for rat ES cells and an analogous pileup analysis

performed with similar findings (Figure 5C), although it is

noted that the ratio of signal to background for this data set is

inferior to the human and mouse data sets. Finally, three loci

are illustrated for which CGI erosion in the mouse compared

with human genome is associated with loss of the bivalent

chromatin state in ES cells (Figure 5D–F).

De-novo PRC2 recruitment to CpG-rich sequences in

DNA methyltransferase-deficient ES cells

Most sites of PcG recruitment in ES cells are associated with

an elevated density of CpG dinucleotides (Ku et al, 2008).

CGIs associated with actively expressed promoters are

marked exclusively by H3K4me3 (Mikkelsen et al, 2007)

and results presented here and elsewhere (Mendenhall

et al, 2010) suggest that the binding of activating factors

reduces PcG recruitment. However, this does not explain

why some CGIs recruit neither PcG nor the H3K4me3

modification. We have found that DNA methylation can

explain a proportion of these CGIs. An example is the CGI

present in body of the human RHBDF1 gene. In human ES

cells (Figure 6A), the promoter is marked by H3K4me3

but the intragenic CGI is not modified by either H3K4me3

or H3K27me3. As the gene is silenced during erythropoiesis,

the promoter recruits H3K27me3 but the intragenic

CGI remains unmarked. We have previously reported that

this intragenic CGI is methylated in multiple adult somatic

tissues including erythroid cell lines (Vyas et al, 1992).

This was confirmed for human ES cells by inspection of

published genome-wide bisulphite sequencing data

(Figure 6A; Lister et al, 2009). A genome-wide comparison

of DNA methylation and the H3K4me3 and H3K27me3

histone modifications confirms that most methylated CGIs

are unmarked by both histone modifications in human ES

cells (Figure 6B–E). Conversely, inspection of chromatin state

at unmethylated (o5% methylated) CGIs (Supplementary

Figure S4A) reveals most unmethylated CGIs to be modified

by either the H3K27me3 or H3K4me3 mark in human ES

cells; moreover, there is a positive correlation with CGI size

so that essentially all unmethylated CGIs 41 kb in size are

modified by one or other of these marks (Supplementary

Figure S4B–E).

The anticorrelation between DNA methylation and PcG

recruitment in ES cells could reflect either (i) inhibition of

PcG recruitment by DNA methylation, (ii) inhibition of

DNA methylation by H3K4me3 and/or H3K27me3 or (iii) a

confounding factor, such as the restriction of DNA methyla-

tion to non-promoter CGIs in human ES cells. To distinguish

these models, we performed genome-wide ChIP-seq for

H3K27me3 in mouse ES cells deficient for Dnmt3a and

Dnmt3b methyltransferases and in wild-type mouse ES

cells. The general pattern of H3K27me3 recruitment at posi-

tive (Figure 7A; Supplementary Figure S5A) and negative

(Figure 7B; Supplementary Figure S5B) control regions is

conserved between wild-type and knockout cell lines,

although there appears to be somewhat greater spreading of

the signal in knockout cells. However, numerous de-novo

sites of H3K27me3 recruitment were observed at CpG-rich

regions in the knockout cells (Figure 7C–J; Supplementary

Figure S5C and D). A number of these sites were confirmed

by qPCR (Supplementary Figure S5E). We hypothesized that

DNA associated with these regions is methylated in wild-type

ES cells and loses methylation in Dnmt3a/b�/� ES cells and

this was confirmed by bisulphite sequencing (Supplementary

Figure S6). These results demonstrate that loss of DNA

methylation leads to de-novo sites of PcG recruitment at

CpG-rich sequences, suggesting that PcG recruitment is the

default state for such sequences in the absence of binding of

transcriptional activators.

Discussion

Studies in which large chromosomal segments are introduced

into the cells of another species (Wallace et al, 2007; Wilson

et al, 2008) suggest that differences in chromatin state and
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Figure 5 CpG island erosion during mammalian evolution is associated with loss of chromatin bivalency. (A) In all, 2088 peaks of H3K27me3
enrichment associated with a CpG density of 6% or greater (500bp window) were identified in human ES cells (Ernst et al, 2011). Data for each
peak are plotted on a single line with flanking regions of 5 kb (X axis). The corresponding genomic intervals in the mouse genome were
identified (UCSC liftOver tool). CpG density in a 500-bp window (percent) and H3K27me3 read density in a 500-bp window (percentage of
maximal enrichment) for mouse ES cells are plotted adjacent to the corresponding human peaks (Ku et al, 2008). Peaks are displayed in order
of maximum CpG density in the mouse genomic interval. CpG erosion in the mouse genome is associated with a diminution of H3K27me3
recruitment in mouse ES cells. The locations of selected genes are indicated. (B) Pileup analysis of the same data comparing mouse genomic
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as mapped reads per 10 million.
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transcriptional output largely reflect differences in primary

DNA sequence. Consequently, comparative genomics pro-

vides a powerful strategy for deciphering this regulatory

code (Waterston et al, 2002). Sequence conservation across

multiple organisms is predictive of functional elements

(Pennacchio and Rubin, 2001; Hughes et al, 2005).

However, not all functionally important sequences exhibit a

high degree of conservation (Ruvinsky and Ruvkun, 2003;

Bernstein et al, 2005), and at present the analysis of con-

served sequence cannot predict which functional elements

are required for a given effect. To date, the function of a

particular sequence is usually addressed by transgenic

experiments. However, the analysis of expression and chro-

matin state in such experiments is often confounded by copy

number variation and position effects. Here, we have ana-

lysed elements required for the recruitment of a specific

bivalent chromatin signature (H3K27me3 and H3K4me3)

using RMCE, which allows the analysis of all tested fragments

at single copy in a defined chromosomal location. This

provides a powerful system for identifying the precise cis

elements involved in chromatin templating and how far the

effect may spread beyond the primary elements.

Bivalent domains are thought to result from the interplay

between repressive (PcG/H3K27me3) and activating (TrxG/

H3K4me3) pathways and play an important role in marking

the promoters of key developmental regulators in multipotent

cells (Boyer et al, 2006; Lee et al, 2006). The identity of

cis-acting sequences responsible for PcG recruitment and the

establishment of chromatin bivalency in mammals is con-

troversial. In support of local sequences, a 1.8-kb region

between human HOXD11 and HOXD12 was demonstrated to

recruit PRC1 and PRC2 (Woo et al, 2010) and CpG-rich

sequences were reported to recruit PcG components to a

transgenic BAC (Mendenhall et al, 2010). Conversely, there

is evidence that genomic context plays an important role in

PcG recruitment. A 3-kb element located adjacent to the

mouse MafB recruited only PRC1 and not PRC2 components

when assayed in mammalian cells (Sing et al, 2009).

In addition, a number of reports have identified non-coding

RNAs encoded in cis or in trans that are required for the

recruitment of PcG (Rinn et al, 2007; Pandey et al, 2008; Zhao

et al, 2008; Yap et al, 2010).

In this study, we were initially struck by the observation

that human locus encoding a globin (HBA) contains promi-

nent sites of PcG recruitment and chromatin bivalency in

pluripotent cells whereas the orthologous mouse locus does

not. We first confirmed that this is due to cis sequence

differences by comparing these loci within the same nucleus.

Furthermore, we found that a relatively small 4 kb DNA

fragment containing the human HBA2 gene was sufficient

to recreate a novel site of chromatin bivalency when inserted

into the corresponding position in the mouse locus. This

observation is not specific to the a globin genes since another

4 kb region containing the human FERD3L gene also estab-

lished chromatin bivalency. Thus, for these examples, chro-

matin bivalency is encoded by local sequences. Nevertheless,

some domains of chromatin bivalency extend over many

kilobases (Ku et al, 2008). Here, by analysing the HBA2

gene, we have shown that this could be explained by redun-

dant recruitment to multiple sequence elements as opposed

to recruitment of chromatin modifying enzymes to a single

site and subsequent spreading. Redundant encoding of a

chromatin state may confer robustness to gene regulation in

the face of single base substitutions.
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Our results suggest that the bivalent chromatin state

reflects a competitive equilibrium between the recruitment

of PcG to CpG-rich sequences and gene activation associated

with recruitment of TrxG complexes that contain H3K4

methyltransferases. Deletion of promoter sequences from

the HBA2 gene increases PcG recruitment and H3K27me3

modification relative to the wild-type sequence, with corre-

sponding diminution of H3K4 methylation. Conversely, the

addition of a constitutively active promoter increases the

level of H3K4me3 in association with a reduction in PcG

recruitment. These findings are consistent with a study of

randomly integrated transgenic BACs in mouse ES cells which

found that the deletion of activating motifs from a house-

keeping CGI promoter led to PcG recruitment (Mendenhall

et al, 2010). A limitation of that study is that the site of

genomic integration and copy number is not controlled; this

is important since the presence of a transgene in multiple

copies is sufficient to initiate PcG silencing in Drosophila

(Pal-Bhadra et al, 1997).

Our results are also informative regarding the sequences

responsible for recruitment of H3K4 methyltransferases to

bivalent domains. Genome-wide studies have established

that most sites of PcG recruitment in ES cells are also

associated with at least a low level of the H3K4me3 modifica-

tion (Mikkelsen et al, 2007) and it has been suggested that

this ‘pre-marks’ the gene for activation. Recruitment of the

hSet1 complex to unmethylated CGIs via the Cfp1 protein

appears to play a role in this process (Thomson et al, 2010).

On the other hand, there is a correlation between the magni-

tude of the H3K4me3 modification and the transcriptional

output from bivalently marked promoters (Adli et al, 2010;

De Gobbi et al, 2011). Our results are consistent with a hybrid

model in which CpG-rich sequences are sufficient for basal

levels of H3K4me3 but this is boosted by activating sequences

in the promoter. Of interest, it appears that a relatively low

level of transcription (as observed for the wild-type HBA2

fragment) is associated with a substantial level of H3K4me3

modification, whereas a higher level of transcription is asso-

ciated with clearing of PcG proteins.

The nature of the genomic signals for vertebrate PcG

recruitment is a central question in the field of epigenetics.

We, and others, have previously proposed a role for CpG-rich

sequences in PcG recruitment (Garrick et al, 2008; Ku et al,

2008; Mendenhall et al, 2010). Consistent with this, the

most striking sequence differences between the human and

mouse a globin loci is the presence of prominent CGIs in the

human but not in the mouse, in which the corresponding

CGIs have become eroded. Here, we have shown that the

association between erosion of CpG dinucleotide density

and loss of PcG recruitment is a general phenomenon in

mammalian evolution.

In the light of these observations, we revisited the genome-

wide relationship between CGIs and PcG binding. It has been

proposed that PcG recruitment is the default state for CGIs

that do not recruit activating complexes (Ku et al, 2008).

However, a major limitation of this hypothesis is the exis-

tence of CGIs that recruit neither PcG nor the active H3K4me3

modification. Consistent with previous reports of antagonism

between PcG recruitment and DNA methylation in differen-

tiated cell types (Lindroth et al, 2008; Puschendorf et al,

2008; Wu et al, 2010) we found that, in ES cells, the majority

of methylated CGIs are marked by neither H3K27me3 nor

H3K4me3 and conversely that most unmethylated CGIs are

modified by either the H3K27me3 or the H3K4me3 mark in

human ES cells (Supplementary Figure S4).

These results suggested that, in the absence of binding of

transcriptional activators, PcG recruitment is the default state

for a genomic region containing a high density of unmethy-

lated CpG dinucleotides. To test this hypothesis, we generated

genome-wide maps of H3K27me3 in both Dnmt3a/b�/� and

wild-type ES cells. Remarkably, we observed numerous

examples of de-novo recruitment of the PcG-associated

H3K27me3 mark at CpG-rich sites that lose DNA methylation.

Taken together, these findings strongly suggest that a high

density of unmethylated CpG dinucleotides is sufficient for

vertebrate PcG recruitment. The mechanism by which this

genomic signal is recognized remains to be determined.

Materials and methods

Targeting of RMCE cassette to the mouse a globin locus
A targeting vector for the mouse a globin locus was assembled in
pNTFlox (a gift from J Hughes). In this vector, the floxed selection
markers were replaced with an RMCE acceptor cassette
(frt/Hprt�D30/loxP/MC1neo/lox511) created by modification of a
previously described chromosome engineering cassette (Wallace
et al, 2007) and flanked by homology arms designed to delete the
30a–y homology block in the mouse a globin locus. E14-TG2a.IV
mouse ES cells, which are hypoxanthine phosphoribosyl transferase
deficient (HPRT�), were cultured and gene targeting by homo-
logous recombination was performed as previously described
(Wallace et al, 2007). Correctly targeted clones were identified by
Southern blot with HindIII and BglII digests. Further details of the
constructs used are available on request.

Recombinase-mediated cassette exchange
Test sequences were cloned into the AscI site of a plasmid
containing an RMCE donor cassette (loxP/Hprt�D50/frt/AscI/lox511)
created by modification of a previously described chromosome
engineering cassette (Wallace et al, 2007). In all, 75mg of each
RMCE donor plasmid was co-electroporated with 25 mg of pCAGGS-
Cre-IRESpuro plasmid into an ES cell line containing the correctly
integrated RMCE acceptor cassette. Clones by which Cre recombi-
nation had correctly reconstituted a functional Hprt selective
marker were recovered by selection for HPRTþ cells as previously
described (Wallace et al, 2007). Finally, clones with a confirmed
exchange event were electroporated with 25mg of Flp(o) a mouse
codon-optimized Flp recombinase (Raymond and Soriano, 2007),
grown non-selectively for 6 days then plated out at 104 cells per
10 cm plate in medium supplemented with 10 mM 6-thioguanine as
previously described (Wallace et al, 2007) in order to derive cells
with the Hprt selection marker deleted.

Chromatin immunoprecipitation
Chromatin immunoprecipitation was performed with the Millipore
ChIPAssay Kit (Millipore, 17-295). Briefly, ES cells were crosslinked
with 1% formaldehyde in PBS for 10min at 371C. Chromatin was
prepared according to the Millipore protocol and sonicated to an
average size of 500–1000 bp using a Diagenode Bioruptor. Chroma-
tin fragments were immunoprecipitated with antibodies to
H3K4me3 (Millipore, 05-745R), H3K27me3 (Millipore, 07-449),
Ezh2 (Abnova, pAB0649) or Cbx7 (Santa Cruz, P-15 sc70232).
Immunoprecipitated DNAwas either analysed by real-time qPCR or
prepared for ChIP sequencing according to standard Illumina
protocols. Enrichment was quantified by real-time qPCR as a
percentage of input DNAwith Taqman probes specific to the human
and mouse a globin loci (Anguita et al, 2004). Primers and probes
employed in this study are detailed in Supplementary Table S1.

Rat ES cells were expanded in feeder-free conditions on laminin-
coated tissue culture plates (10 mg/ml; Sigma, L2020) in a modified
2i inhibitor medium based on published protocols (Buehr et al,
2008; Meek et al, 2010) and chromatin was prepared for sequencing
as described above.
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DNA and RNA analysis
RNAwas prepared with TRI reagent (Sigma) and quantified relative
to mouse Gapdh with RT-qPCR primers specific to the spliced
human a globin transcript (Anguita et al, 2004). Bisulphite
conversion of genomic DNA was performed with the EZ DNA
Methylation-Gold kit (Zymo Research, D5005) and methylation was
quantified by cloning into pGEM-T Easy (Promega) and sequencing.

Bioinformatic analysis
To investigate the relationship between CGI erosion and chromatin
bivalency, publically available ChIP-seq data sets for H3K27me3 in
human (Ernst et al, 2011) and mouse (Mikkelsen et al, 2007) ES
cells were analysed with custom Python scripts. Peaks in human ES
cells were identified with a sliding window of 500bp and moving
increment of 50bp. Peaks separated by 1 kb or less were merged
and peaks associated with enrichment on an input DNA track (Ernst
et al, 2011) were eliminated. For peaks associated with a CpG
density of 6% or greater in a 500-bp window, the corresponding
mouse genomic regions were identified using the UCSC liftOver
tool. Density of H3K27me3 and CpG dinucleotides was plotted for
these genomic regions in human and mouse ES cells. Finally, a
pileup analysis was performed to compare the genomic regions in
mouse ES cells associated with p3 versus 43% CpG density. An
identical pileup analysis was also performed for H3K27me3 in rat
ES cells.

To quantify histone modifications and DNA methylation at CGIs
in human ES cells, publically available data sets for H3K27me3
(Ernst et al, 2011), H3K4me3 (Ernst et al, 2011) and high-coverage
bisulphite sequencing (Lister et al, 2009) were analysed. For each
annotated CGI (UCSC definition, hg18), CpG methylation was
quantified as a fraction by dividing the total number of methylated
cytosines by the total number of unmethylated cytosines in

sequencing reads that mapped to that CGI. The density of histone
modifications was quantified by taking the maximum read density
in a sliding 500bp window at any position within the CGI and
flanking 1 kb regions (to account for nucleosome depletion at a
subset of CGIs). Sex chromosomes and CGIs to which reads could
not be mapped (UCSC mappability track) were excluded from the
analysis.

ChIP-sequencing data from this study have been deposited with
the GEO database (accession number GSE27580).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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