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The ability to adapt to diverse micro-environmental challenges encountered within a host

is of pivotal importance to the opportunistic fungal pathogen Candida albicans. We have

quantified C. albicans and M. musculus gene expression dynamics during phagocytosis

by dendritic cells in a genome-wide, time-resolved analysis using simultaneous RNA-seq.

A robust network inference map was generated from this dataset using NetGenerator,

predicting novel interactions between the host and the pathogen. We experimentally veri-

fied predicted interdependent sub-networks comprising Hap3 in C. albicans, and Ptx3 and

Mta2 in M. musculus. Remarkably, binding of recombinant Ptx3 to the C. albicans cell

wall was found to regulate the expression of fungal Hap3 target genes as predicted by the

network inference model. Pre-incubation of C. albicans with recombinant Ptx3 significantly

altered the expression of Mta2 target cytokines such as IL-2 and IL-4 in a Hap3-dependent

manner, further suggesting a role for Mta2 in host–pathogen interplay as predicted in the

network inference model. We propose an integrated model for the functionality of these

sub-networks during fungal invasion of immune cells, according to which binding of Ptx3 to

the C. albicans cell wall induces remodeling via fungal Hap3 target genes, thereby altering

the immune response to the pathogen. We show the applicability of network inference to

predict interactions between host–pathogen pairs, demonstrating the usefulness of this

systems biology approach to decipher mechanisms of microbial pathogenesis.
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INTRODUCTION
Both host and pathogenic species have evolved a plethora of strate-

gies to rapidly adapt to the changing environmental dynamics

within the infection milieu. However, the extent of this com-

plexity has only recently been investigated through the use of

system biology approaches (reviewed in Rizzetto and Cavalieri,

2011). On the molecular level, these adaptations are mediated by

complex interaction networks, which sense these environmen-

tal changes and transmit the information throughout the cell,

leading to a cascade of changes in gene and eventually protein

expression. Understanding these underlying interaction networks

is important to elucidate how organisms and defense mechanisms

interact during microbial infection processes. Genome-wide inte-

grative approaches for modeling have become increasingly popular

(Rizzetto and Cavalieri, 2011) due to the availability of high-

throughput sequencing technologies, including RNA sequencing

(RNA-seq). These technologies now allow for the parallel sequenc-

ing of millions of nucleotide sequences simultaneously (Wang

et al., 2009; Zhang et al., 2011). One major advantage to using

sequencing approach rather than microarrays is that it is a species-

independent platform, allowing for an in-depth investigation of

non-model organism species, as well as multiple organisms from

a single experiment.

In many cases, the underlying interaction networks between the

organisms of interest are unknown. Network inference uses reverse

engineering techniques (Hecker et al., 2009b; Marbach et al.,

2010) to predict unknown interaction networks based on high-

throughput gene expression data. A number of approaches have

been established to predict inference networks including Bayesian

network modeling (Friedman et al., 2000), information theoretical

approaches (Butte and Kohane, 2000; Faith et al., 2007), regres-

sion based models (D’Haeseleer et al., 1999; Hecker et al., 2009a),

and differential equation models (Holter et al., 2001; Guthke et al.,

2005, 2007). Biological networks are scale free networks composed

of nodes and edges, where nodes represent the objects of interest

and edges show the relations between those objects (Le Novere
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et al., 2009). Biological interaction networks often use nodes to

represent genes or proteins, and edges to show either a direct

or indirection interaction, such as protein binding or transcrip-

tional regulation (Barabasi and Oltvai, 2004). Network inference

has been successfully applied to a variety of biological scenarios,

including the modeling of immune diseases (Guthke et al., 2005;

Hecker et al., 2009a), full-genomic models of Escherichia coli (Faith

et al., 2007), and more recently, small scale networks describing

fungal infections (Linde et al., 2010). So far these model have only

focused on a single species and have not addressed host–pathogen

interactions.

In the present work, we have generated the first interspecies

computational model of molecular host–pathogen interactions.

We used RNA-seq expression data from an infection time course

of Candida albicans and bone marrow-derived dendritic cells

(BMDCs) from M. musculus. C. albicans is one of the most preva-

lent opportunistic human fungal pathogens. Although C. albicans

normally colonizes the human host, a variety of factors, most

notably immune suppression, can lead to dissemination of fungal

cells throughout the body. This dissemination can lead to a wide

range of diseases, from thrush to multi-organ failure (Gudlaugs-

son et al., 2003). We focused on dendritic cells as our model host

based of their function as antigen-presenting cells, their specializa-

tion in pathogen recognition, and their greater role in activating

and modulating adaptive immune responses (Netea et al., 2008;

Bourgeois et al., 2010). We experimentally verified predicted sub-

networks of the interspecies inferred regulatory network, which

identifies a role of the transcription factor Hap3 in C. albicans

during in vitro infection. We find that fungal Hap3 is regulated

by murine Ptx3, a soluble pattern recognition receptor acting as

an opsonin for pathogens (Diniz et al., 2004). We show that Ptx3

binding to C. albicans regulates fungal Hap3 target genes, altering

the immune response in dendritic cells. Based on the regulation

of downstream cytokines and the regulation of MTA2 mRNA in a

Hap3-dependent manner, we provide indirect evidence for a role

for Mta2, a member of the nucleosome remodeling and histone

deacetylase complex NuRD (Manavathi et al., 2007). We propose a

mechanism whereby Ptx3 binding to C. albicans leads to cell wall

remodeling via fungal Hap3 target genes, thereby changing the

ability of the fungi to be recognized by immune cells. The exper-

imental verification of the predicted interspecies interactions is

proof-of-principle that network inference can be used to investi-

gate microbial pathogenesis. We suggest that this could be a useful

method to identify potential antifungal target genes.

MATERIALS AND METHODS
CANDIDA STRAINS AND GROWTH CONDITIONS

All strains were routinely grown on YPD plates (1% yeast extract,

2% peptone, 2% glucose, 2% agar) and in standard rich media

YPD (1% yeast extract, 2% peptone, 2% glucose) for liquid cul-

ture at 30˚C. Fungal cells were collected in the logarithmic growth

phase by a brief centrifugation, washed in sterile PBS, and diluted

for all interaction studies. The following strains were used in this

study: C. albicans clinical isolate SC5314 (Gillum et al., 1984)

and homozygous knock-out of Hap3 (hap3Δ/hap3Δ) and rever-

tant strain (hap3Δ/hap3Δ + CIp10 (HAP3, URA3), abbreviated

in the text as hap3Δ/hap3Δ + HAP3), were generated from the

strain BWP17 (ura3::imm434/ura3::imm434 iro1/iro1::imm434

his1::hisG/his1::hisG arg4::hisG/arg4::hisG) by stepwise deletion of

both alleles using PCR-amplified HAP3::ARG4 and HAP3::HIS1

cassettes (Gola et al., 2003) and a cIP10 plasmid containing HAP3

and its promoter and terminator sequences integrated at the RP10

locus (Murad et al., 2000).The homozygous knock-out of cda2

and revertant were kindly provided by Neil Gow (Aberdeen, UK).

CELL CULTURE OF PRIMARY IMMUNE CELLS FROM MOUSE BONE

MARROW

Bone marrow was differentiated to either BMDCs or bone

marrow-derived macrophages (BMDMs) from the femurs of 7-

to 9-week-old wild type C57BL/6 mice and assessed for homo-

geneity as previously described using a panel of marker antibodies

(Bourgeois et al., 2009).

FUNGAL-MAMMALIAN CELL CO-CULTURE

Fungal-mammalian cell co-cultures were performed as previously

described (Bourgeois et al., 2009). Briefly, immune cells were

plated at a density of 1.0 × 105 cells/cm2 in sterile cell culture

dishes and incubated with fungal cells at a multiplicity of infec-

tion (MOI) of five fungal cells per immune cell. Samples were

incubated at 37˚C in 5% CO2, 95% humidity for up to 24 h.

cDNA PREPARATION FOR RNA-seq

Total RNA was isolated from immune cells and C. albicans using

the SV total RNA isolation system (Promega, Madison, MI, USA)

following manufacturers instructions. To obtain RNA mixtures

from both C. albicans and BMDCs, cells were first scraped in the

provided lysis buffer, followed by homogenization with 200 µl

of 0.5 mm acid-washed glass beads (Sigma-Aldrich, St. Louis,

MO, USA) in a Fast Prep-24 cooling block at 4˚C (MP Bio-

medicals Europe, Illkirch, France) for 45 s at 5 m/s. Ribosomal

RNA was depleted from 10 µg of pooled total RNA samples using

the RiboMinus eukaryote kit for RNA-seq (Invitrogen, Carlsbad,

CA, USA) and concentrated using the corresponding RiboMi-

nus Concentration Module (Invitrogen) following manufactures

instructions for three independent biological repeats. For each

sample, 1 µg of ribosomal-depleted RNA was converted into

cDNA using the SMARTer PCR cDNA Synthesis kit and the Advan-

tage 2 polymerase mix (Clontech, Mountain View, CA, USA).

PCR amplifications were performed on 1/10 of the first strand

synthesis reaction for 18 cycles of 90˚C for 1 min, 95˚C for 15 s,

65˚C for 30 s, and 68˚C for 6 min on a GeneAmp PCR system

9700 (Applied Biosystems, Carlsbad, CA, USA), and purified on

ChromaSpin columns (Clontech, Mountain View, CA, USA). The

resulting cDNAs were sequenced on the Genome Analyzer IIx at

GATC (Konstanz, Germany) using 36 bp, single run, indexed read

mode.

SEQUENCE READ MAPPING, PRE-PROCESSING, AND DATA

NORMALIZATION

All sequencing reads were mapped using TopHat 1.2.0 (Trapnell

et al., 2009) against the SC5314 C. albicans assembly 21 (Skrzypek

et al., 2010) and the M. musculus UCSC version mm9 from the

ENSEMBL database (Flicek et al., 2011). Mapping was carried out

using the default settings in which only unique hits were kept for
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further analysis. The gene expression and normalization analysis

was performed as previously described (Mortazavi et al., 2008).

Genes were tested for differential expression using the bioconduc-

tor package baySeq (Hardcastle and Kelly, 2010) relative to the

0-min infection time point. The analysis was carried out for C.

albicans and M. musculus genes individually.

CLUSTERING AND OVER-REPRESENTED GENE ONTOLOGY TERMS

Fuzzy c-means clustering (Bezdek, 1992) was applied to the

two expression matrices of differentially expressed genes from

C. albicans and M. musculus. The optimal number of clus-

ters was estimated as previously described (Guthke et al., 2005;

Linde et al., 2010). Functional categorization and significantly

over-represented categories were identified using the tool Fungi-

Fun (Priebe et al., 2011). All four hierarchical levels of Funcat

(Ruepp et al., 2004) and Gene Ontology (Ashburner et al., 2000)

categorization were used in this study.

NETWORK INFERENCE PREDICTION AND MEASURING INTERACTION

ROBUSTNESS

Network inference was performed as previously described using

the NetGenerator tool (Guthke et al., 2005; Linde et al., 2010).

Briefly, NetGenerator is based on a set of linear differential equa-

tions and models the temporal change of the expression intensity

xi(t ) of gene i (i = 1. . .n) at time t as the weighted sum of the

expression intensities of all other genes and an external stimulus

u(t ) at time t. The external stimulus u(t ) is modeled as a stepwise

constant function representing the change from no host–pathogen

interaction to the onset of the interaction. The tool aims to identify

a network structure, which best fits to the measured RNA-seq data,

while it minimizes the number of predicted interactions (Guthke

et al., 2005). Thus, a sparse network is inferred.

NetGenerator offers the possibility to integrate prior knowl-

edge (i.e., putative regulatory interactions based on additional data

besides the initial time series expression data). Based on the con-

fidence of the prior knowledge source, it is possible to score each

proposed interaction. The confidence of the prior knowledge is

based on the level of experimentation used to verify a specific inter-

action and the number of independent experiments showing the

same interaction. Since different data sources might be contradic-

tory, prior knowledge is softly integrated, i.e., if a proposed inter-

action contradicts the measured data too much it can be removed

by NetGenerator. Furthermore, the tool may add new interac-

tions not covered by the prior knowledge in order to fit to the

measured data. In this study, prior knowledge from public data-

bases was softly integrated (Guthke et al., 2005). Each proposed

interaction was scored in an additive manner based on the con-

fidence of the prior knowledge source as follows: direct evidence

that a gene is involved in a host–pathogen interaction (confidence

score = 0.5), co-expression of two genes (confidence score = 0.25),

and the occurrence of the respective transcription factor bind-

ing motif in the upstream intergenic regions of genes (confidence

score = 0.125). Prior knowledge was obtained from GeneMania1,

IntAct (Aranda et al., 2010), BioGrid (Stark et al., 2011), the C. albi-

cans database (Skrzypek et al., 2010), the mouse genome database

1http://genemania.org/data/

(Blake et al., 2011), and a number of peer-reviewed publications

(Lane et al., 2001; Doedt et al., 2004; Martchenko et al., 2004;

Zhao et al., 2004; Fradin et al., 2005; Oberholzer et al., 2006; Wang

et al., 2006; Spira et al., 2007; Thewes et al., 2007; Zakikhany et al.,

2007; Almeida et al., 2008; Baek et al., 2008; Nobile et al., 2008;

Frohner et al., 2009; Griffin et al., 2009; Raman et al., 2009; Sellam

et al., 2009; Hinze et al., 2010; Hou et al., 2010; Smith et al., 2010;

Wachtler et al., 2011) summarized in Figure 1C. Putative regula-

tory interactions were tested for robustness using two methods.

First, Gaussian noise was introduced with a mean of 0 and SD 0.05

to the estimated mRNA concentrations for 1000 iterations. Sec-

ondly, predicted interactions were screened for robustness against

changes in prior knowledge by iterating the modeling approach

1000 times while randomly skipping 10% of all interactions in the

set of prior knowledge for each run. Only edges that were con-

firmed by more than 50% of the iterations were considered to be

robust and used in the resultant model.

REAL-TIME qPCR ANALYSIS

RNA sample preparation, reverse transcription, and real-

time PCR were performed previously described (Bour-

geois et al., 2009) using the following primers: mouse β-

Actin, forward 5′-GCGTGACATCAAAGAGAAG-3′ reverse 5′-

AGGAGCCAGAGCAGTAATC-3′ (RTPrimerDB)2 mouse MTA2,

forward 5′-CACTGCTATAGCCTCACGCC-3′, reverse 5′-GCTAG

GAGCTGGAACC TCAC-3′,mouse PTX3, forward 5′-CCTGCTTT

GTGCTCTCTGGT-3′, reverse 5′-TCTCCAGCATGATGAACAGC-

3′ (Diniz et al., 2004), C. albicans TUP1, forward 5′-

GACTACGCCTCAAACGAAGC-3′ reverse 5′-TGGTGCCACAAT

CTGTTGTT-3′, C. albicans FRE6 forward 5′-CCGGTAAACATCC

ATTCCAC-3′, reverse 5′-TTGATCCAAATGCCATT-CAA-3′, C.

albicans SEF1, forward 5′-GTGGAGGACTCGTTCATGGT-3′,

reverse 5′-TGAACCAGCACGATTCAGAG-3′, C. albicans RIP1,

forward 5′-TGCTGACAGAGTCAAGA-AACC-3′ reverse 5′-

GAACCAACCACCGAAATCAC-3′ as determined using the

sequence analysis software Vector NTI (Invitrogen, Carlsbad, CA,

USA). Results were calculated using the ΔΔct method and are

expressed as the fold of the gene expression of interest versus the

expression of a housekeeping gene in M. musculus (β-Actin) or C.

albicans (RIP1) in treated versus untreated conditions.

CYTOKINE QUANTIFICATION FROM CO-CULTURE SUPERNATANTS

The amount of cytokines released into cell culture supernatants by

immune cells during in vitro interaction studies with heat killed C.

albicans were assayed after 24 h of co-culture using the mouse IL-2,

IL-4, or TNFα Ready-set-go ELISA kit (R&D Systems, Minneapo-

lis, MN, USA) or the Mouse Cytokine Array Panel A kit (R&D

Systems) according to the manufacturers instructions.

BINDING AND LABELING Ptx3 IN VITRO

Recombinant mouse Ptx3 (rmPtx3) protein (R&D Systems) was

reconstituted in sterile PBS and diluted for all experiments.

Some 0.5 × 106 fungal cells were incubated for 1 h at 37˚C

with 5 µg reconstituted rmPtx3. Ptx3 was labeled with the pri-

mary antibody against Ptx3 (Abnova, Taiwan) and secondarily

2 http://medgen.ugent.be/rtprimerdb/index.php
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FIGURE 1 | RNA-seq predicts regulatory host-fungus interactions. (A) M.

musculus clustering of differentially expressed genes (scaled and centered

log2 values) over the time course of the infection. Black lines represent the

expression of individual genes. The mean (dotted line, red) and the variance

(solid, red) are shown. (B) C. albicans clustering of differentially expressed

genes (scaled and centered log2 values) over the time course of the infection.

Black lines represent the expression of individual genes. The mean (dotted

line, red) and the variance (solid, red) are shown. (C) Prior knowledge

incorporated into the inference network for all genes, where the input

corresponds to the external perturbation (co-culture) and regulation by target

corresponds to induction by the co-culture environment but not associated

with a specific gene set. (D) Measured (dots), interpolated (dotted line),

simulated (solid line) gene expression for all genes used in the inference

model from NetGenerator over the time course of the infection. (E) Inferred

network model between C. albicans and M. musculus, where all C. albicans

(blue) and M. musculus genes (green) in the study are included. The following

interactions are represented on the model: predicted interactions based on

the RNA-seq data set from individual species where no prior knowledge

exists (gray), predicted interactions between a C. albicans and M. musculus

gene where no prior knowledge exists (red), or where prior knowledge exists

and corresponds to expression data set (orange). Here, activation is shown as

an arrow and a repression with a bar. The “C. albicans/M. musculus”

rectangle represents the influence from the external perturbation (co-culture

during in vitro infection) on the gene expression level.

labeled with goat-anti-rabbit 649 Dylight (Thermo Scientific,

Rockford, Illinois). Fungal cell wall chitin was labeled using

10 µM of Calcofluor White (Sigma-Aldrich). Intracellular labeling

of Ptx3 was performed using the BD Cytofix/Cytoperm Fixa-

tion/Permeabilization kit with BD GolgiPlug protein transport

inhibitor (BD Biosciences, Heidelberg) after 6 h of C. albicans

infection following manufactures instructions. Preparations were

assessed by flow cytometry or visualized on an Olympus Cell-R

live imaging unit (Olympus, Essex, UK) for all experiments.

STATISTICAL ANALYSIS FOR INFERENCE MODEL VERIFICATION

Statistical analysis of data was performed using the GraphPad

Prism graphing and analysis software (GraphPad Software, San

Diego, USA) for all in vitro experiments excluding the RNA-seq
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analysis described above. Statistical significance was assessed using

with the Student t -test and a p-value <0.05 was considered

significant.

RESULTS
INFERRED REGULATORY NETWORK IDENTIFIES NOVEL INTERSPECIES

HOST–PATHOGEN INTERACTIONS

We used massively parallel RNA sequencing of cDNA (RNA-seq)

obtained from co-cultures of C. albicans and M. musculus BMDCs

over 2 h to model an infection time course from fungal adhesion

to early host cell lysis. In total, we obtained approximately 120

million reads, which were mapped to the C. albicans 21 assembly

or M. musculus mm9 genome and analyzed each for differential

gene expression relative to the pre-infection state. We identified

545 differentially expressed genes for C. albicans and 240 for M.

musculus over the complete time course.

The small number of measured data points for each gene over

the time course restricts the modeling approach to a limited num-

ber of genes. If there was no pre-selection of the genes, or a large

number of genes were to be used, it would result in an over-fitting

of the measured data that would not produce a robust inference

model. For this reason, it is necessary to select a set of relevant

genes to be represented by nodes in the network model. To identify

candidate genes in C. albicans and M. musculus, all differentially

expressed genes were first clustered (Bezdek, 1992) by their kinetics

during the time course (Figures 1A,B). From each cluster, one or

more representative genes were chosen for use within the model.

Several considerations were taken into account for the selection

of candidate genes. In C. albicans, we preferentially chose genes

that have been either annotated as virulence genes (i.e., adhe-

sion, hyphal formation, or response to host) or strongly respond

to infection or infection-like conditions (i.e., temperature stress,

nutrient limitation, or iron regulation). For M. musculus, we pri-

oritized genes with phenotypes relating to the immune defense or

response, or susceptibility to pathogens in a systemic mouse model

of infection.

A number of recent studies have shown the reverse engineer-

ing approach is greatly improved by the integration of different

data sources (Werhli and Husmeier, 2007; Gustafsson et al., 2008;

Hecker et al., 2009a,b). We therefore collected putative regulatory

interactions based on additional data obtained from literature,

referred to as prior knowledge, for each gene. Based on the con-

fidence of the prior knowledge source, a score is attributed to

each interaction (see Materials and Methods). Since different data

sources might be contradictory, prior knowledge was softly inte-

grated so that if a proposed interaction contradicts the measured

data to a great extent, it can be removed from the resulting network

(see Materials and Methods). Genes with no known or predicted

function were therefore excluded from the analysis. Based on these

criteria, we narrowed our gene lists to five from C. albicans and six

from M. musculus. Prior knowledge scores (Figure 1C) and expres-

sion kinetics (Figure 1D) for the candidate genes were combined in

NetGenerator to generate the final network inference (Figure 1E).

To verify the fit of the model to the actual expression kinetics

of the candidate genes, we first used NetGenerator to interpolate

and simulate gene expression for the measured data points of each

gene (Figure 1D). The closer expression profiles for the individual

genes fit to the measured data points, the better the inference pre-

diction is. We found a close relationship between the simulated

and measured data points, showing that the NetGenerator model

is representative of the measured data. The final interspecies net-

work was based on these predictions (Figure 1E). Only edges that

were robust against the addition of Gaussian noise and partial

skipping of prior knowledge were used in the construction of the

model. The final network predicts 21 putative edges, including 4

interspecies edges.

To specifically test the robustness of the interspecies edges

experimentally, we focused on a sub-network composed of a sin-

gle C. albicans transcription factor Hap3 that was predicted in

the inference model to contain two interactions with M. musculus

genes. These interactions include a predicted blunt or repressing

edge between fungal Hap3 by murine Ptx3, and a predicted blunt

edge of murine Mta2 by fungal Hap3 itself.

THE BINDING OF MURINE Ptx3 REGULATES Hap3 TARGET GENES

Pentraxin 3 (Ptx3) is a soluble pattern recognition receptor that

has been previously shown to function as an opsonin to facili-

tate pathogen uptake by phagocytic cells in a dectin-1 dependent

manner (Diniz et al., 2004). To determine if M. musculus Ptx3

blocked fungal Hap3 function or the expression of Hap3-regulated

genes in C. albicans as suggested by the inference model, we

first asked whether Ptx3 was induced upon infection with Can-

dida cells. Using intracellular staining for Ptx3, we detected a

strong fluorescence signal in BMDMs infected with C. albicans,

whereas no signal was detected in BMDMs alone or ptx3−/−

macrophages (Figures 2A,B). Furthermore, we found an increase

in PTX3 mRNA levels in BMDCs (Figure 2C) and BMDMs (data

not shown) after 1 h of C. albicans infection, verifying that Ptx3

is indeed induced in our experimental setup. Interestingly, the

amount of PTX3 induced significantly decreased in the absence

of Hap3 (Figure 2C). We detected a similarly significant decrease

in PTX3 induction in the gene containing the Hap3 binding box,

Cda2, a predicted chitin deacetylase in C. albicans.

Ptx3 has been previously shown to bind to numerous fungi,

including Aspergillus fumigatus (Jaillon et al., 2007) as well as

zymosan-coated particles (Diniz et al., 2004). Therefore, we asked

whether recombinant mouse Ptx3 (rmPtx3) could also bind to

the C. albicans cell wall. We assessed rmPtx3 binding using

fluorescence microscopy and flow cytometry. Fungal cells pre-

incubated with rmPtx3 for 1 h at 37˚C showed surface localization

of Ptx3 to the cell wall. No signal was visible on cells treated

with the PE-conjugated secondary alone or the untreated con-

trol (Figure 2E). Notably, the labeling pattern of Ptx3 coincided

with areas of expected chitin exposure. Hence, we also stained C.

albicans cells with Calcofluor White, a fluorescent dye that binds

to exposed chitin (Bulawa et al., 1995). Interestingly, the local-

ization of rmPtx3 on the C. albicans overlapped with the signal

detected for Calcofluor White alone (Figure 2E), suggesting that

Ptx3 might bind to accessible cell surface chitin. We confirmed

and quantified the amount of Ptx3 binding to the cell wall using

flow cytometry. Based on the binding observed in the fluorescence

microscopy, we analyzed our data using both the complete pool of

C. albicans cells as well as discriminating yeast and hyphal forms

(Figure 2D; Figure A1 in Appendix). We detected a high level of
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FIGURE 2 | Binding of rmPtx3 to C. albicans mediates the expression of

Hap3 target genes. (A) Intracellular labeling of endogenous Ptx3 induction

after 6 h of C. albicans stimulation of macrophages derived from wild type or

ptx3−/− bone marrow. (B) Intracellular labeling of endogenous Ptx3 after 6 h

of C. albicans stimulation of macrophages derived from wild type bone

marrow. Macrophages directly associated with fungal cells and show a

strong signal for endogenous Ptx3, while those not associated have only

background signal levels. (C) qPCR of PTX3 in BMDCs after 1 h of infection

with different C. albicans strains. Results represent the mean of 3 pooled

experiments ± SD. (D) FACS analysis of wild type strain SC5314 after 1-h

treatment with rmPtx3, where untreated cells stained with PE only (red) and

rmPtx3 and SC5314 (blue) are shown. Cells were gated by size to

differentiate yeast and hyphal morphologies. (E) Fluorescence microscopy

of SC5314 after 1 h pre-treatment with 5 µg rmPtx3 (red) or 10 µM

Calcofluor White (blue). (F) qPCR of predicted targets genes of Hap3.

SC5314 (white), BWP17 (gray), hap3Δ/hap3Δ (blue), and

hap3Δ/hap3Δ + HAP3 (black) after 1 h pre-incubation with 5 µg rmPtx3 are

shown. Results represent the mean of 3 pooled experiments ± SD.

binding in fungal hyphae compared to yeast form cells. This is

consistent with our fluorescence microscopy analysis, where we

detected much stronger signals on the hyphal cell walls compared

to the bud scars on yeast form cells.
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Given that rmPtx3 binds to the fungal cell surface, we assessed

if rmPtx3 binding influenced the expression of predicted fungal

Hap3 target genes as predicted by the inferred network using qPCR

(Figure 2F). There are 10 predicted target genes of Hap3 that were

recently identified in a network inference study using microarray

data from C. albicans during in vitro epithelial infection, where

iron is assumed to be limited (Linde et al., 2010). Out of the 10

putative Hap3 target genes, we found three,TUP1, FRE6, and SEF1,

whose expressions were significantly decreased in C. albicans after

rmPtx3 binding, verifying their functionality as Hap3 target genes.

Interestingly, the levels of these genes increased in the Hap3 knock-

out. These data strongly suggest that their down-modulation upon

binding of rmPtx3 is Hap3-dependent.

CANDIDA ALBICANS BOUND BY Ptx3 ATTENUATES THE IMMUNE

RESPONSE IN BMDCs

Recently it was shown that the binding of recombinant human

Ptx3 increases A. fumigatus conidia phagocytosis and influences

cytokine production. Those mice lacking Ptx3 were additionally

found to be more susceptible to A. fumigatus infection (Moalli

et al., 2011). To determine if the binding of Ptx3 to C. albicans

changed the cytokine production of murine immune cells in vitro,

we first investigated the gross immune response using a cytokine

array after 24 h of co-culture with BMDCs (Figure A2 in Appen-

dix). RmPtx3-bound C. albicans induced multiple cytokines com-

pared to untreated C. albicans including IL-2, a cytokine regulated

by Mta2, as well as the inflammatory cytokines KC, JE, and TNFα

(Figures A2 in Appendix). Interestingly, when we then compared

Hap3 knock-out cells pre-incubated with rmPtx3, we detected a

general increase in these cytokines in addition to IL-23, IL-17,

IL-16, and IL-10 that were not detected in using wild type C.

albicans (Figure A2 in Appendix).

Since the cytokine array is a qualitative assessment of cytokine

production with a relatively high detection threshold, we verified

the changes in cytokine levels for the cytokines most relevant to

the inference model, namely, IL-2 and IL-4, both target cytokines

of Mta2, and TNFα, a pleiotropic inflammatory cytokine, by

ELISA. Mta2 is a member of the NuRD (nucleosome remodel-

ing and histone deacetylase) complex in M. musculus (Manavathi

et al., 2007) and predicted in our network model as repressed

by Hap3. The cytokines IL-2 and IL-4 produced during the host

immune response were both recently identified as targets of the

Mta2/NuRD complex (Lu et al., 2008). We found that in BMDCs,

MTA2 increased in the absence of Hap3, suggesting that Hap3

might indirectly regulate expression of Mta2 (Figure 3A). We

quantified cellular cytokine release using wild type BMDCs with

C. albicans, wild type BMDCs with rmPtx3-bound C. albicans, and

ptx3−/− BMDCs. We found that the production of IL-2 and IL-

4 significantly increased in the absence of Hap3 (Figures 3B,C).

This increase was augmented by C. albicans cells pre-incubated

with rmPtx3, confirming our observation from the cytokine array

that there is a general increase in the production of these cytokines

when there is an increase in Ptx3. Interestingly, compared to wild

type BMDCs, the basal level of cytokine production of IL-2 and

IL-4 increased in ptx3−/− BMDCs, corresponding to our inferred

network prediction that the loss of its predicted negative regu-

lators, Ptx3 and fungal Hap3, would increase the expression of

Mta2 and thereby increase the expression of its target cytokines.

In Hap3 knock-out cells, we found both on the cytokine arrays and

by ELISA a significant decrease in TNFα (Figure 3D). These data

show that the binding of Ptx3 to fungal cells alters the cytokine

production by immune cells in a Hap3-dependent manner, and

the regulation of Mta2 target cytokines indirectly suggests an

involvement of Mta2 as predicted by the network inference model.

IDENTIFYING CELL SURFACE Hap3 TARGET GENES

To identify how immune cells could detect the regulation of the

transcription factor Hap3 in C. albicans, we searched for puta-

tive Hap3 target genes that could have more direct contact with

immune cells, including: cell wall, plasma membrane or secretory

proteins. We focused on C. albicans genes of cluster 2, since their

expression strongly increased expression over the time course of

invasion (Figure 1B). Within this cluster, we scanned for genes

harboring the binding site of the Hap-complex in their upstream

regulatory regions (Baek et al., 2008). We further narrowed down

the candidate list by removing genes that did not have a pre-

dicted cellular localization or function in the C. albicans database

(Skrzypek et al., 2010). Following these selection criteria, nine can-

didate genes were left that we used to infer an additional network in

combination with Ptx3, Hap3, and Mta2 to determine if an inter-

action could be inferred with a protein that could come in direct

contact with immune cells (Figure A3 in Appendix). To increase

the reliability of the putative Hap3 interactions within the new

interaction network, we included the validated interactions from

our experiments within this study (repression of HAP3 by Ptx3

and MTA2 by Hap3), as additional prior knowledge. Of all of the

candidate genes, only the activation of CDA2 (a putative chitin

deacetylase in C. albicans) by Hap3, was robust against Gaussian

noise and partial skipping of prior knowledge.

DISCUSSION
In this study, we aimed to infer a network that predicts interactions

between host and pathogenic species under infection settings. To

our knowledge, this is the first network inference approach pre-

dicting host–pathogen interactions. This approach allowed for

the prediction, identification, and experimental verification of

interdependent sub-networks composed of a single C. albicans

transcription factor Hap3, and the M. musculus genes Ptx3 and

Mta2. The experimental validation suggests a putative mecha-

nism to explain how these interactions could be regulated during

infection of immune cells by fungal pathogens.

Our modeling approach was fundamentally based on differen-

tial equations, which have been previously used to infer regulatory

network models (Toepfer et al., 2007; Linde et al., 2010). This

approach is generally suitable for time series data. Nevertheless,

this approach is inappropriate for large-scale modeling, because

a large number of genes incorporated into a differential equa-

tion based model leaves open a number of parameters to be

identified. This may result in an over-fitting of the data. The mod-

eling approach uses four attempts to prevent over-fitting. First,

we restrict the number of genes within the model such that a

smaller number of parameters need to be identified. Second, it

aims at inferring a sparse network where many parameters are zero.

Thirdly, it makes use of re-sampling techniques where the data are
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FIGURE 3 | Mouse MTA2, IL-2 and IL-4 increase upon stimulation with C.

albicans in a Hap3-dependent manner. (A) qPCR of M. musculus MTA2

expression in BMDCs after 1 h incubation with fungal cells at an MOI of five

fungal cells to immune cells are shown. Results represent the mean of 3

pooled experiments ± SD. (B–D) ELISA measurement of IL-2 (B), IL-4 (C), and

TNFα (D) from the supernatants of BMDCs after 24 h incubation with fungal

cells in WT BMDCs, C. albicans cells pre-incubated with rmPtx3 on wild type

BMDCs, or fungal cells on ptx3−/− BMDCs. Incubations were performed at an

MOI of five fungal cells to immune cells. Results represent the mean of 2

pooled experiments ± SD.

perturbed in a random manner. Finally, we make use of prior

knowledge guiding the inferred structure to a knowledge-based

solution. Thus skipping incorrect network structures.

Gene expression levels, as well as available prior biological

knowledge, were used to aid in the narrowing of genes that we

chose to incorporate into the model. For this reason, genes where

no biological knowledge was available were excluded from fur-

ther analysis. However, we cannot exclude the possibility that

additional genes of unknown function might also play a role in

our inference model. This remains a limitation of the modeling

approach, in so far as predictions can only be made for genes where

a reasonable amount or prior knowledge is available. The genes

incorporated into the model represent only one possible scenario

of interactions and we do not exclude the possibility that other

genes may play a role under other conditions. We have already

started to take first step for a full-genomic network modeling for

C. albicans utilizing a compendium of all available expression data

(Altwasser et al., 2012). Moreover, we primarily focused on genes

acting as putative network“hubs”in their organisms (Bulawa et al.,

1995). Hubs are genes such as transcription factors that regulate

many other downstream genes within a network either directly or

indirectly. Hubs were chosen because they are less likely to have

redundant roles. Therefore, we would expect a stronger pheno-

type than investigating genes that are sparsely connected. This also

means that the interactions we are investigating are more likely to

be indirect and should be interpreted with caution.

From our original candidate gene list, we inferred HAP3 as a

putative network hub targeted by innate immune cells. Interest-

ingly, several putative target genes of Hap3 identified in this study

are predicted to localize to the plasma membrane, cell wall, or are

involved with cell wall reorganization in C. albicans. The fungal

cell wall is a dynamic structure, which undergoes significant struc-

tural and molecular composition remodeling throughout its life

cycle, as well as in response to a variety of external stimuli (Chaffin,

2008). As Hap3 in C. albicans is a transcription factor up-regulated

under iron-limiting conditions (Linde et al., 2010), it is likely

that its function during fungal recognition or phagocytosis by

immune cells is indirect. Of all of the candidate cell surface Hap3

targets, only Cda2, a putative chitin deacetylase forms a robust

interaction with Hap3 within the second network (Figure A3 in

Appendix). Chitin deacetylase enzymes exists in both intracellu-

lar and secreted forms in different fungi, where they hydrolyzes

the acetamido group in the N -acetylglucosamine units of chitin

and chitosan, leaving glucosamine units and acetic acid form as

byproducts (Zhao et al., 2010). Chitin deacetylases exist in both

Saccharomyces cerevisiae (Martinou et al., 2002) and in the oppor-

tunistic fungal pathogen Cryptococcus neoformans, where they have

been suggested as an antifungal target due to their severe effect on

cell wall integrity (Baker et al., 2007). Notably, chitin deacety-

lases are secreted during different developmental stages of some

other fungi (Zhao et al., 2010). For example, in Colletotrichum

lindemuthianum, a plant fungal pathogen, chitin deacetylases are
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exclusively secreted during hyphal penetration into plant tissue

(Tokuyasu et al., 1996). We find that Ptx3 induction is decreased

in the CDA2 knock-out (Figure 2C), further suggesting a possible

connection to the inferred network model. These data are consis-

tent with the overlap of Ptx3 staining and that of Calcofluor White

(Figure 2E), which binds to exposed chitin. Therefore, it is tempt-

ing to speculate that the recognition of C. albicans by immune

cells triggers the production of this enzyme to induce cell wall

remodeling as an evasion strategy. However, further work beyond

the scope of this study is needed to decipher the specific function

of Cda2 in C. albicans and its connection to Hap3.

We observed that upon binding of rmPtx3 to fungal cells, the

C. albicans virulence genes TUP1, FRE6, and SEF1 mRNA levels

significantly decreased in a Hap3-dependent manner (Figure 2F).

Tup1 has a well-characterized role as a key regulator in C. albicans

morphogenesis (Braun and Johnson, 1997). We cannot exclude

the possibility that Hap3 and Tup1 may have similar or even

complementary functions during interaction with immune cells.

Interestingly, both Tup1 and Fre6 are either directly or indirectly

involved in the C. albicans cell wall homeostasis. Tup1 is a multi-

functional transcriptional co-repressor of filamentous growth in

C. albicans whose lack leads to constitutive filamentous growth

(Braun and Johnson, 1997; Park and Morschhäuser, 2005). Fre6 is

an uncharacterized protein, for which in silico predictions suggest

it to reside in the plasma membrane with a putative functional

similarity to the ferric reductase Fre10, an important protein in

iron acquisition (Knight et al., 2005). Therefore, their regulation

upon binding or phagocytosis might play an additional role in

cell wall remodeling during infection. Since fungal cells experi-

ence severe iron-limiting condition within phagosomes of host

cells, Hap3 and Fre6 appear as logical candidates involved in this

reciprocal interaction. Likewise, Sef1 regulates iron uptake, and

has recently been shown to promote virulence in a mouse model

of bloodstream infections (Chen et al., 2011). Interestingly, it was

shown that knock-out mice lacking Ptx3 are hyper-susceptible to

A. fumigatus (Moalli et al., 2010). However, no in vivo work has

been performed to date using ptx3−/− mice and C. albicans. A

recent study has shown that the activation of the complement

system via the lectin pathway can be triggered via a complex of

Ptx3 and mannose binding lectin (MBL) on C. albicans mannan

in vitro (Ma et al., 2011). They showed the MBL–Ptx3 complex

could enhance the deposition of the complement components

C3 and C4 and thereby increase phagocytosis of C. albicans by

polymorphonuclear leukocytes. It has previously been shown that

C3 knock-out mice are additionally more susceptible to C. albi-

cans infections (Han et al., 2001). Therefore, it is possible that the

absence of Ptx3 could result in reduced activation of the comple-

ment pathway and reduced fungal killing. In vivo studies using

ptx3−/− mice would be needed to investigate this hypothesis.

We found that the expression of MTA2 and the regulation

of its downstream targets such as cytokines IL-2 and IL-4, are

increased during immune cell invasion by C. albicans in a Hap3-

dependent manner (Figures 3B,C). Moreover, we found that an

altered-immune response is one consequence of rmPtx3 binding.

Mta2 knock-out mice display partial embryonic lethality, while

the surviving mice develop lupus-like autoimmune symptoms,

including severe developmental phenotypes (Lu et al., 2008). Mta2

is uniquely associated with the NuRD chromatin complex, which

has both nucleosome remodeling and histone deacetylase activ-

ity (Feng and Zhang, 2003). Although there has been no data

Immune response

Altered-immune response

WT

.h
ap

3∆

∆

/h
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3

6-24 h1-5 h0 h
Time  

FIGURE 4 | A proposed model for the mode of action of Ptx3 on C.

albicans. After mutual recognition between C. albicans (yellow) and host

immune cells (blue), Ptx3 (blue, stars) is released into the surrounding

milieu where it can bind to the invading fungal cell wall. The binding of

Ptx3 induces a change in the C. albicans cell wall (purple) after the

activation of Hap3 target genes, influencing its recognition by immune

cells and the subsequent immune response. Arrows represent

progression of time during an infection.
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to date in fungi indicating a role for host chromatin in patho-

genesis, recent work in bacteria and viruses (Hamon and Cossart,

2008; Rohde, 2011) shows that chromatin remodeling is induced in

host cells during invasion. Consistent with these observations, our

data suggests that the regulation of MTA2 may affect chromatin

remodeling in immune cells in the response to fungal pathogens.

The resultant altered-immune response may be disadvantageous

to the pathogen because it would promote fungal clearance.

We propose that Hap3 constitutes a target hub of C. albicans,

which actively regulates immune responses through the reorga-

nization of the C. albicans cell wall during invasion of innate

immune cells (Figure 4). Specifically, we propose a model in which

the binding of Ptx3 released from immune cells to C. albicans

cell wall triggering the reorganization of the C. albicans cell wall

and plasma membrane via the activation of Hap3 target genes.

This reorganization in turn changes the recognition of the fun-

gus by immune cells and attenuates the host immune response.

This work demonstrates the possibility to experimentally verify

predicted host–pathogen relationships based on an interspecies

model of network inference, showing that inference modeling can

be used in the investigation of microbial pathogenesis. We propose

that this method could be useful for the identification of antifungal

target genes.
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APPENDIX
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FIGURE A1 | FACS analysis of rmPtx3 binding to C. albicans yeast and

hyphal cells. SC5314 after 1-h treatment with rmPtx3. Cells were gated

according to morphology based on size, all Candida cells analyzed (green

gate), yeast form only (black gate) and hyphal form only (the brown gate).

Histograms for untreated cells (red), and treated rmPtx3 and SC5314 (blue)

are shown.
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FIGURE A2 | rmPtx3 binds to the C. albicans surface and alters the immune response. The cytokine array panel for M. musculus (R&D systems) where

each spot represents an individual cytokine (in duplicate) for supernatants from BMDCs treated fungal cells pre-treated with rmPtx3 after 24 h.
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FIGURE A3 | Inferred network model between C. albicans and M.

musculus using of candidate Hap3 effector genes. C. albicans (blue)

and M. musculus genes (green) included in the model are shown. The

following interactions are represented on the model: predicted

interactions based on the RNA-seq data set from individual species where

no prior knowledge exists (black) or predicted interactions between a C.

albicans and M. musculus gene where no prior knowledge exists (red), or

where prior knowledge exists but does not corresponds to expression

data set (gray, dotted). Here, activation is shown as a pointed arrow and a

repression a blunted arrow.
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