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Motivation

• Continued, uncompensated wire scaling degrades 

performance and signal integrity

• Optics has many fundamental advantages over metal 

wires and is a promising solution for interconnect

• Optics as a drop-in replacement for wires inadequate
– Optical buffering or switching remains far from practical 

– Packet-switched network architecture requires repeated O/E and E/O 

conversions 

– Repeated conversions significantly diminish benefits of optical signaling 

(especially for intra-chip interconnect)

⇒Conventional packet-switched architecture ill-suited for on-chip optical 

interconnect
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Challenges for On-chip Optical Interconnect

• Signaling chain:
– Efficient Si E/O modulators challenging 

• Inherently poor non-linear optoelectronic 
properties of Si

• Resonator designs also non-ideal: e.g., e-beam 
lithography, temperature stability, insertion 
loss

• Propagation medium:

– In-plane waveguides add to the challenge and loss

• Floor-planning, losses due to crossing, turning, and distance

– Bandwidth density challenge

• Density of in-plane wave guide limited

• WDM: more stringent spectral requirements for devices and higher

insertion losses, more expensive laser sources

– Off-chip laser (expensive, impractical to power gate)
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Free-Space Optical Interconnect: an Alternative

• Signaling

+ Integrated VCSELs (Vertical Cavity Surface Emitting Laser) 
avoids the need for external laser and optical power 
distribution; fast, efficient photo detectors

– Disparate technology (e.g., GaAs)

• Propagation medium

+ Free-space: low propagation delay, low loss and low 
dispersion

– Hindering heat dissipation

• Networking

+ Direct communication: relay-free, low overhead, no 
network deadlock or the necessity to prevent it
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Outline

• System overview

• Interconnect architecture

• Optimization

• Evaluation

• Conclusion
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Optical Link and System Structure
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Chip Side View

Side view (mirror-guided only) Side view (with phase array beam-forming)

• Mostly current (commercially available) technology

– Large VCSEL arrays, high-density (movable) micro mirrors, high-speed 

modulators and PDs

• Efficiency: integrated light source, free-space propagation, 

direct optical paths
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Link Demo on Board Level
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Prototype Custom-Made VCSEL Arrays
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Efficient Optical Links
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Network Design

• Allowing collisions: a central tradeoff

– Avoid centralized arbitration

• Improve scalability

• Reduce arbitration latency for common case

• Reduce the cost for arbitration circuitry

– Same mechanism to handle errors

• No extra support to handle collisions

• Once collisions accepted can lower BER requirements (more engineering 

margins and/or energy optimization opportunities)

– No significant over-provisioning necessary (later)

– Simple structuring steps reduce collisions

Shared Receivers
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Structuring for Collision Reduction

• Multiple receivers

• Slotting and lane separation

– Meta Packets

– Data Packets

• Bandwidth allocation
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Collision Handling

• Detection mechanism (at receiver)

• Notification/inference of collision 
at transmitter: confirmation

– Dedicated VCSEL per lane

– Collision free for confirmations

– Allows coherence optimization

• Retransmission to guarantee 
eventual delivery

– Exponential back-off: Wr=W×B
r-1

W = 2.7, B = 1.1 for minimal 
collision resolution delay 

Confirmation Lane
Packets Lane

- - 0 - - - 1 -

- - 1 - - - 0 -

PID PID

- - 1 - - - 1 -

Node A

Node B

Received
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Optimizations: Leveraging Confirmation Signals

• Conveying timing information

– Sometimes the whole point of communication is timing

– E.g., releasing lock/barrier, acknowledging invalidation 

– Information content low (esp. when message is anticipated)

– Inefficient use of bandwidth (~25% traffic for sync in 64-way CMP)

• Confirmation laser can provide the communication

– Achieve even lower latencies than using full-blown packets (such 

communication is often latency sensitive)

– Reduce traffic on regular channels and thus collision

– Eliminate invalidation acknowledgement

– Specialized boolean value communication
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Eliminating Acknowledgements

• Acknowledgements needed for (global) write completion

– For memory barriers, to ensure write atomicity, etc.

• Use confirmation as commitment

– Only change: received invalidation is logically serialized before another 

visible transaction (same as some bus-based designs)

– Avoid acks which are particularly prone to collisions

Directory/L2

L1 cache
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L1 cache
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Eliminating Acknowledgements

Reduces 5.1% traffic but eliminates 31.5% of meta packet collisions

Invalidation acknowledgements systemically synchronized
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Experimental Setup

Memory hierarchy

L1 D cache (private)

L1 I cache (private)

L2 cache (shared)

Dir request queue

Memory channel

Number of channels

Prefetch logic

8KB, 2-way, 32B line, 2 cycles, 2 

ports, dual tags

32KB, 2-way, 64B line, 2 cycles

64KB slice/node, 64B line, 15 cycles, 

2 ports

64 entries

52.8GB/s bandwidth, memory latency 

200 cycles

4 in 16-node system, 8 in 64-node 

system

Stream prefetcher

Network packet Flit size: 72-bit, data packets: 5 flits, 

meta packet: 1 flit

Wire interconnect 4VCs, latency: router 4 cycles, link 1 

cycle, buffer: 5x12 flits

Feature size: 45nm, fclk: 3.3GHz, Vdd:1VProcess specifications

4/4/4

64

INT 1+1 mul/div, FP 2+1 mul/div

(16, 16)/(64, 64)

32 (16, 16) 2 search ports

Bimodal + Gshare

8K entries, 13bit history

4K/8K/4K (4-way) entries

At least 7 cycles

Fetch/Decode/Commit

ROB

Functional units

Issue Q/Reg.(int, fp)

LSQ(LQ, SQ)

Branch predictor

-Gshare

-Bimodal/Meta/BTB

Br.mispred.penalty

Processor core

40GHz, 12 bits per CPU cycle

Dedicated (16-node), phase-array with 1 cycle setup 

delay (64-node)

6/3/1 bit(s) for data/meta/confirmation lane

2 data (6b), 2 meta (3b), 1 for confirmation (1b)

8 packets each for data and meta lanes

VCSEL

Array

Lane widths

Receivers

Outgoing 

queue

Optical Interconnect (each node)

Applications: SPLASH 2 suite, electromagnetic solver (em3d), genetic linkage analysis (ilink), 

iterative PDE solver (jacobi), 3D particle simulator (mp3d), weather prediction (shallow), branch 

and bound based NP traveling salesman problem (tsp)
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Performance – 16 Cores

• FSOI offers low 

latency

• Collisions do not 

add excessive 

latencies

• Speedup depends on 

code, but tracks L0

(1.36 vs 1.43)

• Better than idealized 

single-cycle router 

mesh
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Performance – 64 Cores

• Latency does increase, 

but mostly due to 

source queuing

• Speedup continues to 

track that of L0 (1.75 

vs 1.90) and pulls 

further ahead of Lr1, 

Lr2
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Energy Analysis

• 20x energy reduction 

in network

• Faster execution also 

reduces leakage and 

clock energy etc.

• 40.6% total energy 

savings

• 22% power savings 

(121W vs 156W)
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Sensitivity Analysis

• Performance impact of progressive bandwidth reduction

– Initial bandwidth comparable in both systems

• Allowing collisions ≠ requiring drastic over-provisioning
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Other Details in Paper

• Using confirmation signal to provide specialized 

boolean value communication

• Spacing requests to ameliorating data packet collisions 

and its experiments analysis

• Improving collision resolution using info about 

requests 

• Related work
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Summary

• Proposed a scalable, fully-distributed free-space optical interconnect

– Direct communication instead of packet relay: good performance

– FSOI allows routing (virtual, on-demand) wires again: implementability

– Integrating entire optical signal chain with efficient paths: excellent energy 
efficiency

• Allowing packet collision is a central tradeoff

– Arbitration free and low overhead for contention-free traffic

– Same mechanism to handle errors

– No significant over-provisioning necessary

– New opportunity for simple optimizations

• Technology readiness

– Entire signaling chain is commercially available in large scale

– 3D integration of disparate technologies common in small scale SoCs

– Thermal issues may be avoided by piggybacking on other developments
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Readily Available Technology

Commercial VCSELs Commercial microlenses
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Single VCSEL Structure (Under Microscope)

a) Top view of the etched mirrors b) The p-contact region of the VCSEL, 

located below the mirrors shown in  a)
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Spectrometer Setup
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Germanium Photodetectors

Metal Metal

Active Region

Ge substrate

Ti/Au 
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Side view of Germanium Photodetector
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3D Test Chip for System-Level Demo

Transmitter

(VCSEL Driver)
Receiver
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SRAM

DCache

ICache
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Specialized Boolean Value Communication

• Synchronization primitives:

– Often boolean-based, unsuitable for inv.

• Use confirmation laser to transparently: 

– Carry the values over confirmation lane (using pulse position)

– Provide an update protocol (for LL/SC)

TEST:  LL $1, 0($16)

BNZ $1, TEST

TAS: BIS $1, 1, $1

SC $1, 0($16)

BZ $1, TEST

Directory/L2

L1 cache

Link register 1
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1 1              … _ Subscription
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S
C
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U
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Recap of Main Tradeoffs

• Relay network

– Relay contributes to energy cost and scalability challenges

– Router complexity for performance also incurs costs

• Optical signaling can avoid relay using shared media

– Off-chip light sources are expensive and power hungry

– On-chip distribution and modulation chain (waveguide loss and 

insertion loss) reduce energy efficiency

– WDM imposes stringent device constraints which pose challenges on 

fabrication

• FSOI avoids relay and minimizes loss in signaling chain

– Requires 3D integration of disparate technologies

– Makes air cooling very difficult
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Eliminating Acknowledgements

Reduces 5.1% traffic but eliminates 31.5% of meta packet collisions

Invalidation acknowledgements systemically synchronized
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Ameliorating Data Packet Collisions

• Reduce the probability of data collision with spacing

• Improving collision resolution using info about requests

– Collision-corrupted headers still reveal info about senders

– Can notify one sender to immediately resend

– Need not be correct, at most causing a collision for another node
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Data Packet Collision Optimization

• Collision rate reduction: 38% of data collisions

• Collision resolution hint reduces delay by 30% (41 29 cycles)

• Performance impact depends on collision frequency

• Improves performance robustness



3737

Related Work

• Buffer-less optical packet-switched network, Schacham and Bergman, IEEE 

Micro 2007

• Circuit-switched optical network, Schacham et al. NOC’07

• Bus or ring-based shared-medium optical interconnect

– Ha and Pinkston JPDC 1997

– HP Corona (Beausoleil LEOS 2008, Vantrease et al. ISCA’08)

– Kirman et al. MICRO’06

• Free-space optics

– Miller, J. Sel. Top. in Quantum Elec. 2007

– Krishnamoorthy and Miller, JPDC 1997

– Marchand et al. JPDC 1997

– Walker et al. Applied Optics 1998
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