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We present a generic framework for defining and solving interval constraints on any set of domains
(finite or infinite) that are lattices. The approach is based on the use of a single form of constraint
similar to that of an indexical used by CLP for finite domains and on a particular generic definition
of an interval domain built from an arbitrary lattice. We provide the theoretical foundations for
this framework and a schematic procedure for the operational semantics. Examples are provided
that illustrate how new (compound) constraint solvers can be constructed from existing solvers
using lattice combinators and how different solvers (possibly on distinct domains) can communicate
and hence, cooperate in solving a problem. We describe the language clp(L), which is a prototype
implementation of this framework and discuss ways in which this implementation may be improved.
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1. INTRODUCTION

Constraint Logic Programming (CLP) systems support many different domains
such as finite ranges of integers [Carlsson et al. 1997; Codognet and Diaz 1996a],
reals [Jaffar et al. 1992; Refalo and Van Hentenryck 1996; Sidebottom and
Havens 1992; Benhamou 1995], finite sets [Walinsky 1989; Gervet 1997], or the
Booleans [Codognet and Diaz 1996b; Barth and Bockmayr 1996]. The choice of
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domain determines the nature of the constraints and their solvers; whether or
not a domain is discrete or continuous as well as its cardinality influence the
constraint solving procedures so that, for example, existing CLP systems have
distinct constraint solving methods for the finite and the infinite domains. In
practice, constraint problems are often not specific to any particular system
domain and thus their formulation has to be artificially adapted to fit a given
solver.

Most constraint solvers, called black box solvers, have the control fixed by
the system. This black box approach enables very efficient implementations
and can provide practical tools for the common constraint applications. How-
ever, such black box solvers lack adaptability for use in solving nonstandard
problems. To overcome this lack of flexibility, many constraint systems provide
glass box constraints [Frühwirth 1998; Codognet and Diaz 1996a]. These allow
new constraints to be defined by the user. In this paper, we are particularly
interested in glass box systems that do not require the user to have a detailed
knowledge of the implementation.

From this perspective, there have been two main separate developments for
the provision of glass box constraints: the constraint system clp(FD) [Codognet
and Diaz 1996a] and the Constraint Handling Rules (CHRs) [Frühwirth 1998].
The first of these, designed for the finite domain (FD) of integers, is based
on a single generic constraint that allows the user to define and control the
constraint propagation. These constraints, often referred to as indexicals, are
very efficient [Fernández and Hill 2000] since the implementation uses a sim-
ple interval narrowing technique which can be smoothly integrated into the
WAM [Aı̈t-kaci 1999; Diaz and Codognet 1993]. As a result, clp(FD) is now part
of mainstream CLP systems such as SICStus Prolog [Carlsson et al. 1997],
IF/Prolog [If/Prolog 1994], and GNU Prolog [Diaz and Codognet 2001]. On the
other hand, the CHRs (now included as a library in SICStus Prolog [Carlsson
et al. 1997]) enable the creation of new user-defined domains and their solvers
and allow any interaction between them. Unfortunately the flexibility of these
rules has an efficiency cost and the CHR systems have not been able to compete
with other systems that employ the more traditional approaches [Fernández
and Hill 2000].

It follows from this discussion that what is needed is a glass box system
that combines the flexibility of CHRs with the efficiency of clp(FD). For this
reason, we have adopted the indexical approach of clp(FD) to constraint solving,
generalizing it for any set of domains that are lattices, thereby providing a
flexibility closer to that of CHRs. Our framework has many advantages and,
we believe, considerable potential as indicated below.

—The only condition we have placed on a domain is that it must be a lattice.
Since, as far as we know, all existing domains provided for CLP systems
are already lattices or could be easily extended to become lattices, it can
support a wide variety of applications. Moreover, lattice combinators such
as the direct and lexicographic products can be used to combine existing
domains and their constraint operations to form the basis of new (compound)
solvers.
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—The framework is defined on a set of domains, allowing information to flow
between domains. This provides an appropriate setting for solving (probably
new) applications defined in the interval domain and over which different
solvers, possibly on distinct domains, can communicate and, hence, cooperate.

—The basic schema for solving constraints is uniform over all domains regard-
less of whether they are user-defined or system-defined and irrespective of
their cardinality. We prove that any constraint solver that is an instance of
this schema is correct and show how termination may be ensured.

—Our framework is based on the indexical approach. Thus we anticipate that
adaptations of the techniques used for the implementation of clp(FD) can be
used for the implementation of our operational schema, thereby obtaining a
reasonable efficiency compared with other CLP systems.

The paper is based on the Ph.D. dissertation of A. J. Fernández [Fernández
2002]; more information about the theory and/or the clp(L) language/system is
available there. Furthermore, the constraint framework described in this paper
is a simplified and improved version of that given in Fernández and Hill [1999b].
In Section 2, we describe the algebraic concepts used in the paper. In Section 3,
we define the computation domain and construct the interval domain used for
constraint solving. In Section 4, the interval constraints are presented together
with the procedure for constraint propagation and narrowing. In Section 5, we
provide a schema for the operational semantics of our constraint solver and
show how this can be adapted so as to ensure termination for infinite as well
as finite domains. In Section 6, we provide additional nonstandard examples
of computation domains and also show how new domains can be constructed
using different lattice combinators. We also define high-level constraints and
show how these provide support for solver cooperation. An overview of the
CLP language clp(L) that we have implemented to demonstrate the viability
of the theoretical framework is described in Section 7. Section 8 deals with
several important issues as for example how to solve disjunctive constraints or
nonlinear constraints among others. The main part of the paper ends with a
discussion about related work and the conclusions. The proofs of all the results
stated in the main part of the paper are included in the Appendix.

2. PRELIMINARIES AND NOTATION

If C is a set, then #C denotes its cardinality, ℘(C) its power set, and ℘ f (C) the
set of all the finite subsets of C, that is to say, ℘ f (C) = {c ∈ ℘(C) | c is finite}.

Ordering. Let C be a set with equality. A binary relation 	 on C is an or-
dering relation if it is reflexive, antisymmetric, and transitive. Let C be a set
with ordering relation 	 and c, c′ ∈ C. Then, we write c ∼ c′ if either c 	 c′ or
c′ 	 c and c �∼ c′ otherwise. Also c ≺ c′ if c 	 c′ and c �= c′. Any set C for which
an ordering relation is defined is said to be ordered. We say C is totally ordered
if for any a, b ∈ C, a ∼ b.

Bounds. Let C be an ordered set. An element c in C is a lower (upper)
bound of a subset E ⊆ C if and only if ∀x ∈ E : c 	 x (x 	 c). If the set of
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lower (upper) bounds of E has a greatest (least) element, then that element is
called the greatest lower bound (least upper bound) of E and denoted by glbC(E)
(lubC(E)). If E = {x, y}, we write glbC(x, y) to denote glbC({x, y}) and lubC(x, y)
to denote lubC({x, y}).

Predecessor and successor. Let C be an ordered set and let c, c′ ∈ C. Then
c = pre(c′) is an immediate predecessor of c′ and c′ = succ(c) an immediate
successor of c if c ≺ c′ and for any c′′ ∈ C with c 	 c′′ ≺ c′ implies c = c′′.

Monotonicity. Let f be a n-ary function f :: C1 ×· · ·×Cn → C, where C and
all Ci, for i ∈ {1, . . . , n}, are ordered sets. Then f is monotonic in C if, whenever
ti, t ′

i ∈ Ci such that ti 	 t ′
i , for all i ∈ {1, . . . , n}, then

f (t1, . . . , ti, . . . , tn) 	 f (t ′
1, . . . , t ′

i , . . . , t ′
n).

A monotonic function f is strict monotonic if, whenever ti, t ′
i ∈ Ci such that

ti 	 t ′
i , for all i ∈ {1, . . . , n} and t j ≺ t ′

j , for some j ∈ {1, . . . , n}, then

f (t1, . . . , ti, . . . , tn) ≺ f (t ′
1, . . . , t ′

i , . . . , t ′
n).

Lattice. Let L be an ordered set. L is a lattice if lubL(x, y) and glbL(x, y)
exist, for any two elements x, y ∈ L.

Top and bottom elements. Let L be a lattice. If it exists, glbL(L) = ⊥L is the
bottom element of L. Similarly, if it exists, lubL(L) = �L is the top element of L.
The lack of a bottom or top element can be remedied by adding a fictitious one.
Thus, the lifted lattice of L is L ∪ {⊥L, �L} where, if glbL(L) does not exist, ⊥L
is a new element not in L such that ∀a ∈ L, ⊥L ≺ a and similarly, if lubL(L)
does not exist, �L is a new element not in L such that ∀a ∈ L, a ≺ �L.

Dual. Let L be a lattice. If a ∈ L, then we denote its dual as â. The dual of L,
denoted by L̂, is the lattice that contains the dual element of any element in L,
that is to say, L̂ = {â | a ∈ L}, and where the ordering is reversed with respect
L, that is to say, if a, b ∈ L, then â 	 b̂ if and only if b 	 a. As consequence, L̂ is
the lattice that contains exactly the same elements as L and that is obtained by
interchanging glbL(a, b) and lubL(a, b) for any a, b ∈ L. The duality principle
for lattices is “the dual of a statement about lattices phrased in terms of glb and
lub can be obtained simply by interchanging glb and lub.”

Products. Let L1 and L2 be two (lifted) lattices. Then the direct product
〈L1, L2〉 and the lexicographic product (L1, L2) are lattices where

glb(〈x1, x2〉, 〈 y1, y2〉) = 〈glbL1
(x1, y1), glbL2

(x2, y2)〉;
glb((x1, x2), ( y1, y2)) = if x1 = y1 then (x1, glbL2

(x2, y2))
elsif x1 ≺ y1 then (x1, x2)
elsif x1 � y1 then ( y1, y2)
else (glbL1

(x1, y1), �L2 );
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lub is the dual of glb;

�〈L1,L2〉 = 〈�L1 , �L2〉 and ⊥〈L1,L2〉 = 〈⊥L1 , ⊥L2〉;
�(L1,L2) = (�L1 , �L2 ) and ⊥(L1,L2) = (⊥L1 , ⊥L2 ).

Moreover,

〈x1, y1〉 	 〈 y1, y2〉 iff x1 	 y1 and x2 	 y2;
(x1, y1) 	 (x2, y2) iff x1 ≺ x2 or x1 = x2 and y1 	 y2.

For more information about lattices see, for example, Davey and Priestley
[1990]. In the rest of the paper, (L, 	, glbL, lubL, ⊥L, �L) denotes a (possible
lifted) lattice on L with (possibly fictitious) bounds ⊥L and �L.

3. THE COMPUTATION AND INTERVAL DOMAINS

The domain on which the values are actually computed is called a computation
domain. The key aspect of the constraint system described in this paper is that
it can be built on any computation domain provided it is a lattice. Throughout
the paper, we let L denote a (possibly infinite) set of computation domains con-
taining at least one element L and let L̂ = {L̂ | L ∈ L}. With each computation
domain L ∈ L, we associate a set of variable symbols VL that is disjoint from
VL′ for any L′ ∈ L distinct of L. We define VL = ∪{VL|L ∈ L}. It is assumed
(without loss of generality) that all L ∈ L are lifted lattices.

Example 1. Most classical constraint domains are lattices. For instance,

(Integer, ≤, mini, maxi, ⊥Integer, �Integer),
(�, ≤, mini, maxi, ⊥�, ��),
(Bool, ⇒, ∧, ∨, false, true),
(Set L, ⊆, ∩, ∪, ∅, L)

are lattices for the integers, reals, Booleans, and sets, respectively, under their
usual orders where mini and maxi functions return, respectively, the minimum
and maximum element of any two elements in the integers or reals. Note that
Integer and � are lifted lattices and include the fictitious elements �Integer,
⊥Integer, ��, and ⊥�. For the Booleans, it is assumed that Bool = {false, true}.
For the set lattice, we assume that Set L = ℘(L), for each L ∈ L, where
L = {Integer, �, Bool} ∪ {Set L | L ∈ L}. Note that L is an infinite set of
computations domains.

In the rest of the examples in the paper, we will use the computation domains
Integer, �, Bool and Set L for some domain L ∈ L without further comment or
direct reference to this example.

Although the framework for our constraint system is based on the indexical
approach of clp(FD) to constraint solving which propagates constraints on finite
closed intervals, this framework is intended for all lattices including infinite and
continuous ones. For this reason, we need to be able to define the constraints
over both open and closed intervals. Thus, in the rest of this section, we will show
how a computation domain can be combined with a special binary lattice we
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call the bracket domain to form an interval domain suitable for the constraint
solving mechanism described in Section 4. We do this in a number of stages.
First, in Section 3.1, we define the bracket domain and use this to construct
bounded computational domains for the left and right bounds of an interval.
In Section 3.2, these are extended to allow for constraint operators. These are
further extended in Section 3.3 to include an additional construct called an
indexical. In Section 3.4, we use this enhanced bounded domain to construct
the interval domain.

3.1 Bounded Computation Domains

To define open and closed bounds of the intervals, we first define a domain of
brackets.

Definition 1 (Bracket Domain). The bracket domain B is the lattice

({‘)’, ‘]’}, ≺, minB, maxB, ‘)’, ‘]’),

where the ordering ≺ is defined by ‘)’ ≺ ‘]’, and minB and maxB functions return,
respectively, the minimum and maximum of any two elements in B.

This domain is combined with any computation domain to form the right and
left bounds of an interval.

Definition 2 (Simple Bounded Computation Domain). The simple boun-
ded computation domain for L is the lattice resulting from the lexicographic
product (L, B) and denoted by Ls. An element (a, b) ∈ Ls is denoted by ab.

The mirror of Ls is the lexicographic product (L̂, B) and is denoted by Ls.
The mirror of an element t = (a, b) ∈ Ls is (â, b) ∈ Ls and denoted by t = ab.

The simple bounded computation domain and its mirror maintain some use-
ful relations that are independent of any specific computation domain. For
instance, it follows directly from the definition that Ls = L̂s. Moreover, if
t1 = ab, t2 = cd ∈ Ls, then

if a �= c,


t2 ≺ t1 ⇐⇒ t1 ≺ t2

glbLs (t1, t2) = lubLs (t1, t2)

lubLs (t1, t2) = glbLs (t1, t2)

 else


t1 	 t2 ⇐⇒ t1 	 t2

glbLs (t1, t2) = glbLs (t1, t2)

lubLs (t1, t2) = lubLs (t1, t2)

 .

Example 2. When L = Integer, 6] denotes (6, ‘]’) and 6] denotes (6̂, ‘]’). Also

0) ≺ 0] ≺ 1) ≺ 1] ≺ · · · ≺ �L) ≺ �L] in Integers,

�L) ≺ �L] ≺ · · · ≺ 1) ≺ 1] ≺ 0) ≺ 0] in Integers,
glbLs (3], 5]) = lubLs (3], 3)) = 3],

glbLs (3], 5]) = lubLs (3], 5]) = 5] = (5̂, ‘]’),

lubLs (3], 5]) = glbLs (3], 5]) = 3] = (3̂, ‘]’).
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Moreover, when L = Set Integer, {1, 3}) denotes ({1, 3}, ‘)’) and {1, 3}) denotes
({̂1, 3}, ‘)’). Also

{1}] ≺ {1, 3}) ≺ {1, 3}] ≺ {1, 3, 5}] in Set Integers,

{1, 3, 5}] ≺ {1, 3}) ≺ {1, 3}] ≺ {1}] in Set Integers,
glbLs ({4}], {4, 6}]) = {4}] and lubLs ({3}], {4, 6}]) = {3, 4, 6}],

lubLs ({4}], {4, 6})) = glbLs ({4}], {4, 6}]) = {4}] = ( ˆ{4}, ‘]’).

3.2 Constraint Operators

The bounded computation domains are extended to allow for operators.

Definition 3 (Constraint Operators). Suppose L ∈ L and L1, . . . , Ln ∈ L∪L̂.
Then ◦ is called a constraint operator for Ls if it is defined as

◦ :: Ls
1 × · · · × Ls

n → Ls,
◦(a1b1 , . . . , anbn) = ◦L(a1, . . . , an)◦B(b1,...,bn), (1)

where ai ∈ Li and bi ∈ B, for 1 ≤ i ≤ n, and ◦L and ◦B are monotonic functions

◦L :: L1 × · · · × Ln → L,
◦B :: B × · · · × B︸ ︷︷ ︸

n times

→ B,

defined in the computation domain L and in the bracket domain, respectively,
in such a way that, if ◦L is not a strict monotonic function then ◦B is a constant
function. The mirror ◦ of ◦ is then defined as

◦ :: Ls
1 × · · · × Ls

n → Ls,

◦(t1, . . . , ti, . . . , tn) = ◦(t1, . . . , ti, . . . , tn). (2)

If ◦ is a binary constraint operator, we often use infix notation and write
t1 ◦ t2 instead of ◦(t1, t2).

Example 3. Suppose for any b1, b2 ∈ B,

b1 +B b2 = minB(b1, b2), b1 −B b2 = ‘]’ if b1 = b2 and ‘)’ otherwise.

Suppose also that +L :: L × L → L and −L :: L × L̂ → L are strict monotonic
on L. Then the binary constraint operators +, −, and their mirrors are defined
as

+ :: Ls × Ls → Ls, − :: Ls × Ls → Ls,
ab + cd = (a +L c)b+Bd , ab − cd = (a −L ĉ)b−Bd ,

+ :: Ls × Ls → Ls, − :: Ls × Ls → Ls,

ab+cd = (a +L c)b+Bd , ab−cd = (a −L ĉ)b−Bd .
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Consider the case L ∈ {Integer, �}; then we define +L/2 and −L/2 to return,
respectively, the sum and difference of their arguments. For example, when
L = �, by Equations (1) and (2), we have

3.2) + 4.1] = (3.2 +� 4.1))+B] = 7.3), 3.2) + 4.1] = 3.2) + 4.1] = 7.3).

7.3) − 4.1] = (7.3 − 4̂.1))−B] = 3.2), 7.3) − 4.1] = 7.3) − 4.1] = 3.2).

Observe that we declared −L with the second argument in the mirror domain of
that of the first. This ensures that operators such as −Integer, −� are monotonic
on both arguments. For instance, if i ∈ Integer, then, as î increases, 10 − î
increases but 10 − i decreases. From the operator declarations our framework
will ensure that all constraints are propagated monotonically (see Section 4.3).

Suppose that the unary operator trunc is defined as

trunc :: �s → Integers,
trunc(ab) = truncInteger(a)truncB(b),

where truncInteger(a) is defined to return the integer part of a, for any a ∈ �,
and truncB(b) = ‘]’ for any b ∈ B. Then

trunc :: �s → Integers
.

Thus, by Equations (1) and (2),

trunc(3.1)) = truncInteger(3.1)truncB(‘)’) = 3],

trunc(3.1)) = trunc(3.1)) = 3].

Consider now the case L = Set L′ with L′ ∈ L; then we define +/2 and −/2
as follows:

+ :: Ls × Ls → Ls, − :: Ls × Ls → Ls,
ab + cd = (a ∪ c)], ab − cd = (a\ĉ)].

Then, for example, for L′ = Integer,

{1, 3}] + {3, 4}) = ({1, 3} ∪ {3, 4})] = {1, 3, 4}],

{1, 3}] + {3, 4}) = {1, 3}] ∪ {3, 4}) = {1, 3, 4}],

{1, 3}] − {3, 4}] = ({1, 3}\{̂3, 4})] = {1}],

{1, 3}] − {3, 4}] = {1, 3}]\{3, 4}] = {1}].

In the definition of an operator such as trunc in the previous example, we
allowed for its arguments to have a different computation domain from that of
the result. This provides a channel of communication from one solver to another,
allowing the information to flow between different domains.

3.3 Indexicals

The variables in VL are introduced into the domain Ls and its mirror by means
of indexicals. Let OL be a set of constraint operators defined for Ls.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 1, January 2004.
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Definition 4 (Bounded Computation Domain). The bounded computation
domain (for L) Lb and its mirror Lb are defined as

Lb = Ls ∪ {max(x) | x ∈ VL} ∪ {val(x) | x ∈ VL}

∪
{

◦(t1, . . . , tn)

∣∣∣∣∣ ◦ :: L′
1 × · · · × L′

n → Ls ∈ OL,

ti ∈ (L′
i)

b for (1 ≤ i ≤ n)

}
,

Lb = {t | t ∈ Lb},
where

for i ∈ {1, . . . , n}, (L′
i)

b = Lb
i if L′

i = Ls
i and (L′

i)
b = Lb

i if L′
i = Ls

i ;

max(x) = min(x), min(x) = max(x) and val(x) = val(x);
for each ◦ :: L′

1 × · · · × L′
n → Ls ∈ OL,

◦(t1, . . . , ti, . . . , tn) = ◦(t1, . . . , ti, . . . , tn).

The expressions max(x), min(x), val(x), and val(x) are called indexicals.

We define �Lb = �Ls and ⊥Lb = ⊥Ls and the ordering of Lb to be inherited
from that of Ls. Thus Lb is also a lattice. Note that, if t ∈ Lb, then t ∈ Lb, and,
if t ∈ Lb, then t ∈ Lb.

Example 4. Let + (for L = Integer), − (for L = �), and trunc be as defined
in Example 3. Then +, trunc ∈ OInteger, − ∈ O�. Let also i ∈ VInteger and r ∈ V�;
then

3], max(i), 3) + max(i), trunc(max(r)) are in Integerb;
20.1), max(r), 20.1) − min(r), val(r) are in �b;

3], min(i), 3) + min(i), trunc(min(r)) are in Integerb;
20.1), min(r), 20.1) − max(r), val(r) are in �b;

and

3) + max(i) = 3) + max(i) = 3) + min(i).

3.4 Interval Domains

We now define the structure over which the constraints will be solved.

Definition 5 (Interval Domain). The interval domain Rb
L over the domain

L is the direct product 〈Lb, Lb〉. The simple interval domain Rs
L over L is the

direct product 〈Ls, Ls〉.
Note that Rb

L and Rs
L are lattices since they are constructed from the direct

product of lattices. It is important to note that the ordering 	 for Rs
L simulates

the interval inclusion.1

1For instance, 〈3.0], 4.0)〉 	 〈1.8), 4.5]〉 intuitively means that [3.0, 4.0) ⊆ (1.8, 4.5].
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Definition 6 (Range). An element r ∈ Rb
L is called a range. If r ∈ Rs

L, then
we say it is simple. A simple range r = 〈s, t〉 is consistent

(1) if s 	 t and
(2) if s = a) and, for some b ∈ B, t = a′

b, then a �= a′.

Note that (1) implies that r is inconsistent if s �∼Ls t.

Example 5. In the domains �, Integer, and Set Integer, with i ∈ V�
and s ∈ VSet Integer, and where + (for L ∈ {�, Set Integer}) is as defined in
Example 3,

〈2.3], 8.9)〉 ∈ Rs
� is consistent;

〈2.3], 2.2]〉 ∈ Rs
� is inconsistent;

〈1.4], max(i) + 4.9]〉 ∈ Rb
�;

glbRb
�
(〈3.2], 6.7]〉, 〈1.8), 4.5]〉) = 〈3.2], 4.5]〉;

lubRb
�
(〈3.2], 6.7]〉, 〈1.8), 4.5]〉) = 〈1.8), 6.7]〉;

〈1], 10]〉 ∈ Rs
Integer is consistent;

〈1), 1]〉, 〈5], 2]〉 ∈ Rs
Integer are inconsistent;

〈{1}], {1, 3}]〉 ∈ Rs
Set Integer is consistent;

〈{1, 3}], {1}]〉, 〈{1, 3}], {1, 4}]〉 ∈ Rs
Set Integer are inconsistent;

〈{1}]+min(s), {2, 5, 7, 9}]〉 ∈ Rb
Set Integer.

The next result shows that given an (in)consistent range in the Rs
L lattice it

is possible to identify a part of this lattice where every range is (in)consistent.

PROPOSITION 1. Suppose r, r ′ ∈ Rs
L, for any L ∈ L, where r 	 r ′. If r ′ is

inconsistent, then r is also inconsistent.

Example 6. Suppose L ∈ L and a, b, c ∈ L where a ≺ c ≺ b. Figure 1
illustrates the part of lattice Rs

L constructed from the elements a, b and c. Note
that the nodes within the square are all inconsistent ranges where the rest
of nodes are all consistent. The nodes with circles are special cases and are
considered in Section 8.1.

4. THE CONSTRAINT DOMAINS

Interval constraints, which are the basic elements of the constraint solver, are
defined in Section 4.1 by coupling a variable with a range. In Section 4.2, we de-
fine constraint stores and show how a solution can be computed using two proce-
dures: constraint stabilization and constraint propagation. Then, in Section 4.3,
we explain how our constraint system enforces the monotonic propagation of
constraints.

As in previous sections, L denotes any domain in L, VL the set of variables
associated with L, VL = ∪{VL|L ∈ L}, and Rb

L the interval domain over L. Let
X ∈ ℘ f (VL).
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Fig. 1. Structure of the simple interval domain Rs
L where a, b, c ∈ L and a ≺ c ≺ b.

4.1 Interval Constraints

Definition 7 (Interval Constraint Domain). Suppose %:: VL × Rb
L. Then, for

all x ∈ VL and r ∈ Rb
L,

c = x % r

is called an interval constraint for L with constrained variable x. If r is simple
(respectively consistent), then c is simple (respectively consistent). If r = �Rb

L
,

then c is called a type constraint for x and denoted by x ::′ L. If t ∈ L, then x = t
is a shorthand for x % 〈t], t]〉. The interval constraints domain over X for L is
the set of all interval constraints for L with constrained variables in X and is
denoted by CX

L . The union

CX def=
⋃ {

CX
L

∣∣ L ∈ L
}

is called the interval constraint domain over X for L.
The ordering for CX is inherited from the ordering in Rb

L. We define c1 	 c2
if and only if, for some L ∈ L, c1 = x % r1, c2 = x % r2 ∈ CX

L and r1 	 r2.
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12 • Fernández and Hill

Definition 8 (Intersection of Simple Interval Constraints). Suppose x ∈ X .
The intersection in a domain L ∈ L of two simple constraints c1, c2 ∈ CX

L where
c1 = x % r1, c2 = x % r2, and x ∈ VL is defined as follows:

c1 ∩L c2 = glbCX
L

(c1, c2) = x % glbRs
L
(r1, r2).

Suppose x ∈ X and c1, c2, c3 ∈ CX
L are simple interval constraints with con-

strained variable x and c3 = c1 ∩L c2. Then it follows from the definition that
∩L has the following properties:

Contractance: c3 	 c1 and c3 	 c2;
Correctness: if c 	 c1 and c 	 c2, then c 	 c3;
Commutativity: (c1 ∩L c2) = (c2 ∩L c1);
Idempotence: (c1 ∩L c3) = c3 and (c3 ∩L c2) = c3.

If Sx ⊆ CX
L is a set of simple constraints with constrained variable x, then we

define
⋂

L Sx = glbCX
L

(Sx). As a result of the contractance property, we have that⋂
L Sx 	 c, for each c ∈ Sx .

Example 7. Examples of the intersection of simple interval constraints are

i % 〈5], 24]〉 ∩Integer i % 〈1], 14]〉 = glbCX
Integer

(i % 〈5], 24]〉, i % 〈1], 14]〉)
= i % glbRs

Integer
(〈5], 24]〉, 〈1], 14]〉)

= i % 〈glbIntegers (5], 1]), glbIntegers (24], 14])〉
= i % 〈5], 14]〉.

r % 〈1.12], 5.67)〉 ∩� r % 〈2.34], 5.95)〉 = r % 〈2.34], 5.67)〉;
b % 〈false), true]〉 ∩Bool b % 〈false], true]〉 = b % 〈false), true]〉;

s % 〈{1}], {1, 2, 3}]〉 ∩Set Integer s % 〈{2}], {1, 2, 4}]〉 = s % 〈{1, 2}], {1, 2}]〉.

4.2 Constraint Stores

Definition 9 (Constraint Store). If S ∈ ℘ f (CX ), then S is a constraint store
for X . If S contains only simple constraints, then it is simple. If S is simple,
then it is consistent if all its constraints are consistent. The set of all sim-
ple constraint stores for X is denoted by SX . A constraint store S is stable if
there is exactly one simple constraint for each x ∈ X in S. The set of all simple
stable constraint stores for X is denoted by SSX .

Let S, S′ ∈ SSX where cx , c′
x denote the (simple) constraints for x ∈ X in S

and S′, respectively. Then S 	 S′ if and only if, for each x ∈ X , cx 	 c′
x . Let �SSX

be the set of type constraints for X and ⊥SSX = {x % ⊥Rs
L

| x ∈ X ∩ VL, L ∈ L}.
Then, with these definitions, SSX forms a lattice.

A solution to a constraint store is obtained as a combination of two processes:
constraint propagation and constraint stabilization (i.e., constraint narrowing).
The first of this, constraint propagation, is defined by means of an evaluation
function.
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Definition 10 (Evaluating Interval Constraints). Let S ∈ SSX , x ∈ X , and
let

LX = ∪{LX | L ∈ L, LX = {t ∈ Lb | vars(t) ⊆ X }},
LX = ∪{LX | L ∈ L, LX = {t ∈ Lb | vars(t) ⊆ X }},

where vars(t) denotes the set of variables occurring in t. Then the (overloaded)
evaluation functions are defined:

eval :: SSX × LX → LX , eval :: SSX × LX → LX ,

eval(S, t) = t if t ∈ Ls ∪ Ls, L ∈ L,
eval(S, max(x)) = t where x % 〈s, t〉 ∈ S,
eval(S, min(x)) = s where x % 〈s, t〉 ∈ S,
eval(S, val(x)) = t if x % 〈t, t〉 ∈ S,
eval(S, val(x)) = val(x) if x % 〈t, t〉 �∈ S,

eval(S, val(x)) = t if x % 〈t, t〉 ∈ S,

eval(S, val(x)) = val(x) if x % 〈t, t〉 �∈ S,
eval(S, ◦(t1, . . . , tn)) = ◦(eval(S, t1), . . . , eval(S, tn)),
eval(S, ◦(t1, . . . , tn)) = ◦(eval(S, t1), . . . , eval(S, tn)).

Let s, t ∈ Lb. Then we further overload eval/2 and define

eval(S, x % 〈s, t〉) = x % 〈eval(S, s), eval(S, t)〉.
Definition 11 (Constraint Propagation). Suppose S ∈ SSX . If c, c′ ∈ CX

L
and eval(S, c) = c′ is simple, then we say that c is propagated (using S) to c′

and write c�S c′. If C ⊆ CX and C′ = {c′ | ∃c ∈ C . c�S c′}, then we say that C
is propagated to C′ (using S) and write C�S C′.

Note that, if C is a simple constraint store for X and C�SC′, then C′ is a
simple constraint store for X ′ ⊆ X . Note also that, if x % 〈s, t〉 ∈ S where s �= t,
then the evaluation function eval applied to val(x) returns val(x) unchanged.
Thus the indexical val(x) provides a useful tool for delaying the propagation of
constraints.

Constraint stabilization is based on the intersection of simple interval
constraints.

Definition 12 (Stabilized Store). Suppose S ∈ SX , S′ ∈ SSX , and, for each
x ∈ X , Sx = {c ∈ S | c = x % r}. Then, if S′ = {⋂L Sx |L ∈ L, x ∈ X ∩ VL}, we
say that S′ is the stabilized store of S and write S '→ S′.

Note that, by Definition 7, if Sx = ∅, then
⋂

L Sx = x % �Rb
L

∈ SSX .

Example 8. Suppose r, w ∈ V� and i ∈ VInteger. Let also

S = {r % 〈8.3), 20.4]〉, w % 〈1.2], 10.5)〉, i % 〈0], 10]〉,
r % 〈1.0], 15.0]〉, w % 〈5.6), 15.3)〉, i % 〈2], 15)〉},

S′ = {r % 〈8.3), 15.0]〉, w % 〈5.6), 10.5)〉, i % 〈2], 10]〉}.
ACM Transactions on Programming Languages and Systems, Vol. 26, No. 1, January 2004.
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Then S '→ S′. Moreover, consider the operator trunc/1 as defined in Example 3.
Observe that eval(S′, min(w)) = 5.6) and that real values are propagated to the
integer domain via the trunc operator, for example,

eval(S′, trunc(max(w))) = trunc(eval(S′, max(w))) = trunc(10.5)) = 10].

Thus

{r % 〈min(w), 20.4]〉, i % 〈trunc(min(w)), trunc(max(w))〉}�S′

{r % 〈5.6), 20.4]〉, i % 〈5], 10]〉}.
A solution is a constraint store that cannot be reduced by means of the prop-

agation or stabilization procedures.

Definition 13 (Solution). Let C ∈ ℘(CX ) be a constraint store for X . A so-
lution for C is a consistent store R ∈ SSX where,

C�R C′,
R ∪ C′ '→ R.

Sol(C) denotes the set of all solutions for C. We say that G = mgs(C) is a most
general solution for C if, for all R ∈ Sol(C), R 	 G.

4.3 Monotonicity of Constraints

Our approach here has the advantage that it guarantees that the interval con-
straints are propagated monotonically.

PROPOSITION 2. Let S1, S2 ∈ SSX such that S1 and S2 are consistent and
S1 	 S2 and C ∈ ℘(CX ) such that

C�S1 C1 and S1 ∪ C1 '→ S′
1,

C�S2 C2 and S2 ∪ C2 '→ S′
2.

Then S′
1 	 S′

2.

Example 9. Consider the definition of the operator − in Example 3, when L
is � so that − :: �s ×�s → �s. Suppose that X = {x, y} ⊆ V� and S1, S2 ∈ SSX ,

S1 = { y % 〈2.0), 4.0]〉, x ::′ �} and S2 = { y % 〈1.0), 11.0]〉, x ::′ �}.
Then S1 ≺ S2. Let

c1 = x % 〈0.0], 20.0]−min( y)〉, c11 = x % 〈0.0], 18.0)〉, c12 = x % 〈0.0], 19.0)〉.
Then c1 is an interval constraint for � because 0.0] ∈ �b and 20.0]−min( y) ∈ �b

and hence 〈0.0], 20.0]−min( y)〉 ∈ Rb
�. Using the constraint propagation proce-

dure for S1 and S2, we obtain

c1�S1 c11, c1�S2 c12.

Note that we have c11 ≺ c12.
Second, let

c2 = x % 〈0.0], 20.0]−max( y)〉, c21 = x % 〈0.0], 16.0]〉, c22 = x % 〈0.0], 9.0]〉.
ACM Transactions on Programming Languages and Systems, Vol. 26, No. 1, January 2004.
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procedure solve(C, S)

begin

if S is consistent then (0)

C := C ∪ S; (1)

repeat

C�SC′; %% Constraint Propagation (2)

S′ := S; (3)

S′ ∪ C′ '→ S; %% Store stabilization (4)

until S is inconsistent or S = S′; (5)

endif;

endbegin.

Fig. 2. solve/2: a generic schema for interval constraint propagation.

Then c2 is not an interval constraint in our theory. This is because, although
0.0] ∈ �b and 20.0] ∈ �b, we have max( y) /∈ �b with the consequence that, as −
is defined − :: �s×�s → �s, 20.0]−max( y) /∈ �b and hence 〈0.0], 20.0]−max( y)〉 /∈
Rb

�. Applying the constraint propagation procedure to c2 we obtain

c2�S1 c21, c2�S2 c22.

Then we have c22 ≺ c21. Therefore the constraint procedure applied to c2 using
the smallest constraint store S1 derives the largest range for x. The problem is
caused by the fact that if S2 is replaced by a smaller store such as S1, max( y)
also decreases in �s, so that the value of 20.0]−max( y) actually increases. Thus,
the right bound of the range for x in c2 also increases so that the upper limit
for y can never be reduced.

Note that the acceptability of expressions such as c1 and c2 as valid con-
straints can be decided a priori, from the operator declarations, using standard
type-checking techniques.

5. OPERATIONAL SEMANTICS

In this section, we provide an operational schema for solving the interval con-
straints and prove both correctness and termination properties. Note that, in
this section, the main aim is to provide the basic methodology and we do not
discuss possible efficiency improvements.

We continue to use L to denote any domain in L, X ∈ ℘ f (VL) the set of
constrained variables, CX the set of all interval constraints for X , and SSX the
set of all simple stable constraint stores for X .

5.1 Operational Schema

Let C ∈ ℘ f (CX ) and S ∈ SSX . We define here solve(C, S), an operational schema
for computing a solution (if it exists) for C∪S. This schema is shown in Figure 2.

THEOREM 1 (CORRECTNESS). Let C ∈ ℘ f (CX ) and S ∈ SSX . If at least one
solution for C ∪ S exists, then a terminating execution for solve(C, S) returns
mgs(C ∪ S) in S. Otherwise, a terminating execution for solve(C, S) returns in
S an inconsistent store.
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5.2 Termination

New simple constraints, created by the propagation Step (2) (see Figure 2),
are added to the set of constraints before the stabilization Step (4). Thus, with
infinite domains, the algorithm may not terminate since the constraints could
be contracted indefinitely in the stabilization Step (4).

Example 10. Consider the operator div2 :: �s → �s where div2�(a) = a
2.0 ,

for any a ∈ �, and div2B is the identity on B. Then let C be the constraint store

{x % 〈0.0], 10.0]〉, x % 〈0.0], div2(max( y))〉,
y % 〈0.0], 10.0]〉, y % 〈0.0], div2(max(x))〉,
z % 〈⊥�] , ��]〉},

where x, y , z ∈ V�. Let S0 be the top element of the lattice SS{x, y ,z}. Let Si be
the value of the store S at the end of the ith iteration for i ≥ 1 of the operational
schema for solve(C, S) with S0 the initial value of S. Then, in the execution of
solve(C, S), S is indefinitely reduced, that is,

S0 = {x % 〈⊥�] , ��]〉, y % 〈⊥�] , ��]〉, z % 〈⊥�] , ��]〉},
S1 = {x % 〈0.0], 10.0]〉, y % 〈0.0], 10.0]〉, z % 〈⊥�] , ��]〉},
S2 = {x % 〈0.0], 5.0]〉, y % 〈0.0], 5.0]〉, z % 〈⊥�] , ��]〉},
S3 = {x % 〈0.0], 2.5]〉, y % 〈0.0], 2.5]〉, z % 〈⊥�] , ��]〉},
. . . . . . . . . . . . . . . .

To force termination, we introduce the notion of precision.

Definition 14 (Precision of a Constraint). Let CCX
L be the set of all consis-

tent (and thus simple) interval constraints for L with constrained variables
in X , x ∈ X ∩ VL for any L ∈ L, and �I denote the lexicographic product
(�+, Integer) where �+ is the (lifted) domain of nonnegative reals. Then we
define

precisionL ::CCX
L → �I,

precisionL(x % 〈ab, cd 〉) = (â )L c, b )B d ),

where )L :: {(â, c) | a, c ∈ L, a 	 c} → �+ is a (system or user defined) strict
monotonic function, and )B :: B × B → {0, 1, 2} is the strict monotonic function

‘]’ )B ‘]’ def= 2, ‘]’ )B ‘)’ def= 1, ‘)’ )B ‘]’ def= 1, ‘)’ )B ‘)’ def= 0.

Observe that precisionL is defined only on consistent constraints and thus the
function )L only needs to be defined when its first argument is less than or
equal to the second. This function must be defined for each computation domain
including any fictitious top or bottom elements.

Example 11. Assume that �2 = 〈�, �〉 and suppose that i1, i2 ∈ Integer,
r1, r2, w1, w2 ∈ �, and s1, s2 ∈ Set Integer where i1 	 i2, r1 	 r2, w1 	 w2, and
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s1 	 s2. Then

î1 )Integer i2 = i2 − i1,
r̂1 )� r2 = r2 − r1,

̂〈r1, w1〉 )�2 〈r2, w2〉 = +
√

(r2 − r1)2 + (w2 − w1)2,
ŝ1 )Set Integer s2 = #s2 − #s1.

Assume that i ∈ VInteger, r ∈ V�, y ∈ V�2 and s ∈ VSet Integer. Then

precisionInteger(i % 〈1], 4]〉) = (3.0, 2),

precision�(r % 〈3.5), 5.7)〉) = (2.2, 0),

precision�2 ( y % 〈(2.0, 3.0)], (3.4, 5.6)]〉) = (2.95, 2),

precisionSet Integer(s % 〈{}], {3, 4, 5})〉) = (3.0, 1).

Note that the binary operators used in this example, that is, − and + as well
as the unary operators # and “square” need to be defined for both the lifted
bounds. The unary operator “square root” must be defined just for the lifted
upper bound.

By defining a computable2 bound δ ∈ �I (user- or system-defined), we can
check if the precision of the simple constraints in a store S are reduced by a
significant amount in the stabilization process (Step 4 in the operational schema
for solve(C, S)). If the change is large enough, then the propagation procedure
continues. Otherwise the set of simple constraints in the store S is considered
a “good enough” solution and the procedure terminates. This “solution” is an
approximation to the concept of solution shown in Definition 13.

Definition 15. Let S, S′ ∈ SSX be two consistent stores where cx , c′
x denote

the consistent constraints for x ∈ X in S and S′, respectively. Then, we define

no differenceδ(S
′, S) ⇐⇒ ∀L ∈ L : ∀x ∈ X ∩ VL :

precisionL(c′
x) − precisionL(cx) 	 δ,

where (a1, a2) − (b1, b2) = (a1 − b1, a2 − b2) and, for L ∈ {Integer, �+}, x − y is
defined as usual over any x, y ∈ L and also �L − x = �L for any x ∈ L ∪ {⊥L}
and �L − �L = 0.

We define a new operational schema for solveε(C, S) which, apart from
Step (5) in Figure 2, is the same as the solve(C, S) schema. This step is re-
placed by:

(5�) until S is inconsistent or no difference(ε,0)(S
′, S) holds.

THEOREM 2 (TERMINATION). Let C ∈ ℘ f (CX ) and S ∈ SSX . If ε > 0.0 then the
operational schema for solveε(C, S) terminates.

Definition 16 (Approximate Solution). Let C ∈ ℘ f (CX ) and S ∈ SSX . Let
also R be a solution for C ∪ S and δ ∈ �I. Then R ′ is an approximate solution
via δ for C ∪ S if R 	 R ′ and no differenceδ(R ′, R) holds.

2That is, representable in the machine which is being used—the computation machine.
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The number of iterations of the operational schema depends, for infinite
domains, on the value of ε. In these cases, the final solution for solveε(C, S) is
an approximate solution for C ∪ S.

THEOREM 3 (EXTENDED CORRECTNESS). Let C ∈ ℘ f (CX ) and S ∈ SSX . If at
least one solution R for C ∪ S exists, a terminating execution of the operational
schema for solveε(C, S) computes in S an approximate solution for C ∪ S.

The next result shows that the approximate solution is dependent on the
value of ε in the sense that lower ε is, closer the approximate solution to the
solution is.

THEOREM 4. Let R be a solution for C ∪ S where C ∈ ℘ f (CX ) and S ∈ SSX .
Suppose that Sε1 and Sε2 are the approximate solutions computed by the oper-
ational schema for solveε1 (C, S) and solveε2 (C, S), respectively. Then, if 0.0 ≤
ε1 ≤ ε2,

R 	 Sε1 	 Sε2 .

The precision map and the bound ε allow direct and transparent control over
the accuracy of the results. For example, we could define ε = 10−8 for reals. To-
gether, the precision map and the bound ε provide a concept of graded solutions
to a constraint problem as well as a concept of distance to the correct solution:
the higher the bound ε, then the further away (from the correct solution) is the
approximate solution. The technique for ensuring termination described here
is the first (to our knowledge) fully generic proposal. Note that Sidebottom and
Havens [1992] described a similar approach for the real numbers which asso-
ciates a precision parameter with the real domain and limits the number of
times that the domain of a variable may be refined.

6. APPLICATIONS OF OUR FRAMEWORK

The Integer, �, Bool, and Set L (for any domain L ∈ L) domains have been used
throughout the paper to illustrate the concepts as they were defined. In this
section, we provide further examples of computation domains, various combi-
nations of the domains using lattice combinators, and a simple extension of the
framework to allow for high level constraints.

6.1 Computation Domains: More Examples

Strings. Walinsky [1989] described CLP(	∗), a CLP language that incor-
porates strings in logic programming by means of membership constraints on
finite strings of characters, and indicated the usefulness of this language in a
number of diverse areas such as text processing applications or security mainte-
nance in information systems. Our framework can be used to emulate CLP(	∗)
as follows. Consider the domain String, the set of all sequences (possibly infi-
nite) of characters together with �String. Assume also the ordering for String
is defined such that for a1, a2 ∈ String, a1 	 a2 if and only if a1 is a prefix
(finite initial substring) of a2. Then, letting ⊥String be the empty string, we
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have the lattice

(String, 	, glbString, lubString, ⊥String, �String).

Note that glbString(a1, a2) is the largest common prefix of a1, a2 and
lubString(a1, a2) is �String if a1 �∼ a2, a2 if a1 	 a2, and a1 if a2 	 a1.

Suppose that ++/2 is a constraint operator that concatenates two strings.
Let a, a′, a′′ ∈ VString and

S1 = {a′ % 〈⊥String]
, �String]

〉, a % 〈‘abc’] ++ min(a′), �String]
〉},

S2 = {a′ % 〈⊥String]
, �String]

〉, a′′ % 〈⊥String]
, �String]

〉,
a % 〈 val(a′) ++ ‘abc’] ++ val(a′′), val(a′) ++ ‘abc’] ++ val(a′′)〉}.

Then, S1 and S2 constrains, respectively, a ∈ VString to be any string with prefix
‘abc’ and any string containing the string ‘abc’.

Nonnegative integers ordered by division. Let Nd denote the set of nonneg-
ative integers partially ordered by division: for all n, m ∈ Nd , m 	 n if and only
if ∃k ∈ Nd such that km = n (that is, m divides n). Then

(Nd , 	, gcd, lcm, 1, 0)

is a lattice where gcd denotes the greatest common divisor and lcm the least
common multiple. Thus with Nd as the computation domain, we have

x % 〈2], 24]〉 ∩L x % 〈3], 36]〉 = x % 〈6], 12]〉.
Numeric intervals. We consider Interv as the domain of the numeric inter-

vals. We define it1 	 it2 if and only if it1 ⊆ it2 (i.e., it1 is a subinterval of it2).
Thus glbInterv and lubInterv are the intersection and union of intervals, respec-
tively. Our framework solves constraints for the Interv computation domain as
follows:

i % 〈[5, 6]], [2, 10)]〉 ∩L i % 〈(7, 9]], [4, 15]]〉 = i % 〈[5, 6] ∪ (7, 9]], [4, 10)]〉.
Note that [5, 6] ∪ (7, 9]] ∈ Intervs whereas [4, 10)] ∈ Intervs.

6.2 Combinations of Domains

Our lattice-based framework allows for new computation domains to be con-
structed from previously defined domains. Here we give examples which use
well-known lattices combinators.

Product of domains. As already observed, the direct and lexicographic prod-
ucts of lattices are lattices. For example, consider the lattice Integer.

(1) A point in a plane may be defined by its Cartesian coordinates using the
direct product Point = 〈Integer, Integer〉.

(2) A rectangle can be defined by two points in a plane: its lower left corner
and its upper right corner. Let Rect be the direct product 〈Point, Point〉.
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Interval constraints can be declared directly on these domains. For example,
consider re ∈ VRect; then

re % 〈〈〈2, 2〉, 〈5, 5〉〉], 〈〈4, 4〉, 〈7, 7〉〉]〉
constrains the rectangle re to have its lower left corner in the plane 〈2, 2〉 ×
〈4, 4〉 and its upper right corner in the plane 〈5, 5〉 × 〈7, 7〉. Thus the rectangle
〈〈3, 3〉, 〈6, 6〉〉 satisfies this constraint.

Sum of domains. The linear sum of n > 1 lattices is also a lattice.

Definition 17 (Linear Sum). Suppose that L1, . . . , Ln are lattices. Then
their linear sum L1 + · · · + Ln is the lattice LS where

(1) LS = L1 ∪ · · · ∪ Ln;
(2) the ordering relation 	 is defined:

x 	 y ⇐⇒
{

x, y ∈ Li and x 	 y or

x ∈ Li, y ∈ L j and i ≺ j ;

(3) glbLS
and lubLS are defined:

glbLS
(x, y) = glbLi

(x, y) and lubLS (x, y) = lubLi (x, y) if x, y ∈ Li,
glbLS

(x, y) = x and lubLS (x, y) = y if x ∈ Li, y ∈ L j and i ≺ j ,
glbLS

(x, y) = y and lubLS (x, y) = x if x ∈ Li, y ∈ L j and j ≺ i;

(4) ⊥LS = ⊥L1 and �LS = �Ln .

As an example, consider the lattice AtoF containing all the (uppercase) al-
phabetic characters between ‘A’ and ‘F’ with the usual alphabetical ordering
and the lattice 0to9 containing the numeric characters from ‘0’ to ‘9’ with the
ordering ‘0’ < ‘1’ < · · · < ‘8’ < ‘9’. Then the lattice of hexadecimal digits can be
defined as the lattice 0to9 + AtoF. Now, it is possible to constrain variables to
have values in such a domain. For example a code of four hexadecimal digits
can be initially represented by four variables h1h2h3h4 that are constrained by
a type constraint as h1, h2, h3, h4 ::′ 0to9 + AtoF (note that this is equivalent to
the constraints h1 % 〈‘0’], ‘F’]〉, h2 % 〈‘0’], ‘F’]〉, h3 % 〈‘0’], ‘F’]〉, and h4 % 〈‘0’], ‘F’]〉).

6.3 High-Level Constraints

A constraint operator can provide a useful one-way channel of communica-
tion by allowing values in the computation domains for its arguments to be
propagated to the computation domain in its range. Here we define high-level
constraints by means of a generic relation that enables the propagation of infor-
mation between domains in any direction allowing for full cooperation between
the solvers for these domains. So as to distinguish the interval constraints de-
fined and studied in previous sections from the high-level constraints defined
here, we call constraints of the form x % r primitive constraints.

Definition 18 (High-Level Constraint). Suppose that L′ = {L1, . . . , Lm} ⊆
L. Then q :: L1 × · · · × Lm is called an m-ary constraint relation for L′. Suppose
x1 ∈ VL1 , . . . , xm ∈ VLm , and {c1, . . . , cn} is a constraint store with constrained
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variables X ⊇ {x1, . . . , xm}. Then

q(x1, . . . , xm) ⇔ c1, . . . , cn

is called a high-level constraint over L′.

Note that our high-level constraints are similar to clp(FD) [Codognet and
Diaz 1996a]. However, unlike clp(FD), our framework also allows for the def-
inition of both generic and overloaded constraints: A high-level constraint is
generic for arguments i1, . . . , i j (1 ≤ i1 < · · · < i j ≤ m) if its definition is inde-
pendent of the choice of domains Li1 , . . . , Lij in L; A constraint is overloaded for
arguments i1, . . . , i j if it is defined for any Li1 , . . . , Lij in L1 where L1 ⊂ L and
#(L1) > 1.

Example 12. Consider the following high-level “less-or-equal” constraint:

x ≤ y ⇔ x % 〈⊥L] , max( y)〉,
(3)

y % 〈min(x), �L]〉.
Then this is generic for both arguments of ≤ as each L ∈ L has (possible lifted)
top and bottom elements. Also, consider the definition of the operators + and
− shown in Example 3 and the following definition of a plus/3 constraint:

plus(x, y , z) ⇔ x % 〈min(z) − max( y), max(z) − min( y)〉,
y % 〈min(z) − max(x), max(z) − min(x)〉,
z % 〈min(x) + min( y), max(x) + max( y)〉.

This constraint is overloaded since it is valid for any domain L in which oper-
ators +L and −L are defined. For example, a call plus(x, y , z), where x, y , z ∈ VL
for L ∈ {Integer, �}, means x = y + z whereas, for L = Set L′ and L′ ∈ L, it
means (x ∪ y = z) ∧ (x ∩ y = ∅).

Note that in an implementation, if C is a constraint store containing a high-
level constraint c ⇔ c1, . . . cn, then we replace c (in C) by {c1, . . . , cn}. This has to
be repeated until C contains no high-level constraints. Of course, termination
of this is not guaranteed and would depend on the definitions of the high-level
constraints. Once C is simplified to a set of primitive constraints, constraint
propagation and constraint stabilization can be executed as usual.

7. A CLP LANGUAGE FOR LATTICES

In this section, we describe clp(L) (Constraint Logic Programming on any set L
of lattices),3 a language that we have implemented to validate the feasibility of
the framework. We also provide a simple scheduling example to illustrate how
clp(L) may be used to solve a constraint problem.

3Sources, user manual, and a number of clp(L) examples are available from http://www.lcc.uma.es/∼
afdez/generic. Note that all the examples shown in this paper were tested on this prototype.
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7.1 The clp (L) Language

This language is based on standard Prolog [ISO/IEC 1995], with some extra dec-
larations for specifying both new domains and constraint operators. Thus the
set of computation domains L over which the constraints may be defined is the
set of all system and user-declared domains in the program. The advantage of
our theoretical approach with respect to other generic approaches (see Section 9)
is that it can be implemented directly from the theory. The interval constraints
such as x % r are expressed in clp(L) as expressions of the form X isin R and
can occur anywhere in the bodies of clauses. A simple range 〈ab, cd 〉 is expressed
as an expression (a, bracket(b))..(c, bracket(d )) where bracket(‘]’) = close and
bracket(‘)’) = open and open and close are reserved words in the system, for
example, 〈1.2), 4.5]〉 is denoted as (1.2, open)..(4.5, close).

New domains can be defined by the user with a lattice declaration: the pred-
icate lattice/2 identifies the elements belonging to the new lattice; and the
predicates lt/3, glb/4, and lub/4 define, respectively, the ordering relation,
glb, and lub for the domain. That is to say,

—lattice(D, E) is true if E ∈ D;
—lt(D, X , Y ) is true if X < Y in D;
—glb(D, X , Y , Z ) is true if Z = glbD(X , Y );
—lub(D, X , Y , Z ) is true if Z = lubD(X , Y ).

The current prototype implementation of clp(L) provides some prede-
fined predicates for the combination of domains (e.g., product Direct/3,
linear sum/3, and product Lexicographic/3). However, new lattice combi-
nators can be easily implemented in a declarative way via domain decla-
rations. As examples, Figure 3 shows how to declare the set domain (de-
fined as a list with the inclusion as ordering) and the direct product domain
reint point = 〈real, integer〉 (assuming integer and real are system-defined
domains Integer and �, respectively).

The language allows the declaration of both unary and binary operators
by means of the predicates declara/3 or declara/4. Let L, L1, L2 be (user or
system) (not necessarily distinct) computation domains. Then

—declara(Op, L1, L) specifies the unary operator Op :: Ls
1 → Ls,

—declara(Op, L1, L2, L) specifies the binary operator Op :: Ls
1 × Ls

2 → Ls.

If L1 or L2 is replaced in the above by mirror(L1) or mirror(L2), then the do-
mains Ls

1 or Ls
2 are replaced by the mirrors Ls

1 or Ls
2. Figure 4 shows the defini-

tion of the operators4 + and − of Example 3 over the domains of integers, reals,
sets, and reint point. Observe that these operators are defined on the bracket
domain and each of the computation domains (see Definition 3). Particularly,
for the set domain, :+: and :−: are defined to be the usual union and difference
of sets, respectively.

The implementation manages a single constraint store which contains all the
(user or system) defined (primitive) interval constraints for domains in L. As in

4By syntax conventions, clp(L) operators begin and end with colons.
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Fig. 3. Lattice declarations: Set L and reint point.

Fig. 4. Operator declarations in clp(L).

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 1, January 2004.



24 • Fernández and Hill

Prolog, the resolution mechanism of the clp(L) language is LD-resolution with
a special procedure for binding constrained variables. That is, when binding a
variable X in a domain L to any term t distinct from X , the unification step is

—if t is an unbound variable Y , then Y is bound to X ;
—if t is a term l ∈ L, then the constraint “X isin (l , close)..(l , close)” is added

to the store; or
—if t is a constrained variable Y ∈ VL, the constraints “X isin min(Y )..max(Y )”

and “Y isin min(X )..max(X )” are added to the store.

The step returns a fail, called domain fail, if t is either a constrained variable in
VL′ or term in L′ and L′ �= L. Also, using the operator declarations, the prototype
identifies the nonmonotonic constraints (i.e., constraints not contributing to the
solution—see Section 4.3).

Our prototype implementation of clp(L) [Fernández 2000] is built on the SIC-
Stus 3#7 Prolog platform [Carlsson et al. 1997]. Constraint consistency, store
stabilization, and constraint propagation are implemented using the constraint
handling rules (CHRs) [Frühwirth 1998] that are part of a SICStus library. The
CHRs are very appropriate since they are solved prior to the resolution step
of the standard logical engine. The current clp(L) implementation provides
predefined Boolean constraints such as and/3, or/3, xor/3, equiv/3, and not/2
among others; symbolic constraints such as at least one/1, at most one/1,
and only one/1; arithmetic constraints such as plus/3, diff/3, divide/3, and
times/3 as well as generic arithmetic constraints such as =/2, �=/2, >/2, ≥/2, <

/2, and ≤/2 defined on usual numerical domains and on combined domains. As
clp(L) is implemented in SICStus, the prototype supports many system predi-
cates provided by SICStus.

Example 13. Figure 5 shows how to code the high-level constraints in Ex-
ample 12 as well as how the overloaded plus constraint is used.5

7.2 An Overloaded Generic Scheduling Problem

This example scheduling problem illustrates the generic power of our
solver6 where the tasks are represented by terms of the form Task(S, D);
S is the start time and D is the duration. The high-level constraint
into(Task, SuperTask) is true if the interval for SuperTask contains the interval
for Task; noOverlap(Task, Tasks) is true if Task overlaps with no elements in

5In clp(L), x :: ’L denotes a type constraint for x in L (see Definition 7) and [x1, . . . , xn] :: ’L is
equivalent to x1 :: ’L, . . . , xn :: ’L. bottom and top are reserved words denoting fictitious bottom
and top elements for any lattice. Observe also that the constraint T isin (3, close)..(11, open) was
reduced to the constraint T isin (3, close)..(10, close) by applying the equivalence rules for discrete
domains we will describe in Section 8. Note that the prompt is clp(L) >.
6This example is a generalization of a program proposed in Sidebottom and Havens [1992] formu-
lated for the real domain and using some of the relations on temporal intervals described in Allen
[1983].
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Fig. 5. Using the overloaded constraint plus/3.

Tasks; schedule(Tasks, SuperTask) is true if every task in Tasks is in SuperTask
and no pair overlaps.

Figure 6 shows code for solving this problem and provides an application of
the generic and overloading capabilities of clp(L). (Observe that the constraints
into/2, noOverlap/2, and schedule/2 are overloaded since they are defined in
terms of both the overloaded constraint plus/3 and the generic constraint <=:/2
that are already defined in Figure 5.) Two of the instances use the FD and real
domains. The third instance is more interesting and uses the combined domain
reint point as declared in preceding section. Suppose there are two processes
p1 = (S1,D1) and p2 = (S2,D2) where p1 must be executed on a machine A in
real time and p2 on a machine B in discrete time. Then, in this instance a task
consists in the resolution of both processes and can be represented as the term
Task((S1, S2), (D1, D2)). The solution can be interpreted as follows: process p1
has to begin its execution in machine A during the interval [3.75, 5.125] and, in
this case, process p2 has to start its execution, in machine B, during the interval
[4, 5] (i.e., in the fourth or fifth unit of time in machine B). Alternatively, p1 can
begin its execution during the interval [0.7, 1.875] and, then, p2 has to start
during the interval [1, 2] (i.e., in the first or second unit of time in machine B).
Solutions for each of the instances are graphically illustrated in Figure 7 where
black dots mark the solution set.

8. OPTIMIZATIONS

This section discusses improvements that are being made to the clp(L) system.

8.1 Discrete Domains

Suppose that L is a discrete domain. Then we can identify equivalent elements
of Ls and hence the interval domain Rs

L by introducing the following equivalence
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Fig. 6. An overloaded scheduling program.

Fig. 7. Solving a scheduling problem.
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rule: for any a ∈ L for which the immediate predecessor pre(a) is defined and is
unique,

a) ≡ pre(a)] in Ls.

By the duality principle of lattices we also have the dual rule: for any a ∈ L for
which the immediate successor succ(a) is defined and is unique,

a) ≡ succ(a)] in Ls.

When the interval domain Ls is constructed from a discrete domain L, then pre
and succ provide a canonical form for Ls and Ls (and hence for Rs

L) where the
bracket ‘)’ is eliminated in favor of the bracket ‘]’.

Example 14. For the Integer domain, pre(i) = i − 1 for any i ∈ Integer so
that, for instance, 3) ≡ 2] and 〈1], 3)〉 ≡ 〈1], 2]〉. Suppose L = {0, 1, 2, 3} is a
lattice where 0 < 1 < 2 < 3. Then,

Ls = {0), 0], 1), 1], 2), 2], 3), 3]} ≡ {0), 0], 1], 2], 3]},
Ls = {3), 3], 2), 2], 1), 1], 0), 0]} ≡ {3), 3], 2], 1], 0]}.

Similarly, with the Bool domain, pre(true) = false so that true) ≡ false] and
〈false], true)〉 ≡ 〈false], false]〉.
With these rules for discrete domains, more inconsistencies can be detected.

Example 15. Consider again the domain L in Example 6. Suppose L is
discrete and that succ(a) = c and succ(c) = b. Then the ranges 〈a), c)〉 ∈ Rs

L and
〈c), b)〉 are inconsistent since they are equivalent to ranges 〈c], a]〉 and 〈b], c]〉,
respectively. These are the circled nodes in Figure 1.

8.2 Nonlinear Constraints and Floating Point Arithmetic

For the real domain, many constraint systems provide both a linear and a
nonlinear solver. As the linear solver is the most efficient, this should be used
whenever the constraints are linear. Although our solver does not provide direct
support for solving nonlinear numeric equations, nonlinear constraints can be
solved in clp(L) by defining appropriate constraint operators.7

To see this, consider �+, the domain of nonnegative reals, and a constraint
such as ‘x ∗ y = z ’/3. The main problems occur if it tries to evaluate z/x when
x = 0.0 or z/ y when y = 0.0. Of course, this constraint can be delayed until
either x or y is ground and then check whether or not the ground term is
0.0. However, more propagation can be obtained by defining ‘x ∗ y = z ’/3 as a
high-level constraint:

x ∗ y = z ⇔ x % 〈min(z) /l max( y), max(z) /r min( y)〉,
y % 〈min(z) /l max(x), max(z) /r min(x)〉,
z % 〈min(x) ∗ min( y), max(x) ∗ max( y)〉,

7This is a generalization of the method proposed in Codognet and Diaz [1996a] for the clp(FD)
system, and we use the same example in this paper.
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where ∗, /l , /r are declared in �+s as

∗ :: �+s × �+s → �+s, /l :: �+s × �+s → �+s, /r :: �+s × �+s → �+s,

and /l , /r in �+ and all the operators in B are defined as

a/l b = a/b if b �= 0.0,
a/l b = 0.0 if b = 0.0,
a/rb = a/b if b �= 0.0,
a/rb = �� if b = 0.0,

b1 ◦B b2 = minB(b1, b2) for ◦ ∈ {∗, /l , /r}.
Observe that, as b �= 0.0 is weaker than the condition b is ground, there is more
pruning than that obtained by delaying the evaluation of the constraint until
it is linear.

Notice that this same proposal can be used to specify the rounding mode of
floating point computations. For instance, a constraint such as ‘x2 = z ’/2 can be
defined as

x2 = z ⇔ x % 〈nearestd (sqrt(min(z))), neareste(sqrt(max(x)))〉,
z % 〈nearestd (min(x)∗min(x)), neareste(max(x) ∗ max(x))〉,

where sqrt, nearestd , and neareste are declared on �+s as

sqrt :: �+s → �+s, nearestd :: �+s → �+s, neareste :: �+s → �+s

and are defined in B as the identity and, for any x ∈ �+,

sqrt(x) returns the square root of x,
nearestd (x) returns the nearest floating point number ≤ x,
neareste(x) returns the nearest floating point number ≥ x.

This constraint will lead to better pruning than using the constraint ‘x ∗ x = z ’.
Note that the proposal in Benhamou et al. [1999] which combines the evaluation
of primitive constraints with specific methods for solving nonlinear constraints
is likely to be more efficient although less declarative.

8.3 The precision/1 Map As a Normalization Rule

When there exist more than one solution, some sort of domain splitting should
be applied in order to look for solutions in each of the resulting partitions of the
problem. When the constraint system supports multiple domains, the precision
map (see Definition 14) provides a useful way to normalize the heuristics for
value ordering.

Example 16. The well-known first fail principle usually chooses the vari-
able constrained by the smallest range. However, in systems supporting mul-
tiple domains, it is not always clear which is smallest. One way to compare
the ranges is to use the map precision/1 defined for each computation domain.
To see this, consider a set of variables X = {x1, . . . , xn} and constraint store
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S = {c1, . . . , cn} ∈ SSX where for each i ∈ {1, . . . , n}, ci is the simple inter-
val constraint in S with constrained variable xi. Suppose that S is divisible
(i.e., S can be partitioned into, at least, two consistent stores). Then the first
fail principle can be emulated with the procedure chooseFirstFail which chooses
the “smallest” constraint in S that is divisible (i.e., one whose range can be
partitioned into two consistent parts).8

Precondition: {S = {c1, . . . , cn} ∈ SSX is divisible}
chooseFirstFail(S) = c j ;

Postcondition: { j ∈ {1, . . . , n}, c j is divisible and
∀i ∈ {1, . . . , n}\{ j } : ci divisible =⇒ precisionL j

(c j ) 	 precisionLi
(ci)}.

8.4 Disjunctive Constraints

It is well known that disjunctive constraints are sometimes useful for formu-
lating a solution to a problem. In logic programming, one easy but inefficient
way to handle disjunctive constraints is to create choice points. A more effi-
cient approach that avoids the use of choice points would be to generalize the
solution proposed by the clp(FD) system in Codognet and Diaz [1996a]. This is
defined for the class of disjunctive constraints of the form c1 ∨ · · · ∨ cn where
each ci (1 ≤ i ≤ n) has the form x1 % ri

1 ∧ · · · ∧ xk % ri
k and is constrained on the

same variables, that is, {x1, . . . , xk}. The importance of this kind of disjunction
is that, as observed in Codognet and Diaz [1996a], “nearly all current uses of
constructive disjunction fit in this case.” We can generalize this solution by in-
corporating, in the definition of the constraint x % r, range union operations9

as x % r1 ∨ · · · ∨ rn. This delays the creation of choice points and can lead to a
reduction in the size of the search tree.

An alternative technique, adapted from an idea shown in Van Hentenryck
et al. [1998], would be to define the constructive disjunction, that is, to consider
the range as an interval and the lub as defined for interval lattices [Slavı́k
1986]. Thus the lub of a set of ranges would be the range whose lower bound
was the glb of the lower bounds and the upper bound, the lub of the upper
bounds. However, this can lead to the addition of infeasible values. To see this,
consider the domain Integer and let r1 = 〈1], 4]〉 and r2 = 〈6], 10]〉. Then the
range, lubC{v}

Integer
(v % r1, v % r2) = v % 〈1], 10]〉, includes the value 5 which was

not in either r1 or r2.

8.5 Global Constraints

Recently Hickey [2000] has shown that contraction algorithms (such as the
Taylor contractor) can be implemented in a declarative style in the CLIP sys-
tem. CLIP is a CLP(Interval(�)) system in which constraints are decomposed
into sets of primitive constraints that are sent to a constraint-solving engine
providing support for interval arithmetic and where computation is done over

8It is straightforward to include more conditions, for example, if ci , ck , c j have the same (minimum)
precision, the “left-most” domain can be chosen, that is, cminimum(i,k, j ).
9In fact, ∨ is not the union operator but a composition operator since our ranges do not correspond
to sets but to elements in our interval lattices.
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the floating point intervals associated to the constrained variables. We have
already shown in Section 8.2, how our solver can handle floating point compu-
tations and have shown how the (relational) product operator ‘x∗ y = z ’/3 for the
floating point domain could be defined. In the same style, it is straightforward
to define the relational floating point version of all the classical real interval
operators, that is, ∗, +, −, and / [Moore 1966]. For example, the definition of the
plus constraint in Example 13 corresponds to the classical definition of the +
operator for interval arithmetic. It is straightforward to adapt this definition to
the floating point real domain by using the operators nearestd and neareste as
done for the constraint ‘x ∗ y = z ’. Also, throughout the paper we have shown
that the declarative nature of our solver allows the user to define (possibly coop-
erative, generic and/or overloaded) high-level constraints. As CLP(Interval(�)
is an instance of our framework, it is natural to expect that the CLIP approach
for generating global contractors can also be adapted for our solver.

Note that, for the system domains (i.e., real, FD, set, or Boolean domains), the
implementation can provide specialized low-level optimizations. For example,
for the real domain, well-known implementations of functions such as exp/1
or cos/1 can be used. Observe that these are now provided in our prototype
implementation for clp(L) since these are already available in SICStus, the
system in which our prototype is constructed.

9. RELATED WORK

Indexical-based implementations. The indexical approach from which our
framework is derived was first implemented by Codognet and Diaz [1996a],
where finite interval constraints of the form x in r were efficiently implemented
using an extension of the WAM [Diaz and Codognet 1993]. Well-known CLP sys-
tems such as SICStus [Sicstus Manual 1994] and IF/Prolog [If/Prolog 1994] now
integrate the x in r constraint to provide a glass box solver for FD, the finite
domain of integers.

In Codognet and Diaz [1993], the idea was extended to the clp(FD/B) sys-
tem that integrates a Boolean solver into the existing FD solver. A version of
the clp(FD/B), called clp(B), developed by Codognet and Diaz [1994] solely for
the Boolean domain, has an efficiency that was, on average, an order of mag-
nitude faster than most of the existing Boolean solvers including, surprisingly,
some special-purpose Boolean solvers.

More recently, Georget and Codognet [1998] used the indexical approach to
implement a generic language for semiring-based constraint satisfaction (also
on FD) and demonstrated its efficiency with respect to dedicated systems. More-
over, Goualard et al. [1999] described a system called DecLic that extends the
clp(FD) solver to provide an efficient constraint solver for continuous domains
(i.e., the real domain).

These indexical-based systems therefore show that the indexical approach
can obtain competitive efficiency for the Boolean, finite, and continuous do-
mains. Moreover, these systems demonstrate that the implementation of high-
level constraints (e.g., interval arithmetic) as rules (e.g., combination of simple
primitive constraints) is fairly efficient. We therefore anticipate that we can
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adapt the techniques used for the implementation of clp(FD), clp(B), and DecLic
to our constraint system. Despite the expected loss of some optimizations for
specific domains due to the generality of our framework, we expect to obtain
reasonably competitive performance compared to domain-specific systems.

Other optimizations in the low level can be incorporated as done in the
clp(FD) system. For example it is straightforward to incorporate the indexi-
cal dom( y) to return the whole range associated to y . In this case a constraint
such as x % dom( y) is equivalent to the constraint x % 〈min( y), max( y)〉.

Interval reasoning. Interval arithmetic, on which the indexical approach to
constraint solving is based, has been applied to constraint satisfaction prob-
lems over numeric domains [Benhamou 1995; Lee and van Emden 1993; Older
1989; Benhamou and Older 1997] and, in particular, to floating point numbers
on relational programming [Cleary 1987]. In this latter application, interval
computations are used to approximate a computed real number. This concept
of approximation, which works well on numeric domains, does not generalize
since it assumes that the closest value smaller (respectively higher) than any
computed value is computable. To ensure that this property holds in our more
generic framework, we have defined a new system of approximation that is
applicable to any (possibly infinite) lattice.

Older and Vellino [1993] presented a lattice-theoretic semantics for numeric
interval constraints that aims to capture the properties of both the primitive in-
terval operations and the constraint propagation networks created from them.
Based on lattice theory, some analogies with respect to our proposal can be de-
tected: (1) the computation domain has a lattice structure and is constructed
from the bounds of the intervals; (2) the theory can be applied with infinite
precision (i.e., without approximating a real to a floating point number) al-
though only on reals; (3) the operators are assumed to maintain properties
over the computation domain that are also maintained by our constraint oper-
ators (e.g., monotonicity); (4) the propagation process is based on a fixed-point
semantics. In spite of the similarities, there are a number of aspects that made
this approach very different from our proposal: (1) the framework is developed
exclusively for numeric domains; (2) we provide a control mechanism, at the
user level, for the propagation by allowing the constraint operators to be de-
fined directly on the bounds of the interval; in this sense, Older and Vellino
[1993] did not treat the issue of the transparency of their theory; (3) the theory
proposed in Older and Vellino [1993] is “quite abstract and therefore somewhat
remote from actual implementations,” whereas our theory can be directly im-
plemented; (4) we treat the termination issue even for nonnumeric domains;
(5) solver cooperation was not treated at all in Older and Vellino [1993] and (6)
implementation issues were neglected.

Generic constraint solving procedures. Apt [1999, 2000] proposed a frame-
work for constraint propagation based on chaotic iteration algorithms for par-
tially ordered domains. A key observation in these papers was that most con-
straint propagation algorithms presented in the literature can be expressed
as direct instances of these algorithms. There are many similarities between
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the frameworks described here and in Apt [1999] and these, together with
the main differences, were discussed in detail in Fernández and Hill [1999a],
where we showed that the process of constraint propagation in our operational
schema can be viewed as a process of function evaluation in the chaotic iteration
algorithm given in Apt [1999]. One difference is that, in Apt [1999], the chaotic
iteration approach was specialized for a constraint satisfaction problem where
the set of constraints to be solved was interpreted as sets of possible solutions
whereas a set of interval constraints in our framework embodies more: the
intended interaction between the variables in the constraint propagation. A
second important difference is that the chaotic iteration approach assumes the
finite chain property10 whereas our domains do not necessarily possess this
property. Further study on how the idea of computing an approximate solution
via a precision map as defined in this paper can be adapted for a chaotic itera-
tion algorithm is needed. Note that a technique such as this could be useful in
extending the framework described in Apt [2000] to domains not satisfying the
finite chain property.

General frameworks for solving soft constraints (i.e., constraints with an
associated confidence value, for example, cost, uncertainty, or degree) have been
described by both Schiex et al. [1995] and Bistarelli et al. [1995]. The framework
in Schiex et al. [1995] was defined for any finite totally ordered domain which
has a specific operation satisfying certain properties whereas the framework
in Bistarelli et al. [1995], was defined for a finite semiring structure. In neither
case was the domain allowed to be infinite.

A generic form of constraint propagation called generalized propagation (GP),
proposed in [Le Provost and Wallace 1993], is applicable to arbitrary compu-
tation domains. Note that, unlike our proposal, the constraints are not defined
generically but use any available constraint over any computation domain to
express restrictions on problem variables. One drawback of GP compared to our
approach, is that termination of the search for answers to a propagation con-
straint is not guaranteed and the entire responsibility for ensuring termination
remains with the programmer.

Solver communication and cooperation. Baader and Schulz [1995] provided
an abstract framework for combining different and (unlike in our proposal)
independently defined constraint languages and constraint solvers. Thus, they
were primarily concerned with the properties that such a combined solution
structure should satisfy.

A general scheme for solver cooperation was proposed by Hofstedt [2000]. In
this paper, domains were defined by using “	-Structures” in a sorted language
and a constraint was a relation over an n-ary Cartesian product of the domains.
As for our framework, solvers are combined by means of the Cartesian product
of the domains. However, Hofstedt [2000] assumed that each component domain
has its own associated solver built into the system and therefore focused on the
interface between the component solvers; the complete system consisted of the

10A domain L satisfies the finite chain property if every increasing sequence a0 ≤ a1 ≤ a2 . . . of its
elements eventually stabilises, that is, for some j > 0, ai = a for i ≥ j and a ∈ L.
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interface plus a set of built-in constraint systems. In contrast, in our proposal
the high-level constraints determine the possible cooperation that can occur
between the domains and their solvers and these constraints may be defined
by the user or system. Note that the flexibility of these high-level constraints
implies that the solver interface defined by Hofstedt [2000] could be imple-
mented in our system.

Constraint systems such as CLP(BNR) [Benhamou and Older 1997] and Pro-
log IV [N’Dong 1997] provide some support for cooperation between solvers.
However, in these languages, the solver cooperation is mainly limited to
Booleans, reals, naturals lists, and trees. Moreover, this cooperation is usually
hard-wired and built into the language.

Interval lattice theory. The interval topology which is the lattice of closed
intervals of a lattice [Birkhoff 1967] appears to be similar to the intervals on
which our constraints are based and it would have been useful if we could have
based our interval constraints on this formalism. However, in our framework,
to allow for approximations in the continuous domains, the intervals are not
necessarily closed, so that the ranges for a domain L ∈ L are not necessarily
meet- or join-complete sublattices of L and do not form an interval topology.
Second, in order to guarantee the monotonicity of our interval constraints (using
the indexical functions min/1, val/1 and max/1, val/1) and identify, prior to the
resolution step, those constraints that do not lead to further propagation, we
needed to distinguish between a domain and its mirror.

10. CONCLUSIONS

We have defined a framework for constraint solving over lattices and illus-
trated with many examples the versatility and expressivity of this approach.
For maximum generality and to allow for any lattice, finite or infinite, discrete
or continuous, we have constructed the interval domains in several stages, each
stage taking advantage of the lattice structures inherited from the underlying
computation domains on which the interval domains are built. Thus, we first
defined and added the bracket domain B to each computation domain L to
create the right bounded domain Ls for open and closed (right) bounds for the
intervals. We then defined the symmetric mirror domain Ls so as to allow for
the left bounds of intervals. These bounds were then combined using the direct
product of lattices to form the range elements of the interval domain Rs

L. Fi-
nally, we added the variable to be constrained to the given range to form the
interval constraint x % r.

When defining the elements of the bounded computation domain Lb, we intro-
duced two additional constructs. One, which generalizes an idea from Codognet
and Diaz [1996a], was indexicals max(x), val(x), for the right bounded domain
and min(x), val(x), for the left bounded domain. These provide necessary links
between the ranges for the constrained variables and give the user transpar-
ent control over the constraint propagation. The other was that of an operator
◦L which maps a domain constructed from several, possibly distinct, computa-
tion domains L1, . . . , Ln to another, possibly different, codomain L. This, com-
bined with the indexicals, allows a one-way communication from the domains
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Lb
1, . . . , Lb

n to the domain Lb. Finally, for full solver cooperation, we have shown
how a high-level constraint defined as a relation over a domain constructed
from a set of computation domains can provide unrestricted communication
between these domains. Notice that this formalization of the framework is new
even when restricted to just the finite domains of integers.

We have presented an operational schema for solving these constraints and
proved it correct. In the case of the nonfinite domains, termination of the pro-
cedure can only be guaranteed by letting the solver return an approximation to
the correct result. An idea from Sidebottom and Havens [1992] for controlling
accuracy in the processing of disjoint intervals over the reals was adapted for
our lattice domains. The special operator precisionL/1 that maps the domain
elements to nonnegative reals �+ and a limit element ε ∈ �+ that controls the
degree of the approximation were introduced. Observe that the notion of our
precision operator corresponds, in some sense, to a change of domain where
the domains (i.e., intervals) which are “too small” but still consistent are not
considered in the lattice. The basic operational schema was then adapted so as
to check, using these precision and limit constructs, for just an approximation
to the fix-point. With this modification of the schema, we proved that such a
procedure terminates with an approximate solution.

Observe that the framework, being applicable to any lattice, provides support
for all the existing practical domains in CLP (e.g., reals, integers, sets, and
Booleans). Moreover, by using lattice combinators, new compound domains and
their solvers can easily be obtained from previously defined domains such as
these. We have imposed the restriction that the sets of constrained variables
associated to each computation must be disjoint. However, it should be possible
to remove such a restriction and consider sublattices of lattices as computation
domains. These could provide a means of having variable sets of a sublattice
being also allowed as variables in the main lattice. This is another topic for
future work.

To demonstrate our framework is realizable in a practical setting, we have
developed the CLP language clp(L) and built a prototype implementation using
CHR’s [Frühwirth 1998]. This prototype supports a set of built-in domains as
well as user-defined domains. Note that all the examples in this paper have been
solved with this implementation of clp(L). We note that this implementation
is only a prototype and it does not compete with the CHRs although it may be
considered as a CHR module. In fact, this system shows the feasibility of our
ideas and was not designed with efficiency in mind. Thus the development of
an efficient implementation is future work.

APPENDIX A. PROOFS

Remark 1. As in the main part of the paper, L ∈ L, VL is the set of variables
associated with L, VL = ∪{VL|L ∈ L}, Rb

L is the interval domain over L, X ∈
℘ f (VL) is the set of constrained variables, CX is the set of all interval constraints
for X , and SSX is the set of all simple stable constraint stores for X . In the
proofs, elements of the bounded computation domain are denoted as ab or (a, b),
depending on context.
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PROPOSITION 3. Let L′ ∈ {Ls, Ls} and t ∈ L′. Then,

(1) L′ = L′, (2) t = t.

PROOF. We prove the cases separately.

(1) Observe that

Ls =1 (L, B) =1 ( ˆ̂L, B) =2 (L, B) =1 Ls, (4)

where equality, =1 follows from Definition 2, and =2 follows from the duality
definition for lattices. Thus, if L′ = Ls, then the result follows. Moreover, if

L′ = Ls, then L′ = Ls = Ls = L′.
(2) Observe that, for some a ∈ L ∪ L̂ and t = ab ∈ {Ls, Ls}, we have

t = ab =1 (â, b) =1 ( ˆ̂a, b) =2 (a, b) =1 ab = t,

where equality =1 follows from Definition 2 and =2 from the duality defini-
tion for lattices.

PROPOSITION 4. Suppose ◦ is a constraint operator for Ls. Then,

◦ is monotonic; (a)

◦ is a constraint operator (for Ls); (b)
◦ is the mirror of ◦ i.e., ◦ ≡ ◦. (c)

PROOF. Suppose that ◦ :: Ls
1 × · · · × Ls

n → Ls is a constraint operator. We
prove the cases separately.

(a) Suppose ti 	 t ′
i for i ∈ {1, . . . , n}, where ti = (ai, bi) and t ′

i = (a′
i, b′

i). We need
to show

◦(t1, . . . , tn) 	 ◦(t ′
1, . . . , t ′

n). (5)

Observe that

by the product of lattices: ai 	 a′
i; moreover if ai = a′

i then bi 	 b′
i;

by monotonicity of ◦L : ◦L(a1, . . . , an) 	 ◦L(a′
1, . . . , a′

n).

If ◦L(a1, . . . , an) ≺ ◦L(a′
1, . . . , a′

n) then (5) holds by the product of lattices and
Definition 3.

Otherwise, ◦L(a1, . . . , an) = ◦L(a′
1, . . . , a′

n). There are two cases:
(1) ∀i ∈ {1, . . . , n}, ai = a′

i. Then, by monotonicity of ◦B,

◦B(b1, . . . , bn) 	 ◦B(b′
1, . . . , b′

n).

(2) ∃i ∈ {1, . . . , n}, ai ≺ a′
i. Then ◦L is not a strict monotonic function and,

by Definition 3, ◦B is a constant, that is, ◦B(b1, . . . , bn) = ◦B(b′
1, . . . , b′

n).
Thus, in both cases, (5) holds by the product of lattices and Definition 3.

(b) Observe that

◦ :: Ls
1 × · · · × Ls

n → Ls (by Definition 3),

◦ :: L̂1
s × · · · × L̂n

s → L̂s (by Definition 2),

where, for i ∈ {1, . . . , n}, L̂i ∈ L ∪ L̂ and L̂ ∈ L̂.
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Assuming the notation of Definition 3, we have, if ti = (ai, bi) (1 ≤ i ≤ n),
then ◦(t1, . . . , tn) = ◦L(a1, . . . , an)◦B(b1,...,bn).

Let ◦L̂ :: L̂1 × · · · × L̂n → L̂ be the dual operator to ◦L so that, if
◦L(a1, . . . , an) = a, then ◦L̂(â1, . . . , ân) = â. Then, by the duality principle of
lattices, ◦L̂ is monotonic in L̂. Moreover, ◦L is strict monotonic whenever ◦L̂
is. Hence, we have

◦(t1, . . . , tn) = ◦(t1, . . . , tn) (by Definition 3)

= ◦L(a1, . . . , an)◦B(b1,...,bn) (by Definition 3)

= ( ̂◦L(a1, . . . , an), ◦B(b1, . . . , bn)) (by Definition 2)
= (◦L̂(â1, . . . , ân), ◦B(b1, . . . , bn)) (by the definition of ◦L̂)
= ◦L̂ (â1, . . . , ân)◦B(b1,...,bn) (by Definition 3).

Thus ◦ is a constraint operator (for Ls) as defined in Definition 3.
(c) Observe that

◦ :: Ls
1 × · · · × Ls

n → Ls (by Definition 3);

◦ :: Ls
1 × · · · × Ls

n → Ls (by Definition 3);
◦ :: Ls

1 × · · · × Ls
n → Ls (by Proposition 3(1)).

Also if ti ∈ Ls
i for all i ∈ {1, . . . , n},

◦(t1, . . . , tn) = ◦(t1, . . . , tn) (by Proposition 3(2))

= ◦(t1, . . . , tn) (by Definition 3, applied twice)
= ◦ (t1, . . . , tn) (by Proposition 3(2)).

Therefore ◦ is equivalent to ◦.

PROPOSITION 1. (See Section 3.4.)

PROOF. Suppose that

r = 〈s, t〉, r ′ = 〈s′, t ′〉,
s = (a, b1), s′ = (a′, b′

1),
t = (c, b2), t ′ = (c′, b′

2).

By hypothesis, r 	 r ′ and, by Definition 5 and by the product of lattices (i.e.,
direct product),

s 	 s′; (6)
t 	 t ′. (7)

From (6):

s 	 s′ ⇒1 (â, b1) 	 (â′, b′
1)

⇒2 â ≺ â′ or â = â′ and b1 	 b′
1

⇒3 a′ ≺ a or a = a′ and }1 	}′1

⇒2

{
if a ≺ a′ then s′ ≺ s
if a = a′ then s 	 s′,

(8)
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where ⇒1 follows from Definition 2, where ⇒2 follows from the product of lat-
tices (i.e., the lexicographic product) and ⇒3 follows from the duality principle
for lattices in Section 2.

We suppose that r ′ is inconsistent. Then, by Definition 6, we have three
cases:

t ′ ≺ s′; (i)
s′ �∼ t ′; (ii)
s′ = a′) and t ′ =′ a}′2. (iii)

In the following:

⇒4 follows from Equation (8);
⇒5 follows from (7);
⇒6 follows from Definition 6;
⇒7 follows from Definition 2;
⇒8 follows from the product of lattices (i.e., the lexicographic product);
⇒9 follows from a contradiction;
⇒10 follows from Case (i) (i.e., t ′ ≺ s′);
⇒11 follows from (7) since t 	 t ′ and, by the product of lattices (i.e., lexico-
graphic product), c 	 c′;
⇒12 follows from Case (ii) so that s′ �∼ t ′. Then, by Definition 2 and
by the product of lattices (i.e., lexicographic product), a′ �∼L c′ and thus
a �∼L c′.

As shown in (8), a ≺ a′ or a = a′. Suppose first a ≺ a′. Then,

if (i) ⇒5 t ≺ s′ ⇒4 t ≺ s ⇒6 r is inconsistent;

else if (ii) ⇒4 s �∼ t ′ ⇒5 s �∼ t ⇒6 r is inconsistent;

otherwise if (iii) ⇒8 s ≺ s′ ⇒4 false.

Suppose now a = a′. Then,

if (i) ⇒4 s 	 s′ ⇒


s = s′ ⇒10 t ′ ≺ s ⇒5 t ≺ s ⇒6 r is inconsistent;

s ≺ s′ ⇒7 s = a) and s′ = a] ⇒10 t ′ ≺ a]

⇒8 t ′ 	 a) ⇒5 t 	 a) ⇒6 r is inconsistent;

else if (ii) ⇒4 s �∼ t ′ ⇒5 s �∼ t ⇒6 r is inconsistent;

otherwise if (iii) ⇒4 s = a′) ⇒5,


t = t ′ ⇒ t = (a′, b′

2) ⇒6 r is inconsistent;

t ≺ t ′


⇒8 c = a′ and b2 	 b′

2 ⇒ t = a′}2

⇒6 r is inconsistent;

⇒8 c ≺ a′ ⇒8 t ≺ s ⇒6 r is inconsistent.

Thus, in all cases, r is inconsistent.

PROPOSITION 5. Let S, S′ ∈ SSX and let also X ′ ⊆ X and C ∈ SX ′
. Then, if

S ∪ C '→ S′, S′ 	 S.
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PROOF. Suppose for each x ∈ X , x is constrained by the constraints cx ∈ S
and c′

x ∈ S′. Also, if x ∈ X ′, suppose that Cx is the set of constraints in C with
constrained variable x.

Then, by Definition 12,

c′
x = ∩L(Cx ∪ {cx}) if x ∈ X ′,

c′
x = cx otherwise.

Therefore, by Definition 8 and the resulting contractance property, c′
x 	 cx for

each x ∈ X . As consequence, by Definition 9, S′ 	 S.

PROPOSITION 6. Suppose S, S′ ∈ SSX where S 	 S′. Then, if S′ is inconsis-
tent, S is also inconsistent.

PROOF. Suppose that S′ is inconsistent. Then, by Definition 9, there is, at
least, one inconsistent constraint c′

x = x % r ′ ∈ S′ (for some x ∈ X ). By
Definition 7, this means that r ′ is inconsistent.

Let cx = x % r be the constraint for x in S. By hypothesis, S 	 S′ so
that by Definition 9, cx 	 c′

x for all x ∈ X , and by Definition 7, r 	 r ′. Thus, by
Proposition 1, r is also inconsistent. Thus, by Definition 7, cx is also inconsistent
and hence, by Definition 9, S is inconsistent.

LEMMA 1. Suppose that c 	 c′ are simple consistent constraints for L ∈ L
constraining the same variable y ∈ X and suppose also that c′ = y % 〈t ′, t ′〉 for
some t ′ ∈ Ls. Then c = c′.

PROOF. Suppose that t ′ = ab, for some a ∈ L. Then, as c′ is consistent, by
Definition 6, t ′ �= a) so that t ′ = a]. Suppose also that c = y % 〈s, t〉. Then, by
Definition 7, 〈s, t〉 	 〈a], a]〉, and, by Definition 5,

s 	 a] and t 	 a].

Then, by Definition 2 and by the product of lattices (i.e., the lexicographic
product),

(s = a] or s = a) or s = a1b′ and â1 ≺ â)

and

(t = a] or t = a) or t = a2b′ and a2 ≺ a).

By the duality principle of lattices in Section 2, this is equivalent to

(s = a] or s = a) or s = a1b′ and a ≺ a1)

and

(t = a] or t = a) or t = a2b′ and a2 ≺ a.).

However, c is consistent so that, by Definition 7, 〈s, t〉 is consistent. By
Definition 6, this means that s 	 t and, if s = a) then t �= a]. The only case
for which this holds is when s = t = a].

LEMMA 2. Let S1, S2 ∈ SSX be two consistent stores such that S1 	 S2 and
c, c2 ∈ CX such that c�S2 c2. Then, there exists c1 ∈ CX such that c�S1 c1 and
c1 	 c2.
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PROOF. Let c = x % 〈s, t〉 where x ∈ X and x ∈ VL for some L ∈ L. Then as
c�S2 c2, by Definition 11, c2 = eval(S2, c) and c2 is simple. Then it follows from
the Definition 10 and Definition 7 that

c2 = x % 〈eval(S2, s), eval(S2, t)〉,
(9)

eval(S2, s) ∈ Ls and eval(S2, t) ∈ Ls.

Suppose that c1 = x % eval(S1, c). Then, again, it follows from Definition 10
that

c1 = x % 〈eval(S1, s), eval(S1, t)〉.
We have to prove that c�S1 c1 and c1 	 c2 which means that, by Definition 7
and Definition 11, we have to show that c1 is simple and that

〈eval(S1, s), eval(S1, t)〉 	 〈eval(S2, s), eval(S2, t)〉. (10)

However, by Definition 5, if relation (10) holds, c1 is simple. Thus, by the product
of lattices (i.e., direct product), we just have to show that

eval(S1, s) 	 eval(S2, s) and (i)
eval(S1, t) 	 eval(S2, t). (ii)

Let n(term) be the number of operators in term. We prove (i) by induction on
n(s). The proof of (ii) is similar and omitted.

—Base case: n(s) = 0. If s ∈ Ls, then, by Definition 10, eval(S1, s) =
eval(S2, s) = s. If s /∈ Ls, then s = min( y) or s = val( y) for some y ∈ X .
Thus there exists cy = y % 〈sy , ty 〉 ∈ S1 and c′

y = y % 〈s′
y , t ′

y 〉 ∈ S2 so that
as, by hypothesis S1 	 S2, we have

S1 	 S2 ⇒1 cy 	 c′
y ⇒2 〈sy , ty 〉 	 〈s′

y , t ′
y 〉 ⇒3 sy 	 s′

y and ty 	 t ′
y , (11)

where ⇒1 follows from Definition 9, ⇒2 from Definition 7, and ⇒3 from the
product of lattices (i.e., direct product) and Definition 5.

Suppose first that s = min( y). Then, by Definition 10,

eval(S1, s) = sy and eval(S2, s) = s′
y .

Therefore, by (11), eval(S1, s) 	 eval(S2, s).
Second, suppose that s = val( y). By (9) eval(S2, s) ∈ Ls and by

Definition 10, eval(S2, s) = s′
y and s′

y = t ′
y . Therefore, as S1 and hence cy

are consistent, it follows from (11) and Lemma 1 that sy = ty = s′
y . Thus, by

Definition 10, eval(S1, s) = sy so that eval(S1, s) = eval(S2, s).
—Nonbase case: n(s) > 0. Suppose ◦ :: Ls

1 × · · · × Ls
n → Ls is a constraint

operator (for Ls). Then, by Proposition 4(b), ◦ is also a constraint operator
(for Ls). Then,

n(s) > 0 ⇒ s =◦(s1, . . . , sn) =1 ◦(s1, . . . , sn)

⇒4

{
eval(S1, s) = ◦(eval(S1, s1), . . . , eval(S1, sn)),
eval(S2, s) = ◦(eval(S2, s1), . . . , eval(S2, sn)),
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where =1 follows from Definition 3 and ⇒4 from Definition 10. By the induc-
tive hypothesis,

eval(S1, si) 	 eval(S2, si), i ∈ {1, . . . , n},
and by Proposition 4(a), ◦ is monotonic so that (i) holds.

PROPOSITION 2. (See Section 4.3.)

PROOF. By hypothesis C�S1 C1 and C�S2 C2 so that, by Definition 11, C1 ∈
CX 1 and C2 ∈ CX 2 where X 1 ⊆ X and X 2 ⊆ X and

C1 = {c1 | ∃c ∈ C . c�S1 c1} and C2 = {c2 | ∃c ∈ C . c�S2 c2}.
As S1 	 S2, by Lemma 2,

∀c2 ∈ C2 : ∃c1 ∈ C1 such that c1 	 c2. (12)

By Definition 7, if c1 	 c2 then c1 and c2 are constrained on the same variable
x ∈ X . Then, it follows from (12) that

X 2 ⊆ X 1. (13)

Let C1x and C2x be the sets of constraints, in C1 and C2, respectively, with
constrained variable x ∈ X (note that C1x and C2x can be the empty set). It
follows from (12) and (13) that, for each c2 ∈ C2x , there exists c1 ∈ C1x such that
c1 	 c2.

Suppose that c1x , c2x , c′
1x , and c′

2x are the constraints for x ∈ X in the stores
S1, S2, S′

1, and S′
2, respectively. By hypothesis S1 	 S2 so that, by Definition 9,

c1x 	 c2x . Since S1 ∪ C1 '→ S′
1 and S2 ∪ C2 '→ S′

2, by Definition 12,

c′
1x = ∩L(C1x ∪ {c1x}),

c′
2x = ∩L(C2x ∪ {c2x}).

As consequence of Definition 8 and contractance property of ∩L,

c′
1x 	 c′

2x , for each x ∈ X .

Therefore, by Definition 9, S′
1 	 S′

2.

LEMMA 3. Let C ∈ CX and S, R ∈ SSX . If R is a solution for C ∪ S, then
R 	 S.

PROOF. By Definition 13, R is consistent, and

C ∪ S�RCR and R ∪ CR '→ R. (14)

By Definition 11, if C∪S�RCR , then CR is equivalent to CR = C1 ∪C2 where

C�RC1 and S�RC2,

and also

C2 = {c′ | ∃c ∈ S . c�Rc′}.
Observe that if c = x % 〈s, t〉 is a simple constraint and x ∈ VL then, by

Definition 7, 〈s, t〉 ∈ Rs
L and, by Definition 5, s ∈ Ls and t ∈ Ls. Therefore, by
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Definition 10

eval(R, c) = x % 〈eval(R, s), eval(R, t)〉 = x % 〈s, t〉 = c.

By Definition 11, this means that c�Rc if c is simple. Since S contains only
simple constraints, then by Definition 11, C2 = S.

Moreover, from (14), R ∪ CR '→ R and, as shown previously, CR = C1 ∪ C2 =
C1 ∪ S. Thus R ∪ C1 ∪ S '→ R and, by Proposition 5, R 	 S.

THEOREM 1 (CORRECTNESS). (See Section 5.1.)

PROOF. Let S0 be the initial value of S and C = C ∪ S0. Suppose that there
are k iterations of the repeat loop and that, for each i where 1 ≤ i ≤ k, Si is the
value of the constraint store S at Step (5), after completing ith iterations of the
repeat loop.

Suppose first that a solution R (for C ∪ S0) exists. Then, by Definition 13, R
is consistent, R ∈ SSX and

C�RCR and R ∪ CR '→ R. (15)

Note that, initially S0 = S ∈ SSX . Then, by Lemma 3,

R 	 S0. (16)

We show by induction on i that, after i ≥ 0 iterations of the repeat loop,

R 	 Si. (17)

The base case when i = 0 is given by (16). For the inductive step, suppose that
there are at least i > 0 iterations of the repeat loop and that, after i − 1 steps,
we have R 	 Si−1. Then, in the ith iteration

C�Si−1 C′ by Step (2); (18)
Si−1 ∪ C′ '→ Si, by Step (4). (19)

It follows from (15), (18), (19), and Proposition 2 that (17) holds.
Therefore, R 	 Sk . As R is consistent, by Proposition 6, Sk is consistent.

However, the procedure terminates before the k + 1th iteration so that the test
in Step (5) is true and we must have Sk = Sk−1. By (18) and (19)

C�Sk−1 C′ and Sk−1 ∪ C′ '→ Sk . (20)

Thus, by Definition 13, Sk is a solution for C (i.e., C ∪ S0). Moreover, if R is
another solution for C ∪ S0, then as R 	 Sk and as R was any solution for
C ∪ S0, Sk = mgs(C ∪ S0).

Suppose next that there is no solution for C ∪ S0. Then Sk−1 �= Sk or else,
by (20), Sk would be a solution. Thus, in this case, as the procedure terminates
before the k + 1th iteration so that the test in Step (5) is true, we must have Sk
is inconsistent.

PROPOSITION 7. precisionL is strict monotonic. That is,

precisionL(c) ≺ precisionL(c′) if c ≺ c′.
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PROOF. Suppose that c1 = x % 〈ab, cd 〉 and c2 = x % 〈a′
b′ , c′

d ′ 〉 where c1 ≺ c2.
Then, we have to prove that

precisionL(c1) ≺ precisionL(c2),

which, by Definition 14, is equivalent to showing

(â )L c, b )B d ) ≺ (â′ )L c′, b′ )B d ′). (21)

By hypothesis, c1 ≺ c2, so that by Definition 7

〈ab, cd 〉 ≺ 〈a′
b′ , c′

d ′ 〉
and, by the product of lattices (i.e., direct product), either

ab ≺ a′
b′ and cd 	 c′

d ′ or (22)

ab 	 a′
b′ and cd ≺ c′

d ′ . (23)

If (22) holds, then, by the product of lattices (i.e., lexicographic product),

(â ≺ â′ or â = â′ and b ≺ b′) and (c ≺ c′ or c = c′ and d 	 d ′). (24)

Similarly, if (23) holds, then,

(â ≺ â′ or â = â′ and b 	 b′) and (c ≺ c′ or c = c′ and d ≺ d ′). (25)

Therefore, â ≺ â′ and c 	 c′, â = â′ and c ≺ c′, or â = â′ and c = c′. However,
we have {

â ≺ â′ and c 	 c′

â = â′ and c ≺ c′

}
⇒1 â )L c ≺ â′ )L c′ ⇒2 (21) holds,

â = â′ and c = c′
{

⇒3 b ≺ b′ and d 	 d ′

⇒4 b 	 b′ and d ≺ d ′

}
⇒1,5

â )L c = â′ )L c′ and b )B d ≺ b′ )B d ′ ⇒2 (21) holds,

where ⇒1 follows from strict monotonicity of )L in Definition 14, ⇒2 from the
product of lattices (i.e., lexicographic product), ⇒3 from (24), ⇒4 from (25), and
⇒5 from strict monotonicity of )B in Definition 14.

THEOREM 2 (TERMINATION). (See Section 5.2.)

PROOF. Let S0 be the initial value of S. Suppose there are at least i ≥ 0
iterations of the repeat loop. If i ≥ 1, let Si ∈ SSX be the constraint store at
the end of the ith iteration. Suppose first that Sj is inconsistent for some j ,
0 ≤ j ≤ i. Then either the test in Step (0) (if j = 0) or the test in Step (5)
(if j > 0) fails and the procedure terminates after i = j iterations. We now
assume that Si is consistent for all i ≥ 0 such that Si is defined.

For each i ≥ 0 such that Si is defined and each x ∈ X ∩ VL and L ∈ L, let ci
x

denote the simple (consistent) constraint in Si. Also, for each x ∈ X and some
L ∈ L, let precisionL(ci

x) = (φi
x , ψ i

x). For each i ≥ 0 such that Si is defined, let

X i = {
x ∈ X

∣∣ φi
x = ��+

}
,

Yi = {
y ∈ X

∣∣ φi
y ≺ ��+

}
.
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In the ith iteration we have, by Step (4), Si−1 ∪ C′ '→ Si so that, by
Proposition 5, Si 	 Si−1. Thus, by Definition 9, for each x ∈ X , ci

x 	 ci−1
x ,

and, by Proposition 7, (φi
x , ψ i

x) 	 (φi−1
x , ψ i−1

x ). As the order is lexicographic,
we have for all x ∈ X , φi

x ≤ ψ i−1
x . Thus X i ⊆ X i−1 and, if X i = X i−1, then

Yi = Yi−1. If no differenceδ(Si−1, Si) holds, then the test in Step (5�) is true
and the procedure terminates. We now assume that the termination condition
no differenceδ(Si−1, Si) does not hold. There are two cases:

(1) X i ⊂ X i−1;
(2) X i = X i−1, Yi = Yi−1 and ∃ y ∈ Yi . (φi−1

y , ψ i−1
y ) − (φi

y , ψ i
y ) > (ε, 0).

As X i ⊂ X i−1 can occur at most #X 0 different values for i, we can assume
that, for some iteration j ≥ 0, X i = X j for all i ≥ j and, for all i > j , Case (2)
applies. Thus, for all i > j , Yi = Yi−1, so that, as φi

x ≤ ψ i−1
x for all x ∈ Yi,∑

x∈Yi

φi
x ≤

∑
x∈Yi−1

φi−1
x .

At Step (5�) of the ith iteration where i > j , either the repeat loop terminates
or no difference(Si−1, Si) does not hold and thus, by Case (2),∑

x∈Yi−1

φi−1
x −

∑
x∈Yi

φi
x > ε.

Let

k =
∥∥∥∥∑

x∈Y j

φ j
x /ε

∥∥∥∥ + j ,

where ‖r‖ denotes the integer part of r ∈ �+. It follows that, if there is a kth it-
erations of the repeat loop, then

∑
x∈Yk

φk
x < ε and hence no difference(Sk−1, Sk)

holds. Thus the procedure has at most k iterations.

THEOREM 3 (CORRECTNESS IN THE EXTENDED SCHEMA). (See Section 5.2.)

PROOF. Suppose the procedure terminates after k iterations with Sε the final
value of the constraint store S. It has already been shown in (17) of the proof
of Theorem 1 that

R 	 Sε.

Thus, for all cx ∈ R and c′
x ∈ Sε, precision(cx) 	 precision(c′

x). Let δ ∈
�I be the maximum of precision(c′

x) − precision(cx) for all x ∈ X . Then
no differenceδ(Sε, R) holds. Thus, by Definition 16, Sε is an approximate so-
lution for C ∪ S.

THEOREM 4. (See Section 5.2.)

PROOF. In the previous proof we have R 	 Sε for any ε ≥ 0.0. Therefore
R 	 Sε1 and R 	 Sε2 Thus, we just have to show that Sε1 	 Sε2 .

Suppose the procedures solveε2 (C, S) and solveε1 (C, S) terminate after k2 and
k1 iterations, respectively. Therefore, the check, in Line (5�), for the repeat loop
for steps from 1 to k2 must also succeed for ε1. Thus k1 ≥ k2.
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Suppose that Si is the value of S at the end of the ith iteration of the repeat
loop (1 ≤ i ≤ k1) (so that Sk1 = Sε1 and Sk2 = Sε2 ). We show, by induction on i,
where k2 ≤ i ≤ k1, that

Si 	 Sε2 . (26)

The base case when i = k2 is obvious. For the inductive step, suppose that i > k2
and assume that Si−1 	 Sε2 . By Step (4) of the extended operational schema,
we have

Si−1 ∪ C′ '→ Si (27)

at the end of the ith iteration of the repeat loop. Thus, by Proposition 5, Si 	 Si−1
so that (26) holds. Therefore, letting i = k1 we obtain Sε1 	 Sε2 .
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