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AN INTERVAL ESTIMATE FOR STATISTICAL INFERENCE ABOUT TRUE SCORES

Frederic M. Lord and Martha S. Hamilton

Abstract

A numerical procedure is outlined for obtaining an interval estimate

of true score. The procedure is applied to several sets of test data.
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AN INTERVAL ESTINATE FOR STATISTICAL INFERENCE ABOUT TRUE SCORES*

We wish to infer the true score of an individual examinee in a group

of examinees from his observed score. The distribution of observed scores

for a given true score is assumed to be binomial. If the distribution of

true scores were known, the usual (Bayes) estimator of true score from ob-

served score would be given by the regression of true score on observed

score. If the distribution of true scores is unknown, which is always the

case with real data, this regression is not uniquely determined by the

observed-score distribution: even in an infinitely large population of

examinees (Lord & Novick, 1968, section 23.5).

In practice, the regression function of 6bserved-score on true score

is frequently assumed to be linear. This assumption can be correct only if

the unconditional observed-score distribution is negative hypergeometric. For

any set of real data, then, the question arises--what limits or bounds can be

placed on this regression under the binomial error model without making linearity

assumptions? This paper presents a technique for computing an interval esti-

mate of the regression function of true score on 6bserved score under the bi-

nomial error model. The proceaure is not simple. Our main interest here is

to demonstrate the range of reasonable estimates of true scores than can be

obtained from a set of data.

The same technique is applicable to problems outside of mental test

theory whenever there is a set of true values and a set of binomial

errors of measurement. This more general empirical Bayes problem, not

related to mental test theory, is discussed separately (Lon', 1971).

*This research was sponsored in part by the Personnel and Training
Research Programs, Psychological Sciences Division, Office of Naval
Research, under Contract No. N00014-69-c-0017, Contract Authority
Identification Number, NR No. 150-303, and Educational Testing Service.
Reproduction in whole or in part is permitted for any purpose of ".e
United States Government.
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The Model

The observed score x is assumed to be an integer 0,1,2, ...In 1

where n is the number of items in the test. For each x there is an

unobservable true score t , 0 < < 1 The difference between x and

nt represents error of measurement. For a given t has the binomial

distribution

h(x1t) = (9) eca On-x X = 0,1) ,n (1)

A mmlapleof N observations on x is drawn at random from some population

of pairs (x, ). We observe x 1 but not the corresponding t . We wish

to estimate the true score t corresponding to a particular observed score x.

Let G(t) be the unknown cumlative distribution function of true

scores for the population from 'Which the N sample observations were drawn.

The relative frequency distribution of observed scores for the population

may be written

1

G
(x) = f h(x) dG(t) ,

0

x = 0,1,...,n (2)

If G() were knawn, the usual Bayes estimate of the true score for a particu-

lar observed score would be the regression of true score on observed score,

1

r
dG(t)

0

X = 01...0 (3)

If a good estimate 6() of G(t) can be found, then the corresponding

estimate a
tlx

can be used as the empirical Bayes estimate of t for

any particular x A number of techniques are available for constructing



reasonable estimates ILI x
from the observed-score distribution (for

example, Robbins, 1956; Maritz, 1966; Copas, 1969; Griffin & Krutchkoff,

1971)1 but they are of unknown accuracy for any given N and n . The

technique presented here constructs an interval with lower bound

11 and upper bound u within which u,
x

must lie in order to be
-ax ax 61

!treasonably consistent" with the sample of observed scores.

Let the sample relative observed frequency distribution be f(x)

x = 0,1, 1n Consider X2 to be the 1 - a percentile of the chi-

square distribution with n degrees of freedom. A G(t) will be considered

reasonably consistent with the data if the chi-square between the corresponding

defined by (2) and the given f(x) is less than or equal to :

2

n N[f(x) - SG(x)]
2

X = E < X2 (10

x=0
OG(x)

Let r be the set of all cumulative distribution functions G(t)
ce

that satisfy (10. The problem to be solved may then be stated as follows:

For each x = I find uax tte smallest p.t Ix and uax
the

largest lit ix obtainable from (3) under the restriction that G(t) be

in r .a
By its construction, the interval can be considered a

(Illax/i7Lax)

confidence interval. With probability at least 1 - Ct , it will contain

the true value of the regression in the population from which tlie sample

was drawn. This procedure for constructing a confidence interval is not

entirely satisfactory, since only a lower bound for the confidence level is

known. Until better procedures are developed, however, the interval pro-

vides more information about the accuracy of inference about true scores than

would otherwise be available.
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Constructing the Confidence Interval

Substituting (1) into (2) and expanding gives

n-x

G
(x) =

r=0

x)(-1)rg
x+r

x = 0) 17 . n (5)

where gk is the k -th moment of G(t) about the origin.

Substituting (1) and (5) in (3) and again expanding gives

n-x
z (n x)(_Dra

' r-x+r+1
r=0

Ltlx n-x
fn -

r=0

X = 01 1) n

Using a theorem by Markay (see Posse, 1886, sections V8 and V9; or

Karlin & Shapley, 1953) and equation (6) it can be shown (Lord, 1971)

(6)

that Ltax or goux is attained for a given x only when G(t) is a step

function. A step function is a cumulative distribution function which arises

when discrete probabilities gv, v=1,...N are concentrated at points

v=1, . The theorem also proves that if n 1 the number of test

items, is even, V 1 the number of different points, will be at most

f+ 1. The situation is similar when n is odd, but will not be de-

tailed here. In addition, the theorem by Markay shows that if (n - x)

is even, utix is attained only when the smallest tv is 0.0, and
x

is attained only when the largest tv is 1.0. Similarly, if (n - x) is

odd, 1401x is attained only when the largest tv is 1.0, and is
glax

a

attained only when the smallest tv is 0.0.

Thanks to Markov, the problem has now taken on a simpler form. To find

1110ix
org lonlyfunknown true scores c, need be found. Similarly, rince

the sum of all probabilities, gv must be 1, only f unknawnprdbabilities

need be found. The problem simplifies further since it can be shown (Lord, 1971)

2 2
that the solution lies on the boundary defined by XG = therefore the in-

equality of equation (4) can be replaced by strict equality.



When G(t) is a step function, (3) can be written as

V
E gvtv h(xItv)

v.1

V
E g h(xltv)
v.1 v

(7)

where V = + 1 . The problem is to maximize or minimize p..1
x

given by
2 SI

V
equation (7), subject to the restrictions imposed by (4), by E g = 1.0

v,1 v

and by the inequalities 0 < gv < 1.0 , 0 < < 1.0 . This problem can

be solved numerically for any given observed score distribution by

mathematical programming algorithms implemented on a computer.

The algorithm used to find the numerical solution to the prdblem was the

sequential unconstrained minimization technique (SUMT) developed by Fiacco and

McCormick (1968, Chapter 4) and implemented by. M. Hamilton. This algorithm

carries out a constrained minimization of a function (equation (7)) by per-

forming a series of unconstrained minimizations. The unconstrained minima con-

verge to the constrained minimum. Each unconstrained minimization minimizes the

sum of the function and some penalty function. The penalty function is constructed

to be large when a constraint is violated and small when it is not violated. The

penalty function used here restricts G(t) to r The other restrictions werea
handled by simpler means. The required minimization of the unconstrained function

was accomplished by the Fletcher-Powell-Davidon algorithm (Fletcher & POwell,

1963), programmed by J8reskog 1967, (section 8) and modified by Hamilton. All

computations were performed on an IBM 360/6, in doUble precision.

Results

This procedure has been applied to a variety of mental test data. The.tests

presented here were selected for their unusual features. The values of a were

chosen for convenience of computation.
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Table 1. Observed cumulative frequency distribution and corresponding
interval estimates ( a = 0.086 ) for the regression of true

score on Observed score.

Cumulative Dis-
tribution of x

Interval Estimate
of the Regression

30 1.000 .970 .606-1.000

24 .999 .713 595-.792
18 .945 .544 .498-.596
12 .741 .371 .342-.395
6 .249 .237 .216-.255
0 .001 .137 .009-.220
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Data set 1. One such test consisted of 30 five-choice items administered

to 2383 examinees. Table 1, column 2, shows the cumulative observed frequency

distribution after random responses have been supplied for omitted items. This

test is of particular interest since one-fourth of the examinees had scores at

the chance level (x = 6) or below, with one-sixth of the scores below chance.

The presence of so many people at or below the chance level raises a number

of questions about the distribution of true scores. Are most or many of the

true scores also at or below the chance level? Do some people score systemati-

cally lower thriin if they responded at random? What proportion of examinees

can safely be aSsumed to have true scores above chance level?

The last column showi, for selected values of x 1 the interval estimates

of the regression obtained by the method outlined in this paper for a 0.086 .

Since the region function is to be used as giving the estimated true

score for a giArc' oPs:.k''arved score, one can see the range of estimates that could

reasonably be o used. The intervals demonstrate clearly that real differences

exist on the dimension tested in spite of all the guessing. One cannot rule out

the presence of true scores below the chance level, or of very high true scores.

For observed scores of 12 and 6, the intervals are tolerably short. It

is interesting to note that for x < .2n 1 the interval estimate lies above

x/n ; for x > , the interval estimate lies below x/n . This would seem

to be a rather extreme manifestation of regression towards the mean.

It is easily shown that a straight-line regression can fit inside all of

the intervals. However, this is not a sensitive test for linearity of regres-

sion. Under the binomial error model considered here, linearity necessarily

leads to a negative hypergeometric distribution of observed scores (Lord &

Novick, 1968, section 23.6). To test for linearity, a negative hyper-

geometric distribution was fitted to the observed score distribution.

The X2 obtained for this fit was far beyond the tabled 99.9 percentile.

Thus, the hypothesis of a linear regression of true score on observed score



cannot be maintained for these data.

The third column of Table 1 gives the (nonlinear) regression, obtained

some years ago by a very different approach (Lord, 1969), for a 4(t) that

produced a good ;fit to the observed-score distribution (the X2 between et(x)

and f(x) was at the 60th percentile, with 19 degrees of freedom). It is reas-
suring to find that this regression lies well within the interval estimates

shown in the last column.

Data set 2. The technique was applied to another set of data consisting

of the responses to 38 five-choice engineering items administered to 717 ex-

aminees. The mean number-right score on this subtest was 12. The subtest has

spectacularly low reliability: the Kuder-Richardson coefficient KR
.e0

is only

0.35. (The reason for such low reliability may be that the questions covered

different engineering specialitiessuch as mechanical, electrical, or chemical

engineeringbut most examinees were familiar with only one speciality.)

Interval estimates of the regression of true score on observed score

were computed for five observed scores, with a = 0.01 The results

are shown below:

Observed score x : 2 7 12 17 22

Cumulative distribution of x : .001 .073 .591. .934 .997

Interval estimate of the regression: .022-.321 .246-.321 .289-.332 .315-.407 .330-.596

All of these intervals contain at least one value in the range 0.32 to 0.33,

which leaves open the remote possibility that examinees with observed scores

throue vat the range 2 < x < 22 may all have about the same true score. This

lack of discrimination is in agreement with the low test reliability. Zero re-

liability would imply that all true scores were identical, the variation of

observed scores being entirely due to errors of measurement. A direct test of

the hypothesis of zero reliability is called for if this hypothesis is of interest.
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Data set 3. The effect of large sample size on the width of the interval

estimate was investigated by using the scores of 137,052 examinees on a test

composed of 50 five-choice math items. Using a = 0.05 1 the interval estimate

computed for the median ( x = 25 ) of the distribution of number-right scores

was found to be 0.496-0.309, a satisfyingly short interval. Calculations for

other x values were not done (because of the expense, due to the large n).

Data set 4. In order to check further the efficacy of the interval esti-

mates of regression, a set af hypothetical data was used. The observed rela-

tive frequency distribution was constructed by selecting 1000 cases at random

from a negative hypergeometric distribution with n = 24 . Table 2, column 2,

Shows the cumulative frequency distribution obtained.

The fifth colt= displays the interval estimates of the regression for seven

values of x with a = 0.0375 . Since the population distribution from which

the sample was drawn was negative hypergeometric, the data are consisistent under

the binomial error model with the assumption that the population regression is

linear. The actual linear regression for the population was computed and is

shown in column 4 of the table. Clearly, the interval estimate in column 5

recovers the information about the population linear regression. In fact,

the values of the population linear regression differ from the midpoints of

the intervals by a maximum of 0.019.

Data set 5. The third colt= of this table displays the cumulative

frequency distribution of 50 cases that were selected at random from the 1000.

Column 6 .shows the corresponding interval estimates of the regression. As

expected, the intervals are much wider than those for the original 1000 cases,

but not 'Jl000/fö = 4.4 times as wide. The width of the interval is doubled

or tripled.

10
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Table 2. Observed cumulative frequency distribution and interval estimates

for hypothetical data, a 0.0375 .

Cumulative Cumulative

Distribution Distribution (Elax'ilax) (Ilax)1710:x)

. .?c
of x, N=1000 of x, N=30 P" t I x for N=1000 for N=50

24. 1.000 1.00 .900 .765-.998 .643-1.000
20 .9511. .96 .767 .705-.822 .611-.868
16 795 .72 .633 575-.675 .532-.742
12 .523 .48 .foo .467-.558 .4o4-.618
8 .265 .22 .367 .310-.409 .258-.528
4 .072 .06 .233 .185-.297 .093-.454

.'
0 .002 .00 .100 .009-.216 .000-.454
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