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Abstract—We consider the task of performing prediction with 

neural networks on the basis of uncertain input data expressed in 
the form of intervals. We aim at quantifying the uncertainty in 
the prediction arising from both the input data and the prediction 
model. A multi-layer perceptron neural network (NN) is trained 
to map interval-valued input data into interval outputs, 
representing the prediction intervals (PIs) of the real target 
values. The NN training is performed by non-dominated sorting 
genetic algorithm–II (NSGA-II), so that the PIs are optimized 
both in terms of accuracy (coverage probability) and dimension 
(width). Demonstration of the proposed method is given on two 
case studies: (i) a synthetic case study, in which the data have 
been generated with a 5-min time frequency from an Auto-
Regressive Moving Average (ARMA) model with either Gaussian 
or Chi-squared innovation distribution; (ii) a real case study, in 
which experimental data consist in wind speed measurements 
with a time-step of 1-hour. Comparisons are given with a crisp 
(single-valued) approach. The results show that the crisp 
approach is less reliable than the interval-valued input approach 
in terms of capturing the variability in input. 
 

Index Terms—Interval-valued neural networks, multi-
objective genetic-algorithms, prediction intervals, short-term 
wind speed forecasting, uncertainty. 
 

I. INTRODUCTION 

REDICTION plays a crucial role in every decision-making 
process, and for this reason it should take into account any 

source of uncertainty that may affect its outcome. Sources of 
uncertainty in the prediction can be in the input data (e.g., due 
to measurement errors, or to imprecise, incomplete and 
uncertain information), in the model parameters (e.g., due to 
the estimation process) and in the model structure (e.g., due to 
imperfections in the model formulation) [1]. Uncertainty 
quantification is the process of representing this uncertainty 
and propagating it through the model onto its results [2]. For
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 practical purposes, uncertainties can be classified in two 
distinct types [3]: epistemic and aleatory. The former derives 
from imprecise model representation of the system behavior, 
in terms of uncertainty in both the hypotheses assumed 
(structural uncertainty) and the values of the parameters of the 
model (parameter uncertainty) [4].The latter describes the 
inherent variability of the observed physical phenomenon, and 
it is therefore also named stochastic uncertainty, irreducible 
uncertainty, or inherent uncertainty [5].  

 In the literature, methods such as probability modeling [6], 
Neural Networks-based prediction intervals estimation [7], 
conformal prediction [8], interval analysis [9]-[11], fuzzy set 
theory [12], and in particular type-2 fuzzy sets [13],  Monte 
Carlo simulation [14], and Latin hypercube sampling [15] 
have been used to efficiently represent, aggregate, and 
propagate different types of uncertainty through computational 
models. Interval analysis is a powerful technique for bounding 
solutions under uncertainty. The uncertain model parameters 
are described by upper and lower bounds, and the 
corresponding bounds in the model output are computed using 
interval functions and interval arithmetic [16]. These bounds 
contain the true target value with a certain confidence level. 
The interval-valued representation can also be used to reflect 
the variability in the inputs (e.g. extreme wind speeds in a 
given area, minimum and maximum of daily temperature, 
etc.), or their associated uncertainty (e.g. strongly skewed 
wind speed distributions, etc.). 

In this paper, we present an interval-valued prediction 
modeling framework based on a data-driven learning 
approach, more specifically a multi-layer perceptron neural 
network (NN).  Demonstration of the proposed method is 
given on two case studies: (i) a synthetic case study, with 5-
minutes simulated data; (ii) a real case study, involving hourly 
wind speed measurements. In both cases, short-term prediction 
(1-hour and day-ahead, respectively) is performed taking into 
account both the uncertainty in the model structure, and the 
variability (within-hour and within-day, respectively) in the 
inputs.  

An interval representation has been given to the hourly and 
daily inputs by using two different approaches (see Section 
IV), which quantify in two different ways the within-hour and 
within-day variability. The network maps interval-valued input 
data into an interval output, providing the estimated prediction 
intervals (PIs) for the real target. PIs are comprised of lower 
and upper bounds within which the actual target is expected to 
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lie with a predetermined probability [7], [17], [18]. The NN 
prediction model is trained by a multi-objective genetic 
algorithm (MOGA) (the powerful non-dominated sorting 
genetic algorithm-II, NSGA-II), so that the PIs are optimal 
both in terms of accuracy (coverage probability) and 
dimension (width). In [19], a comparison of NSGA-II with 
two single-objective methods, simulated annealing (SA) and 
genetic algorithm (GA), has been performed: results show that 
the PIs produced by NSGA-II compare well with the ones 
obtained with single-objective methods, and that they are 
satisfactory in both objectives of high coverage and small 
width. 

The prediction interval coverage probability (PICP) 
represents the probability that the set of estimated PI values 
will contain a certain percentage of the true output values. 
Prediction interval width (PIW) simply measures the extension 
of the interval as the difference of the estimated upper and 
lower bound values. The network uses interval-valued data but 
its weights and biases are crisp (i.e. single-valued). The 
NSGA-II training procedure generates Pareto-optimal solution 
sets, which include non-dominated solutions for the two 
objectives (PICP and PIW).  

The originality of the work appears in two aspects: (i) while 
the existing papers on short-term wind speed/power prediction 
use single-valued data as inputs, obtained as a within-hour [20] 
or within-day average [21], [22], we give an interval 
representation to hourly/daily inputs by using two approaches 
(see Section IV), which properly account (in two different 
ways) for the within-hour/day variability; (ii) we handle the 
PIs problem in a multi-objective framework, whereas the 
existing relevant methods for wind speed/power prediction 
consider only one objective for optimization. 

The paper is organized as follows. Section II introduces the 
basic concepts of interval-valued NNs for PIs estimation. In 
Section III, basic principles of multi-objective optimization are 
briefly recalled and the use of NSGA-II for training a NN to 
estimate PIs is illustrated. Experimental results on the 
synthetic case study and on the real case study concerning 
wind speed prediction are given in Section IV. Finally, Section 
V concludes the paper with a critical analysis of the results and 
some ideas for future studies. 

II. NNS AND PIS 

Neural networks (NNs) are a class of nonlinear statistical 
models inspired by brain architecture, capable of learning 
complex nonlinear relationships among variables from 
observed data. This is done by a process of parameter tuning 
called “training”. It is common to think of a NN model as a 
way of solving a nonlinear regression problem of the kind 
[23], [24]: 

           ,                                     (1) 
 
where  ,   are the input and output vectors of the regression, 
respectively, and     represents the vector of values of the 
parameters of the model function  , in general nonlinear. The 

term    is the error associated with the regression model  , 
and it is assumed normally distributed with zero mean. For 
simplicity of illustration, in the following we assume   one-
dimensional. An estimate  ̂ of    can be obtained by a 
training procedure aimed at minimizing the quadratic error 
function on a training set of input/output values                     ,     ∑  ̂                                        (2) 
 
where  ̂       ̂  represents the output provided by the NN 
in correspondence of the input    and    is the total number of 
training samples.  

A PI is a statistical estimator composed by upper and lower 
bounds that include a future unknown value of the target     
with a predetermined probability, called confidence level and 
in general indicated with     [7], [24]. The formal definition 
of a PI can be thus given in the following form:        

          ̂       ̂                (3) 
 
where  ̂   and  ̂   are the estimators of the lower and 
upper bounds of the PI corresponding to input  , and the 
confidence level     is the probability that the true 
unknown value of    lies within   ̂    ̂   . 

Two measures can be used to evaluate the quality of the PIs 
[18]: the prediction interval coverage probability (PICP), 
which represents the probability that in correspondence of a 
given   the PI will contain the true output value    (to be 
maximized), and the prediction interval width (PIW), which 
measures the extension of the interval in correspondence of   
as the difference of the upper and lower bound values around    (to be minimized). In general, these two measures are 
conflicting (i.e., wider intervals give larger coverage), but in 
practice it is important to have narrow PIs with high coverage 
probability [7]. 

When interval-valued data [16] are used as input, each input 
pattern    is represented as an interval              where         are the lower and upper bounds (real values) of the 
input interval, respectively. Each estimated output value  ̂  
corresponding to the      sample    is, then, described by an 
interval as well,  ̂    ̂    ̂   , where  ̂    ̂   are the 
estimated lower and upper bounds of the PI in output, 
respectively.  

The mathematical formulation of the PICP and PIW 
measures given by [7] is modified for interval-valued input 
and output data:  

         ∑                             (4) 

where    is the number of training samples in the considered 
input data set, and  
 

   {       ̂    ̂           ̂            ̂    ̂          ̂                     (5)                      
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where             ,         are the lower and upper bounds 
(true values) of the output interval, respectively, and      
indicates the width of the interval. More precisely, (5) means 
that if the interval-valued real target is covered by the 
estimated PI, i.e. if the target is a subinterval of the estimated 
PI, then    is equal to 1. If the estimated PI does not cover the 
entire real target, but the intersection of the two is not empty, 
then    is equal to the ratio between         ̂  and the 
width of the interval   , and in that case    takes a values 
smaller than 1. Finally, if the estimated PI does not cover the 
entire real target and the intersection of the two is empty, then 
the coverage    of the      sample is 0. This calculation 
corresponds to the probabilistic assumption that the target    
can take any value in           with uniform probability, i.e. 
that each point in           is equally likely to be a possible 
value of y. 

For PIW, we consider the normalized quantity:          ∑  ̂    ̂                                          (6) 

where NMPIW stands for Normalized Mean PIW, and      
and      represent the minimum and maximum values of the 
true targets (i.e., the bounds of the range in which the true 
values fall). Normalization of the PI width by the range of 
targets makes it possible to objectively compare the PIs, 
regardless of the techniques used for their estimation or the 
magnitudes of the true targets. 

III. NSGA-II MULTI-OBJECTIVE OPTIMIZATION FOR NN 

TRAINING 

The problem of finding PIs optimal both in terms of 
coverage probability and width can be formulated in a multi-
objective optimization framework considering the two 
conflicting objectives PICP and NMPIW. 

A. Multi-objective Optimization by NSGA-II 

In all generality, a multi-objective optimization problem 
considers a number of objectives,             , 
inequality              and equality              
constraints, and bounds on the decision variables             . Mathematically the problem can be written as 
follows [25]: 

Minimise/Maximise                                       (7) 
    subject to                                               (8) 
                                                              (9) 

                                                               (10) 
 
A solution,               is an  -dimensional decision 

variable vector in the solution space   , restricted by the 
constraints (8), (9) and by the bounds on the decision variables 
(10). 

The search for optimality requires that the   objective 
functions    ,           be evaluated in 
correspondence of the decision variable vector   in the search 
space. The comparison of solutions during the search is 
performed in terms of the concept of dominance [25]. 

Precisely, in case of a minimization problem, solution    is 
regarded to dominate solution    (     ) if the following 
conditions are satisfied: 

                                                    (11) 
 

                                                          (12) 
 
If any of the above two conditions is violated, the solution    does not dominate the solution   , and    is said to be non-

dominated by   . Eventually, the search aims at identifying a 
set of optimal solutions       which are superior to any 
other solution in the search space with respect to all objective 
functions, and which do not dominate each other.  This set of 
optimal solutions is called Pareto optimal set; the 
corresponding values of the objective functions form the so 
called Pareto-optimal front in the objective functions space. 

 In this work, we use GA for the multi-objective 
optimization. GA is a population based meta-heuristics 
inspired by the principles of genetics and natural selection 
[26]. It can be used for solving multi-objective optimization 
problems [27], [28]. Among the several options for MOGA, 
we adopt NSGA-II, as comparative studies show that it is very 
efficient [26], [29]. 

B. Implementation of NSGA-II for training a NN for 

Estimating PIs 

In this work, we extend the method described in [7] to a 
multi-objective framework for estimating output PIs from 
interval-valued inputs.  More specifically, we use NSGA-II for 
finding the values of the parameters of the NN which optimize 
two objective functions PICP (4) and NMPIW (6) in a Pareto 
optimality sense (for ease of implementation, the 
maximization of PICP is converted to minimization by 
subtracting from one, i.e. the objective of the minimization is 
1-PICP).  

The practical implementation of NSGA-II on our specific 

problem involves two phases: initialization and evolution. 

These can be summarized as follows (for more details on the 

NSGA-II implementation see [30]): 

1) Initialization phase: 
Step 1: Split the input data into training (Dtrain) and testing 

(Dtest) subsets. 

Step 2: Fix the maximum number of generations and the 

number of chromosomes (individuals)    in each population; 

each chromosome codes a solution by   real-valued genes, 

where   is the total number of parameters (weights) in the NN. 

Set the generation number    . Initialize the first population    of size   , by randomly generating    chromosomes. 

Step 3: For each input vector   in the training set, compute 

the lower and upper bound outputs of the    NNs, each one 

with   parameters. 

Step 4:  Evaluate the two objectives PICP and NMPIW for 

the    NNs (one pair of values 1-PICP and NMPIW for each 

of the    chromosomes in the population   ). 

Step 5:  Rank the chromosomes (vectors of   values) in the 

population    by running the fast non-dominated sorting 
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algorithm [29] with respect to the pairs of objective values, 

and identify the ranked non-dominated fronts            

where    is the best front,    is the second best front and    is 

the least good front. 

Step 6: Apply to    a binary tournament selection based on 

the crowding distance [29], for generating an intermediate 

population    of size   . 

Step 7: Apply the crossover and mutation operators to   , to 

create the offspring population    of size   . 

Step 8: Apply Step 3 onto    and obtain the lower and 

upper bound outputs. 

Step 9: Evaluate the two objectives in correspondence of the 

solutions in   , as in Step 4. 

2) Evolution phase: 
Step 10: If the maximum number of generations is reached, 

stop and return   . Select the first Pareto front   as the optimal 

solution set. Otherwise, go to Step 11. 

Step 11: Combine    and    to obtain a union population         . 

Step 12: Apply Steps 3-5 onto    and obtain a sorted union 

population.  

Step 13: Select the    best solutions from the sorted union 

to create the next parent population     . 

Step 14: Apply Steps 6-9 onto      to obtain     . Set       ; and go to Step 10.  

 

Finally, the best front in terms of non-dominance and 

diversity of the individual solutions is chosen. Once the best 

front is chosen, the testing step is performed on the trained NN 

with optimal weight values.  

The total computational complexity of the proposed 

algorithm depends on two sub-operations: non-dominated 

sorting and fitness evaluation. The time complexity of non-

dominated sorting is      , where   is the number of 

objectives and    is the population size [29]. In the fitness 

evaluation phase, NSGA-II is used to train a NN which has    

input samples.  Since for each individual of the population a 

fitness value is obtained, this process is repeated       

times. Hence, time complexity of this phase is       . In 

conclusion, the computational complexity of one generation is  (          ). 

IV. EXPERIMENTS AND RESULTS 

Two case studies have been considered: a synthetic case 
study, consisting of four time series data sets generated 
according to different input variability scenarios, and a real 
case study concerning time series of wind speed data.  The 
synthetic time series data sets have been generated with a 5-
min time frequency from an Auto-Regressive Moving Average 
(ARMA) model with either Gaussian or Chi-squared 
innovation distribution.  For what concerns the real case study, 
hourly measurements of wind speed for a period of 3 years 
related to Regina, a region of Canada, have been used [31]. 

The synthetic case study is aimed at considering hourly data 
and the effects of within-hour variability. Hourly interval input 
data is obtained from the 5-min time series data by two 

different approaches, which we refer to as “min-max” and 
“mean”: the former obtains hourly intervals by taking the 
minimum and the maximum values of the 5-min time series 
data within each hour; the latter, instead, obtains one-standard 
deviation intervals               by computing the sample 
mean (  ) and standard deviation    of each 12 within-hour 
5-min data sample. Single-valued (crisp) hourly input have 
also been obtained as a within-hour average, i.e. by taking the 
mean of each 12 within-hour 5-min data sample, for 
comparison. The wind speed case study considers the effect of 
within-day variability, and min-max and mean approaches are 
applied to the 24 within-day hourly data samples. 

The architecture of the NN model consists of one input, one 
hidden and one output layers. The number of input neurons is 
set to 2 for both case studies, since an auto-correlation analysis 
[32] has shown that the historical past values      and      
should be used as input variables for predicting    in output. 
The number of hidden neurons is set to 10 for the synthetic 
case study and to 15 for the real case study, after a trial-and-
error process. The number of output neurons is 1 in the input-
interval case, since in this case a single neuron provides an 
interval in output; conversely, in order to estimate PIs starting 
from crisp input data, the number of output neurons must be 
set equal to 2, to provide the lower and upper bounds. As 
activation functions, the hyperbolic tangent function is used in 
the hidden layer and the logarithmic sigmoid function is used 
at the output layer. We remark that all arithmetic calculations 
throughout the estimation process of the interval-valued NN 
have been performed according to interval arithmetic (interval 
product, sum, etc.).  

To account for the inherent randomness of NSGA-II, 5 
different runs of this algorithm have been performed and an 
overall best non-dominated Pareto front has been obtained 
from the 5 individual fronts. To construct such best non-
dominated front, the first (best) front of each of the 5 runs is 
collected, and the resulting set of solutions is subjected to the 
fast non-dominated sorting algorithm [29] with respect to the 
two objective functions. Then, the ranked non-dominated 
fronts            are identified, where    is the best front,    
is the second best front and    is the worst front. Solutions in 
the first (best) front    are then retained as the overall best 
front solutions. This procedure gives us the overall best non-
dominated Pareto front for the training set. After we have 
obtained this overall best front, we perform testing using each 
solution included in it. 

For the first case study, the first 80% of the input data have 
been used for training and the rest for testing. For the second, a 
validation process has been performed. So the data set has 
been divided into three parts: the first 60% is used for training, 

20% for validation and the remaining 20% for testing. All data 
have been normalized within the range [0.1, 0.9].  

Table 1 contains the parameters of the NSGA-II for training 
the NN. “MaxGen” indicates the maximum number of 
generations which is used as a termination condition and    
indicates the total number of individuals per population.    
indicates the crossover probability and is fixed during the run.        is the initial mutation probability and it decreases at 
each iteration (generation) by the formula:  
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                                 (13)  
 

TABLE I 
NSGA-II PARAMETERS USED IN THE EXPERIMENTS. 

Parameter Numerical value 
MaxGen 300 
Nc 50 
Pc 
Pm_int  

0.8 
0.06 

 

A. Synthetic Case Study 

Four synthetic datasets have been generated according to the 

following model: 

                             (14) 
 
where    is the deterministic component and    is the 
stochastic one, and the time horizon is 50 days which makes 
1200 hours.  The deterministic component has the following 
expression:                                    (15) 

 
where the period    of the first periodic component has been 
set equal to 1 week, while    is 1 day. The stochastic 
component    of the generating model in (14) is given by an         model [32], with     autoregressive terms, 
with same coefficients          , and     innovation 
term with coefficient given by        . Four different 
scenarios are then considered, which differ in the distribution 
chosen for the innovation term, and in the higher or lower 
innovation variability: in two of the four scenarios the 
innovation is Gaussian, and has variance equal to 1 and 9 
respectively, while in the other two scenarios the innovation 
has a Chi-squared distribution, with 2 or 5 degrees of freedom 
(corresponding to a variance equal to 4 and 10, respectively). 
We thus generate four different 5-min time series data sets, 
from which we will obtain either crisp or interval hourly data. 

Fig. 1 illustrates the testing solutions corresponding to the 

first (best) Pareto front found after training the NN on interval 

data constructed by the min-max approach (left) and mean 

approach (right). The plots show the solutions for the data 

generated from a Gaussian distribution. On each plot, two 

testing fronts are illustrated: the ones where solutions are 

marked as circles have been obtained after training the NN on 

the interval data showing higher variability, while the ones 

with solutions marked as diamonds have been obtained after 

training the NN on the interval data having lower variability. 

Testing solutions obtained with data showing a lower 

variability are better than the ones with higher variability; 

hence, we can conclude that a higher variability in the input 

data may cause less reliable prediction results, and should thus 

be properly taken into account. Pareto fronts of solutions 

obtained for the data generated from a Chi-squared distribution 

are similar, and the results robust with respect to the choice of 

the innovation distribution. 

Given the overall best Pareto set of optimal model solutions 

(i.e. optimal NN weights), it is necessary to select one NN 

model for use. For exemplification purposes, a solution is here 

subjectively chosen as a good compromise in terms of high 

PICP and low NMPIW. The selected solution is characterized 

by 95% CP and a NMPIW equal to 0.42 for the min-max 

approach applied to lower variability Gaussian data. The 

results on the testing set give a coverage probability of 95.5 % 

and an interval width of 0.412. Fig. 2 shows 1-hour-ahead PIs 

for the selected Pareto solution, estimated on the testing set by 

the trained NN; the interval-valued targets included in the 

testing set are also shown in the figure.  

Moreover, we also plot in Fig. 3 the 5-min original time 

series data (testing set), corresponding to the generating 

scenario with Gaussian distribution and low variability, 

together with the estimated PIs corresponding to the selected 

solution: the solid line shows the 5-min original time series 

data, while the dashed lines are the PIs, estimated starting from 

interval input data constructed with the min-max approach 

within each hour. Since the time step for the estimated PIs is 1 

hour, in order to compare them to the 5-min original time 

series data, we have shown in Fig. 3 the same lower and upper 

bounds within each hour; thus, the PIs appear as a step 

function if compared to the original 5-min data. 

 

INSERT FIGURE 1 (TWO COLUMNS) 

 
INSERT FIGURE 2 (TWO COLUMNS) 

 

INSERT FIGURE 3 (TWO COLUMNS) 

 

In order to compare the Pareto front optimal solutions 

obtained with crisp and interval-valued inputs, a new 

normalized measure of the mean prediction interval width, 

named NMPIW*,  has been a posteriori calculated as follows: 

                                    (16) 

 

where RT, RRT and NRT represent, respectively, the range of 

target (i.e., the range of the non-normalized hourly training 

data in input), the range of real target (i.e., the range of the 

non-normalized 5-min original time series data over the 

training set), and the range of normalized target (i.e., the range 

of the normalized hourly training data in input,          ). 

Note that, unless the synthetic scenario changes, RRT takes 

the same value for min-max, mean and crisp approaches. The 

idea behind renormalization is to be able to compare PIs 

estimated from both interval and crisp approaches with respect 

to 5-min original time series data. As NMPIW for each 

solution on the Pareto front has been calculated by dividing the 

mean prediction interval width (MPIW) by the range of the 

training set in question, which is different for the two 

approaches, the Pareto fronts corresponding to the two 

approaches are not comparable. In order to analyze the 

performance of each approach with respect to 5-min original 

time series data, one should carry out a renormalization 

process which takes into account the range of the data set 
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involved in the comparison, and which leads the estimated PIs 

to a common unit of measure. As a numerical example for the 

calculation of NMPIW*, we have considered a testing 
solution, obtained on the synthetic data generated from the 
Gaussian distribution with lower variability and with the crisp 
approach, reported in Fig. 4. The selected solution results in a 

coverage probability of 91% and an interval width of 0.328 on 

the testing. The values of RT, RRT and NRT are 6.87, 11.383, 

and 0.647, respectively. Thus, by using (16), we have obtained 

NMPIW* as follows: 

                                            (17) 

 

Moreover, for each solution on each Pareto front, a PICP* 

value has been a posteriori calculated. Equations (4) and (5) 

have been used with    representing non-normalized 5-min 

original time series data, and with     , if              and otherwise     , where     and     
indicate de-normalized lower and upper bounds of the 

estimated PIs. Since estimated PIs have been obtained with 

hourly input data, while original data have a 5-min time 

frequency, in order to a posteriori calculate PICP* with respect 

to the original  data we have assumed the same lower and 

upper bounds, [   ,   ], for each 5-min time step within 

each hour. Renormalization allows us to convert current Pareto 

fronts to new ones whose coverage probability and interval 

size are calculated according to the 5-min data set, and are 

comparable across different (crisp and interval) approaches. 

 
INSERT FIGURE 4 (TWO COLUMNS) 

 

In Fig. 4, a comparison between the testing fronts obtained 

with interval-valued and crisp inputs are illustrated. Solutions 

have been plotted according to the renormalized measures, i.e. 

the axes of the plots correspond to the new quantities 

NMPIW* and 1-PICP*, so that they can be compared. It can 

be appreciated that the solutions obtained with a crisp 

approach never result in coverage probabilities greater than 

90% with respect to the original data. Furthermore, when the 

variability in the original data increases (right plots), the crisp 

approach gives less reliable results in terms of coverage 

probability, which is smaller than 80%. However, a model 

should take the within hour variability (high or low) into 

account and be capable of properly capturing it. Predictions 

resulting in a coverage probability lower than expected show 

the poor prediction power of the crisp approach, which cannot 

be considered a reliable support to decision making in the 

presence of high variability.  

 

B. Short-term Wind Speed Prediction 

In this Section, results of the application of the proposed 

method to short-term wind speed forecasting with interval-

input data are detailed. The data set considered for the analysis 

consists in hourly wind speed data measured in Regina, 

Saskatchewan, a region of central Canada. Wind farms in 

Canada are currently responsible of an energy production of 

5403 MW, a capacity big enough to power over 1 million 

homes and equivalent to about 2% of the total electricity 

demand in Canada [33]. The actual situation in Saskatchewan 

is characterized by the presence of 4 large wind farms located 

throughout the region, with a total capacity of approximately 

198 MW [34]. 

The wind speed data set, covering the period from January 

1, 2010 till December 30, 2012, has been downloaded from the 

website [31].  Since hourly data have been collected, 24 wind 

speed values are available for each day. Fig. 5 shows the 

behavior of hourly wind speed values only in the first 20 days, 

for the sake of clarity: one can appreciate the within-day 

variability in each individual day. The wind speed changes 

from 0 km/h to 72 km/h with an unstable behavior. From this 

raw hourly wind speed data, one can obtain daily interval wind 

speed data with the min-max and mean approach described at 

the beginning of Section IV. The so obtained data sets include 

1095 intervals among which the first 60% is used for training, 

20% for validation and the remaining 20% for testing.  

The procedure described in Sections II and III has been 

applied for day-ahead wind speed prediction, both with 

interval and crisp inputs. Crisp results are reported for 

comparison, in terms of daily averages of the raw hourly data, 

with the same data splitting for training, validation and testing 

sets. The inputs are historical wind speed data     and      

both for interval and crisp inputs; the optimal number of inputs 

has been chosen from an auto-correlation analysis [32].  

When an optimal solution is selected from the front 

obtained by optimizing the NN on the basis of the training 

data, it is possible that the CP resulting from the application of 

this optimal NN to unseen data is lower than the one obtained 

on the training data. Thus, a validation set has been also 

selected, to test the generalization power of the proposed 

method. In other words, the aim is to test whether the selection 

of the solution with the required CP on the training data will 

result in well-calibrated PIs on the validation data or not.  Fig. 

6 shows the values of PICP and NMPIW obtained on the 

validation set along the iterations of the MOGA (for the min-

max approach). To obtain these graphs, at each iteration an 

optimal solution has been selected from the training front, it 

has been used on the validation set, and the corresponding 

PICP and NMPIW values have been recorded. The motivation 

behind these plots is to show the capability of the MOGA 

algorithm to generate reliable predictions on unseen data. 

From inspection of the profiles of both objectives on the 

training and validation sets, we can observe that the profiles do 

not show significant difference. The PICP evaluation is 

coherent with NMPIW. Hence, we can conclude that the 

proposed method results in well-calibrated PIs not only on the 

training set but also on the validation set. 

In Fig. 7, the testing solutions obtained with the interval-

valued min-max and mean approaches, and with crisp inputs, 

are illustrated. The figure has been plotted according to the 

renormalized solutions, as explained in Section IV-A, i.e. the 

axes of the plot correspond to the new quantities NMPIW* and 

1-PICP*.  As already appreciated in the synthetic case study, 

one can notice that the solutions obtained with a crisp 
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approach do not result in a coverage probability larger than 

95% with respect to the original data. Furthermore, looking at 

the solutions in Fig. 9 which show a CP greater than 90%, the 

ones corresponding to the crisp approach give larger interval 

size. Since in practice it is important to have narrow PIs with 

high coverage probability, an interval-inputs approach is more 

suited to reliable decision making. 

 

INSERT FIGURE 5 (TWO COLUMNS) 

 

INSERT FIGURE 6 (TWO COLUMNS) 
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From the overall best Pareto set of optimal solutions (i.e. 

optimal NN weights) obtained after training the network on 

the interval input data constructed with the min-max and mean 

approaches, a solution must be chosen. The selection of the 

solution might be accomplished by setting a constraint on one 

of the objective and choosing the optimal value for the other 

one, or by considering some other methods to weigh the two 

objectives [35]. In general, the selection should represent the 

preferences of the decision makers (DMs). Here, for 

simplicity’s sake, we do not introduce any specific formal 
method of preference assignment but subjectively choose a 

good compromise solution: for the min-max approach, the 

results give a coverage probability of 92.1% and interval width 

of 0.466 on the training, and a coverage probability of 93.9% 

and interval width of 0.48 on the testing. For the mean 

approach, the selected solution results in a coverage 

probability of 91.7% and interval width of 0.424 on the 

training, and a coverage probability of 93% and interval width 

of 0.437on the testing.  

Figs. 8 and 9 report day-ahead PIs (dashed lines) for the 

selected Pareto solutions, with respect to the mean and min-

max approaches respectively, estimated on the testing set by 

the trained NN. The interval-valued targets (solid lines) 

included in the testing set are also shown in the figures. As 

wind speed cannot be negative, to reflect the real physical 

phenomena the negative lower bounds of the PIs have been 

replaced with zeros. From inspection of the figures, we 

observe that the target profile of the mean approach is more 

accurate if compared to that of the min-max approach. 

However, the peak points have been covered relatively better 

by the min-max approach if compared to the mean. Hence, 

which one would be preferably chosen depends on the 

application. The mean approach might be considered more 

similar to classical methods for short-term wind speed/power 
prediction using single-valued data as inputs, obtained as a 
within-hour or within-day average. By this approach we can 
add information to the single-valued averages, and thus we can 
include in the model the potential uncertainty caused by the 
data itself showing a within hour/day variability. Hence, the 
mean approach is a well-suited interval inputs alternative to 
the classical crisp inputs one, and it might be considered more 
feasible in practice.  

Moreover, we also plot in Fig. 10 the raw hourly wind speed 

data (testing set) together with the estimated PIs corresponding 

to the selected solution. The solid line shows the raw hourly 

wind speed data, while the dashed lines are the PIs, estimated 

starting from interval input data constructed with the min-max 

approach within each day. Since the time step for the 

estimated PIs is 1 day, in order to compare them to the hourly 

original time series data, we have shown in Fig. 11 the same 

lower and upper bounds within each day; thus, the PIs appear 

as a step function if compared to the original 1-hour data. 

 

INSERT FIGURE 8 (TWO COLUMNS) 

 

INSERT FIGURE 9 (TWO COLUMNS) 

 

The same procedures have been carried out for the crisp 

approach. A solution has been selected from the overall best 

Pareto set of optimal solutions, which results in 92% CP and 

0.497 NMPIW on the training, and 91.3% CP and 0.495 

NMPIW on the testing. Fig. 11 shows the raw hourly wind 

speed data (testing set) together with the estimated PIs 

corresponding to the selected solution. 

From the results illustrated in Figs. 10 and 11, one might 

comment that the PIs obtained with the interval inputs 

approach are capable of capturing the peak points (highest and 

lowest) of the target of interest (hourly data). Although there 

are some highly extreme values dropping out of the estimated 

PIs, the interval approach leads to better coverage of the 

intermittent characteristic of wind speed than the crisp 

approach. In other words, the interval approach manages to 

describe more efficiently the short-term variability of wind 

speed.  

INSERT FIGURE 10 (TWO COLUMNS) 

 

INSERT FIGURE 11 (TWO COLUMNS) 

V. CONCLUSIONS 

The goal of the research presented in this paper is to 
quantitatively represent the uncertainty in neural networks 
predictions of time series data, originating both from 
variability in the input and in the prediction model itself. The 
application focus has been on wind speed, whose forecasting is 
crucial for the energy market, system adequacy and service 
quality in wind-integrated power systems. Accuracy of 
predictions of power supply and quantitative information on 
the related uncertainty is relevant both for the power providers 
and the system operators. 

Specifically, we have presented two approaches that can be 
used to process interval-valued inputs with multi-layer 
perceptron neural networks. The method has been applied on a 
synthetic case study and on a real case study, in which the data 
show a high (short-term) variability (within hour and within 
day). The results obtained reveal that the interval-valued input 
approach is capable of capturing the variability in the input 
data with the required coverage. The results enable different 
strategies to be planned according to the range of possible 
outcomes within the interval forecast. 
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Fig. 1.  Testing solutions for the Gaussian time series: min-max approach (left) and mean approach (right). 
 
 

 
Fig. 2.  Estimated PIs for 1-h ahead prediction on the testing set (dashed lines), and interval-valued input data (target) constructed by the min-max approach from 
the Gaussian distribution scenario with lower variability on the testing set (solid lines). 
 

 
 
Fig. 3.  Estimated PIs for 1-h ahead prediction on the testing set (dashed lines), and the original 5-min time series data on the testing set (solid line) obtained in 
the Gaussian distribution scenario with lower variability. 
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Fig. 4.  Testing solutions obtained in the synthetic case study with interval-valued (min-max approach) and crisp approaches: data have been generated from the 
Gaussian distribution with lower (left) and higher variability (right). 
 
 

 

 

 
Fig. 5.  The raw hourly wind speed data set used in this study: first 20 days. 
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Fig. 6.  Evaluation of PICP (top) and NMPIW (bottom) with respect to training and validation sets along MOGA iterations, considering interval inputs obtained 
with a min-max approach. 

 
 

 
 

Fig. 7.  Comparison between crisp and interval-valued approaches testing solutions, after renormalization, for day-ahead wind speed prediction: min-max with 
respect to crisp approach comparison (left), and mean with respect to crisp approach comparison (right). 
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Fig. 8.  Estimated PIs with interval inputs for day-ahead wind speed prediction on the testing set (dashed lines), and interval-valued wind speed data (constructed 
by the mean approach) included in the testing set (solid line).  
 
 
 

 

 

 

Fig. 9.  Estimated PIs with interval inputs for day-ahead wind speed prediction on the testing set (dashed lines), and interval-valued wind speed data (constructed 
by the min-max approach) included in the testing set (solid line).  
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Fig. 10.  Estimated PIs with interval inputs (constructed by the min-max approach) for day-ahead wind speed prediction on the testing set (dashed lines), and raw 
hourly wind speed data on the testing set (solid line).  

 
 

 

 
 
Fig. 11.  Estimated PIs with crisp inputs for day-ahead wind speed prediction on the testing set (dashed lines), and raw hourly wind speed data on the testing set 
(solid line).  

 

 




